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PANEL UNIT ROOT TESTS AND
SPATIAL DEPENDENCE

BADI H. BALTAGI∗

Syracuse University

GEORGES BRESSON
ERMES (CNRS), Université Paris II

ALAIN PIROTTE
ERMES (CNRS), Université Paris II

SUMMARY

This paper studies the performance of panel unit root tests when spatial
effects are present that account for cross-section correlation. Monte Carlo
simulations show that there can be considerable size distortions in panel unit
root tests when the true specification exhibits spatial error correlation. These
tests are applied to a panel data set on net real income from the 1000 largest
french communes observed over the period 1985-1998.

1. INTRODUCTION

Panel data unit root tests have been proposed as alternative more power-
ful tests than those based on individual time series unit roots tests, see Levin,
Lin and Chu (2002), Im, Pesaran and Shin (2003), and Breitung (2000) to
mention a few of the popular tests used in economics to test purchasing
power parity (PPP) and growth convergence in macro panels using country

∗Corresponding author. Center for Policy Research, Syracuse University, 426 Eggers
Hall, Syracuse, New York 13244-1020. Tel.: + 1-315-443-1630; fax: + 1-315-443-1081.
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data over time. Banerjee (1999), Phillips and Moon (2000), Baltagi and Kao
(2000), Choi (2005) and Breitung and Pesaran (2006) provide some reviews
of this literature. One of the advantages of panel unit root tests is that their
asymptotic distribution is standard normal. This is in contrast to individual
time series unit roots which have non-standard asymptotic distributions.
But these tests are not without their critics. The test proposed by Levin,

Lin and Chu (2002), hereafter denoted by LLC, is applicable for homogeneous
panels where the AR coefficients for unit roots are in particular assumed to
be the same across cross-sections. The null hypothesis is that each individual
time series contains a unit root against the alternative that each time series is
stationary1. As Maddala (1999) pointed out, the null may be fine for testing
convergence in growth among countries, but the alternative restricts every
country to converge at the same rate. Im, Pesaran and Shin (2003), hereafter
denoted by IPS, allow for heterogeneous panels and propose panel unit root
tests which are based on the average of the individual ADF unit root tests
computed from each time series. The null hypothesis is that each individual
time series contains a unit root while the alternative allows for some but not
all of the individual series to have unit roots. One major criticism of both the
LLC and IPS tests is that they require cross-sectional independence. This
is a restrictive assumption given the cross-section correlation and spillovers
across countries, states and regions.
Maddala andWu (1999) and Choi (2001) proposed combining the p-values

from the individual unit root ADF tests applied to each time series. Once
again, these tests follow a standard normal limiting distribution. They have
the advantage that N , the number of cross-sections, can be finite or infinite;
the time series can be of different length; and the alternative allows some
groups to have unit roots while others may not.
Recent studies that try to account for cross-sectional dependence in panel

unit root testing include the following: Chang (2002) who explored the non-
linear IV methodology to solve the inferential difficulties in the panel unit
root testing which arise from the intrinsic heterogeneities and dependencies
of panel models. Chang (2002) suggests an average of individual nonlinear
IV t-ratio statistics of the autoregressive coefficient obtained from using an
integrable transformation of the lagged level as instrument. These methods

1This test is also consistent against a heterogeneous alternative as long as the fraction
of cross-sections with a stationary AR coefficient converges to a positive constant (see
Moon and Perron (2004a)).
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assume cross-sectional correlation in the innovation terms driving the au-
toregressive processes. In another paper, Chang (2004) applies the bootstrap
methodology to unit root tests for dependent panels. She proposes various
tests which explicitly allow for the cross-correlation across cross-sectional
units as well as heterogeneous serial dependence. Choi (2002), on the other
hand, generalizes the three unit root tests (inverse chi-square, inverse nor-
mal and logit) to the case where the cross-sectional correlation is modelled
by error component models. The tests are formulated by combining p-values
from the ADF test applied to each individual time series whose stochastic
trend components and cross-sectional correlations are eliminated using GLS-
demeaning and GLS-detrending (see Elliott, Rothenberg and Stock (1996)).
Choi (2002) shows that the combination tests have a standard normal limit-
ing distributions under the sequential asymptotics T →∞ and N →∞.
To avoid the restrictive nature of cross-section demeaning procedure, Bai

