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Ch 53: Panel Data Models: Some Recent Developments

Abstract

This chapter focuses on two of the developments in panel data econometrics since the

Handbook chapter by Chamberlain ( 1984).
The first objective of this chapter is to provide a review of linear panel data

models with predetermined variables We discuss the implications of assuming that

explanatory variables are predetermined as opposed to strictly exogenous in dynamic

structural equations with unobserved heterogeneity We compare the identification from

moment conditions in each case, and the implications of alternative feedback schemes

for the time series properties of the errors We next consider autoregressive error

component models under various auxiliary assumptions There is a trade-off between
robustness and efficiency since assumptions of stationary initial conditions or time

series homoskedasticity can be very informative, but estimators are not robust to

their violation We also discuss the identification problems that arise in models with

predetermined variables and multiple effects Concerning inference in linear models

with predetermined variables, we discuss the form of optimal instruments, and the

sampling properties of GMM and LIML-analogue estimators drawing on Monte Carlo
results and asymptotic approximations.

A number of identification results for limited dependent variable models with fixed

effects and strictly exogenous variables are available in the literature, as well as some
results on consistent and asymptotically normal estimation of such models There are

also some results available for models of this type including lags of the dependent
variable, although even less is known for nonlinear dynamic models Reviewing the

recent work on discrete choice and selectivity models with fixed effects is the second

objective of this chapter A feature of parametric limited dependent variable models

is their fragility to auxiliary distributional assumptions This situation prompted the

development of a large literature dealing with semiparametric alternatives (reviewed
in Powell, 1994 's chapter) The work that we review in the second part of the chapter

is thus at the intersection of the panel data literature and that on cross-sectional

semiparametric limited dependent variable models.

Keywords

JEL classification: C 33
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1 Introduction

Panel data analysis is at the watershed of time series and cross-section econometrics.
While the identification of time series parameters traditionally relied on notions of

stationarity, predeterminedness and uncorrelated shocks, cross-sectional parameters

appealed to exogenous instrumental variables and random sampling for identification.

By combining the time series and cross-sectional dimensions, panel datasets have

enriched the set of possible identification arrangements, and forced economists to think

more carefully about the nature and sources of identification of parameters of potential

interest.

One strand of the literature found its original motivation in the desire of exploiting

panel data for controlling unobserved time-invariant heterogeneity in cross-sectional

models Another strand was interested in panel data as a way to disentangle

components of variance and to estimate transition probabilities among states Papers

in these two veins can be loosely associated with the early work on fixed and

random effects approaches, respectively In the former, interest typically centers in

measuring the effect of regressors holding unobserved heterogeneity constant In

the latter, the parameters of interest are those characterizing the distributions of the

error components A third strand of the literature studied autoregressive models with

individual effects, and more generally models with lagged dependent variables.
A sizeable part of the work in the first two traditions concentrated on models

with just strictly exogenous variables This contrasts with the situation in time series

econometrics where the distinction between predetermined and strictly exogenous
variables has long been recognized as a fundamental one in the specification of

empirical models.
The first objective of this chapter is to review recent work on linear panel data

models with predetermined variables Lack of control of individual heterogeneity could

result in a spurious rejection of strict exogeneity, and so a definition of strict exogeneity

conditional on unobserved individual effects is a useful extension of the standard

concept to panel data (a major theme of Chamberlain, 1984 's chapter) There are many

instances, however, in which for theoretical or empirical reasons one is concerned with

models exhibiting genuine lack of strict exogeneity after controlling for individual

heterogeneity.
The interaction between unobserved heterogeneity and predetermined regressors in

short panels which are the typical ones in microeconometrics poses identification

problems that are absent from both time series models and panel data models with

only strictly exogenous variables In our review we shall see that for linear models it is

possible to accommodate techniques developed from the various strands in a common
framework within which their relative merits can be evaluated.

Much less is known for discrete choice, selectivity and other non-linear models of

interest in microeconometrics A number of identification results for limited dependent

variable models with fixed effects and strictly exogenous variables are available in the

literature, as well as some results on consistent and asymptotically normal estimation of
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such models There are also some results available for models of this type including
lags of the dependent variable, although even less is known for nonlinear dynamic
models.

Reviewing the recent work on discrete choice and selectivity models with fixed

effects is the second objective of this chapter A feature of parametric limited dependent

variable models is their fragility to auxiliary distributional assumptions This situation
prompted the development of a large literature dealing with semiparametric alternatives

(reviewed in Powell, 1994 's chapter) The work that we review in the second part of the

chapter is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.

Other interesting topics in panel data analysis which will not be covered in this

chapter include work on long T panel data models with heterogeneous dynamics or

unit roots lPesaran and Smith ( 1995), Canova and Marcet ( 1995), Kao ( 1999), Phillips

and Moon ( 1999)l, simulation-based random effects approaches to the nonlinear
models lHajivassiliou and McFadden ( 1990), Keane ( 1993, 1994), Allenby and Rossi

( 1999), and references thereinl, classical and Bayesian flexible estimators of error

component distributions lHorowitz and Markatou ( 1996), Chamberlain and Hirano
( 1999), Geweke and Keane ( 2000)l, other nonparametric and semiparametric panel

data models lBaltagi, Hidalgo and Li ( 1996), Li and Stengos ( 1996), Li and Hsiao
( 1998) and Chen, Heckman and Vytlacil ( 1998)l, and models from time series of

independent cross-sections lDeaton ( 1985), Moffitt ( 1993), Collado ( 1997)l Some of

these topics as well as comprehensive reviews of the panel data literature are covered

in the text books by Hsiao ( 1986) and Baltagi ( 1995).

2 Linear models with predetermined variables: identification

In this section we discuss the identification of linear models with predetermined

variables in two different contexts In Section 2 1 the interest is to identify structural

parameters in models in which explanatory variables are correlated with a time-
invariant individual effect, but they are either strictly exogenous or predetermined

relative to the time-varying errors The second context, discussed in Section 2 2, is

the time series analysis of error component models with autoregressive errors under
various auxiliary assumptions Section 2 3 discusses the use of stationarity restrictions

in regression models, and Section 2 4 considers the identification of models with
multiplicative or multiple individual effects.

2.1 Strict exogeneity, predeterminedness, and unobserved heterogeneity

We begin with a discussion of the implications of strict exogeneity for identification
of regression parameters controlling for unobserved heterogeneity, with the objective

of comparing this situation with that where the regressors are only predetermined
variables.
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Static regression with a strictly exogenous variable Let us consider a linear regression

for panel data including a fixed effect r/i and a time effect 6, with N individuals

observed T time periods, where T is small and N is large:

Yit =/xit+tt+i+it (i= 1, , N; t= 1, , T) ( 1)

We assume that (Yil "yir,xil Xi T, Ii) is an iid random vector with finite

second-order moments, while fi and the time effects are treated as unknown parameters.
The variable xi, is said to be strictly exogenous in this model if it is uncorrelated with

past, present and future values of the disturbance ui,:

E*(vilxi T) = O (t = 1, , T), ( 2)

where E* denotes a linear projection, and we use the superscript notation z =

(zil, ,zi,)' First-differencing the conditions we obtain

E*(oit i( t )lx T) = O (t = 2, , T) ( 3)

Since in the absence of any knowledge about tri the condition E*(vil Ixi T) = O is not

informative about fi, the restrictions in first-differences are equivalent to those in levels.

Therefore, for fixed T the problem of cross-sectional identification of /f is simply that

of a multivariate regression in first differences subject to cross-equation restrictions,

and /i is identifiable with T 2.

Specifically, letting E*(rilx T) = Ao + t'x T, the model can be written as

Yit = Jrot + xit + xi + Eit, with E*(Eitf x T) = O (t = 1 , T) ( 4)

where r Oo, = AO + 6, This T equation system is equivalent to

Yil = j T 01 + Xil + AIX T + Eil E*(Eil Ix T) = 0, ( 5)

Ayt = At + Axit + A Eit E*(A Ei, l XT) = (t = 2, T) ( 6)

In the absence of restrictions in A Equation ( 5) is uninformative about fi, and as a

consequence asking under which conditions fi is identified in Equation ( 4) is equivalent
to asking under which conditions /3 is identified in Equation ( 6) 1.

i Lack of dependence between it, and x IT could also be expressed in terms of conditional independence
in mean E(vi, Ixj T) = O (t = 1, , T) In the absence of any knowledge about i this is equivalent to the
(T 1) conditional moment restrictions E(u, Vi(,__l I X

r )
= O (t = 2, , T) which do not depend on

ij lChamberlain ( 1992 a)l In the presentation for linear models, however, the use of linear projections
affords a straightforward discussion of identification, and in the context of estimation it allows us to
abstract from issues relating to optimal instruments and semiparametric asymptotic efficiency.
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Partial adjustment with a strictly exogenous variable In an alternative model, the effect

of a strictly exogenous x on y could be specified as a partial adjustment equation:

Yit = ayi( _) + 3 oxit + Plxi(t 1) + 6 t + i +vit (i = 1, , N; t= 2, , T) ( 7)

together with

E*(vitlx
T) = O (t = 2, , T) ( 8)

Note that assumption ( 8) does not restrict the serial correlation of v, so that lagged

y is an endogenous explanatory variable In the equation in levels, i(, ) will be

correlated with Iri by construction and may also be correlated with past, present and

future values of the errors vi, since they may be autocorrelated in an unspecified
way Likewise, the system in first differences is free from fixed effects and satifies

E*(Avitlx T) = O (t = 3, , T), but Ayi(t 1) may still be correlated with Avis for all

s.

Subject to a standard rank condition, a, 30, fil and the time effects will be identified

with T > 3 With T = 3 they are just identified since there are five orthogonality

conditions and five unknown parameters:

El X xi2 (A Yi 3 a Ayi 2 o Axi 3 Axi 2 A 3)l = O ( 9)Xi 2
Xi3

E (Yi 2 a Yil f 3 oxi 2 Xil 2) = 0.

This simple example illustrates the potential for cross-sectional identification under
strict exogeneity In effect, strict exogeneity of x permits the identification of the

dynamic effect of x on y and of lagged y on current y, in the presence of a fixed

effect and shocks that can be arbitrarily persistent over time lcf Bhargava and Sargan
( 1983), Chamberlain ( 1982 a, 1984), Arellano ( 1990)l.

A related situation of economic interest arises in testing life-cycle models of
consumption or labor supply with habits le g , Bover ( 1991), or Becker, Grossman

and Murphy ( 1994)l In these models the coefficient on the lagged dependent variable
is a parameter of central interest as it is intended to measure the extent of habits.

However, in the absence of an exogenous instrumental variable such a coefficient would
not be identified, since the effect of genuine habits could not be separated from serial
correlation in the unobservables.

As an illustration, let us consider the empirical model of cigarette consumption by

Becker, Grossman and Murphy ( 1994) for US state panel data Their empirical analysis

is based on the following equation:

cit = Oci(t I 1) + i Oci(t + Y Pit + li + + i(t+ 1), ( 10)

where ci and pit denote, respectively, annual per capita cigarette consumption in packs

by state and average cigarette price per pack Becker et al are interested in testing
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whether smoking is addictive by considering the response of cigarette consumption to

a change in cigarette prices.
The rationale for Equation ( 10) is provided by a model of addictive behavior in

which utility in period t depends on cigarette consumption in t and in t 1 Under

perfect certainty and quadratic utility, the equation can be obtained from the first-

order conditions of utility maximization The degree of addiction is measured by 0,

which will be positive if smoking is addictive The current price coefficient y should be
negative by concavity of the utility, and /3 denotes the discount factor With certainty,

the marginal utility of wealth is constant over time but not cross-sectionally The state

specific intercept ii is meant to capture such variation 2 Finally, the 6,'s represent
aggregate shocks, possibly correlated with prices, which are treated as period specific

parameters.
The errors i (t+ ) capture unobserved life-cycle utility shifters, which are likely to

be serially correlated Therefore, even in the absence of addiction ( O = 0) and serial

correlation in prices, we would expect cit to be autocorrelated, and in particular to find

a non-zero effect of ci (,t ) in a linear regression of ci, on ci(t ), ci(t+ 1) andpi Current

consumption depends on prices in all periods through the effects of past and future

consumption, but it is independent of past and future prices when ci (, _ ) and ci (t+ ) are

held fixed Thus, Becker et al 's strategy is to identify 0, /3, and y from the assumption

that prices are strictly exogenous relative to the unobserved utility shift variables The

required exogenous variation in prices comes from the variation in cigarette tax rates

across states and time, and agents are assumed to be able to anticipate future prices
without error.

Partial adjustment with a predetermined variable The assumption that current values

of x are not influenced by past values of y and v is often unrealistic We shall say that

x is predetermined in a model like Equation ( 7) if

E*(vixi',y'-) = O (t = 2, , T) ( 11)

That is, current shocks are uncorrelated with past values of y and with current

and past values of x, but feedback effects from lagged dependent variables (or lagged

errors) to current and future values of the explanatory variable are not ruled out.
Note that, in contrast with Equation ( 8), assumption ( 11) does restrict the serial

correlation of v Specifically, it implies that the errors in first differences exhibit first-
order autocorrelation but are uncorrelated at all other lags:

E(Avit Avi(t, )) = O j > 1.

Examples of this situation include Euler equations for household consumption

lZeldes ( 1989), Runkle ( 1991), Keane and Runkle ( 1992)l, or for company investment

2 According to the theory y would also be state specific, since it is a function of the marginal utility of

wealth Thus the model with constant price coefficient must be viewed as an approximate model.
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lBond and Meghir ( 1994)l, in which variables in the agents' information sets are

uncorrelated with current and future idiosyncratic shocks but not with past shocks,
together with the assumption that the empirical model's errors are given by such

shocks.

Another example is the effect of children on female labour force participation

decisions In this context, assuming that children are strictly exogenous is much

stronger than the assumption of predeterminedness, since it would require us to
maintain that labour supply plans have no effect on fertility decisions at any point

in the life cycle lBrowning ( 1992, p 1462)l.
The implication of Equation ( 11) for errors in first differences is that

E*(Oit i(t 1)IX ,yi-2 ) = O (t = 3, , T) ( 12)

As before, these restrictions are equivalent to those in levels since in the absence of

any knowledge about i the levels are not informative about the parameters 3 Subject

to a rank condition, a, i 0, I and the time effects will be identified with T > 3 With
T = 3 they are just identified from the five orthogonality conditions:

El yi l (AY 3 a A Yi 2 o A Xi 3 PIA Xi 2 A 63)l = 0, ( 13)

Xi 2 /

E (Yi2 a Yi oxi 2 1 xil 52) = 0.

It is of some interest to compare the situation in Equation ( 13) with that in

Equation ( 9) The two models are not nested since they only have four moment
restrictions in common, which in this example are not sufficient to identify the five

parameters The model with a strictly exogenous x would become a special case of the

model with a predetermined x, only if in the former serial correlation were ruled out.
That is, if Equation ( 8) were replaced with:

E*(v,lx i ,yi ) = O (t = 2 , T) ( 14)

However, unlike in the predetermined case, lack of arbitrary serial correlation is not

an identification condition for the model with strict exogeneity.
In the predetermined case it is still possible to accommodate special forms of serial

correlation For example, with T = 4 the parameters in the dynamic model are just

identified with E(Av Aitvi(, j)) = O for j > 2, which is consistent with a first-order

3 Orthogonality conditions of this type have been considered by Anderson and Hsiao ( 1981, 1982),

Griliches and Hausman ( 1986), Holtz-Eakin, Newey and Rosen ( 1988), and Arellano and Bond ( 1991)

amongst others.
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moving average process for v This is so because in such case there are still three

valid orthogonality restrictions: E(yil Avi 4) = O, E(Xil A Ui 4) = 0, and E(Xi 2A Ui 4) = 0.

Uncorrelated errors arise as the result of theoretical predictions in a number of
environments (e g , innovations in rational expectation models) However, even in the

absence of specific restrictions from theory, the nature of shocks in econometric models

is often less at odds with assumptions of no or limited autocorrelation than with the

absence of feedback in the explanatory variable processes 4 .

