
M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 287–302, 2003.
© Springer-Verlag Berlin Heidelberg 2003

PANDA: Specifying Policies for Automated
Negotiations of Service Contracts

Henner Gimpel1, Heiko Ludwig2, Asit Dan2, and Bob Kearney2

1 Universität Fridericina Karlsruhe (TH), Englerstrasse 14, 76131 Karlsruhe, Germany
���������	
��������
��	��

2 IBM T.J. Watson Research Center, 19, Skyline Drive, Hawthorne, NY, 10025, USA
���
���������������������
�	���	���

Abstract. The Web and Grid services frameworks provide a promising infra-
structure for cross-organizational use of online services. The use of services in
large-scale and cross-organizational environments requires the negotiation of
agreements that define these services. Buying at a fine granularity just when a
need arises is only feasible if the costs of establishing new agreements are low.
Today, negotiation is often a manual process yet many simple online services
would allow full or partial automation. The PANDA approach automates deci-
sion-making and proposes to specify a negotiation policy, expressing a party’s
private negotiation strategy, by combining rules and utility functions. In addi-
tion, the decision-making problem can be decomposed into different aspects
that can be executed by different interacting decision-makers. Using PANDA
for policy specification and negotiation decision-making reduces the costs of
setting up new services and contracts. Hence, the use of fine-grained on-
demand services becomes feasible.

1� Introduction

Web and Grid services facilitate on-demand use of services accessed over a network –
potentially across organizational boundaries. This may lead to an environment in
which services are bought at a fine granularity from a number of competing providers.
Given a marketplace of providers of similar or comparable services, it also enables
organizations to dynamically buy resources on the spot when additional business re-
quires access to more capacity than available in-house. Negotiating agreements and
buying services ad-hoc enables business partners to tailor their contractual bindings in
regard to time varying needs and constraints. This reduces the risk of being stuck in
long-term contracts that are no longer profitable.

PANDA (Policy-driven Automated Negotiation Decision-making Approach) fa-
cilitates automated decision-making within negotiations. It allows decomposition of
intended negotiation behavior, integrates different formalisms for policy, and struc-
tures the strategic reasoning of a negotiator.

288 H. Gimpel et al.

1.1� Agreements in the Web Services Domain

Relationships between organizations are defined by agreements between them. Those
agreements may be implicit by accepting some fixed terms that are published by a
service provider or they are made explicit in the form of a contract that is specifically
negotiated.

Most description formats of the Web services stack are unilateral in their nature,
i.e., a service provider describes properties and usage conditions of a service. This is
the case, for example, for WSDL [5] and WS-Policy [4]. Unilateral descriptions are
limiting because they cannot represent consensus and reciprocity. Some description
formats in the context of Web services, however, represent aspects of agreements
among two or more parties, such as the Business Process Execution Language
(BPEL) [1] or proposed languages for service level agreements such as the Web
Service Level Agreement (WSLA) language [15] and the Web Service Management
Language (WSML) [19]. A draft for “Agreement-based Grid Service Management
(OGSI-Agreement)” has been submitted to the Global Grid Forum [6]. As relation-
ships between service providers and clients become more complex and more non-
functional requirements such as response time guarantees must be considered, lan-
guages will be defined to express agreed relationships in contracts. In dynamic envi-
ronments, those contracts will vary for each relationship and can be negotiated ad hoc.

1.2� Negotiating Agreements

Negotiations are mechanisms that increase the flexibility of possible service contracts.
We use the term negotiations as comprising all exchanges of messages, such as offers
and acceptance messages, between two or more parties intended to reach an agree-
ment.

In the context of dynamically setting up service relationships, it is important to use
an efficient decision-making process that reduces cost and time of the setup. Human-
based negotiations are time-consuming and expensive. Hence there have been many
approaches to support human decision-makers with decision support systems and ne-
gotiation support systems [14]. In addition, in some cases requiring simple decision-
making, it is desirable to automate all or a part of the negotiation task of a participat-
ing party and hence to drive down the costs, and particularly time of establishing a
new agreement. However, engineering negotiation applications is complex, time-
consuming, and expensive. In many cases, it is not worth to implement a new nego-
tiation application for each new negotiation task or situation.

Ideally, an employee of an organization can express the negotiation preferences as
a negotiation policy that can be interpreted by a negotiation engine. A policy in the
context of this paper is an explicit representation of intended behavior to be inter-
preted by an engine that implements the behavior. In the case of negotiations, a nego-
tiation engine responds to offers and other communication in accordance to this speci-
fied policy. PANDA provides the expression of policies that combine utility functions
and business rules.

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 289

1.3� Objective and Structure

To facilitate the automation of decision-making based on negotiation policy, the ob-
jective of this paper is to propose a mechanism an organization can use to define its
preferences – PANDA. Using a combination of utility functions and rules provides a
user a suitable formalism to represent preferences in a way that can be easily ex-
pressed and managed.