and Ng (2004), Moon and Perron (2004b) and Phillips and Sul (2003) propose
dynamic factor models by allowing the common factors to have differential
effects on cross-section units. Phillips and Sul’s model is a one-factor model
where the factor is independently distributed across time. They propose a
moment-based method to eliminate the common factor which is different
from principal components. More specifically, in the context of a residual
one-factor model, Phillips and Sul (2003) provide an orthogonalization pro-
cedure which in effect asymptotically eliminates the common factors before
preceding to the application of standard unit root tests. Moon and Perron
(2004b) propose a pooled panel unit root test based on “de-factored” ob-
servations and suggest estimating factor loadings that enter their proposed
statistic by the principal component method. Bai and Ng (2004) consider
the possibility of unit roots in the common factors. They apply the prin-
cipal component procedure to the first-difference version of the model, and
estimate the factor loadings and the first differences of the common factors.
Standard unit root tests are then applied to the factors and the individual
“de-factored” series. Pesaran (2005) suggests a simple way of getting rid
of cross-sectional dependence that does not require the estimation of fac-
tor loading. His method is based on augmenting the usual ADF regression
with the lagged cross-sectional mean and its first-difference to capture the
cross-sectional dependence that arises through a single factor model2.

2See Breitung and Pesaran (2006) and Choi (2005) for excellent surveys of this literature
and a more formal treatment of the underlying assumptions behind each test.
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This paper considers spatial dependence across the panels as an alter-
native means of capturing cross-section dependence among the countries.
Spatial dependence models – popular in regional science and urban eco-
nomics – deal with spatial interaction and spatial heterogeneity (see Anselin
(1988)). The structure of the dependence can be related to location and dis-
tance, both in a geographic space as well as a more general economic or
social network space. Section 2 presents some commonly used spatial error
processes: the spatial autoregressive (SAR) and the spatial moving average
(SMA) error process and the spatial error components model (SEC). Section
3 runs Monte Carlo simulations to compare the empirical size of panel unit
root tests with and without spatial error dependence. We find that ignoring
spatial dependence when present can seriously bias the size of panel unit root
tests.3 Section 4 provides an empirical illustration based on net real income
from the 1000 largest french communes observed over the period 1985-1998.
Section 5 summarizes the results and concludes.

2. SPATIAL ERROR MODELS

The spatial autoregressive (SAR) specification for the (N × 1) error vec-
tor ut in period t = 1, ..., T can be expressed as:

ut = θ1WNut + εt = (IN − θ1WN )
−1 εt (1)

where WN is an (N ×N) known spatial weights matrix, θ1 is the spatial au-
toregressive parameter and εt is an (N × 1) error vector assumed to be dis-
tributed independently across cross-sectional dimension with constant vari-
ance σ2ε. The error covariance matrix for the cross-section at time t becomes:

Ωt,N,SAR = E [utu
0
t] = σ

2
ε (IN − θ1WN)

−1 (IN − θ1W 0
N)

−1 (2)

= σ2ε (B
0
NBN )

−1 with BN = IN − θ1WN

So the full (NT ×NT ) covariance matrix is:

ΩSAR = σ
2
ε

h
IT ⊗ (B0NBN)−1

i
(3)

3Banerjee, Marcellino and Osbat (2004, 2005) consider the effect of cross-cointegration
on the critical values of first generation panel unit root tests that do not account for
cross-sectional dependence including LLC, IPS, Breitung and Maddala and Wu. They
find these tests to be seriously biased. However, this is different from allowing for spatial
error dependence among the cross-section units which may not be necessarily cointegrated.
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Even when WN is sparse, (B0NBN)
−1 will not be sparse. Hence, Anselin

(2003) classifies the spatial covariance structure induced by this SAR model
as global.
In contrast, a spatial moving average (SMA) specification for the (N × 1)

error vector ut in period t = 1, ..., T can be expressed as:

ut = θ2WNεt + εt = (IN + θ2WN) εt (4)

where θ2 is the spatial moving average parameter. The error covariance
matrix for the cross-section at time t becomes:

Ωt,N,SMA = E [utu
0
t] = σ

2
ε

h
IN + θ2 (WN +W

0
N) + θ

2
2WNW

0
N

i
(5)

So the full (NT ×NT ) covariance matrix is:

ΩSMA = σ
2
ε

h
IT ⊗

h
IN + θ2 (WN +W

0
N) + θ

2
2WNW

0
N

ii
(6)

The covariance matrix in (6) depends only on WN and WNW
0
N and there

is no inverse matrix as for SAR. In fact, if WN is defined as first order
contiguity, such elements consist of location pairs that are first and second
order neighbors but there is no higher order contiguity. Hence, Anselin (2003)
classifies the spatial covariance structure induced by this SMAmodel as local.
An alternative to SAR and SMA models is the spatial error components

(SEC) specification, suggested by Kelejian and Robinson (1995). Anselin, Le
Gallo and Jayet (2006) argue that the range of the covariance induced by the
SEC model is a subset of that of the SMA model, and hence it is also a case
of local spatial spillovers.
In the SEC model, the error term is decomposed into a local and a

spillover effect. The (N × 1) error vector ut in period t = 1, ..., T is expressed
as:

ut = θ3WNψt + εt (7)

where εt is an (N × 1) vector of local error components and ψt is an (N × 1)
vector of spillover error components. The two component vectors are assumed
to consist of iid terms with respective variances σ2ε and σ

2
ψ and are uncorre-

lated. The resulting (N × 1) cross-sectional error covariance matrix is then:

Ωt,N,SEC = E [utu
0
t] = σ

2
εIN + σ

2
ψθ

2
3WNW

0
N (8)
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and the overall (NT ×NT ) covariance matrix is4:
ΩSEC = σ

2
εINT + σ

2
ψθ

2
3 (IT ⊗WNW

0
N) (9)

In the simplest case, the weights matrix is binary, with wij = 1 when i and
j are neighbors and wij = 0 when they are not. By convention, diagonal
elements are null: wii = 0 and the weights are almost always standardized
such that the elements of each row sum to 1.

3. A MONTE CARLO STUDY

3.1. The design of the Monte Carlo

In this section, we consider the small sample performance of several unit
roots tests allowing for spatial error dependence in the true model. Following
Pesaran (2005), we consider dynamic panels with individual effects. The data
generating process (DGP) in this case is given by:

yit = (1− ρi)µi + ρiyit−1 + uit , i = 1, ...,N , t = 1, ..., T (10)

where
µi ∼ iid.U (0, 0.02) , uit ∼ iid.N

³
0,σ2i

´
with σ2i ∼ iid.U (0.5, 1.5). In another set of experiments, we allow for in-
dividual deterministic trends in the DGP. For this case, yit is generated as
follows:

yit = µi + (1− ρi) δit+ ρiyit−1 + uit , i = 1, ..., N , t = 1, ..., T (11)

with δi ∼ iid.U (0, 0.02). This ensures that yit have the same average trend
properties under the null and the alternative hypotheses.
In each case, i.e., the individual effects without deterministic trends and

individual effects with deterministic trends, we consider three alternative
specifications for the spatial error dependence. In particular, we let uit follow
the SAR, SMA or SEC specifications described in section 2 with σ2ε = 1 and

θ1 = 0.4, 0.8 for SAR given in (1)
θ2 = 0.4, 0.8 for SMA given in (4)

θ3 = 0.4, 0.8 σ2ψ =


0.1σ2ε (SEC1)
σ2ε (SEC2)
10σ2ε (SEC3)

for SEC given in (7)
(12)

4If σ2ψ = σ
2
ε and θ2 = θ3, then the SEC specification is similar to the SMA error process.
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For the SEC specification, the three values of σ2ψ allow one to attach more
or less importance to the spillover error components (ψt) as compared to the
local error components (εt). If σ2ψ = σ

2
ε, then the SEC specification is similar

to SMA error process because we have the same values for θ2 and θ3 (0.8 or
0.4). We vary the panel size so that N = 50, 100 and T = 25, 50. Following
Kelejian and Prucha (1999, p. 520), we use several spatial weight matrices
which differ in their degree of sparseness. The first matrix, for example, is a
“1 ahead and 1 behind” matrix with the i-th row (1 < i < N) of this N ×N
matrix having non-zero elements in positions i+ 1 and i− 1. This describes
an i-th cross-sectional unit whose disturbances are related to those of the
cross-sectional units immediately before it and immediately after it5. This
matrix is row normalized so that all its non-zero elements are equal to 1/2.
The other spatial weight matrices considered are labelled as “j ahead and j
behind” with the non-zero elements being 1/2j, for j = 2, ..., 10.
Following Pesaran (2005), we report size6 of the panel unit root tests