In the previous discussion we considered models for which the strict exogeneity

property was unaffected by serial correlation, and models with feedback from lagged
y or v to current values of x, but other situations are possible For example, it may be

the case that the strict exogeneity condition ( 2) for model ( 1) is only satisfied as long as

errors are unpredictable An illustration is the agricultural Cobb-Douglas production

function discussed by Chamberlain ( 1984), where y is log output, x is log labor, r is

soil quality, and v is rainfall If r is known to farmers and they choose x to maximize

expected profits, x will be correlated with r 1, but uncorrelated with v at all lags and
leads provided v is unpredictable from past rainfall If rainfall in t is predictable from

rainfall in t 1, labour demand in t will in general depend on vi(-_l) lChamberlain

( 1984, pp 1258-1259)l.

Another situation of interest is a case where the model is ( 1) or ( 7) and we only

condition on xt That is, instead of Equation ( 11) we have

E*(vi, x) = O ( 15)

In this case serial correlation is not ruled out, and the partial adjustment model is

identifiable with T > 4, but Equation ( 15) rules out unspecified feedback from lagged y

to current x As an example, suppose that vi, = it + Eit is an Euler equation's error given

by the sum of a serially correlated preference shifter ~i, and a white noise expectation

error Ei, The vo's will be serially correlated and correlated with lagged consumption
variables y but not with lagged price variables x Another example is an equation

y = /Xit + li + Ui*t where vi is white noise and xit depends on y,*(,_ ), but y* is measured
with an autocorrelated error independent of x and y* at all lags and leads.

Implications of uncorrelated effects So far, we have assumed that all the observable

variables are correlated with the fixed effect If a strictly exogenous x were known
to be uncorrelated with ir, the parameter fi in the static regression ( 1) would be

identified from a single cross-section (T = 1) However, in the dynamic regression the
lagged dependent variable would still be correlated with the effects by construction,

so knowledge of lack of correlation between x and would add T orthogonality

conditions to the ones discussed above, but the parameters would still be identified

4 As an example, see related discussions on the specification of shocks in Q investment equations by

Hayashi and Inoue ( 1991), and Blundell, Bond, Devereux and Schiantarelli ( 1992).
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only when T 35 The moment conditions for the partial adjustment model with

strictly exogenous x and uncorrelated effects can be written as

El x T (yit yi(t )-f 3 oxitf -Pl Xi(tl)-) t)l =O (t= 2, , T) ( 16)

A predetermined x could also be known to be uncorrelated with the fixed effects if

feedback occurred from lagged errors but not from lagged y To illustrate this point

suppose that the process for x is

Xit =pxi(t 1) + yi(t 1) + O r 1 i + Eit, ( 17)

where eit, vis and ri are mutually uncorrelated for all t and s In this example x is

uncorrelated with when = O However, if i(t 1) were replaced by Yi (t-) in

Equation ( 17), x and 71 will be correlated in general even with O = O Knowledge of

lack of correlation between a predetermined x and would also add T orthogonality

restrictions to the ones discussed above for such a case The moment conditions for

the partial adjustment model with a predetermined x uncorrelated with the effects can

be written as

El(l,) lx = O (t= 2, , T),( 18)
E 1 )(Yit ayi(t ) foxit li (t 1) -t) = 2

Ely
-2 (Ayit a Ayi(t 1) f Po Axit l Axi (t 1) t)l = O (t = 3, , T).

Again, the parameters in this case would only be identified when T 3.

Relationship with statistical definitions To conclude this discussion, it may be useful

to relate our usage of strict exogeneity to statistical definitions A (linear projection

based) statistical definition of strict exogeneity conditional on a fixed effect would

state that x is strictly exogenous relative to y given r if

E*(yit Ixr, ri) = E*(yitlx I, ri) ( 19)

This is equivalent to the statement that y does not Granger-cause x given r 1 in the sense

that

E*(xi (+ l) x,y, iri) = E*(xi(t+ l) xi, Ili) ( 20)

Namely, letting xit +1)T = (Xi(+ 1), , Xi T)
t if we have

E*(y, Ixi, T) = 'xi + 6 txi )T + 7 t rli ( 21)

and

E* (xi (t + 1) Ix,y, i, ) = Vtxt + O Yi + t i, ( 22)

it turns out that the restrictions 6, = O and ,t = O are equivalent This result generalized

the well-known equivalence between strict exogeneity lSims ( 1972)l and Granger's

5 Models with strictly exogenous variables uncorrelated with the effects were considered by Hausman

and Taylor ( 1981), Bhargava and Sargan ( 1983), Amemiya and Ma Curdy ( 1986), Breusch, Mizon and

Schmidt ( 1989), Arellano ( 1993), and Arellano and Bover ( 1995).
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non-causality lGranger ( 1969)l 6 It was due to Chamberlain ( 1984), and motivated

the analysis in Holtz-Eakin, Newey and Rosen ( 1988), which was aimed at testing

such a property.

Here, however, we are using strict exogeneity relative to the errors of an econometric

model Strict exogeneity itself, or the lack of it, may be a property of the model

suggested by theory We used some simple models as illustrations, in the understanding

that the discussion would also apply to models that may include other features

like individual effects uncorrelated with errors, endogenous explanatory variables,

autocorrelation, or constraints in the parameters Thus, in general strict exogeneity

relative to a model may or may not be testable, but if so we shall usually be able

to test it only in conjunction with other features of the model In contrast with the

econometric concept, a statistical definition of strict exogeneity is model free, but

whether it is satisfied or not, may not necessarily be of relevance for the econometric

model of interest 7.

As an illustration, let us consider a simple permanent-income model The observ-

ables are non-durable expenditures cit, current income wit, and housing expenditure xi,.

The unobservables are permanent (wlp) and transitory (it) income, and measurement

errors in non-durable (it) and housing (it) expenditures The expenditure variables

are assumed to depend on permanent income only, and the unobservables are mutually

independent but can be serially correlated With these assumptions we have

wit = wit + Eit, ( 23)

cit = f/wtp + it, ( 24)

xit = ywi, + i, ( 25)

Suppose that /3 is the parameter of interest The relationship between cit and wit

suggested by the theory is of the form

Cit = 3wit + vii, ( 26)

where uit = it P Eit Since Wit and ,it are contemporaneously correlated, Wit is an

endogenous explanatory variable in Equation ( 26) Moreover, since E*(it Ix T) = O, xi,

is a strictly exogenous instrumental variable in Equation ( 26) At the same time, note

6 If linear projections are replaced by conditional distributions, the equivalence does not hold and it turns

out that the definition of Sims is weaker than Granger's definition Conditional Granger non-causality

is equivalent to the stronger Sims' condition given by f(y,Ixr,y ) = f(y,lx',y' 1) lChamberlain

( 1982 b)l.
7 Unlike the linear predictor definition, a conditional independence definition of strict exogeneity given

an individual effect is not restrictive, in the sense that there always exists a random variable r 1 such

that the condition is satisfied lChamberlain ( 1984)l This lack of identification result implies that a

conditional-independence test of strict exogeneity given an individual effect will necessarily be a joint

test involving a (semi) parametric specification of the conditional distribution.
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that in general linear predictors of x given its past can be improved by adding lagged

values of c and/or W (unless permanent income is white noise) Thus, the statistical
condition for Granger non-causality or strict exogeneity is not satisfied in this example.

A similar discussion could be conducted for a version of the model including fixed
effects.

2.2 Time series models with error components

The motivation in the previous discussion was the identification of regression responses

not contaminated from heterogeneity biases Another leading motivation for using

panel data is the analysis of the time series properties of the observed data Models
of this kind were discussed by Lillard and Willis ( 1978), Ma Curdy ( 1982), Hall and

Mishkin ( 1982), Holtz-Eakin, Newey and Rosen ( 1988) and Abowd and Card ( 1989),

amongst others.

An important consideration is distinguishing unobserved heterogeneity from genuine
dynamics For example, the exercises cited above are all concerned with the

time series properties of individual earnings for different reasons, including the

analysis of earnings mobility, testing the permanent income hypothesis, or estimating

intertemporal labour supply elasticities However, how much dependence is measured
in the residuals of the earnings process depends crucially, not only on how much

heterogeneity is allowed into the process, but also on the auxiliary assumptions made in

the specification of the residual process, and assumptions about measurement errors.

One way of modelling dynamics is through moving average processes le g , Abowd
and Card ( 1989)l These processes limit persistence to a fixed number of periods,

and imply linear moment restrictions in the autocovariance matrix of the data.
Autoregressive processes, on the other hand, imply nonlinear covariance restrictions

but provide instrumental-variable orthogonality conditions that are linear in the

autoregressive coefficients Moreover, they are well suited to analyze the implications

for identification and inference of issues such as the stationarity of initial conditions,
homoskedasticity, and (near) unit roots.

Another convenient feature of autoregressive processes is that they can be regarded

as a special case of the regression models with predetermined variables discussed
above This makes it possible to consider both types of problems in a common

framework, and facilitates the distinction between static responses with residual serial
correlation and dynamic responses 8 Finally, autoregressive models are more easily

extended to limited-dependent-variable models.

In the next subsection we discuss the implications for identification of alternative

assumptions concerning a first-order autoregressive process with individual effects in
short panels.

8 In general, linear conditional models can be represented as data covariance matrix structures, but

typically they involve a larger parameter space including many nuisance parameters, which are absent

from instrumental-variable orthogonality conditions.
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2.2 1 The AR( 1) process with fixed effects 9

Let us consider a random sample of individual time series of size T, {yr T, i = 1, , N},
with second-order moment matrix E(y Tyi ) = Q = {to,} We assume that the joint
distribution of yr and the individual effect i satisfies

yit = yi( , )i + Uit (i = 1, , N; t = 2, , T) lai < 1, ( 27)

E*(vity l) = O (t = 2, , T), (Al)

where E(h) = y, E(v 2) = a 2, and Var(/li) = 2 Notice that the assumption
does not rule out correlation between iri and v,, nor the possibility of conditional
heteroskedasticity, since E(v 2 tly- 1 ) need not coincide with t,2 Equations ( 27) and
(Al) can be seen as a specialization of Equations ( 7) and ( 11) Thus, following the
discussion above, (Al) implies (T 2)(T 1)/2 linear moment restrictions of the form

El y-2 (Ayit a Ayi(t_ 1))l = O ( 28)

These restrictions can also be represented as constraints on the elements of
Q Multiplying Equation ( 27) by yis for S < t, and taking expectations gives

(ts = aw(t_ )s + c,, (t = 2, , T; S = 1, , t 1), where c, = E(yisti) This means
that, given assumption Al, the T(T + 1)/2 different elements of 2 can be written as
functions of the 2 T x 1 parameter vector O = (a, cl, , cr-1, W 1 , , (r TT)' Notice
that with T = 3 the parameters (a, cl, c 2) are just identified as functions of the elements
of 2:

a = (w 21 wll )
1 ( 31 W 21)

c = 21 -ac 11

C 2 = 32 a 0)2 2 .

The model based on Al is attractive because the identification of a, which mea-
sures persistence given unobserved heterogeneity, is based on minimal assumptions.
However, we may be willing to impose additional structure if this conforms to a priori
beliefs.

Lack of correlation between the effects and the errors One possibility is to assume
that the errors voi, are uncorrelated with the individual effect th 7 given y-' In a
structural context, this will often be a reasonable assumption if, for example, the v, are
interpreted as innovations that are independent of variables in the agents' information

9 This section follows a similar discussion by Alonso-Borrego and Arellano ( 1999).
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set In such case, even if i is not observable to the econometrician, being time-

invariant it is likely to be known to the individual This situation gives rise to the
following assumption

E* (vi, y'-l, ) = O (t = 2, , T) (Al')

Note that in a short panel assumption Al' is more restrictive than assumption Al.

Nevertheless, lack of correlation between vi, and {yi(t 1) , y, i(t-J)} implies lack

of correlation between vi, and i in the limit as J o This will be so as long as

ni = plim E (Yi( j) -ayi(,t -l))
J j= 1

Thus, for a process that started at -oo we would have orthogonality between /i and
ui,, and any correlation between individual effects and shocks will tend to vanish as t

increases.

When T 4, assumption Al' implies the following additional T 3 quadratic

moment restrictions that were considered by Ahn and Schmidt ( 1995):

El(yit ayi(t, ))(Ayi(t ) a Ayi(t 2))l = O (t = 4, , T) ( 29)

In effect, we can write El(yit ayi(, 1) ri)(Ayi(t I) a Ayi(t- 2))l = O and since

E( 7 i Alvi(,-1)) = O the result follows Thus, Equation ( 29) also holds if Cov(r 7 i, vit) is

constant over t.

An alternative representation of the restrictions in Equation ( 29) is in terms of a
recursion of the coefficients c, introduced above Multiplying Equation ( 27) by 1 ri and

taking expectations gives c, = act i + q, (t = 2, , T), where O = E(qi 2) = 2 + 2
so that cl, , cr can be written in terms of cl and This gives rise to a

covariance structure in which Q 2 depends on the (T + 3) x 1 parameter vector

0 = (a, 0, cl, wol, , cow )' Notice that with T = 3 assumption Al' does not imply

further restrictions in 2, with the result that a remains just identified One can solve

for p in terms of a, cl and 2:

¢ = (( 032 ( 021) a(( 02 2 ( 011).

Time series homoskedasticity If in addition to Al' we assume that the marginal

variance of vii is constant for all periods:

E(v 2) = a 2 (t= 2, , T), (A 2)

it turns out that

tt = a 2 (t _ )( 1) + + 2 + 2 ac, 1 (t = 2, , T).

This gives rise to a covariance structure in which Q depends on five free parameters:

a, 0, cl, W 1 , a 2 This is a model of some interest since it is one in which the initial
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conditions of the process are unrestricted (governed by the parameters O and cl), but

the total number of free parameters does not increase with T.

Mean stationarity of initial conditions Other forms of additional structure that can

be imposed are mean or variance stationarity conditions The following assumption,

which requires that the process started in the distant past, is a particularly useful mean

stationarity condition:

Cov(yi, -yi(t 1), ri) = O (t = 2, , T) (B 1)

Relative to assumption Al, assumption Bl adds the following (T 2) moment

restrictions on 2:

El(yit ayi(t 1))Ayi(t 1)l = 0 (t = 3, T), ( 30)

which were proposed by Arellano and Bover ( 1995) However, relative to assump-

tion Al', assumption Bl only adds one moment restriction which can be written as

El(Yi 3 a Yi 2)A Yi 2 l = O In terms of the parameters ct, the implication of assumption B 1
is that cl = = CT if we move from assumption Al, or that cl = 0/(l a) if we

move from assumption Al' This gives rise to a model in which Q 2 depends on the

(T + 2) x I parameter vector O = (a, , wll , TT)' Notice that with T = 3, a is

overidentified under assumption B 1 Now a will also satisfy

a = ( 0)22 W)21)-1 ( 0)32 0)31).

It is of some interest to note that the combination of assumptions Al and B 1

produces the same model as that of Al' and B 1 However, while Al' implies

orthogonality conditions that are quadratic in a, Al or Al+B 1 give rise to

linear instrumental-variable conditions lAhn and Schmidt ( 1995)l While Al implied

the validity of lagged levels as instruments for equations in first-differences, Bl

additionally implies the validity of lagged first-differences as instruments for equations

in levels The availability of instruments for levels equations may lead to the

identification of the effect of observable components of r 1 i (i e , time-invariant

regressors), or to identifying unit roots, two points to which we shall return below.

The validity of assumption Bl depends on whether initial conditions at the start

of the sample are representative of the steady state behaviour of the model or not.

For example, for young workers or new firms initial conditions may be less related to

steady state conditions than for older ones.

Full stationarity By combining Al' with the homoskedasticity and the mean

stationarity assumptions, A 2 and B 1, we obtain a model whose only nonstationary

feature is the variance of the initial observation, which would remain a free parameter.

For such a model 0)tt = a 20)(t l)(t 1) + a 2 + $( 1 + a)/(l a) (t = 2, , T) A fully

stationary specification results from making the additional assumption:

0 __a 
2

( 1 a)2 ( 1 a 2) (B 2)

This gives rise to a model in which Q 2 only depends on the three parameters a, ¢,

and ar 2 Nevertheless, identification still requires T 3, despite the fact that with
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T = 2, Q 2 has three different coefficients To see this, note that in their relationship to

a, ¢, and a 02 the equation for the second diagonal term is redundant:

(Ot = 6 + 2 (t = 1,2), 0)12 = a(, 2 ) + 2 ,

where a 2 = o,2/(l a)2 and a 2 = 2/( 1 a 2 ) The intuition for this is that both

r 7 h and yi(, ) induce serial correlation on yit, but their separate effects can only be

distinguished if at least first and second order autocorrelations are observed.