To this end, the remainder of the paper is structured as follows: Section 2 intro-
duces a motivating example and discusses the specifics of negotiating services. Sub-
sequently, expression of intended behavior is analyzed in Section 3. In Section 4 we
introduce the PANDA approach that defines a model of decision-making. Section 5
illustrates the use of the presented approach based on the example. Finally, Section 6
summarizes the results, compares the approach to related work, and gives an outlook
on future work.

2� Negotiation of Service Agreements

The negotiation of service agreements takes an important role in the life cycle of
agreements, facilitating the creation of complex agreements in lieu of simple binding
to services that are described. Parties in a potential service relationship use advertising
and search functions to find each other, either directly or using an intermediary. Ne-
gotiation messages such as offers and acceptance notifications are exchanged. This
may finally lead to a contract. Upon successful negotiation, each organization creates
a contract implementation plan that defines how to implement a particular contract
[16]. However, beyond general issues of negotiating contracts, online and Web serv-
ices have some specific properties that require further analysis.

2.1� Example

To illustrate the further discussion, we use the example of a stock quote service that is
offered by a service provider FastQuote that negotiates some attributes of the service
for particular customers. The service is offered at an interface defined by FastQuote in
a WSDL file. It exposes an operation getQuote in a binding specifying SOAP over
HTTP as transport. The service is offered by FastQuote at different levels of delays of
the quotes from the trading floor, 20 minutes, 5 minutes, or real time. Furthermore, on
an IT level, FastQuote negotiates different levels of service regarding availability and
response time at requested levels of throughput. The throughput is measured in invo-
cations per minute. Finally, the price is open to negotiation.

FastQuote’s preferences over the variety of possible contracts include a reasonable
coherency between price and delay; delivering stock quotes with a shorter delay is a
more valuable service and should yield higher earnings. For building up new business
relationships FastQuote is willing to be more acquiescent in negotiations with first
time customers.

Once an agreement is reached, FastQuote plans the deployment of the new agree-
ment. Depending on the quality of service parameters agreed upon it plans the alloca-
tion of capacity on existing hosts or the provisioning of new hosts. The host capacity
relates to the amount of memory and the number of CPU seconds required. This plan

290 H. Gimpel et al.

is called the contract implementation plan. The company has an algorithm that returns
capacity requirements for given throughput rates and response times at a requested
availability.

2.2� Service Characteristics

Services have a number of characteristics, which impose special requirements for a
decision-making in the course of a negotiation. The most important are:

Non-storability denotes the fact that resources not used yesterday are worthless
today [13]. The implication for marketing one’s resources by providing services is
that time and current resource workloads are crucial factors in decision-making. If
time runs out and capacity is going to be wasted, providers will make stronger con-
cessions.

Complexity is another service characteristic. Service contracts are usually complex
due to the fact that they have many defining parameters. The complexity issue can be
addressed by means of templates, utility functions, and sophisticated tactics for offer
creation.

Intangibility raises problems in determining the value of a service contract be-
cause the good sold to a consumer does not equal the operating expense dedicated by
the service provider. A provider has resources and uses them to yield a return on his
investment. A consumer has needs and satisfies them by buying a service. The service
agreement bridges the gap between provider resources and consumer needs; neither
side has to be acquainted with the precise nature of the other side’s concerns. The in-
tangibility of services leads to the need of an internal transformation from a service
contract to a deployment plan.

Provisioning a service instead of settlement is a feature distinguishing services
from, e.g., financial products and hard goods. Many commodity trades have a settle-
ment time, for exchanging money and goods. Services are not settled, but provisioned
and consumed, which calls for a contract implementation plan accounting for the
whole time span.

2.3� Negotiation Issues

A common way of analyzing negotiations is differentiating the negotiation protocol,
comprising the rules of the encounter, the negotiation object, and the decision-making
model [11]. A number of simple negotiation protocols are used for match-making and
reservations without considering economic aspects. For example, SNAP (Service Ne-
gotiation and Acquisition Protocol) has been proposed for resource reservation and
use in the context of the Grid [8].

The remainder of the paper focuses on direct bilateral negotiations, not involving
third parties like regulators, facilitators or mediators enforcing special rules of inter-
action, although PANDA can be applied in that situation.

A common problem in negotiations is the ontology problem of electronic negotia-
tions [20]. It deals with the common understanding of the issues among negotiating
parties. One approach of solving the ontology problem is the use of templates. Tem-

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 291

plates are partially completed contracts whose attributes are filled out in the course of
the negotiation. Template-based negotiations facilitate structuring of the negotiation
process and understanding of resulting service contracts [18].