under the null ρi = 1 for all i = 1, 2, ..,N , and heterogeneous alternatives
ρi ∼ iid.U (0.85, 0.95), using 1000 replications for each experiment. For each
yit, we generate T+40 observations and drop the first 40 observations in order
to reduce the dependency on initial values. For each experiment, we perform
nine panel unit root test statistics: the Levin, Lin and Chu test (2002) (here-
after LLC), the Breitung test (2000) (hereafter B), the Im, Pesaran and Shin
test (2003) (hereafter IPS), the Maddala and Wu test (1999) (hereafter MW),
the Choi tests (2001, 2002) with and without cross-sectional correlation (here-
after Choi_c and Choi)), the Chang IV test (2002), the Phillips and Sul test
(2003) (hereafter PS) and the Pesaran test (2005). Our experiments include
a case of no spatial correlation as well as four types of spatial correlation
(SAR, SMA, SEC1 and SEC3), with two values of the parameters indicating
weak versus strong spatial dependence. We also consider ten weight matrices,
differing in their degree of sparseness, four pairs of (N,T ) and two models
including individual effects and individual deterministic trends. Even with
this modest design, the total number of experiments considered is 1600.

3.2. Monte Carlo results

5The matrix is defined in a circular world so that the non-zero elements in rows 1 and
N are, respectively, in positions (1, N) and (N, 1).

6The size ajusted power tables are also available upon request from the authors.
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3.2.1. Cross-section correlation statistic, global and local range of
dependence

Pesaran (2004) proposed a general test of error cross-section dependence
as an alternative to the Breusch-Pagan LM test. Pesaran’s test statistic is
based on the pair-wise correlation coefficients themselves rather than their
squares:

CD =

s
2T

N (N − 1)

N−1X
i=1

NX
j=i+1

bρij


where bρij is the sample estimate of the pair-wise correlation of OLS residualsbuit :
bρij =

TP
t=1

buitbujts
TP
t=1

bu2it
s

TP
t=1

bu2jt
Under the null (i.e., no cross-section dependence), CD ⇒ N (0, 1) . Pe-

saran (2004) shows that this test has good small sample properties for small
N and T . The simple average bρ of these correlation coefficients across all the
(N × (N − 1)) /2 pairs is given by:

bρ = s
2

TN (N − 1)CD

Table 1 gives the average CD statistic and the average cross-section error
correlation coefficient bρ for N = 50 and 100, T = 25 and θ = 0.8, using 1000
replications. This is done for the two models given in (10) and (11) and for
the three different specifications of spatial error dependence (SAR, SMA and
SEC) with ten different weight matricesW (j, j) for j = 1, ..., 10. The average
cross-section correlation coefficients increase with j = 1, ..., 10. For N =
50, this correlation measure is high for SAR (between 8.56% and 28.66%)
and also for SEC3 (between 1.74% and 18.30%) when the spillover error
components (ψt) is important as compared to the local error components
(εt) (σ2ψ = 10σ

2
ε). Note also that the average correlation coefficients tend to

be small for SEC1 with a small spillover error components (σ2ψ = 0.1σ
2
ε). For

SMA and SEC2 (σ2ψ = σ
2
ε), these coefficients lie between 2.81% and 4.18%

and 0.93% and 3.42%, respectively. As N doubles from 50 to 100, bρ becomes
half its size.
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Except for SEC1 (σ2ψ = 0.1σ2ε), the CD statistics reject the null of no
cross-section dependence for all spatial errors processes considered. The high-
est values for the CD statistic are those of the SAR specification, followed
by the SEC3 specification (σ2ψ = 10σ2ε). When N doubles, we get similar
results. Introducing a deterministic trend in the dynamic individual effects
model does not change the results. In summary, the cross-section dependence
measure bρ and the corresponding test statistic CD are useful diagnostics and
Table 1 shows how they vary with various models of spatial dependence and
degree of sparseness of the spatial weights matrix7.