Under full stationarity (assumptions Al, A 2, B 1, and B 2) it can be shown that

E(Ayi(t+l)Ayit) ( a)

El(Ayit)2 l 2

This is a well-known expression for the bias of the least squares regression in first-

differences under homoskedasticity, which can be expressed as the orthogonality

conditions

E{Ayitl( 2 yi(t+ ) -yit -yi(t )) a Ayitl} = O (t = 2, , T 1).

With T = 3 this implies that a would also satisfy

a = ( 2 2 + c 11 20 21 )
-1

l 2 (W 0 32 0)3 1 )+ 011 0)22 l

2.2 2 Aggregate shocks

Under assumptions Al or Al', the errors ,it are idiosyncratic shocks that are assumed

to have cross-sectional zero mean at each point in time However, if vt contains

aggregate shocks that are common to all individuals its cross-sectional mean will not

be zero in general This suggests replacing Al with the assumption

E*(oitlyi'-l) = 6 t (t = 2, , T), ( 31)

which leads to an extension of the basic specification in which an intercept is allowed

to vary over time:

Yit = 6 t + ayi(t_ 1) + i + vt, ( 32)

where t = vit b 6 We can now set E(rj) = O without lack of generality, since

a nonzero mean would be subsumed in 6 t Again, formally Equation ( 32) is just a

specialization of Equations ( 7) and ( 11).

With fixed T, this extension does not essentially alter the previous discussion

since the realized values of the shocks bt can be treated as unknown period specific
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parameters With T = 3, a, 62 and 63 are just identified from the three moment
conditions ',

E(yi 2 62 ayyil) = 0, ( 33)

E(yi 3 3 a Yi 2) = 0, ( 34)

Ely 1 (i(Ay 3 63 a A Yi 2)l = O ( 35)

In the presence of aggregate shocks the mean stationarity condition in assumption

B 1 may still be satisfied, but it will be interpreted as an assumption of mean stationarity
conditional upon an aggregate effect (which may or may not be stationary), since
now E(Ayit) is not constant over t The orthogonality conditions in Equation ( 30)
remain valid in this case with the addition of a time varying intercept With T = 3,
assumption B 1 adds to Equations ( 33-35) the orthogonality condition:

ElAyi 2 (Yi 3 63 a Yi 2)l = O ( 36)

2.2 3 Identification and unit roots

If one is interested in the unit root hypothesis, the model needs to be specified under
both stable and unit roots environments We begin by considering model ( 27) under
assumption Al as the stable root specification As for the unit root specification, it is
natural to consider a random walk without drift The model can be written as

Yit = ayi(,t_ ) + (I a)ni* + vit, ( 37)

where ri* denotes the steady state mean of the process when al < Thus, when
a = 1 we have

Yit = Yi(t 1) + Vit, ( 38)

so that heterogeneity only plays a role in the determination of the starting point of the
process Note that in this model the covariance matrix of (yi, r*) is left unrestricted.

An alternative unit root specification would be a random walk with an individual
specific drift given by r/i:

Yit = Yi(t 1) + i + it, ( 39)

but this is a model with heterogeneous linear growth that would be more suited for
comparisons with stationary models that include individual trends.

10 Further discussion on models with time effects is contained in Crepon, Kramarz and Trognon ( 1997).

3246



Ch 53: Panel Data Models: Some Recent Developments

The main point to notice here is that in model ( 37) a is not identified from the
moments derived from assumption Al when a = 1 This is so because in the unit
root case the lagged level will be uncorrelated with the current innovation, so that

Cov(yi(,_ 2 ),Ayi(t 1)) = O As a result, the rank condition will not be satisfied for the
basic orthogonality conditions ( 28) In model ( 39) the rank condition is still satisfied
since Cov(yi(, 2),A Yi(t_ 1)) X 0 due to the cross-sectional correlation induced by the
heterogeneity in shifts.

As noted by Arellano and Bover ( 1995), this problem does not arise when we
consider a stable root specification that in addition to assumption Al satisfies the mean
stationarity assumption B 1 The reason is that when a = 1 the moment conditions ( 30)

remain valid and the rank condition is satisfied since Cov(Ayi(t_ 1),yi (t 1)) • 0.

2.2 4 The value of information with highly persistent data

The cross-sectional regression coefficient of Yit on Yi(, 1), Pt, can be expressed as a

function of the model's parameters For example, under full stationarity it can be shown
to be

Cov(ri,yi(t )) ( 1 a) 2 a ( 40)
w pa+r A o Var(yi(,_-)) a 2

+ ( 1 a)/(l + a)

where A = a,/a Often, empirically p is near unity For example, with firm employment

data, Alonso-Borrego and Arellano ( 1999) found p = 0 995, a = 0 8, and A = 2 Since
for any 0 a p there is a value of A such that p equals a pre-specified value,
in view of lack of identification of a from the basic moment conditions ( 28) when
a = 1, it is of interest to see how the information about a in these moment conditions
changes as T and a change for values of p close to one.

For the orthogonality conditions ( 28) the inverse of the semiparametric information
bound about a can be shown to be

T 2 = a 2 E(y*s Yi)lE(yy i )l E(Yiy ) ( 41)

s=l

where the y* are orthogonal deviations relative to (Yil, , y i( 1))' " The expres-
sion a 2 gives the lower bound on the asymptotic variance of any consistent estimator

of a based exclusively on the moments ( 28) when the process generating the data is
the fully stationary model lChamberlain ( 1987)l.

1 l That is, yi is given byy = CslYi -(T-5 1 (i(s+) + +Yi(T I 1))l ( = 1, , T-2), where

c 
2

= (T S )/(T s) lcf , Arellano and Bover ( 1995), and discussion in the next sectionl.
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Table 1
Inverse information bound for a (OT) when p = 0 99

T C Ta

( 0, 9 9) ( 0 2, 7 2) ( 0 5, 4 0) ( 0 8, 1 4) ( 0 9, 0 7) ( 0 99, 0)

3 14 14 15 50 17 32 18 97 19 49 19 95

4 1 97 2 66 4 45 8 14 9 50 10 00

5 1 21 1 55 2 43 4 71 5 88 6 34

10 0 50 0 57 0 71 1 18 1 61 1 85

15 0 35 0 38 0 44 0 61 0 82 0 96

Asympt b 0 26 0 25 0 22 0 16 0 11 0 04

a Values for different (a, A) pairs such that p = 0 99.
b Asymptotic standard deviation at T = 15, / a 

2
)/15.

In Table 1 we have calculated values of or for various values of T and for different

pairs (a, A) such that p = O 99 2 Also, the bottom row shows the time series

asymptotic standard deviation, evaluated at T = 15, for comparisons.
Table 1 shows that with p = 0 99 there is a very large difference in information

between T = 3 and T > 3 Moreover, for given T there is less information on a

the closer a is to p Often, there will be little information on a with T = 3 and the

usual values of N Additional information may be acquired from using some of the
assumptions discussed above Particularly, large gains can be obtained from employing

mean stationarity assumptions, as suggested from Monte Carlo simulations reported
by Arellano and Bover ( 1995) and Blundell and Bond ( 1998).

In making inferences about a we look for estimators whose sampling distribution

for large N can be approximated by N(a, a T/N) However, there may be substantial
differences in the quality of the approximation for a given N, among different

estimators with the same asymptotic distribution We shall return to these issues in
the section on estimation.

2.3 Using stationarity restrictions

Some of the lessons from the previous section on alternative restrictions in autoregres-
sive models are also applicable to regression models with predetermined (or strictly

exogenous) variables of the form:

Yit = 6 'Wit + Ii + Vit, ( 42)

E*(vjtlwjt) = 0,

12 Under stationarity ar 2 depends on a, A and T but is invariant to O 
'2 .
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where, e g , wit = (yi (,_), xi,t)' As before, the basic moments are Elw` l(A Yit 6/Awit)l

= O However, if E*(vit w, i) = O holds, the parameter vector 5 also satisfies the Ahn-
Schmidt restrictions

El(yit ('wi)(Ayi(t 1) Awi (t 1))l = O ( 43)

Moreover, if Cov(Awit,, li) = O the Arellano-Bover restrictions are satisfied, encom-

passing the previous ones 13:

ElAwi(yit 6 'wit)l = O ( 44)

Blundell and Bond ( 1999) use moment restrictions of this type in their empirical

analysis of Cobb-Douglas production functions using company panel data They

find that the instruments available for the production function in first differences

are not very informative, due to the fact that the series on firm sales, capital and

employment are highly persistent In contrast, the first-difference instruments for

production function errors in levels appear to be both valid and informative.

Sometimes the effect of time-invariant explanatory variables is of interest, a

parameter y, say, in a model of the form

Yit = ('wit + Y Zi + Ili + vit.

However, y cannot be identified from the basic moments because the time-invariant
regressor zi is absorbed by the individual effect Thus, we could ask whether the

addition of orthogonality conditions involving errors in levels such as Equations ( 43)

or ( 44) may help to identify such parameters Unfortunately, often it would be difficult

to argue that E(i Awi,) = O without at the same time assuming that E(z Awit) = 0, in

which case changes in wit would not help the identification of y An example in which
the levels restrictions may be helpful is the following simple model for an evaluation

study due to Chamberlain ( 1993).

An evaluation of training example Suppose that yo denotes earnings in the absence

of training, and that there is a common effect of training for all workers Actual

earnings yit are observed for t = 1, , S 1, S + 1, , T Training occurs in period s
( 1 < S < T), so that yit = y O for t = 1, , S 1, and we wish to measure its effect on

earnings in subsequent periods, denoted by 3 s+ , , Tr:

Yit =Yi O + Adi (t = S + 1, , T), ( 45)

where d is a dummy variable that equals 1 in the event of training Moreover, we

assume

Yiot = cayi(_ ) + rli + vit, ( 46)

13 Strictly exogenous variables that had constant correlation with the individual effects were first

considered by Bhargava and Sargan ( 1983).
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together with E* (vit yi°(' )) = O and Cov(Ayi O,, i 7) = O We also assume that di depends

on lagged earnings yil, , yi( 5 I) and i 1 j, but conditionally on these variables it is

randomly assigned Then we have:

yi (s+ 1) = a 2 Yi ( ) + + di + ( 1 + a)i + (vi ( + ) + avis),

Yit = ayi(,_-) +( -llt 1)di+ Ti +vit (t = s+ 2, , T).

From our previous discussion, the model implies the following orthogonality

conditions:

Elyit 2 (At ayt i(t I))l = O (t = 1, , s ), ( 47)

E{y S-2 lyi(s+ ) -( 1 +a+ a 2)y( I) + a(l +a)yi( 2) -+ I Idl} = 0, ( 48)

Ef ys · · ( 1 +a+a 2 ) a

L~yss phi (S+ 2) ( 1 a) 2 i~s+ 1) ( 1 + a) ( 49)

( S 2) ( + a+ 2) (s ) dil } = 0.

Elyi - 2(Ayit-a Ayi(t )+A(/t -as )di)l = O (t=s+ 3, , T) ( 50)

The additional orthogonality conditions implied by mean stationarity are:

ElAyi(t-l)(yit-ayi(t 1))l = O (t = 1 s-l), ( 51)

ElAyi_ )(Yi(s+ ) a 2 yi(s 1) - + di)l = 0, ( 52)

ElA Yi ( 5_ l)(Yit ayit) + (flt af, _ l)di)l = O (t = S + 2, , T) ( 53)

We would expect E(Ayi (s 1) di) < 0, since there is evidence of a dip in the pretraining

earnings of participants le g , Ashenfelter and Card ( 1985)l Thus, Equation ( 52)

can be expected to be more informative about fp+ than Equation ( 48) Moreover,

identification of , + from Equation ( 48) requires that S > 4, otherwise only changes

in fit would be identified from Equations ( 47-50) In contrast, note that identification

offis+l from Equation ( 52) only requires S 3.

2.4 Models with multiplicative effects

In the models we have considered so far, unobserved heterogeneity enters exclusively

through an additive individual specific intercept, while the other coefficients are

assumed to be homogeneous Nevertheless, an alternative autoregressive process could,
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for example, specify a homogeneous intercept and heterogeneity in the autoregressive
behaviour:

Yit = y + (a + i)Y, (t_ ) + vit.

This is a potentially useful model if one is interested in allowing for agent specific
adjustment cost functions, as for example in labour demand models If we assume

E(vi, ti l) = O and yit > 0, the transformed model,

Yit Yi(t 1) = Y Yi,(t ) + 
+

T+i Oit,

where = iy( 1), also has E(vlyit-1) = O Thus, the average autoregressive

coefficient a and the intercept y can be determined in a way similar to the linear
models from the moment conditions E(ili + v) = O and E(yi-2 Av) = O Note that in

this case, due to the nonlinearity, the argument requires the use of conditional mean

assumptions as opposed to linear projections.

Another example is an exponential regression of the form

E(yitlxt,yt l, rji) = exp(fixi, + ni).

This case derives its motivation from the literature on Poisson models for count data.

The exponential specification is chosen to ensure that the conditional mean is always

non-negative With count data a log-linear regression is not a feasible alternative since
a fraction of the observations on yit will be zeroes.

A third example is a model where individual effects are interacted with time effects
given by

fit = f Xit + bt tli + Vit.

A model of this type may arise in the specification of unrestricted linear projections

as in Equations ( 21) and ( 22), or as a structural specification in which an aggregate

shock 6 b is allowed to have individual-specific effects on yit measured by Ili.

Clearly, in such multiplicative cases first-differencing does not eliminate the
unobservable effects, but as in the heterogeneous autoregression above there are simple

alternative transformations that can be used to construct orthogonality conditions.

A transformation for multiplicative models Generalizing the previous specifications

we have

ft(wi, Y) = gt(wi, )Tli + vit, E(vit Iwi) = 0, ( 54)

where gi, = gt(w', /3) is a function of predetermined variables and unknown parameters
such that gi, > for all wt and is, and f, = ft(wr, y) depends on endogenous andsuch that g~~it o l w i
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predetermined variables, as well as possibly also on unknown parameters Dividing by

gi, and first differencing the resulting equation, we obtain

fi (t ) (gitlgi(t l))f t = +v, ( 55)

and

E(vt Jlw ) = O.

where v = vi( _ ) ( gilgi(t_ I))vit.

Any function of wi' i will be uncorrelated with v and therefore can be used as an

instrument in the determination of the parameters 3 and y This kind of transformation

has been suggested by Chamberlain ( 1992 b) and Wooldridge ( 1997) Notice that its

use does not require us to condition on rii However, it does require gt to be a function
of predetermined variables as opposed to endogenous variables.

Multiple individual effects We turn to consider models with more than one het-
erogeneous coefficient Multiplicative random effects models with strictly exogenous

variables were considered by Chamberlain ( 1992 a), who found the information bound

for a model with a multivariate individual effect Chamberlain ( 1993) considered
the identification problems that arise in models with predetermined variables when

the individual effect is a vector with two or more components, and showed lack of

identification of a in a model of the form

Yit = ayi(t, 1) + i Xi + 7 i + it, ( 56)

E(vit, lx,y-) = O (t = 2, , T) ( 57)

As an illustration consider the case where xit is a O 1 binary variable Since

E(ri x T, y I ) is unrestricted, the only moments that are relevant for the identification
of a are

E(Ayi, a Ay(, _ I)x -,y-2) = E(f 3 i Ax,,lx 1-,y 2) (t = 3, , T).

Letting wit = (x,yi), the previous expression is equivalent to the following two
conditions:

E(Ayit a Ayi(, )IW 2,ji(t 1) = ) = E(/ilw -2, Xi(t ) = 0)
( 58)

x Pr(xit, = llwt- 2 , Xi(t 1) = 0),

E(Ayi, a Ayi(, 1)lwt-2,xi(,_ I) = 1)= -E(/3 ij w- 2, x(,) = 1)

x Pr(xit = 01 w'- 2 , Xi(t 1) = 1) (

Clearly, if E(/flw-2,xi(, I) = 0) and E(/3 ilw 2,Xi(, _ 1) = 1) are unrestricted, and T

is fixed, the autoregressive parameter a cannot be identified from Equations ( 58) and

( 59).
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Let us consider some departures from model ( 56-57) under which a would be
potentially identifiable Firstly, if x were a strictly exogenous variable, in the sense
that we replaced Equation ( 57) with the assumption E(ui,lxi T,y' l) = 0, a could be
identifiable since

E(Ai-a Ay Ayi (, 1)x,yi-2, Axit = 0) = O ( 60)

Secondly, if the intercept qr were homogeneous, identification of a and 11 could result
from

E(yit l ayi(,_ )lw ',xit = 0) = 0 ( 61)

The previous discussion illustrates the fragility of the identification of dynamic

responses from short time series of heterogeneous cross-sectional populations.
If xit > O in model ( 56-57), it may be useful to discuss the ability of transforma-

tion ( 55) to produce orthogonality conditions In this regard, a crucial aspect of the
previous case is that while xit is predetermined in the equation in levels, it becomes en-

dogenous in the equation in first differences, so that transformation ( 55) applied to the
first-difference equation does not lead to conditional moment restrictions The problem
is that although E(Avit Ixt ,y Vt-2 ) = 0, in general El(Axit)-Avit Ix ,y - 2 l o 0.