2.4� Requirements

The discussion in this section leads to a set of requirements to be addressed by a ne-
gotiation decision-making approach:
•� The approach should impose few restrictions on the negotiation protocol and ob-

ject.
•� The policy representation should trade off expressiveness and ease of specifica-

tion. It must allow a policy specifier to structure the policy along his or her think-
ing and to understand and manage real-life policies.

•� The practicality of a negotiation system entails that a regular user should not be
required to have programming skills. A negotiation is not an end in itself, but
means to an end.

•� User interaction should be possible but not mandatory. Automated decision-
making is capable of speeding up the negotiation process and reducing its costs.
Nevertheless, user interaction may be necessary.

•� The approach must consider the specific properties of services, which are: non-
storability, complexity, intangibility and need for provisioning.

3� Capturing Intended Behavior

Utility functions and rule-based systems are two standard methods for externalizing
preferences and intended behavior. However, both approaches pose difficulties for
users to express complex strategies for negotiating service agreements.

3.1� Examples of Decision Relevant Considerations

Deciding whether or not to accept an offer or to create a counter-offer may involve
evaluations of many different aspects of the contract and checking many decision
criteria. Below we illustrate a typical set of evaluation criteria for service offers ad-
dressed in negotiation policies:
•� Can this contract be supported? Before accepting a new contract a provider needs

to make sure it can be supported given the set of existing contracts and available re-
sources. Answering this question may involve a detailed model of the system [6]
and evaluating the expected violations with this new contract.

•� How desirable is this contract? A highly profitable contract may be desired over an
existing one even if not enough resources are available. The business may have de-
cision criteria on terminating an existing contract not just based on profitability but
many other aspects such as business reputation and customer satisfaction.

292 H. Gimpel et al.

•� Will the counterparty lose interest? A counter-offer selection can not be guided
simply by maximization of profit. The business may have decision criteria on how
far to deviate from a client offer or how much to concede.

For some of the above considerations the attributes of the contract template are insuf-
ficient for the decision-making process. The evaluation involves a complex estimation
of one or more additional decision parameters, such as probabilistic measure of risk,
resource costs and desirability of a new contract. This includes the attributes of the
contract implementation plan. We refer to program components that derive these ad-
ditional parameters as estimation programs. Both, attributes of the template and addi-
tional decision parameters can be used in utility functions and rules.

3.2� Utility Functions

Economists have been using utility functions as representation for preferences since
the 19th century. A utility function maps properties related to an offer onto a single
dimensional abstract utility value for an individual or an organization. The utility
value is then used as a representation for the individual’s preferences: alternative A is
preferred to alternative B if, and only if, A’s utility value is greater than B’s.

In automated negotiations maximization of externalized utility functions can be
used for decision-making. Hence, utility functions have to embrace four preferential
aspects:
1.�Risk1 is a part of service negotiations mainly because of the non-storability charac-

teristic resources might possess.
2.�Complex service agreements often define multiple issues or attributes. Multi-

attribute considerations are a well-known component of decision and negotiation
analysis.

3.�Time influences negotiations in two ways: In the short run there might be deadlines
for reaching an agreement. A consumer may have a fixed time line and a provider
may want to have his resource booked in advance to avoid risk. In the long run the
continuity of business relations might become important.

4.� Inter-personal elements deal with bounded self-interest, i.e. an individual’s utility
may depend not only on his own situation, but as well on the situation others face,
examples being altruism and positional goods.

It is a well-known problem that even if an individual’s preferences match a specific
utility function, it is hard to externalize this function: An individual usually does not
know his or her personal utility function. It has to be elicited [10, 17]. Service provid-
ers can build their utility functions by analyzing a services business model and the
cost structure obtained from the IT controlling. Typical fixed costs are, e.g., the de-
preciation of servers. Typical variable costs are ISP bandwidth, electricity, and per-
sonnel. Consumers can derive a bigger part of their utility functions by estimating the
costs of in-house provisioning and considering the benefits from service usage.

1 In decision theory there is a difference between risk and uncertainty. Both terms refer to ran-

dom outcomes. However, risk implies a mathematical probability measure of the outcomes,
uncertainty does not. Within this paper we shall use the term risk to refer to either situation.

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 293

Considering the preferential elements, it is easy to imagine that one single function
capturing all aspects might become complex.

FastQuote’s desired price/delay coherency is an example for multi-attribute aspects
within a negotiation. It can be modeled by means of a utility function, e.g., the one
presented in figure 1. A higher price is better for FastQuote; consequently the func-
tion is strictly monotonic increasing in the price. The delay however determines the
curvature of the function. The higher the delay, the more concave the function. This
implies that for a given price the utility is higher when the delay increases.