The parameters a, /3 = E(Ai), and y = E(Trh) could be identifiable if x were a
strictly exogenous variable such that E(,tlx ,y'-l) = O (t = 2, , T), for in this

case the transformed error vt = (Axi,)-l Ait would satisfy Elvjx T ,y-2 l = O and

ElAvjtlx T,yi-3 l = O Therefore, the following moment conditions would hold:

Axit Axi(t I) Axr A(,

*E Aif a (t 1) -) = 0, ( 63)
E Axit Ax(t

*· l (yit/xit)_ (yi(t -)/Xi(t -))

A(l/xit) A( 1/x(t i)) ( 64)
-a (A(Yi t-I/xit) A(Yi(t -2)/Xi(t -1))) Tt 3 ( 64)

(A(Yi(t l)/Xit) A(Yi(t 2)/Xi(t 1)) i X Ti t 3

A(y A(/xt) _ A(yi(xt-)/) it) i Yi 
(E ( ( I/x,) = O ( 65)

A similar result would be satisfied if xit in Equation ( 56) were replaced by

a predetermined regressor that remained predetermined in the equation in first
differences like xi(,_ 1) The result is that transformation ( 55) could be sequentially

applied to models with predetermined variables and multiple individual effects, and
still produce orthogonality conditions, as long as T is sufficiently large, and the
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transformed model resulting from the last but one application of the transformation

still has the general form ( 54) (i e , no functions of endogenous variables are multiplied
by individual specific parameters).

A heterogeneous AR( 1) model As another example, consider a heterogeneous

AR(l) model for a O 1 binary indicator yi,:

Yit = Tli + ali Yi(t ) + vit, ( 66)

E(oi, ly l) = O,

and let us examine the (lack of) identification of the expected autoregressive

parameter E(aj) and the expected intercept E(r) With T = 3, the only moment that

is relevant for the identification of E(aj) is

E(Ayi 3 Yil) = E(cai Ayi 2 lYi),

which is equivalent to the following two conditions:

E(Ayi 3 jyil = 0) = E(ai Jyi, = O,Y = I) Pr(yi 2 = Yil = 0), ( 67)

E(Ayi 31 Yil = 1) = -E(a I Yi I = 1,Yi 2 = O) Pr(Y i2 = 01 Yi = 1) ( 68)

Therefore, only E(ajilyi = 0 ,Yi 2 = 1) and E(ajilyi = 1,yi 2 = 0) are identified The

expected value of ai for those whose value of y does not change from period 1 to

period 2 is not identified, and hence E(aj) is not identified either.

Similarly, for T > 3 we have

E(Ayitl Y' 3 ,Yi(t-2) = 0) = E(ajiy 3 ,yi(t 2) = O, Yi(t ) = 1)

x Pr(yi(t _ I) = llyt-3,Yi(t-2) = 0),

E(Ayit Y- 3,Yi(t 2) = 1) = -E(ily V-3 ,yi(_ 2) = 1, i( 1) = 0)

x Pr(yi(t 1) = Oly-3 ,yi(t 2) = 1).

Note that E(a lyi-3,yi(, 2) = j, yi(t -) = j) forj = 0, 1 is also identified provided

E(ajily'-3 ,yi(t_ 2) = j) is identified on the basis of the first T 1 observations.

The conclusion is that all conditional expectations of ai are identified except

E(aiyl yi = =i(T ) = 1) and E(aclyi = = yi(T ) = 0).

Concerning ij, note that since E(ri Jlyi T- ') = E(y Ty T-l ) Yi(T )E(aiyr j ),

expectations of the form E(lyi T-2,yi(rl) = 0) are all identified Moreover,

E(j y T- 2
,yi(T l) = 1) is identified provided E(a y T -2,y(r_ l) = 1) is identified.

Thus, all conditional expectations of irh are identified except E(rl Jyil = Yi(T )

= ).

Note that if Pr(y = Yi(T 1) = j) forj = 0, 1 tends to zero as T increases,

E(aj) and E(ri) will be identified as T o, but they may be seriously underidentified

for very small values of T.
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3 Linear models with predetermined variables: estimation

3.1 GMM estimation

Consider a model for panel data with sequential moment restrictions given by

Yit xi/'/3 + i, (t = 1, , T; i = 1, , N),
( 69)

uit =Tri + vi 1, E*(voit I zl) = O

where xi, is a k x 1 vector of possibly endogenous variables, zi, is a p x 1 vector

of instrumental variables, which may include current values of xi, and lagged values

of Yit and xit, and z = (z 11 , , z)' Observations across individuals are assumed to

be independent and identically distributed Alternatively, we can write the system of

T equations for individual i as

yi = Xjio + ui, ( 70)

where y, = (il, yi T)', Xi = (l, , Xi T)', and ui = (il, , Ui T)'

We saw that this model implies instrumental-variable orthogonality restrictions for

the model in first-differences In fact, the restrictions can be expressed using any

(T 1) x T upper-triangular transformation matrix K of rank (T 1), such that Kt = 0,

where t is a T x 1 vector of ones Note that the first-difference operator is an example.
We then have

E(Zi'K ui) 0, ( 71)

where Zi is a block-diagonal matrix whose tth block is given by z' An optimal

GMM estimator of io based on Equation ( 71) is given by

3 = (M x A MZ)-' M' A Mz, ( 72)

where Mz = (N, Z,'KX,), M, = (N l Zi'Kyi), and A is a consistent estimate

of the inverse of E(Zi'Kuiu'K'Zi) up to a scalar Under "classical" errors (that

is, under conditional homoskedasticity E(u 2 lIz) = 2, and lack of autocorrelation

E(vit vi(,+j) z' j) = O forj > 0), a "one-step" choice of A is optimal:

Ac= (z 'KK'Zi ( 73)

Alternatively, the standard "two-step" robust choice is

AR = ( Z ' K i K' Z) ( 74)

where i = yi Xfi is a vector of residuals evaluated at some preliminary consistent

estimate fl.
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Given identification, fi is consistent and asymptotically normal as N oo for fixed

T lHansen ( 1982)l In addition, for either choice of A, provided the conditions under

which they are optimal choices are satisfied, the asymptotic variance of i is

Var(/3)R = {E(Xi'K'Zi)lE(Z'Kui ul K'Zi)l-E(Zi'K Xi)}- , ( 75)

which is invariant to K Under classical errors this becomes 14

Var( 13)c = o 2 {E(Xi'K'Z)lE(Z'KK'Zi)l I'E(Zli K Xi)}-'.

Moreover, as shown by Arellano and Bover ( 1995), a GMM estimator of the form

given in Equations ( 72) and ( 73) or ( 74), is invariant to the choice of K provided K

satisfies the required conditions lsee also Schmidt, Ahn and Wyhowski ( 1992)l.

As in common with other GMM estimation problems, the minimized estimation

criterion provides an asymptotic chi-squared test statistic of the overidentifying
restrictions A two-step Sargan test statistic is given by

SR l (Yi -Xi R)'K'Zij AR ZK(Yi -Xi XR)l (q-k) ( 76)

where /i R is the two-step GMM estimator 15.

Orthogonal deviations An alternative transformation to first differencing, which

is very useful in the context of models with predetermined variables, is forward

orthogonal deviations:

= li u (T t)(Ui(t
+

) + T'"i)l , ( 77)

where c 2 = (T t)/(T t + 1) lArellano and Bover ( 1995)l That is, to each of the

first (T 1) observations we subtract the mean of the remaining future observations
available in the sample The weighting c, is introduced to equalize the variances of the

transformed errors A closely related transformation was used by Hayashi and Sims

( 1983) for time series models.

Unlike first differencing, which introduces a moving average structure in the

error term, orthogonal deviations preserve lack of correlation among the transformed

errors if the original ones are not autocorrelated and have constant variance Indeed,

14 Under classical errors, additional moment restrictions would be available, with the result that a

smaller asymptotic variance could be achieved The expression above simply particularizes the asymptotic

variance to a situation where additional properties occur in the population but are not used in estimation.

15 Similarly, letting & 2 and tic be, respectively, a consistent estimate of a 
2

and the one-step estimator,

the one-step Sargan statistic is given by Sc = a-2 lEN= ,(yi -Xifc)'K'Zl Ac lh i ZK(Yi -Xic)l.
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orthogonal deviations can be regarded as the result of doing first differences to
eliminate fixed effects plus a GLS transformation to remove the serial correlation
induced by differencing.

The choice of K that produces this transformation is the forward orthogonal
deviations operator A = diagl(T )/T, , 1/2 l 1/ 2A+, where

I -(T I)-' -(T I -(T I) 1 -(T )-' -(T I) 
0 1 -(T 2)-

1 -(T 2)- 1 -(T 2) (T 2)- l

A+ = i 

0 O O · · · 1 -1/2 -1/2
0 O O O 1 -1

It can be verified by direct multiplication that AA' = I(T I) and A'A = IT t'/T = 

which is the within-group operator Thus, the OLS regression of yi on x*t will give
the within-group estimator, which is the conventional estimator in static models with
strictly exogenous variables Finally, since Q = K'(KK') K, also A = (KK')-I/2 K for
any upper-triangular K.

A useful computational feature of orthogonal deviations, specially so when T is not
a very small number, is that one-step estimators can be obtained as a matrix-weighted
average of cross-sectional IV estimators:

= (t E Xt Zt(Z Zt) IZX*t ) EX*'z(zz)-I' yt*, ( 78)

where X,* = (x*', , x J)', y* = (y*, , y nz)', and Z, = (z', , 

An illustration: female labour force participation and fertility We illustrate
the previous issues with reference to an empirical relationship between female
participation and fertility, discussing a simplified version of the results reported by
Carrasco ( 1998) for a linear probability model 16

A sample from PSID for 1986-1989 is used The data consists of 1442 women aged
18-55 in 1986, that are either married or cohabiting The left-hand side variable is a
binary indicator of participation in year t Fertility is also a dummy variable, which
takes the value one if the age of the youngest child in t + 1 is 1 The equation also
includes an indicator of whether the woman has a child aged 2-6 The equations

estimated in levels also include a constant, age, race, and education dummies (not
reported).

In this sample it is observed that women with two children of the same sex have
a significantly higher probability of having a third child Thus, the sex of the first
two children is used as an instrument for fertility, which is treated as an endogenous

16 We thank Raquel Carrasco for allowing us to draw freely on her dataset and models.
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Table 2

Linear probability models of female labour force participation ab (N = 1442, 1986-1989)

Variable OLS 2 SLSC WITHIN GM Md GM Me

Fertility -0 15 -1 01 -0 06 -0 08 -0 13

( 8.2) ( 2 1) ( 3 8) ( 2 8) ( 2 2)

Kids 2-6 -0 08 -0 24 0 001 -0 005 -0 09

( 5.2) ( 2 6) ( 0 04) ( 0 4) ( 2 7)

Sargan test 48 0 ( 22) 18 0 ( 10)

ml 19 0 5 7 -10 0 -10 0 -10 0

m 2 16 0 12 0 -1 7 -1 7 -1 6

Models including lagged participation

Fertility -0 09 -0 33 -0 06 -0 09 -0 14

( 5.2) ( 1 3) ( 3 7) ( 3 1) ( 2 2)

Kids 2-6 -0 02 -0 07 -0 000 -0 02 -0 10

( 2.1) ( 1 3) ( 0 00) ( 1 1) ( 3 5)

Lagged participation 0 63 0 61 0 03 0 36 0 29

( 42 0) ( 30 0) ( 1 7) ( 8 3) ( 6 3)

Sargan 51 0 ( 27) 25 0 ( 15)

ml -7 0 -5 4 -13 0 -14 0 -13 0

m 2 3 1 2 8 -1 3 1 5 1 2

a Heteroskedasticity robust t-ratios shown in parentheses.

b GMM I Vs in bottom panel also include lags of participation up to t 2.

'External instrument: previous children of same sex.

d I Vs: all lags and leads of "kids 2-6 " and "same sex" variables (strictly exogenous).

e I Vs: lags of "kids 2-6 " and "same sex" up to t (predetermined).

variable The presence of a child aged 2-6 is the result of past fertility decisions,

and so it should be treated as a predetermined variable lsee Carrasco ( 1998) for a

comprehensive discussion, and additional estimates of linear and nonlinear modelsl.

Table 2 reports the results for two versions of the model with and without lagged

participation as a regressor, using DPD lArellano and Bond ( 1988)l The last column

presents GMM estimates in orthogonal deviations that treat fertility as endogenous,

and the "kids 2-6 " and "same sex" indicators as predetermined variables The table

also reports the results from other methods of estimation for comparisons.

There is a large gap between the OLS and 2 SLS measured effects of fertility,

possibly due to measurement errors Both OLS and 2 SLS neglect unobserved

heterogeneity, despite evidence from the serial correlation statistics ml and m 2 of

persistent positive autocorrelation in the residuals in levels Note that we would expect
the "same sex" instrumental variable to be correlated with the fixed effect The reason

3258



Ch 53: Panel Data Models: Some Recent Developments

is that it will be a predictor of preferences for children, given that the sample includes
women with less than two children.

The within-groups estimator controls for unobserved heterogeneity, but in doing
so we would expect it to introduce biases due to lack of strict exogeneity of the
explanatory variables The GMM estimates in column 4 deal with the endogeneity of
fertility and control for fixed effects, but treat the "kids 2-6 " and "same sex" variables

as strictly exogenous This results in a smaller effect of fertility on participation

(in absolute value) than the one obtained in column 5 treating the variables as
predetermined The hypothesis of strict exogeneity of these two variables is rejected

at the 5 percent level from the difference in the Sargan statistics in both panels.
(Both GMM estimates are "one-step", but all test statistics reported are robust to

heteroskedasticity )

Finally, note that the ml and m 2 statistics (which are asymptotically distributed as

a N(O, 1) under the null of no autocorrelation) have been calculated from residuals in
first differences for the within-groups and GMM estimates So if the errors in levels

were uncorrelated, we would expect ml to be significant, but not m 2, as is the case
here lcf , Arellano and Bond ( 1991)l.

Levels and differences estimators The GMM estimator proposed by Arellano and
Bover ( 1995) combined the basic moments ( 71) with E(Azi,ui,) = O (t = 2, , T).

Using their notation, the full set of orthogonality conditions can be written in compact
form as

E(Z+'Hu i) = 0, ( 79)

where Zi+ is a block diagonal matrix with blocks Zi as above, and Zfi = diag (Az'2,
. Az) H is the 2 (T 1) x T selection matrix H = (K',I')', where I, = ( IT ).

With these changes in notation, the form of the estimator is similar to that in

Equation ( 72).

As before, a robust choice of A is provided by the inverse of an unrestricted
estimate of the variance matrix of the moments N 1 i, I Zi H uii i'H'Zi However,

this can be a poor estimate of the population moments if N is not sufficiently large
relative to T, which may have an adverse effect on the finite sample properties of
the GMM estimator Unfortunately, in this case an efficient one-step estimator under
restrictive assumptions does not exist Intuitively, since some of the instruments for

the equations in levels are not valid for those in differences, and conversely, not all
the covariance terms between the two sets of moments will be zero.

3.2 Efficient estimation under conditional mean independence

If lack of correlation between it and zit is replaced by an assumption of conditional

independence in mean E(vi, I z) = 0, the model implies additional orthogonality

restrictions This is so because it will be uncorrelated not only with the conditioning
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variables zt but also with functions of them Chamberlain ( 1992 b) derived the semi-

parametric efficiency bound for this model Hahn ( 1997) showed that a GMM estimator
based on an increasing set of instruments as N tends to infinity would achieve the
semiparametric efficiency bound Hahn discussed the rate of growth of the number of
instruments for the case of Fourier series and polynomial series.