��
���
��

����	
���
�	���������������

�

�
����	�
�	���

��
���
��

����	
���
�	���������������

�

�
����	�
�	���

Fig. 1. Multi-attribute utility function representing FastQuote’s price and delay preferences.

Integrating FastQuote’s first time customer cordiality in a utility function is not
straightforward. It could be done by increasing the functions dimensionality, but defi-
nition, calculation, and optimization would become far more demanding.

3.3� Rule-Driven Decision-Making

Directions for decision-making can be also represented in form of rules. There are
numerous approaches for expressing business rules but no absolutely best way be-
cause one has to make a trade-off between expressive power and ease of use while en-
suring automated execution. Negotiation rules have to express knowledge in a high-
level machine executable language on a high degree of abstraction, which is closer to
the understanding of business domain experts, who are often not educated in pro-
gramming languages, than hard-coded if-then constructs. The rule corpus should be
simple to modify by adding or removing single rules and execution of procedural at-
tachments should be possible. Procedures are necessary for informational input to the
rules, i.e. as sensors, and for conducting desired actions, i.e. as effectors. Some proce-
dures might perform optimization tasks, such as implementing a trade-off heuristic for
computing an adequate counteroffer.

Rule-driven strategies are integrated in some negotiation infrastructures like the
ones from Su et al. [21] and Benyoucef et al. [2]. For some kinds of decisions, rules
can be seen as a more human-like way of thinking than the maximization of utility,
hence they are easier to elicit.

FastQuote’s first time customer cordiality can be easily expressed with an if-then
construct, in prose this might be: “If the customer’s offer is close to FastQuote’s last
offer and the customer is a new customer then the offer is accepted." The price/delay
coherency would be much more difficult as a rule expression, than it was in form of a
utility function. The curves could be approximated by step functions defined by a se-
quence of rules, but a continuous function is easier to define, optimize and manage.

294 H. Gimpel et al.

3.4� Mixed Policies: Externalized Negotiation Behavior

Given the advantages and drawbacks of rules and utility functions in terms of expres-
siveness, manageability and ease of elicitation, we propose to combine both ap-
proaches for the representation of negotiation policy. The mixed policy approach re-
quires a model of decision-making that defines how rules relate to utility values. This
includes:
•� Definition of points of decision-making,
•� The association of utility functions with those points, and
•� The definition of objects that can be subject to rule expressions.
The PANDA approach addresses exactly these design issues and consequently helps
building negotiation applications.

4� PANDA Framework

The model of decision-making is designed as an object-oriented framework. The
framework decomposes the decision-making task and identifies points of decision-
making, assigns different utility functions to these points, and specifies the objects
that can be accessed for rule-based reasoning.

4.1� Negotiation Object and Protocol

Automated decision-making depends on the negotiation object and the protocol. In
the proposed approach, the negotiation object is a contract template [16, 18], where a
template comprises fixed and variable parts. The fixed ones are usually the general
terms and conditions, the variable parts may either be negotiable, such as quality-of-
service attributes, or non-negotiable such as the names of the parties. Variable parts
may contain single values and may be restricted by ranges, enumerations of values,
simple logical constraints, and inter-attribute constraints. In template-based negotia-
tions the meaning of negotiable issues is clearly defined as parts of the template.

A negotiation protocol is a set of rules governing the interaction. The assumptions
on the protocol made by the framework are fairly weak for keeping it applicable to
many negotiation scenarios. The basic structure is a bilateral message exchange. The
integration of an intermediary does not impose changes in the PANDA framework.
Either party can start a negotiation with a request for negotiation indicating the tem-
plate to use. Follow-up messages are of the types accept, reject, offer, withdraw, or
terminate. The parties are neither required to alternate with sending messages nor to
agree on the utilization of the decision-making framework. Accept leads to a contract
based on the other party’s last offer, reject to the rejection of the last offer. Offer indi-
cates that a (partially) filled template is sent as proposed contract, withdraw annuls
the last offer, and terminate ends the entire negotiation process immediately.

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 295

4.2� Decision-Maker Components

The PANDA framework’s architecture is built around decision-maker (DM) compo-
nents. The internal structure of a single DM is illustrated in figure 2. Its primary task
is to combine a set of utility functions and processing a rule set, stored in a XML Re-
pository. Rules and utility functions both have access to an object pool, containing
data items and functions that the utility functions can evaluate and the rule interpreter
can reason on. The object pool can, e.g., contain estimation programs (see 3.1), the
negotiation history and other objects.

Rules are expressed in a high-level language specified by an XML schema. The
primary goal of this language is to allow a business domain expert to specify negotia-
tion strategies without having to deal with the programmatic implementation of the
decision-making system. The implementation details of the object pool members are
abstracted by means of sensors and effectors, which can then be used within rules.