Note that the asymptotic bound for the model based on E(voi, I z) = O will be in
general different from that of E(voi, z, /i) = 0, whose implications for linear projections
were discussed in the previous section.

Similarly, the bound for a version of the model with levels and differences
restrictions based on conditional mean independence assumptions cannot be obtained
either as an application of Chamberlain's results The reason is that the addition of the
level's conditions breaks the sequential moment structure of the problem.

Let us now consider the form of the information bound and the optimal instruments
for model ( 69) together with the conditional mean assumption E(voi, I z) = O Since
E(zf IZT) is unrestricted, all the information about /3 is contained in E(vi, vi (t + 1) lz I) =
fort= 1, , T-1.

For a single period the information bound is Jot = E(dit dt/it) where d, = E(xit-

xi (+ ) l 1 z) and oit = El(voi Vi(t+ 1)) zl lcf , Chamberlain ( 1987)l Thus, for a single

period the optimal instrument is mi, = di /it,, in the sense that under suitable regularity
conditions the statistic

(t) ( mit Ax;(,+l) (m it Ayi(t+ 1)

satisfies v(( (t ( 3) A N(O,Jotl) If the errors were conditionally serially

uncorrelated, the total information would be the sum of the information bounds
for each period So Chamberlain ( 1992 b) proposed the following recursive forward
transformation of the first-differenced errors:

Di(T ) = Vi(T I)-U Vi T,

bit = (Vit -i(t+ 1))

El(vit vi(t+ 1))vi(+ 1)I Zi+ 1 l

E(v ( + 1) v 1 (t+l)

El(it i(,t+l ))i(t+ 2)i l( 80)
+)2 t+ 

2
i(t+ 2) ( 80)

El(vit i(t+ ))Vi(T )z I Z l 

E(D 2 T I) i(T I),

for t = T 2, , 1 The interest in this transformation is that it satisfies the same

conditional moment restrictions as the original errors in first-differences, namely
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but additionally it satisfies by construction the lack of dependence requirement:

E(itjbi(t,+j) I z' + ) = O forj = 1, , T-t 1 ( 82)

Therefore, in terms of the transformed errors the information bound can be written

as

T-I

Jo= ZE( d,td',/)J,), ( 83)
t=l

where dit = E(,t I z') and wjit = E(D 2 I z) The variables Xi, and Pit denote

the corresponding transformations to the first-differences of xit and yit such that

bit = i x'13 Thus, the optimal instruments for all periods are mi, = dit/w i,, in

the sense that under suitable regularity conditions the statistic

N T-1 I N T-1

\i=l t=l i=l t=l

satisfies v N(j fi) d N(, Jol).

If the v's are conditionally homoskedastic and serially uncorrelated, so that

E(v 2 I zi) = c 2and E(vivi(t+j) z>+) = O forj > O, it can be easily verified that the vi,'s

blow down to ordinary forward orthogonal deviations as defined in Equation ( 77):

1 1
it = O Ui (t)(i(t+l)+ +Ui T) = l*t fort= T-1, , 1.

(T t) Ct

In such case rit = c,a-2 E(xt* Izi) so that

13 = (i i E(x* z',*xw) (Z ZE(x Iz -ix)Y,*) ( 84)
i=l t= l i=l t=l

and

1 T-
Jo= z ElE(x* Iz)E(*'l)l ( 85)

t=l

If we further assume that the conditional expectations E(x* I z) are linear, then

T I

J= 2 E(x,*zi)lE(z'z Y)l-E(zix*') ( 86)

t=l

which coincides with the inverse of the asymptotic covariance matrix of the simple

IV estimator given in Equation ( 78) under the stated assumptions Note that the
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assumptions of conditional homoskedasticity, lack of serial correlation, and linearity

of E(x* l z 1) would imply further conditional moment restrictions that may lower the

information bound for / Here, we merely particularize the bound for /3 based on

E(vit Izi) = O to the case where the additional restrictions happen to occur in the

population but are not used in the calculation of the bound.

3.3 Finite sample properties of GMM and alternative estimators

For sufficiently large N, the sampling distribution of the GMM estimators discussed

above can be approximated by a normal distribution However, the quality of the

approximation for a given sample size may vary greatly depending on the quality

of the instruments used Since the number of instruments increases with T, many

overidentifying restrictions tend to be available even for moderate values of T, although

the quality of these instruments is often poor.

Monte Carlo results on the finite sample properties of GMM estimators for panel

data models with predetermined variables have been reported by Arellano and Bond

( 1991), Kiviet ( 1995), Ziliak ( 1997), Blundell and Bond ( 1998) and Alonso-Borrego

and Arellano ( 1999), amongst others A conclusion in common to these studies is that
GMM estimators that use the full set of moments available for errors in first-differences

can be severely biased, specially when the instruments are weak and the number of

moments is large relative to the cross-sectional sample size.

From the literature on the finite sample properties of simultaneous equations

estimators, we know that the effect of weak instruments on the distributions of 25 LS

and LIML differs substantially, in spite of the fact that both estimators have the

same asymptotic distribution While LIML is approximately median unbiased, 25 LS

is biased towards OLS, and in the case of lack of identification in the population it

converges to a random variable with the OLS probability limit as its central value.

In contrast, LIML has no moments, and as a result its distribution has thicker tails

than that of 2 SLS and a higher probability of outliers lcf , Phillips ( 1983)l Anderson,

Kunitomo and Sawa ( 1982) carried out numerical comparisons of the distributions of

the two estimators, and concluded that LIML was to be strongly preferred to 25 LS,

specially in cases with a large number of instruments.

LIML analogue estimators It is thus of interest to consider LIML analogues for our

models, and compare their finite sample properties with those of GMM estimators.

Following Alonso-Borrego and Arellano ( 1999), a non-robust LIML analogue PLIMLI

minimizes a criterion of the form

= (y* -X*/3)M(y* -X*'/3)
ec(/3) =(y _X /3)f By _ /3), ( 87)

where starred variables denote orthogonal deviations, y* = (y*', , y/)', X* = (XI*'

. , XN')', Z = (Zr, , ZN)', and M = Z(Z'Z)' Z' The resulting estimator is

OLIMLI = (X*'MX* X*X * ) (X* My* -X'y*),
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where is the minimum eigenvalue of the matrix W*'M W*(W*'W*) - l, and W* =

(y*,X*).
The estimator in Equation ( 88) is algebraically similar to an ordinary single-

equation LIML estimator provided the model is in orthogonal deviations This is so

in spite of having a system of equations, due to the fact that the errors in orthogonal

deviations of different equations are serially uncorrelated and homoskedastic under

classical assumptions However, the non-robust LIML analogue does not correspond

to any meaningful maximum likelihood estimator (for example, it does not exploit

the homoskedasticity restrictions) It is only a "LIME' estimator in the sense of

the instrumental-variable interpretation given by Sargan ( 1958) to the original LIML

estimator, and generalized to robust contexts by Hansen, Heaton and Yaron ( 1996).

The robust LIML analogue LIML 2, or continuously updated GMM estimator in the

terminology of Hansen et al ( 1996), minimizes a criterion of the form

GR(/i) = (Y -X i)Z u(fi)u*(i 3)'Z ZI(y* -X 3), ( 89)

where u*(f) = y Xi*f Note that LIML 2, unlike LIMLI, does not solve a

standard minimum eigenvalue problem, and requires the use of numerical optimization

methods 17

In contrast to GMM, the LIML estimators are invariant to normalization Hillier

( 1990) showed that the alternative normalization rules adopted by LIML and 25 LS

were at the root of their different sampling properties He also showed that a

symmetrically normalized 2 SLS estimator had similar properties to those of LIML.

Alonso-Borrego and Arellano ( 1999) considered symmetrically normalized GMM

(SNM) estimators for panel data, and compared them with ordinary GMM and LIML

analogues by mean of simulations The main advantage of robust SNM over robust

LIML is computational, since the former solves a minimum eigenvalue problem while

the latter does not It also avoids potential problems of non-convergence with LIML 2,

as reported by Alonso-Borrego and Arellano ( 1999).

The Monte Carlo results and the empirical illustrations for autoregressive models

reported by Alonso-Borrego and Arellano ( 1999) showed that GMM estimates can

exhibit large biases when the instruments are poor, while the symmetrically normalized

estimators (LIML and SNM) remained essentially unbiased However, LIML and SNM

always had a larger interquartile range than GMM, although the differences were small

except in the almost unidentified cases.

17 Other one-step methods that achieve the same asymptotic efficiency as robust GMM or LIML
estimators are the empirical likelihood lBack and Brown ( 1993), Qin and Lawless ( 1994) and Imbens
( 1997)l and exponential tilting estimators lImbens, Spady and Johnson ( 1998)l Nevertheless, little is
known as yet on the relative merits of these estimators in panel data models, concerning computational
aspects and their finite sample properties.
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3.4 Approximating the distributions of GMM and LIML for AR() models when the

number of moments is large

Within-groups estimators of autoregressive models, and more generally of models with

predetermined variables, are known to be consistent as T tends to infinity, but are
inconsistent for fixed T and large N lcf , Nickell ( 1981), Anderson and Hsiao ( 1981)l.

On the other hand, the estimators reviewed above are consistent for fixed T but the
number of orthogonality conditions increases with T In panels in which the value of

T is not negligible relative to N (such as the PSID household incomes panel in the

US, or the balance sheet-based company panels that are available in many countries),

the knowledge of the asymptotic behaviour of the estimators as both T and N tend to

infinity may be useful in assessing alternative methods.
Alvarez and Arellano ( 1998) obtained the asymptotic properties of within-groups

(WG), one-step GMM, and non-robust LIML for a first-order autoregressive model

when both N and T tend to infinity Hahn ( 1998) also obtained the asymptotic
properties of WG under more general conditions The main results can be summarized

in the following proposition.

Proposition 1 Let it = ayi(t 1) + ri + vi,, with vitly ,rri ~ i i d N(O, a 2 ),

(t = 1, , T) and Yio Oli ~ Nlhj/( 1 a), a 2 /( 1 a 2)l Also let rih i i d N(O, r 2).

Then, as both N and T tend to infinity, provided T/N c, O < c < 2, within-groups,

GMM 1, and LIML 1 are consistent for a Moreover,

T lMM (a-N( 1 + a))l A N(O, -a 2 ), ( 90)

NT la LIMLI (a ( 2 N T)( 1 + a)) d• 4 N(O, 1 a 
2

) ( 91)

Also, provided N/T 3 0:

T law G (a (l + a))l 4 N(O, 1 a 2 ) ( 92)

Proof: See Alvarez and Arellano ( 1998) 18

The consistency result contrasts with those available for the structural equation setting,

where 2 SLS is inconsistent when the ratio of number of instruments to sample size
tends to a positive constant lcf , Kunitomo ( 1980), Morimune ( 1983), Bekker ( 1994)l.

Here the number of instruments, which is given by T(T 1)/2, increases very fast

and yet consistency is obtained The intuition for this result is that in our context as

18 Here, for notational convenience, we assume that Yio is also observed, so that the effective number

of time series observations will be T + 1.
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T tends to infinity the "simultaneity bias" tends to zero, and so closeness of GMM 1
or LIML 1 to OLS in orthogonal deviations (ie within-groups) becomes a desirable
property.

Note that when T/N o O the fixed T results for GMM 1 and LIML 1 remain

valid, but within-groups, although consistent, has an asymptotic bias in its asymptotic
distribution (which would only disappear if N/T 0) However, when T/N tends to a
positive constant, within-groups, GMM 1 and LIML 1 exhibit negative biases in their
asymptotic distributions The condition that c > 2 is not restrictive since GMM 1 and
LIML 1 are only well defined for (T 1)/N < 1 Thus, for T < N the GMM 1 bias is
always smaller than the within-groups bias, and the LIML 1 bias is smaller than the
other two.

Another interesting feature is that the three estimators are asymptotically efficient in
the sense of attaining the same asymptotic variance as the within-groups estimator as
T x oc However, Alvarez and Arellano ( 1998) show that the standard formulae for
fixed T estimated variances of GMM 1 and LIML 1, which depend on the variance of
the fixed effect, remain consistent estimates of the asymptotic variances as T oo.

These results provide some theoretical support for LIML 1 over GMM 1 They also
illustrate the usefulness of understanding the properties of panel data estimators as
the time series information accumulates, even for moderate values of T: in a fixed
T framework, GMM 1 and LIML 1 are asymptotically equivalent, but as T increases
LIML 1 has a smaller asymptotic bias than GMM 1.

The crude GMM estimator in first differences Alvarez and Arellano ( 1998) also show
that the crude GMM estimator (CIV) that neglects the autocorrelation in the first
differenced errors (ie , one-step GMM in first-differences with weight matrix equal
to (Z'Z)-1) is inconsistent as T/N c > 0, despite being consistent for fixed T The
result is:

taclv f a 2 ( 1 + ( 2 -2 c)( 93)2)

The intuition for this result is that the "simultaneity bias" of OLS in first differences
(unlike the one for orthogonal deviations) does not tend to zero as T oo.
Thus, for fixed T the IV estimators in orthogonal deviations and first differences
are both consistent, whereas as T increases the former remains consistent but the
latter is inconsistent Moreover, notice that the bias may be qualitatively relevant.
Standard fixed-T large-N GMM theory would just describe the CIV estimator as being
asymptotically less efficient than GMM 1 as a consequence of using a non-optimal
choice of weighting matrix.

4 Nonlinear panel data models

The ability to difference out the individual specific effect as was done in the previous
sections relies heavily on the linear or multiplicative way in which it entered the model.
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Many simple cross sectional models have a constant that does not enter in this way.

This is for example true for all the limited dependent variable models discussed in

Chapters 9 and 10 of Amemiya ( 1985) Introducing an individual specific effect as an

individual specific constant in those models therefore results in models that cannot be

estimated by the methods discussed so far As will be seen in the following sections,

the currently available methods for dealing with these models, rely on insights that

are model-specific and that do not always seem to be useful for similar, but slightly

different models The main exception to this is the conditional maximum likelihood

approach which has been used to construct estimators for some exponential family

models We discuss this method in the next section.

Unfortunately, there are many models for which it is not possible to use the

conditional likelihood approach to eliminate the individual specific effect For some of

those models, alternative appoaches have been developed In Sections 6 and 7, we will

review some of the progress that has been made in the area of estimation of limited

dependent variable models with individual-specific, "fixed", effects 19 This literature

is closely related to the literature that deals with estimation of semiparametric limited

dependent variables models, in that it is usually not necessary to specify a parametric

form for the distribution of the underlying errors The models are also semiparametric

in the sense that the distribution of the individual specific effects conditional on the

explanatory variable, is left unspecified It is therefore not surprising that there is a

close relationship between some of the approaches that are discussed here, and some

approaches that have been taken to estimation of semiparametric limited dependent

variables models Indeed, in some cases the estimators for the panel data models have

preceded the "corresponding" estimators for the cross sectional models.

The main limitation of much of the literature on nonlinear panel data methods, is that

it is assumed that the explanatory variables are strictly exogenous in the sense that some

assumptions will be made on the errors conditional on all (including future) values

of the explanatory variables As was pointed out earlier in this chapter, many of the

recent advances in estimation of linear panel data models have focused on relaxing this

assumption In Section 8, we will discuss how some of the methods can be generalized

to allow for lagged dependent variables, but at this point very little is known about

estimation of nonlinear panel data models with predetermined explanatory variables.

The discussion of nonlinear panel data models in the next three sections will focus

entirely on standard nonlinear econometric models in which the parameter that is

usually interpreted as an intercept, is allowed to be individual specific This seems

like a natural first step in understanding the value and limitations of panel data when

the model of interest is nonlinear However, it is clear that knowing the "parameters

19 Even though one often imagines a random sample of individuals, and hence random draws of the

individual specific effects, it is customary to call the effect "fixed" when no assumptions are made on

its relationship with other explanatory variables A random effect is one which has been modelled in

some manner.
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of interest" in the models discussed below does not always allow one to infer all the
quantities of interest For example, in the fixed effects logit model below, knowing

/3 will not allow one to infer the effect of one of the explanatory variables on the
probability distribution of the dependent variable, although knowing the vector of O 3 's

will allow one to infer the relative effects of the explanatory variables This problem is

due to the semiparametric nature of the nonlinear models considered here, and is not

particular to panel data On the other hand, if the censoring in Equation ( 103) below

is due to top or bottom coding of the true dependent variable of interest, then the
interpretation of the parameters of the censored regression model is exactly the same

as the interpretation of the parameters of a linear panel data model The same can
sometimes be said for the selection models discussed below.