Fig. 2. Building blocks of a decision-maker component

The basic building block of a strategy is a single rule, consisting of a condition part
and an action to perform, if the condition is met. A condition is a Boolean expression,
composed of Boolean- and mathematical operators, constants, and so called data
sources. An action is simply a series of data sources. In conditions and actions like-
wise a data source is build from a sensor or an effector and a list of parameters. Sen-
sors and effectors are defined separately and map their name to the call of a procedure
belonging to one of the object pool’s elements. Parameters can either be constants,
data sources, or objects. Following is a rudimentary rule example, including the sen-
sor LEVEL_OF_DISSENT and the effector ACCEPT_OFFER, the definition of both
is omitted.

An example rule, in prose, is: If the level of dissent is less than 0.05 accept the
counterparty’s offer. The level of dissent is defined as the utility difference between
the party’s last offer and the counterparty’s last offer.

The same rule in the proposed XML representation:

��
���
��� ���������
�����!������"#��
���������������"#��
���������$��������%"&&�'$��������
���������&������
�����������(����%")"%*$+*,-&&"(.�'(����
���������'&������

296 H. Gimpel et al.

��������� ��������/	/0�' ��������
�������'��������"#��
�����'!������"#��
���' ���������
���1������
�����"��������
�������(����1 "2.*$++"��'(����
�����'"��������
���'1������
�'�
���

Rules are assembled to rule sets. A strategy can contain an arbitrary number of rule
sets. The clustering of rules allows inducing control flow within the strategy interpre-
tation. Some of the control-flow aspects are iterations over a rule set (i.e. a while
loop), stopping a rule set’s processing after a certain rule within it was fired (i.e. a
break statement), and the unconditional processing of a rule set at the end of the strat-
egy interpretation (i.e. a finally statement).

4.3� Combining Multiple Decision-Makers

The PANDA framework decomposes behavior externalization by delegating different
aspects to different decision-maker components. Different DMs can then be assem-
bled for getting the overall intended behavior. Figure 3 exemplifies FastQuote’s ne-
gotiation system architecture with three decision-makers: the negotiating agent (NA),
the negotiation coordinator (NC), and the utility update (UU).

Fig. 3. Combination of decision-maker components in a single negotiation system

This configuration is appropriate for FastQuote’s needs, but not mandatory within the
framework. PANDA allows the combination of an arbitrary number of DMs. The UU

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 297

could be needless in some scenarios; others might require additional components like,
e.g., the integration of a customer relationship component. DMs can either be objects
directly accessible from another DM, or they can be detached and indirectly affect
others by changing their objects.

A negotiation is initiated through the portal, either by handling an incoming re-
quest or triggered by changes in the resource management. The portal creates a NA
instance for each new interaction and endows it with information on the counterparty,
the template to use, and the relevant negotiation policy and objects. In figure 3 the
NA, the deployment planner (DP) and the profitability utility function (PUF) are indi-
vidually instantiated for each negotiation. The other components are singletons. After
creation the new NA is registered at the NC and takes control of the interaction with
the counterparty.
•� Negotiating Agent (NA): The NA is the focal point of negotiation handling and all

other components within the decision-making infrastructure, except the Portal,
support it by providing information on the current situation and environmental
conditions. Upon reception of a message, the NA performs some administrative
tasks such as checking the validity of the incoming message before proceeding to
more sophisticated message handling depending on the message type. Upon recep-
tion of a termination or acceptance the procedure is straightforward: cleaning up all
negotiation dependent objects and possibly canceling resource reservations, or
passing the final contract on for deployment. Otherwise, the NA processes its rule
corpus for producing a response message to send or for deciding to wait.

The NA can via its object pool (partially outlined in figure 3) obtain information
on all messages in the negotiation history, perform searches for utility maximizing
points within offer-spaces and access counter-offer tactics such as trade-off heuris-
tics [9] and if necessary user input. The resource agent (RA) establishes the inter-
face to resource management and forecasting systems and is able to handle reser-
vation and information requests. The PUF is a multi-attribute utility function,
evaluating a contract template. Since service provisioning involves the use of re-
sources which are often not explicitly defined in the service contract, the PUF can-
not evaluate all contract attributes and has to invoke the resource utility function
(RUF). The RUF is another multi-attribute utility function. It aggregates the re-
source requirements for deploying a service to a single utility value that is further
processed by the PUF.

•� Negotiation Coordinator (NC): The NC is designed to coordinate multiple NAs,
as each single one of them is ignorant of its siblings and the work load risk. Each
NA can invoke the NC for receiving a level of giving in, which is determined by
processing the NCs rule corpus. This provides an indication on how strongly a NA
should concede the counterparty. The NC can reason on status reports requested
from all NAs and it has access to the risk function (RF). The RF is the third utility
function within FastQuote’s decision-making system. Unlike PUF and RUF, it
doesn’t consider multi-attribute aspects, but takes the work load risk into account.
This enables a business domain expert to incorporate the desired level of commit-
ted resources.

•� Utility Update (UU): The UU cannot be directly accessed from the NA, but modi-
fies the RUF which might be volatile and depended on the resources’ work loads.
A sparse resource might, e.g., have more influence within the function, than an

298 H. Gimpel et al.

abound one. As the individual resources’ loads change over time, the RUF can
adapt. The update process is triggered by a resource management system and com-
prises the interpretation of a utility update strategy by the UU. The strategy can use
data, obtained from the RA, to change the RUF during runtime.

The Deployment Planner (DP) is an important component besides the three deci-
sion-makers. As figure 3 indicates, the NA consults the DP when calling the NC, RA,
or indirectly the RUF. Often, the utility depends on the resources consumed, specified
in the contract implementation plan, in addition to the negotiated parts of the contract.
The decision-making infrastructure must map from the contract to the contract im-
plementation plan. The DP determines resource requirements by transforming con-
tract attributes.

The DMs and the DP described above facilitate the manageable specification of a
negotiation policy comprising utility functions and rules. The PANDA framework is
implemented in Java and defines the basic components as well as the control flow for
decision-making in negotiations. Existing object types can be extended and additional
object types can be added to decision-makers by using the mechanisms provided by
Java inheritance.

5� Policy Example

The example illustrates a possible negotiation strategy of FastQuote and its potential
customer NewsOnline, a personalized online newspaper. Due to a change in sub-
scriber behavior NewsOnline has to increase its capacity in stock quotes and initiates
a service negotiation with FastQuote.

5.1� FastQuote’s Negotiation Policy

Besides publishing a contract template, FastQuote internally specifies a contract im-
plementation plan and a negotiation policy: rules for the negotiating agent and the co-
ordinator, a profitability utility function, a resource utility function, and a risk func-
tion. The following rules are not expressed via XML for space restrictions; capitalized
words indicate sensors and effectors.

The rules of the NA are:

�
��&��3
���
���(143
������ %")"%*$+*,-&&"(.���/	/0
������� 1 "2.5�����5
���
���(163
������ %")"%*$+*,-&&"(.���/	6�����("7* 8&.$9"�
������� 1 "2.5�����5
���
���(1:3
����� %")"%*$+*,-&&"(.���/	6
������� +-(,*.�1,"*$++*$++"�;%1&.*8.-%-.<���/	0=%>-?5
� 91@"*$++"�5�����5
��			
"��

The rules of the NC are:

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 299

�
��&��3
��			
���
���(A3
������ �-&@*8.-%-.<���/	B0������-&@*8.-%-.<���/	0
������� %>-�C�;4��-&@*8.-%-.<?�'�(89!"�*(">&5�����5
��			
"��

The three utility functions are jointly outlined in figure 4. RUF and PUF are both
computed by evaluating the sub-functions in the leaf nodes and aggregating them by
building the weighted sum. The weights are displayed at connecting edges. The RF
first aggregates work load forecasts for the two resource types by taking the maxi-
mum and then maps this maximum on the interval from zero to one. 70% is the target
work load that FastQuote wants to achieve.

�������������
�������

����	
���
�	��� �	�����	
�������

���������	

������

�����������
�	�����	
���	�
������������

�	�
����

� �
�	�����	
�������

�	����
����	 � �
����	

��
���
��

� �
��	�����������	�
!"

#$"

�

��
���
��

�	����
�%&�
�""

�""

�

"$ "!

�	�����	
�������

�	����
����	 � �
����	

��
���
��

� �
��	�����������	�
!"

#$"

�

��
���
��

� �
��	�����������	�
!"

#$"

�

��
���
��

�	����
�%&�
�""

�""

�

��
���
��

�	����
�%&�
�""

�""

�

"$ "!

"'' "$'
�

��
���
��

����	
��	���
�

�

�
����	�
�	���

��
���
��

����	
��	���
�

�

�
����	�
�	���

��
���
��

�

(��%
����
�)�
*"

�""

(��%
����
+
��,����

-(��%
����
�	�����

(��%
����
� ��.

��

��

Fig. 4. Example utility function composition.

5.2� Creating a Counteroffer

Figure 5 gives a snapshot of the offers exchanged between FastQuote and NewsOn-
line.

Prices are given in cents per invocation, delay is zero, 5, or 20 minutes, throughput
in invocations per minute, response time in seconds, and availability is either 98%,
99%, or 99.9%.

Sender … FastQuote NewsOnline FastQuote …
Message No. 5 6 7
Price 2.4 1.5 2.3
Delay 0 0 0
Throughput 400-600 800 600
Response time /
� 0
� 3
Availability 99% 99.9% 99.9%

Fig. 5. Example of an offer sequence during a multi-attribute service negotiation.