Another limitation of most of the discussion here is that it focuses on the extreme

case where no assumptions are made on the relationship between the individual specific

effect and the explanatory variables Whether a more "random" effects approach where

some assumptions are made on how the distribution of this effect depends on the
explanatory variables is more useful, depends on the context (and one's taste) In

section 9 we briefly discuss some recent advances in this area We devote much less
space to that topic because many of the new developments there are by-products

of developments in other areas of econometrics For example, recent developments
in Bayesian econometrics and in simulation-based inference have implications for

nonlinear random effects panel data models, but the main new insights are more

general, and not really tied to panel data.

5 Conditional maximum likelihood estimation

In a static linear model, one can justify treating the individual specific effects as

parameters to be estimated by reference to the Frisch-Waugh Theorem: OLS (or

normal maximum likelihood) on individual specific dummy variables is numerically

equivalent to OLS on deviations from means This means that including individual

specific dummies yields a consistent estimator of the slope parameters (as N goes to
infinity), even though the number of parameters is also going to infinity Unfortunately,

as was pointed in the classic paper by Neyman and Scott ( 1948), it is generally not the

case that the maximum likelihood estimator will retain its nice asymptotic properties
when the number of parameters is allowed to increase with sample size This is for

example seen by considering the maximum likelihood estimator of the variance in a
static linear panel data model with normal errors: because the maximum likelihood

estimator does not make the degrees-of-freedom correction, it will be inconsistent if

the number of parameters is of order n.

Conditional maximum likelihood estimation is a method which, when it is

applicable, can be used to construct consistent estimators of panel data models in the
presence of individual specific effects The idea is as follows Suppose that a random

variable, yi,, has distribution f ( ; 0, a') where O is the parameter of interest and is
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common for all i, whereas ai is a nuisance parameter which is allowed to differ across i.
A sufficient statistic, Ti, for ai is a function of the data such that the distribution of
the data given T does not depend on ai However, it might well depend on O If that
is the case, then one can estimate O by maximum likelihood using the conditional

distribution of the data given the sufficient statistics Andersen ( 1970) proved that the
resulting estimator is consistent and asymptotically normal under appropriate regularity

conditions In the two subsections below, we give examples of how the conditional
maximum likelihood estimator can be used to construct estimators of the panel data
logit and the panel data Poisson regression models.

The problem with conditional maximum likelihood estimation as a general prescrip-
tion for constructing estimators of nonlinear panel data models is that it is not always

possible to find sufficient statistics such that the conditional distribution of the data
conditional on the sufficient statistic will depend on O This is the case for many of
the nonlinear models used in econometrics.

5.1 Conditional maximum likelihood estimation of logit models

The simplest interesting nonlinear model for which the conditional likelihood approach

works, is the "textbook" logit model studied in Rasch ( 1960, 1961) With two time
periods and an individual specific constant we have,

Yit = 1 {xit/3, + a + eit 0) t = 1,2, i = 1, , n

where et and i 2 are independent and logistically distributed, conditional on ai, Xil, x 2.

It follows that

Pr(yit = llxil,Xi 2, ai)= exp(xit/3 + ai) ( 94)
1 + exp (xit/ + a ( 4

In this case it is easy to see how the conditional likelihood approach "eliminates"
the individual specific effect Define events A and B by A = {yin = 0, Yi 2 = 1 } and

B = { yil = 1, yi 2 = O } It is then an easy exercise to show that

Pr (il = O,Yi 2 = Yil +Yi 2 = ,xil,xi 2, ai) = Pr (A A U B,xil,xi 2 ,ai)

~~ 1 = I, ( 95)
1 + exp ((Xil -Xi 2) '

In words, if we restrict the sample to the observations for which yit changes, then the

individual specific effects do not enter the distribution of (Yil,Yi 2) given (xil ,Xi 2 , ai)

and the distribution of yil given (xil, Xi 2) has the form of a logit model with explanatory
variable xil Xi 2 and coefficient /3 Intuitively, the implication is that if we restrict the
sample to the observations for which yi, changes over time, then / can be estimated
by estimating a logit in the restricted sample without having to specify the distribution
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of the individual specific effects In a sense, conditioning on yi I +Yi 2 = 1 has the same

effect as differencing the data in a linear panel data model.

More generally, if there are T > 2 observations for each individual, the conditional

distribution of (yi, yi,) given Et= ,yit is

P Yil, Yit E Yit Xil, , it, i T T

(d, d,)CB exp (,t I d x it f )

( 96)
where B is the set of all sequences of zeros and ones that have tt d/ = ,T o yit.

Formally this means that T= I it is a sufficient statistic for ai, and the implication

is that one can use Equation ( 96) to estimate B Chamberlain ( 1980) generalized

Equation ( 96) by deriving the conditional likelihood for the multinomial logit model.

When T is large, the number of terms in the denominator of Equation ( 96) will

be large, and and it can be computationally burdensome to calculate the conditional

maximum likelihood estimator In that case one can estimate fl by applying the logic

leading to Equation ( 95) to all pairs of observations for a given individual In other

words, one can maximize

E exp (yit (xi, xi S,) )
Ei= log 1 +exp((xit, -x J),) '

Unless T = 2, this objective function is not a (log-)likelihood, and it will generally

be less efficient than the conditional maximum likelihood estimator The asymptotic

distribution of the estimator can be found by noting that it is an extremum estimator.

5.2 Poisson regression models

The Poisson regression model with individual specific constants provides another

example in which the conditional maximum likelihood estimator can be used This

is a special case of the multiplicative model discussed earlier For simplicity, consider

the case where there are two observations for each individual:

yit po (exp(ai + xit)) t = 1,2 i = 1, , n ( 97)

One way to understand why the conditional likelihood approach will work in this

model, is to recall that if two independent random variables are both Poisson distributed

with means ul and bt 2, respectively, then the distribution of one of them given the sum,

has a binomial distribution with probability parameter tl-' and trial parameter given

by the sum of the two random variables It therefore follows that ifyil andy/ 2 are drawn

from Equation ( 97) and we restrict attention to the observations for which Yil + Yi 2 = K

(say), then yil bi (K, exp(x Si)-exp(x 2 ) Since this distribution does not involve the(say),~~~~~~ ey Xi I bi K¢px)+ ¢XP(Xi 2 M) 
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individual specific effects, it can be used to make inference about f 3 For example, one

could estimate /3 by maximizing

L = -yil In ( 1 + exp((xi 2 xil)b)) -Yi 2 In ( 1 + exp((xi xi 2)b))

lsee, for example, Hausman, Hall and Griliches ( 1984)l.

Recent papers by Blundell, Griffith and Windmeijer ( 1997), and Lancaster ( 1997)

have pointed out that for the Poisson regression model ( 97), the conditional maximum

likelihood estimator is identical to the maximum likelihood estimator of /3 based on

maximizing the likelihood function for Equation ( 97) over b and all the individual

specific effects, a.

6 Discrete choice models with "fixed" effects

Manski ( 1987) made the first successful attempt of consistently estimating a nonlinear

panel data model with individual specific "fixed" effects in a situation in which the

conditional maximum likelihood approach cannot be applied His estimator is based

on the maximum score estimator lsee Manski ( 1975)l for the binary choice model

Yi = 1 xi/ + Ei > 0) ( 98)

Since P (yi = 1 I xi) = FE, lxi (xi,/) it follows that if Median(ei Ixi) = O (uniquely), then

observations with xi/3 > O will have probabilities greater than and observations with2

xi/ < O will have probabilities less than In other words,

sgn (Pr (i = 1 xi) Pr (i = O lxi)) = sgn(xii/).

Under mild regularity conditions, this implies that E lsgn ( 2 yi 1) sgn (xib)l is uniquely

maximized at b = /, and the analogy principle therefore suggests estimating /i by

n

/3 = arg max sgn ( 2 yi 1) sgn (xib).

i=l

Under mild conditions, this estimator is consistent lsee Manski ( 1985)l, but it does

not converge at rate /~ and it is not asymptotically normal lsee Cavanagh ( 1987) and

Kim and Pollard ( 1990)l 20.

20 Under assumptions that are slightly stronger than Manski's, Horowitz ( 1992) proposed a smoothed

version of the maximum score estimator which does have an asymptotic normal distribution, although

the rate is, again, slower than V/f The rate of convergence of Horowitz's estimator depends on the

assumed degree of smoothness of the distribution of the explanatory variables.
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The insight behind Manski's ( 1987) estimator of the ("non-logit") binary choice

model with individual specific effects, is that under mild conditions, exactly the same

conditioning that leads from the logit model with individual specific fixed effects ( 94)

to a logit model without the individual specific "fixed" effects, ( 95), will also lead
from the model

Yit = 1 xit + ai + it O t = 1,2 ; i = 1 , n, ( 99)

to a model in which the maximum score estimator can be applied The key assumption

is that the distribution of ei, is stationary, in the sense that eil and Ei 2 are identically

distributed conditional on (xil,xi 2, a,) With this assumption, Manski showed that

Pr (yi 2 = 1 j Xil,Xi 2,yi +Yi 2 = 1) 1/2,

depending on whether

(Xi 2 -Xil)# > 0.

The intuition for this result is simple If the distribution of -eil (and -Ei 2) for individual

i is Fi ( ), then the probability that yit = 1 for individual i is F (xi,t + a,); this means

that for a given individual, higher values of xit, are more likely to be associated with

Yit = 1.
Mimicking Manski ( 1975), this suggests a conditional maximum score estimator

defined by

n

3 = arg max sgn (Yi 2 -i ) sgn ((xi 2 xi )b) ( 100)

If the panel is of length longer than 2, one can estimate fi by considering all pairs of

observations

, = argmax (sgn (y,s -yi) sgn ((x, -xit)b)) ( 101)
i= st

As was the case for the cross sectional maximum score estimator, this estimator

will be consistent under mild regularity conditions In particular, compared to the logit
model considered earlier, it not only leaves the distribution of the errors unspecified,

but it also allows for general serial correlation and heteroskedasticity across individuals
(but not over time) However, the estimator is not +vr consistent, and not asymptotically
normal 2.

21 Kyriazidou ( 1995) and Charlier, Melenberg and van Soest ( 1995) have shown that the same trick

used by Horowitz ( 1992) to modify the maximum score estimator can be used to modify the conditional

maximum score estimator This results in a smoothed conditional maximum score estimator which does

have an asymptotic normal distribution, although the rate is, again, slower than /hn.
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Since on one hand, Manski's estimator is not /E consistent, but makes very weak

assumptions on the errors, and on the other hand assuming a logistic distribution on the

errors leads to a v Fl consistent and asymptotically normal estimator, it is natural to ask

whether there are alternative assumptions on the errors that lead to a situation where

it is possible to estimate the /3-vector at the usual /I rate Perhaps surprisingly, the

answer to that question seems to be negative Subject to weak regularity conditions

Chamberlain ( 1993), showed that even if it in Equation ( 99) are i i d with known

distribution and independent of (xil,xi 2, ai), /3 can be estimated /E consistently only

in the logit case.

It is clear that scale normalizations are needed in each period in order for / in

Equation ( 99) to be identified Both the logit version of Equation ( 99) and Manski's

treatment impose such scale normalizations In the logit case, this normalization

comes from the variance of the logistic distribution In Manski's case it is through a

scale normalization on 3 and through the assumption that the errors are identically

distributed in the two time periods In addition to these scale normalizations, the

estimators of Equation ( 99) also assume that the effect of the fixed effect is the same

in the two periods This is in contrast to the linear model in which it is possible to

estimate time specific coefficients (factor loadings) on the fixed effect It is clear that

the logic behind the two estimators of the binary choice panel data model discussed

here would break down with such factor loadings, but it is less clear whether they

would make the model unidentified.

7 Tobit-type models with "fixed" effects

7.1 Censored regression models

The censored regression model is given by

y? = xi + i

yi = max {yi*, c} ( 102)

In text-book treatments, c is usually O Note that for c = -oc, Equation ( 102) becomes

the linear regression model, and that one can change the max to a min by a simple

change of sign The censored regression model has been used in many different

contexts In some, c is the lowest possible value that some economic variable can
take, and y* is the desired level of that variable in the absence of this constraint In

other cases, the censoring is induced by the way the data is constructed For example,

earnings variables are sometimes top-coded for confidentiality reasons.

In a panel data context, the censored regression model may be described by

yit = xi + ai + Eit

Yit = max {yt, c} ( 103)

This model was introduced by Heckman and Ma Curdy ( 1980) in the context of female

labor supply.
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Because the individual specific effect ai does not enter linearly or multiplicatively,

it is not possible to "difference" it out as was the case for the linear regression model,
and it is also unclear under what conditions a conditional likelihood approach can be

used to eliminate ai Honor ( 1992) proposed a different approach to estimating /3
in this model The motivation for the estimators given below is different from that

in Honors ( 1992) because we want to motivate a larger class of estimators Honor

( 1992) also considered estimation of the truncated version of the model The latter is
less interesting and will not be discussed here.

The idea behind the estimator in Honor 6 ( 1992) is to artificially censor the dependent

variable in such a way that the individual specific effect can be differenced away This

is similar to the approach in Powell ( 1986) who artificially censored the dependent

variable in a cross sectional censored regression model, in such a way that the moment
conditions for OLS apply Specifically, one can define pairs of "residuals" that depend

on the individual specific effect in exactly the same way Intuitively, this implies that
differencing the residuals will eliminate the fixed effects.

Define

Uist (b) = max {yi,, c + (xi, xi,) b} max {c, c + (xi, xit) b}

At b = /, we have

oist (/3) = max {Yis, c + (xis xit) 3 } max {c, c + (xi, xit)/3 }

= max {ai + Eis, c Xis 13, c xit 3 } max {c Xisf, c xit/3 }

The key observation is that visit (/3) is symmetric in S and t Therefore, if Eit,

t = 1, , T, are independent and identically distributed conditional on (xi, ai), where

xi denotes all the explanatory variables for individual i, then vis (/3) and vit (/3) are

independent and identically distributed (conditional on (xi, ai)) This means that any

function of ois, (/3) minus the same function of vits (/3) will be symmetrically distributed
around O We therefore have the conditional moment condition

E l ( ( (its (/3) V (ist ()))1 xi, ail = 0, ( 104)

for any increasing function (-) and any increasing and odd function ~( ), provided

that the expectations are well-defined The reason why ip( ) and () are assumed to

be increasing will become clear shortly.

One could in principle consider estimation of /3 on the basis of Equation ( 104) One

problem with this is that although f satisfies Equation ( 104), it does not follow from
the previous discussion that there are no other values of the parameter that also satisfy

Equation ( 104) However, Equation ( 104) implies

E l( ( (vits (/3)) 4 (is t (/3)))) (xit xis)l = ,
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which has the form

E lr (yis,Yit, (xi, xit) 8) (xis Xit)l = 0, ( 106)

where r( ,-, ) is a monotone function of its third argument, because of the assumption
that p( ) and () are increasing 2 2 By integrating r() with respect to its third

argument, one can typically turn Equation ( 106) into the first order condition for a
convex minimization problem of the form

min E lR (yi,,yi, (xis xit) b)l ( 107)
b

The parameter P can then be estimated by minimizing a sample analog of Equa-
tion ( 107) It follows from standard results about extremum estimators that the resulting
estimator will be consistent and V/n asymptotically normal.

For example, with ~ (d)= p (d) = d, c = O and T = 2, the function to be minimized

in ( 107) becomes

E l(max{yil, Axib} max Yi 2, -Axib} Axb) 2

+ 2 l{ yil < Axib}(Axib -yil)yi 2 + 2 l{Yi 2 < -Axib}(-Axib -Yi 2)yil,

which suggests estimating /3 by

n

= arg min E (max{ yil , Axib} max Yi 2, -Axib} Axib) 2

i= 1

+ 2 l{Yil < Axib}(Axib -Yil)yi 2

+ 2 l{yi 2 < -Axib}(-Axib -Yi 2)Yil.

Letting ~ (d) = sign (d) and ip (d) = d, results in the estimator

n

/3 = argmin ( 1 I{yl < Axib,yi 2 O })
i=l

( 1 {yi 2 < -Axib,yil < O }) l Yil -Yi 2 Axibl 

These are the estimators discussed in detail in Honor 6 ( 1992) Honor and Kyriazidou
( 2000 b) discuss estimators defined by a general i (d) and (d) = d as well as

Vp (d) = d and general 5 (d) The case with panels of length T > 2 can be dealt with
by considering all pairs of time periods S and t, as in Equation ( 101).