300 H. Gimpel et al.

The creation of FastQuote’s offer number 7 goes as follows: FastQuote’s NA re-
ceives message 6, approves it as valid offer, and the starts processing its rule corpus
containing a single rule set. Rule NA1 invokes the sensor LEVEL_OF_DISSENT,
which computes the utility difference of offers 5 and 6. Computing utility values in-
volves invoking the PUF, which passes the attributes throughput, response time, and
availability on to the DP. The DP maps these three attributes to resource requirements
and calls the RUF. The resulting utility values might, e.g., be 0.78 and 0.54 respec-
tively. As a result the level of dissent is 0.24. Rule NA1 does not fire, neither does
NA2.

Rule NA3 fires and the effector FIND_TRADE_OFF_OFFER invokes a method in
the object pool for calculating a reasonable counteroffer. The calculation comprises
searching for a contract which utility value equals at least the one given as a parame-
ter and which is close to NewsOnline’s last offer. The closeness makes it likely to be
acceptable by NewsOnline. The parameter, i.e. the desired utility value, is calculated
by integrating the coordinator via the sensor LGI, i.e. the level of giving in.

The coordinator consults the RA, receives work load forecasts of 60% for memory
and 53% for CPUs, and aggregates them by taking the maximum. The corresponding
RISK_UTILITY value of 0.64 is derived from the risk function and used during rule
processing. Rule NC4 is the first rule to fire and the sensor NUMBER_NEGS simply
counts the number of ongoing negotiations for services affecting either memory or
CPUs. Currently their might be three negotiations, including the one with NewsOn-
line. The level of giving in is hence set to 0.12.

LAST_UTILITY is currently the utility value of offer 5, i.e. 0.78; therefore the pa-
rameter of the FIND_TRADE_OFF_OFFER effector is 0.72. Rule NA3 sets the type
of message 7 to offer. It is not yet send at this point, as following rules might change
either the offer’s attribute values, or the message type, e.g., to accept or terminate.
However the break statement in NA3 exits the single rule set. The NA identifies a
valid message type and filled out template and sends message 7 to NewsOnline.

6� Conclusion and Future Work

The Policy-driven Automated Negotiation Decision-making Approach (PANDA)
proposes a novel mechanism for the specification of a party’s negotiation policy, i.e.
the private specification that guides the analysis of offers and creation of responses. In
the context of fine-granular Web services that are to be bound and integrated into
composite Web services across domain boundaries, organizations need to automate
the negotiation process for new service usage as far as possible to make a service-
based business model viable. To enable automated negotiations it is important that or-
ganizations can specify their negotiation policies in a concise and easy way.

PANDA enables the representation of a negotiation policy based on the novel
combination of utility functions and rules. This policy is executed by decision-maker
components within the PANDA framework. The combination of multiple decision-
makers facilitates the decomposition of the policy. Using this approach, a specifier
can divide the decision problem into manageable units according to his or her under-
standing. Different aspects of the decision problem such as profitability of an offer

PANDA: Specifying Policies for Automated Negotiations of Service Contracts 301

and resource situation can be specified separately for different decision-makers and
can refer to each other. Using this approach, PANDA allows the specification of so-
phisticated negotiation behavior in a manageable way.

 The approach is agnostic to specific negotiation protocols, although a particular
specifier must understand them. PANDA has a template-based approach to represent
the negotiation object and can deal with arbitrary service contracts. The high-level
rule language helps keeping programming requirements low. In addition, the frame-
work facilitates the involvement of users in the decision-making process, if necessary.
The example shows how to use PANDA in a Web services context and hence ad-
dresses the specific needs of service negotiations.

Related work has been published on various aspects of negotiations, decision-
making and rules, as discussed in the paper. Particularly relevant are the following
contributions: The negotiation server by Su et al. uses rules to describe how to relax
constraints defining acceptable offers in the course of the negotiation [21]. Cost-
benefit analysis is used to choose between multiple acceptable offers. While no suit-
able offers are found, this approach does not benefit from the use of utility functions
to guide the negotiation process. The complexity of utility functions and contract im-
plementation plans is addressed by Boutilier et al. [3]. This approach is used for col-
laborative resource allocation within an organization and does not address negotia-
tions across organizational boundaries.

Future work will address the specification of utility functions in an externalized
representation. Also, the framework extensions are planned to implement a library of
common object pool elements such as estimation programs. Furthermore, users would
benefit from a policy editor that supports the creation of specifications. Work is being
conducted to connect the negotiation framework to an automated deployment function
in the Grid context. Finally, an experimental evaluation of the mixed policy approach
is necessary.

References

1.� T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana: Business Process Execution Language
for Web Services, Version 1.1. 2003.