22 Vit (b) = max {y,, c + (x xi )b} max {c, c + (xis -x, )b} is monotone in (xi, -x,,)b because
yis > c It therefore follows that (' (ui, (b)) Vi (uist (b))) depends on b only through (xi, -xi,) b and
that it is monotone in (xi, -xi,)b.
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The moment condition ( 105) was derived from the assumption that Eis and E,

are independent and identically distributed conditional on (xi, a) This assumption
is stronger than necessary To see why, assume the conditional exchangeability

assumption that (Es, eit) is distributed like (Eit,Eis) conditional on (xi, ai) This

implies that ((vjt(fi)), p(vi,s(f))) is distributed like (P(vits(f)), P(vist(/))), which

in turn implies that t(vs(fi)) P(vjts(i 3)) is symmetrically distributed around 0 (all

conditional on (xi, as)) The moment condition ( 105) then follows.

The exchangeability condition is useful because it yields symmetry of t(vi,(i 3))-

P(vtr(f)), which then yields the moment condition for any choice of the odd
function A On the other hand, if ~ is the identity function, then the moment condition

follows if (vis,( /)) is distributed like P(vijt,()), which is implied by Ei, and Eit being

identically distributed In other words, the stationarity assumption that was the key

to Manski's estimator for the panel data binary choice model, is also the key to the

class of estimators for the panel data censored regression model based on the moment

condition ( 106) (and the minimization problem ( 107)) with (d) = d, whereas the

larger class of estimators based on Equation ( 106) with general ~ seems to require the

stronger assumption that Ei, and Eit are exchangeable.

7.2 Type 2 Tobit model (sample selection model)

Kyriazidou ( 1997) studied the more complicated model

Yit = Xlit, 1 + ali + Elit,

Y 2 it = X 2 it 
3
2 + a 2 i + E 2 it,

where we observe:

ylit = 1 {y*, > O } ( 108)

Y 2 it = i otherwise ( 109)

This is a panel data version of the sample selection model that Amemiya ( 1985) calls

the Type 2 Tobit Model.
It is clear that /3 l can be estimated by one of the methods for estimation of

discrete choice models with individual specific effects discussed earlier Kyriazidou's

insight into estimation of /2 combines insights from the literature on estimation of

semiparametric sample selection models with the idea of eliminating the individual

specific effects by first-differencing the data Specifically, to difference out the

individual specific effects a 2 i, one must restrict attention to observations for which
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Yit is observed With this "sample selection", the mean of the error term in period t

is

Ait = E(E 2 itj Elit > -Xlit 3l li, Elis > -Xis Pl ali, ~i),

where i = (Xlis,X 2is,Xlit,x 2 it, ail, ai 2) The key observation in Kyriazidou ( 1997) is
that if (Elit, E 2 it, Elis, E 2 is) and (elis, E 2 is, Elit, e 2 i) are identically distributed (conditional

on (Xli,X 2 is,Xli,,x 2 it,, ail, ai 2)), then for an individual i, who has xli,f 31 = lisf 1,

Ait = E(E 2 it I Elit > -Xlit P 31 ali, Elis > -Xlisf 1i li, )

= E ( E 2 isl elis > -Xl is l li, Elit > -Xl it Pl li, i)

= Ais ( 110)

This implies that for individuals with xlit Pl = x i,/31, the same first differencing that

will eliminate the fixed effect will also eliminate the effect of sample selection This

suggests a two-step estimation procedure similar to Heckman's ( 1976, 1979) two-step

estimator of sample selection models: first estimate 1 by one of the methods discussed

earlier, and then, secondly, estimate /32 by applying OLS to the first differences, but

giving more weight to observations for which (xli, -Xlj,)fl is close to zero:

/32 lE (X 2 it X 2 is) ( (it X 2 i (X 1 1 ) 1 Yit X Yiislis

X E"·"~ N ""( (Xit Xlislfl
E (x 2 it -X 2 is) (Y 2 it -Y 2 is)K h Ylit Ylis

where K is a kernel and h, is a bandwidth which shrinks to zero as the sample

size increases Kyriazidou showed that the resulting estimator is n-consistent and

asymptotically normal.

Kyriazidou's estimator is closely related to the estimator proposed by Powell ( 1987).

That paper considered a cross sectional sample selection model and applied the

argument leading to Equation ( 110) to all pairs of observations i and j.

7.3 Other Tobit-type models

As pointed out in Honor 6 and Kyriazidou ( 2000 b), the estimators proposed in Honor 6

( 1992) and Kyriazidou ( 1997) can be modified fairly trivially to cover the other
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Tobit-type models discussed in Amemiya ( 1985) Consider for example, the Type 3
Tobit model with individual-specific effects,

lit = Xlit 31 + all + Elit

Y 2 it = X 2 it /2 + a 2 i + E 2 it

ylit = O if Yi > O
if Y 1 it O

Y 2 it = { O Yit if Yi < O O

In that model, the event

E = {ylis > max{ 0, (xis xlit)fi 1 1, lit > max{ 0,(xlit -Xlis)il}}

is the same as the event

{e lis > max{-x 1is 13 1 ali, -Xlitfl all),

Elit > max{-xli,s 31 ali,-xlitf 3 i ali) 

With the exchangeability assumption that (lit, E 2 it, elis, e 2 is) and (li, E 2 is, Elit, e 2 it) are

identically distributed (conditional on (Xlis,X 2 is,Xlit,x 2 it, a Til, ai 2 ))

elis Elit =(Y 2 is Y 2 it) ( 2 is X 2 it)12,

is symmetrically distributed around O conditional on E and conditional on (xli S, X 2 is,

xlit, x 2 it, ail, ai 2) This suggests a two-step approach, where the first step is estimation
of 3 by one of the estimators of the panel data censored regression, and the second
step estimates /32 by

2 = argmnin E l {Ylis >max{O,(xlis xlit)l}, ylit >max{ 0,(xlit-Xlis)~l}}
i s<t

* (vis yit) (xi Xit) b),

where is some symmetric loss function such as H(d) = d 2 or E(d) = dl.

The Type 3 Tobit model was also considered by Ai and Chen ( 1992) who presented

moment conditions similar to those implied by the two-step estimator above, although
they derived their conditions under the assumption that the errors are independent over
time.
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It is also straightforward to consider panel data versions of Amemiya's Type 4 and
Type 5 Tobit Models Let

Yit = Xlitil + a Oli + Elit,

Y 2 it = X 2 it,2 + a 2 i + E 2 it,

Y 3 it = x/ ± a 3 i + 3 it 3

In the Type 4 Tobit model we observe (Ylit,Y 2 it,Y 3 it) from:

Ylit = max {O,yit,}, ( 111)

Y 2 it = 2 otherwise' ( 112)

otherwise' ( 113)

and we can estimate the parameters of this model by considering Equations ( 111) and
( 112) as a Type 3 Tobit model and Equations ( 111) and ( 113) as a Type 2 sample
selection model.

In the Type 5 Tobit model we observe (Yli,Y 2 it,Y 3 it) from:

Ylit = 1 {Y~i, > O }, ( 114)

Y 3 it = { 43 it otherwise' ( 116)

and we can treat the two outcome Equations ( 115) and ( 116) separately and apply

Kyriazidou's ( 1997) estimator to 32 and /:33.

7.4 Monotone transformation models

Estimation of in the cross sectional linear transformation model,

h (yi) = xi/ + Ei, ( 117)

has been the topic of a large number of recent papers in econometrics and statistics.
In this model, ,B is often considered the primary parameter of interest with h and the
distribution of E left unspecified except that h(-) is assumed to be monotone and 
independent of x In some cases, h is assumed to be strictly monotone, whereas other
papers do not require this, in which case Equation ( 117) contains both the binary
discrete choice and the censored regression model as special cases When h is assumed
to be strictly monotone, one might think of Equation ( 117) as a generalization of the
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Box-Cox model It is clear that If can only be estimated up to scale, unless a scale

normalization is imposed on h(-) or e In the following, we will therefore only be
concerned with estimation of /3 up to scale.

In a recent paper, Abrevaya ( 1999) proposed an estimator of /3 in a fixed effects
version of Equation ( 117),

ht(yi,) = x'/3 + ai + Ei,, ( 118)

where h,( ) is assumed strictly increasing His estimator is similar in spirit to that of
Han ( 1987) for the cross sectional transformation model The key insight in Abrevaya's

paper is to difference across individuals in a given time period, rather than across time

periods for a given individual,

h,(yi,) ht(yjt) = (xi xjt)l' + ( aj) + (it jj).

Because h, is strictly increasing,

Pr(yit > Yjt I xit,Xis, ai,)xjt,js, j)

= Pr(Ejt eit < (xit xjt)/3 + (ai Ca) I Xit,Xis, ai,xjt, Xj, a ),

where the motivation for conditioning of the explanatory variables in both time

periods t and s, is that we will compare this probability in time period t to the same

probability in time period s.

Assume that the errors are stationary (given the explanatory variables in all periods

and given the fixed effect) This is the same assumption that was made for the discrete

choice model and for the censored regression model This assumption, combined with
random sampling, implies that the distribution of ej, it (given (xit,Xis, ai,xjt,xjs, aj))
is the same in the two periods The right hand side of Equation ( 119) can then be

written as Fij((xit Xjt)'l/ + (ai aj)) On the other hand, by simple inspection it is
clear that

Ax/3 > Axj/3 X (xit -xjt)'/3 (i aj) > (xis Xjs)/p + (a j), ( 119)

where Ax = xt x Combining Equations ( 119) and ( 119) we then have 2 3

Ax': > Axj' X

Pr(yit > yjt x, xit, ai, xjs,xjt, aj) > Pr(ys > yjs xis, xit, ai, j, xjt, aj) ( 120)

Equation ( 120) implies that the function

S(b) E lsign ((Axi Axj)'b) ( 1 (yit > yjt) (yis > j))l ( 121)

23 Some smoothness of the distribution of the errors is needed for the inequality between the probabilities

to be strict.
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is maximized at b = For the case where there are only two time periods,
Abrevaya therefore proposed an estimator defined by maximizing the sample analog
of Equation ( 121),

Sn(b) (n) Esign((Axi-Axj)b)(l(Yi 2 >Yj 2)-l(yil >Yjl)) ( 122)

Abrevaya ( 1999) showed that his estimator is consistent and /n asymptotically
normal under appropriate regularity conditions He also showed that although there

are N 2 terms in the sum in Equation ( 122), it is possible to calculate the sum using
O(n log(n)) operations The computational burden associated with the estimator is
therefore much smaller that it appears The case with T > 2 observations for each
individual can again be dealt with by considering all pairs of time periods.

Abrevaya ( 2000) proposed an estimator for a model which is more general than
Equation ( 118) That estimator is based on the same idea as Manski's ( 1985) maximum
score estimator of the panel data binary choice estimator As is the case for the
maximum score estimator, it is possible to show that a smoothed version of Abrevaya's
estimator is consistent and asymptotocally normal, although the rate of convergence
is slower than /.

7.5 Nonparametric regression andfixed effects

Porter ( 1997) introduced individual-specific additive effects in a nonparametric
regression model by specifying

Yit = mt (xit) + ai + eit, ( 123)

where it, has mean 0 conditional on all (past, current and future) values of the
explanatory variables xi, Porter noted that Equation ( 123) implies that the conditional
mean of Yit Yis given (xit,xji) is (xji,xj) mt(xit,) ms(xis) The latter can be
estimated by standard techniques for nonparametric regression lsee e g , Hirdle and
Linton ( 1994)l, and m,( ) can then be recovered (except for an additive constant) by
averaging over its second argument.

7.6 Relationship with estimators for some cross sectional models

The estimators for the panel data versions of the discrete choice model, the censored

and truncated regression models, the sample selection model and the monotone
transformation model all have "cousins" for the cross sectional versions of the models.

The relationship is most easily understood by considering a simple cross sectional
linear regression model where the observations consist of i i d draws of

Yi = a+xi + Ei ( 124)

In this model, any two observations have the same intercept a With some potential
loss of information, one can therefore think of any two observations as if they are
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from a (static) linear panel data model with T = 2 This suggests forming all pairs of
observations, and then estimating the slope-parameters /3 in Equation ( 124) by

= argmin ((y i -yj) (xi-x) b)2 .
i <

It is an easy exersice to show that this is nothing but the OLS estimator of 3 in the
regression of Equation ( 124).

The same logic can be applied to nonlinear models If the model under consideration
is such that the parameter /3 can be estimated from a two-period panel by, say, some
minimization problem

/3 =argmin Eg(yil,yi 2,xil,x 2 , b),

then a cross sectional version of the model can be estimated by

/3 = argmin Eg (yi,yj,xi,xj, b )

i<j

Honor and Powell ( 1994) applied this insight to construct estimators for the cross
sectional censored and truncated regression models based on the panel data estimators
in Honor ( 1992).

The panel data estimators for the discrete choice and sample selection models also
have cross sectional versions If Manski's ( 1987) estimator is applied to all pairs of
observations from a cross sectional binary choice model, then the maximum rank
correlation estimator of Han ( 1987) results (although his motivation was quite different
and his estimator applies to a more general class of transformations models) Likewise,
applying the logic behind Kyriazidou's ( 1997) estimator of the sample selection model
to all pairs of observations in a cross sectional sample selection model results in the
estimator proposed by Powell ( 1987) It is interesting to note that the cross sectional
estimator that uses all pairs of observations is x/ consistent in both of these cases,
although the corresponding panel data estimator converges at a slower rate.

The situation is a little more complicated for the monotone transformation model
because the panel data estimator of that model is itself based on pairwise comparisons
across individuals The cross sectional version that treats each pair of observations as
if they came from a panel of length 2, is therefore based on comparing pairs of pairs,
resulting in an estimator defined by a quadruple sum This estimator is analyzed in
Abrevaya ( 1999).

Table 3 summarizes the relationship between the panel data estimators and their
pairwise comparison counterparts It also lists the estimator for the cross sectional
model which we find to be closest in spirit to the panel data estimator.
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Table 3

Relationship between panel data estimators and pairwise comparison estimators

Model 'Motivating' estimator Panel data estimator Pairwise comparison

Discrete choice Manski ( 1975) Manski ( 1987) Han ( 1987)

Censored regression Powell ( 1986) Honor 6 ( 1992) Honor 6 and Powell ( 1994)

Selection Powell ( 1987) Kyriazidou ( 1997) Powell ( 1987)

Type 3 Tobit Honor 6 and Kyriazidou Honor 6 et al ( 1997)

( 2000 b)

Monotone Han ( 1987) Abrevaya ( 1999) Abrevaya ( 1999)

transformation

8 Models with lagged dependent variables

With the exception of the models with multiplicative effects, the non-linear models

discussed so far all assume that the explanatory variables are strictly exogenous This
assumption is in sharp contrast to the discussion in the first part of this chapter

which focused on linear models with predetermined variables The assumption of strict

exogeneity is important For example, with two time-periods, the basic idea in the

logit model was to consider the probability that Yil = 1 conditional on the explanatory

variables in both periods and conditional on yil • yi 2 If the explanatory variables
include a lagged dependent variable, then the conditioning set includes Yil andyil I Yi 2.

This means that the probability is either 1 or zero and cannot be used to make inference

about 3 By reviewing each of the other methods described in the previous section,
it is clear that the motivation for all of them is based on some statement about the

joint distribution of (Yil,Yi 2) given (xil,Xi 2 ) If the explanatory variable in the second
time-period, xi 2, includes the lagged dependent variable, yil, then the arguments fail.

In this section, we will review some recently proposed methods for dealing with
lagged dependent variables in nonlinear models with fixed effects It will be seen that

some progress has been made in this area, but that the methods that have been proposed
are case-specific and often lead to estimators that do not converge at the usual /I rate.
One might conclude from this that it would be more fruitful to take a random effect

approach that makes some assumptions on the distribution of the individual-specific
effects However, estimation of dynamic nonlinear models is very difficult even in

that case The main difficulty is the so-called initial conditions problem: if one starts

observing the individuals when the process in question is already in progress, then
the first observation will depend on the dependent variable in the period before the

sample starts Even if that is observed (or one drops the first observation) one will
have to deal with relationship between the first lagged dependent variable and the

individual-specific effect That relationship will depend (in a complicated way) on the

parameters of the model, but also on the distribution of the explanatory variables in

periods prior to the start of the sample, which is typically unknown In practice one
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might "solve" this problem by assuming a flexible functional form for the distribution

of the first observation (see for example Heckman ( 1981 b) for a discussion of this

approach) One case where one can ignore the initial conditions problem is when one

can reasonably assume that the process is observed from the start For example, if the

dependent variable is labor supply and the sample consists of people observed (say)

from the time they graduated from high school, then there will be no initial conditions

problem.
In the next three sections we discuss some approaches that have been used to

generalize the limited dependent variable models discussed earlier to the case where

one of the explanatory variables is the lagged dependent variable Very little is

known about how to deal with general predetermined variables in the models that we

consider.

8.1 Discrete choice with state dependence

Including a lagged dependent variable among the explanatory variables in the discrete

choice model with individual specific effects gives the model

Yit = 1 {xit: O Yi,t-l + ai + it O t = 1, , T; i = 1, ,n ( 125)

In its most general setting, this model allows for three sources of persistence

(after controlling for the observed explanatory variable x) in the event described by

yit, Persistence can be the result of serial correlation in the error term E, a result
of the "unobserved hererogeneity" a, or a result of true state dependence through

the term yyi,t-l Distinguishing between these sources of persistence is important in

many situations because they have very different policy implications A policy that

temporarily increases the probabality that y = 1 will have different implications about

future probabilities in a model with true state dependence than in model where the

persistence is due to unobserved heterogeneity See, for example, Heckman ( 1981 a) for

a discussion of this Distinguishing between persistence due to state dependence and

due to heterogeneity is also important because they sometimes correspond to different

economic models For example, Chiappori and Salanie ( 2000) and Chiappori ( 1998)

argue that it can be used to distinguish between moral hazard and adverse selection.

The pricing system in the French automobile insurance market is such that the

incentives for not having an accident are stronger if the driver has had fewer accidents

in the past This suggests that accident data should show true state dependence: having

an accident this period should lower the probability of an accident next period On

the other hand adverse selection suggests that some drivers are permanantly more

likely to have accidents, which corresponds to the individual specific effect ai in

Equation ( 125).

It is clear that even if the errors are serially independent, the conditions discussed

earlier for conditional maximum likelihood estimation of the fixed effects logit model

are not satisfied because they implied that E in time period t is independent of the
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explanatory variables in time period t 1, a condition which clearly fails when one
of the explanatory variables is the lagged dependent variable By the same argument,
the conditions for the conditional maximum score estimator will not be satisfied in
the presence of a lagged dependent variable On the other hand it is also clear that
the two sources of persistence in Equation ( 125) have very different implications For
example consider the case where there are no other explanatory variables: if there is
no "state dependence" (y = 0) then the sequence ( 0, 1,0, 1) would be as likely as the
sequence (, 0, 0,1, 1) On the other hand, if y < O then the first sequence would be more
likely, whereas the second would be more likely if y > O As pointed out by Heckman
( 1978), this suggests that one should be able to test for "no state dependence" in a
model like Equation ( 125) As will be seen below, this observation can also be used
to estimate y and /3 in Equation ( 125).

Consider first the special case of a logit model where the lagged dependent variable
is the only explanatory variable,

Yit = 1 yyi, t I + a + it O} t = 1, ,T; i = 1, n,

where Eit is i i d , independent of ai, and logistically distributed Considering only the
first three observations (and the initial condition), we have

Pr (yit = Ilai,yio , i,-) = +exp(yyi, +a) t = 1,2,3.
1 + exp(yyi,t -I + a,)

It is then an easy exercise to see that

Pr(yi = 01 yil +yi 2 = 1, ai,Yio,Yi 3) =
1 + exp (y(yi O -y))

which does not depend on a, and which can therefore be used to make inference on
y lChamberlain ( 1978)l More generally, with T observations for each individual, the
conditional distribution of (yil, , ir) given yil, T= 1 Iit and Yir is

P Yil, Yi T Yi ,Yit Yi T, aity , 

it
l

,(d, (d,d,)E Bexp(Yz = 2 dtdtl) '

( 126)
where B is the set of all sequences of zeros and ones that have ,T_ l di = IT=, Yit,
di/ = Yil and dit = Yi Tr Magnac ( 1997) presents similar results for the multinomial logit
version of this model He also presents the conditional likelihood function for models
with more than one lag.

Honor and Kyriazidou ( 2000 a) modify the calculations leading to the conditional
maximum likelihood estimator of a fixed effects logit in such a way that it can be
applied to Equation ( 125) Specifically, assume that it in Equation ( 125) are i i d.
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logistically distributed and that each observation is observed for at least four periods

(three periods in which both the exogenous variables and the dependent variable are ob-

served, plus the initial value of y) Unlike the case where the lagged dependent variable

is the only explanatory variable, P (Yil, Yi , Yit,Yi T, t=, a) will in

general depend on ai, and the conditional likelihood approach will therefore generally

break down However (considering the case with T = 3 for simplicity), Honor 6 and

Kyriazidou ( 2000 a) showed that

(Yil, , Yi 3 I Yio, 3yit,Yi 3, {xit} }=, a,,xi 2 = Xi 3)

t= ( 127)

1

1 + exp((xil xi 2 )P + Y(Yio -Yi 3))'

which does not depend on ai This suggests estimating 3 and y by maximizing

a conditional likelihood function based on Equation ( 127) However, if one of

the explanatory variables is continuously distributed, there will typically be no

observations for which xil = xi 2 This is similar to the situation when one wants to

estimate a conditional expectation of one random variable given that another takes a

particular value One remedy in that case is to use a kernel estimator to average over

observations close to the value Based on this idea, Honor 6 and Kyriazidou ( 2000 a)

estimate y and / by

n

(/3, ')= argmax l{yil +Yi 2 = 1 } (Xi 2 Xi 3
(bg) h

x N exp((xil Xi 2) b + g(dio d/ 3))Yi
" ( 128)

I + exp((xl Xi 2) b + g(dio di 3)) J

where K( ) is a kernel 24 which gives the appropriate weight to observation i, and h O

as N o The main limitation of this approach is that it uses only observations

in a neighborhood of Xi 2 = Xi 3, so it is necessary to assume that distribution of

xi 2 Xi 3 to have support in a neighborhood of O This rules out time-dummies Honor

and Kyriazidou ( 2000 a) give conditions under which this estimator is consistent and

asymptotically normal (although it does not converge at rate v/, and they discuss

generalizations to general T, to multinomial models and to models with more lags.

24 The term K ( 2 h 3 ) in Equation ( 128) plays the same role as the kernel does in non-parametric

regression In a sample, there will be no two observations for which xi = xj if x is continuously distributed.

However if the object of interest (typically the conditional expectation) is sufficiently smooth, then we

can use observations where x i is close to Xj, where "close" is defined appropriately See, e g , Hardle

and Linton ( 1994) for a description of non-parametric regression.
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The same trick as above can be used to modify Manski's conditional maximum score

estimator in such a way that it applies to the model

Yit= xi + yyi, t + a + it O t = 1,2,3 ; i = 1, ,n,

where eit is i i d (independent of (ai,xi)) with distribution function F Specifically,

sgn P (Yi 2 = 1 Yi, Yit,Y 3 {Xt 1 } ,i,Xi 2 = Xi 3

-P (Yi = Yllyio, i Y,Yj 3,{x t},=l ,ai,xi 2 = Xi 3

= sgn ((Xi 2 Xil 13 + y(di 3 d)).

Mimicking the logic in Manski ( 1987), this means that we can consistenty estimate /3

and y up to scale by

n

( ) =arg max K (Xi 2 h sgn(Yi 2 -Yil)

*sgn ((Xi 2 Xil)b + g(d 3 d)) ·

8.2 Dynamic Tobit models

We next turn to the possibility of allowing lagged dependent variables to enter the
censored regression model considered earlier Depending on the context, the relevant
lagged dependent variable is either the lagged observed variable or the lagged latent

(unobserved variable) Here, we consider only the former case Specifically, assume
that

Yit = max {O, ai +xit/3 -+ Ye Yi,t-e + Eit
F=l 

( 129)
Honor ( 1993) demonstrated that for this model, it is possible to obtain moment

conditions that must be satisfied at the true parameter values To see how this can be

done, assume that y > O for = 1, , L, and define "residuals" by

Ui,t(b,g)= max O,(xit -xi)b,yit Eg Yyi, t -xitb.

Then

.ist(/
3 , y) max {O,(xixis)/,Yit -t Ye Yi, te} -xit 3

= max {-xit /3, -xi /3, ai + Eit }

3286

t = 1, , T i = 1, , n.



Ch 53: Panel Data Models: Some Recent Developments

If {xit,}= 1 is strictly exogenous in the sense that ei, and Eis are identically distributed

conditional on {xi,}t=l then for any function ip(-),

E l ?(is,( 1,y)) (i(, ,y)){ {xir}T= 1l = 0, ( 130)

which suggests that (fi, y) can be estimated by GMM Honor and Hu ( 2001) present

a set of sufficient conditions under which Equation ( 130) is uniquely satisfied at the

true parameter value The most restrictive assumption is that xit xi, has support in a

neighborhood around 0, which rules out time-dummies.

Honor& and Hu ( 2001) also discuss how a modification of the same idea can be used

to construct moment conditions for a model with general predetermined explanatory

variables, and Hu ( 2000) shows how to generalize the approach so that it can be

used to construct moment conditions for a model in which the lagged variables in

Equation ( 129) are the lagged uncensored variables This is, for example, the relevant

model if the censoring is due to top-coding.

8.3 Dynamic sample selection models

Kyriazidou ( 1999) generalizes her approach to estimation of

Yit = Po Yt + xti + a + E,

yi, = dit y*t

di, = I {odit + wito + 7 li uit < O }.

This is the same model that was considered in Kyriazidou ( 1997), except that the

model is now dynamic, with both the dependent variables, Y*t and dit, depending on

their own lagged value The key insight is to combine the insights from the dynamic

linear panel data models with the insight in Kyriazidou ( 1997) For simplicity assume

that (ei,, ui,) is i i d over time and independent of all other right hand side variables.

Applying the methods discussed in the first part of this chapter to observations for

which Y*t is observed in three consequtive periods (so di, = di = dit-2 = 1),

will result in a sample selection bias term which after first differencing has the

form E l Ei, Ulit q O O + Wit YO + lil E l _ ui 1l o + W ) Yo + il This sample
selection term will be 0 for observations for whom wit yo = wit Yo The idea therefore

is to apply the methods discussed in the first part of this paper augmented by kernel-

weights that give more weight to observations for which wit, is close to wit -I,

where is an estimate of yo lusing, for example, the method proposed in Honor&

and Kyriazidou ( 2000 a)l.

9 "Random" effects models

Since little is known about how to deal with fixed effects in nonlinear models

other than the ones discussed above, it is often appealing to make assumptions
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on the distribution of the individual effects When the distribution of the error is

parameterized completely, then the resulting model is usually refered to as random

effects model As mentioned in the previous section, this approach is problematic in

dynamic models if one does not observe the start of the process On the other hand,

there are no conceptual difficulties in estimating the parameters of a random effects

model by maximum likelihood or methods of moments if the explanatory variables are

strictly exogenous, and the distribution of the errors, eit, is specified The downside

is that there might be practical difficulties in implementing these methods, since the

likelihood function and the conditional moments will typically involve multivariate

integration In that case, simulation based inference can be extremely useful See for

example Hajivassiliou and Ruud ( 1994) or Keane ( 1994) It is also straightforward to

consistently estimate the parameters of certain semiparametric random effects models.

Consider for example the censored regression model in Section 7 1 If the errors and

the individual specific effects are independent of each other and both are independent

of the regressors, then fi can be estimated by applying one of the many semiparametric

estimators of the censored regression model to the pooled data set consisting of the

observations for all i and t The main complication in that case is that one must correct

the variance of the estimator to account for the fact that the observations for a given i

are not independent (because they all depend on the same individual-specific effect).

A number of papers propose estimators of models that make assumptions that fall

between fixed and random effects models These papers are motivated by the tradeoff

between the difficulties in estimating fixed effects versions of nonlinear models and the

fairly strong assumptions that one must make in a random effects approach As an ex-

ample, consider the discrete choice model of Section 6 Following Chamberlain ( 1984),

if the individual specific effect, ai, happens to be of the form ai = r I= x¥, + ui

where ui and the transitory errors, ei,, are jointly independent of (xi, , xir) then

one can apply an estimator of the semiparametric discrete choice model to the data

for each time-period to estimate (l, 2 , Yt-i,Yt + y,, t+ , yr) up to scale.

These can then be combined (via minimum distance) to obtain estimators of {y,7 t I

and 3 (up to scale) In Chamberlain's example, the eit's and the ui's were assumed to be

normally distributed, so the estimation could be done by probit maximum likelihood.

Although the functional form assumption made on the individual specific effect makes

the model much less general than the fixed effects model, it should be noted that the

approach does not require the transitory errors to be homoskedastic over time This is

in contrast to the fixed effects estimators which all assumed some kind of stationarity

of the errors.

Newey ( 1994) considered estimation of Chamberlain's model but with ai = p

(xil, , xi T) + ui where the function p is unknown If F is the cumulative distribution

function for ui + ei, then

P(Yit = I I xil, X ,X) = Ft(p(xl, x , XT) + ),

or

( 131)
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When the errors are jointly normally distributed, this implies

Vas lui + il q (p ( Yis P= I I Xil *, X T))Xi T)) Vrlu, + it

+ Var lui t (xi)

Since discrete choice models can only be estimated up to scale, one can nor-
malize Var lui + il = 1 and then estimate /3 and /Var lu +eisl by regressing

a nonparametric estimate of P(yit = Ix I, , xi T) on a nonparametric estimate

of P(Yis = 1 xil, , ir T) and on (xi, -xi,) Newey ( 1994) derived the limiting
distribution of this estimator Chen ( 1998) generalized the model further by allowing
the distribution of the errors u and E to be unknown His insight is to note that if one

normalizes one of the components (say, the first) of 3 to be one so = ( then

Equation ( 131) implies that

or

I I (P (Yis = I Xil, Xi T)) 
,it -xs = it is)+Ft -'(P(y 1 =II xl, , Xi T))-F

l
(P(yis = llxl, , Xir)).

( 132)
Here P (yi, = 1 xil, , Xi T) and P (yi, = l Xi, , r) can be estimated nonparamet-

rically and /3 can be estimated by observing that Equation ( 132) is a partially linear
regression model of the type studied by e g , Robinson ( 1988).

The idea of writing the individual specific effect as a = p (Xil, , Xi T) + Ui where
ui is treated as an error term can also be applied to the other models discussed above.
See for example Jacubson ( 1988) or Charlier, Melenberg and van Soest ( 2000) for
applications of this idea in the context of the censored regression model, and Nijman
and Verbeek ( 1992), Zabel ( 1992) and Wooldridge ( 1995) for a discussion of this
approach in sample selection models.

In a linear model, there is no loss of generality in making assumptions of the form
= ET xt

a, = x 1 ,t Yr + ui because one can always interpret 5 T= I, ty as the projection
of ai on (Xil, , T) Making such an assumption in a non-linear model is much
more restrictive In particular, if ai = p(xl, , Xir) + ui where ui is independent of
(xil, , Xi) for some T then the same assumption will typically not be satisfied for
some other T This means that the model which is estimated (and which is assumed to
be true) depends on the number of time-series observations the econometrician happens
to have.

Other alternatives to the "pure" fixed approach have been proposed For example,
Lee ( 1999) makes assumptions on the joint distribution of the regressors and the
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individual specific effects which allow him to construct a maximum rank correlation-

type estimator of the static discrete choice panel data model Honor and Lewbel

( 2000) exploit the assumption that one of the regressors is independent of the individual

specific effect to construct an estimator of a discrete choice panel data model with

predetermined explanatory variables.

10 Concluding remarks

Our discussion has focused on two of the developments in panel data econometrics

since the Handbook chapter by Chamberlain ( 1984) In the first part of the paper

we have reviewed linear panel data models with predetermined variables, and in the

second we have discussed methods for dealing with nonlinear panel data models.

Unfortunately, the intersection of these two literatures is very small With the exception

of multiplicative models and models where the only source of "predeterminedness"

is lagged dependent variables, almost nothing is known about nonlinear models with

general predetermined variables One step in this direction was taken by Arellano and

Carrasco ( 1996) This is an exciting area for future research.
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