2.� M. Benyoucef, H. Alj, K.Levy, R. Keller: A Rule-Driven Approach for Defining the Be-
havior of Negotiating Software Agents. Proceedings of the Fourth International Confer-
ence on Distributed Communities on the Web. Sydney, 2002.

3.� C. Boutilier, R. Das, J.O. Kephart, G. Tesauro, W.E. Walsh: Cooperative Negotiation in
Autonomic Systems using Incremental Utility Elicitation. Proceedings of Nineteenth
Conference on Uncertainty in Artificial Intelligence (UAI 2003). Acapulco, 2003.

4.� D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, M.
Nottingham, C. van Riegen, J. Shewchuk: Web Services Policy Framework (WS-Policy),
Version 1.1. 2003.

5.� R. Chinici, M. Gudgin, J-J. Moreau, S. Weerawarana: Web Services Description Language
(WSDL), Version 1.2, Part 1: Core Language. W3C Working Draft, 2003.

6.� C. Crawford, A. Dan: eModel: Addressing the Need for a Flexible Modeling Framework
in Autonomic Computing. IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems (MASCOTS 2002). Fort
Worth, 2002.

302 H. Gimpel et al.

7.� K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, M. Xu (eds.): Agreement-based Grid
Service Management (OGSI-Agreement), Version 0. 2003.

8.� K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke: SNAP: A Protocol for Ne-
gotiation of Service Level Agreements and Coordinated Resource Management in Distrib-
uted Systems. Job Scheduling Strategies for Parallel Processing: 8th International Work-
shop (JSSPP 2002). Edinburgh, 2002.

9.� P. Faratin: Automated Service Negotiation between Autonomous Computational Agents.
Ph.D. Dissertation. University of London, 2000.

10.� Y. Guo, J.P. Müller, C. Weinhardt: Learning User Preferences for Multi-attribute Nego-
tiation: An Evolutionary Approach. Multi-Agent Systems and Application III, Proceedings
of the 3rd Int./Central and Eastern European Conference on Multi-Agent Systems
(CEEMAS 2003). Prague, 2003.

11.� N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, M. Wooldridge: Auto-
mated Negotiation: Prospects, Methods and Challenges. International Journal of Group
Decision and Negotiation. 10 (2), 2001.

12.� A. Keller, H. Ludwig: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Accepted for publication in: Journal of Network and Sys-
tems Management, Special Issue on "E-Business Management". 11 (1), 2003.

13.� C. Kenyon, G. Cheliotis: Architecture Requirements for Commercializing Grid Resources.
11th IEEE International Symposium on High Performance Distributed Computing
(HPDC’02). Edinburgh, 2002.

14.� G. Lo, G.E. Kersten: Negotiation in Electronic Commerce: Integrating Negotiation Sup-
port and Software Agent Technologies. Proceedings of the 29th Atlantic Schools of Busi-
ness Conference. Halifax, 1999.

15.� H. Ludwig, A. Keller, A. Dan, R. King: A Service Level Agreement Language for Dy-
namic Electronic Services. Proceedings of WECWIS 2002, Newport Beach, 2002.

16.� H. Ludwig: A Conceptual Framework for Electronic Contract Automation. IBM Research
Report, RC 22608. New York, 2002.

17.� H. Raiffa, J. Richardson, D. Metcalfe: Negotiation Analysis. The Belknap Press of Harvard
University Press, Cambridge, 2003.

18.� D.M. Reeves, M.P. Wellman, B.N. Grosof, H.Y. Chan: Automated Negotiation from De-
clarative Contract Descriptions. Computational Intelligence, 18, 482–500, 2002.

19.� A. Sahai, A. Durante, V. Machiraju: Towards Automated SLA Management for Web
Services. Hewlett-Packard Research Report HPL-2001-310 (R.1). Palo Alto, 2002.

20.� M. Ströbel: Engineering electronic negotiations, Kluwer Academic Publishers, New York,
2002.

21.� S.Y.W. Su, C. Huang, J. Hammer: A Replicable Web-based Negotiation Server for E-
Commerce. Proceedings of the Thirty-Third Hawaii International Conference on System
Sciences (HICSS-33). Maui, 2000.

	Introduction
	Agreements in the Web Services Domain
	Negotiating Agreements
	Objective and Structure

	Negotiation of Service Agreements
	Example
	Service Characteristics
	Negotiation Issues
	Requirements

	Capturing Intended Behavior
	Examples of Decision Relevant Considerations
	Utility Functions
	Rule-Driven Decision-Making
	Mixed Policies: Externalized Negotiation Behavior

	PANDA Framework
	Negotiation Object and Protocol
	Decision-Maker Components
	Combining Multiple Decision-Makers

	Policy Example
	FastQuote’s Negotiation Policy
	Creating a Counteroffer

	Conclusion and Future Work
	References