3.2.2. The Spatial Dependence Specification Effect

Table 2 gives the empirical size of all panel unit root tests considered
for the dynamic panel model with individual effects given by (10). For each
(N, T ) pair (N = 50, 100, T = 25, 50), we give the rejection rates of the null
hypothesis when it is true at the 5% significance level. This is done for the
standard case (i.e., the benchmark model, where there is no spatial depen-
dence) and in cases where spatial effects are included (12). Table 2 reports
the results for only two standardized weight matrices labelled W (1, 1) and
W (5, 5) for “1 ahead and 1 behind” and “5 ahead and 5 behind”. Figures
1 to 5 summarize the effects of varying these weight matrices on the size of
the various panel unit root tests.
In Table 2, for N = 50, T = 25 with no spatial correlation, all the tests

yield empirical size which is not statistically different from the 5% nominal
size. This varies from 3.7% for the Breitung test to 5.6% for the Maddala-
Wu and Choi tests. For the SAR specification, with the sparse weight matrix
W (1, 1), we observe the following: if we increase the degree of spatial depen-
dence from 0.4 to 0.8, all panel unit root tests considered become oversized
yielding rejection rates as high as 17.8% for the B test and as low as 10.4% for
Phillips and Sul’s test and 10.6% for the Pesaran test. These rejection rates
are smaller for tests allowing for cross-section dependence (16% for Choi_c,
13.7% for Chang, 10.6% for Pesaran and 10.4% for Phillips and Sul) than for

7Another useful and well-known test is Moran’s I statistic where the null hypothesis
is the absence of spatial dependence versus no precise expression for spatial dependence,
see Anselin (1988). Since this is a cross-section statistic, we ran this test as an extra
check using the last time period T = 25 for the case where N = 50. Like the CD test of
Pesaran, this test rejected the null of no spatial dependence no matter what the degree of
sparseness of the weight matrix. The only exception is the SEC1 specification where the
test cannot detect the small spillover effect with σ2ψ = 0.1σ

2
ε.
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tests assuming cross-section independence (17.8% for Breitung’s test, 17.4%
for LLC, 16.9% for MW, 16.7% for Choi and 16.3% for IPS). When T in-
creases from 25 to 50 and/or when the number of individuals increases from
N = 50 to N = 100, we get similar results8. Including spatial effects with
a SAR specification leads to considerable size distortions in panel unit roots
tests. These size distortion are not as bad when we consider the SMA spec-
ification of cross-section dependence. For N = 50, T = 25 and when the
degree of spatial dependence is 0.8, the size of the tests vary between 7% for
the Pesaran test and the Phillips and Sul test and 10.4% for the LLC test.
Once again, tests that allow for cross-section dependence like the Chang
test, the Pesaran test and the Phillips and Sul test yield a lower frequency
of type I error than tests that assume cross-section independence. When T
increases from 25 to 50, with N = 50 and θ = 0.8, Pesaran’s test yields the
lowest frequency of type I error (6.4%) followed by Phillips and Sul’s test
(6.9%) and Chang’s (8.8%) test with the highest frequency reported for LLC
(12.9%). For the SEC specification of cross-section dependence, size distor-
tions are very small and negligible when the spillover error components (ψt)
have a smaller variance than the local error components (εt) (i.e., SEC1 with
σ2ψ = 0.1σ

2
ε). However, when the spillover error variance is ten times that of

the local error components (i.e., SEC3 with σ2ψ = 10σ
2
ε), the MW and Choi

tests become oversized yielding a frequency of type I error as high as 9.5%.
As shown by the CD statistic (Table 1), with the sparse weight matrix

W (1, 1), we reject the null hypothesis of no cross-section correlation or no
spatial dependence for SAR, SMA and the SEC3 (σ2ψ = 10σ

2
ε). In these cases,

all panel unit roots tests considered are oversized. When the null hypothesis
of no spatial dependence is not rejected, i.e., for SEC1 (σ2ψ = 0.1σ2ε), all
the tests yield empirical size which is not statistically different from the 5%
nominal size.

3.2.3. The Spatial Weight Matrix Effect

The second panel of Table 2 reports the size of the panel unit root tests
as we increase the number of neighbors in the weight matrix. In this case,
we go from W (1, 1) to W (5, 5). For the SAR process, the size distortions
for the panel unit root tests, especially those that do not account for cross-
sectional dependence, increase. In fact, for N = 50, T = 25 and θ = 0.8,

8In case N is large (say over 500) and T is small (T = 25), we get similar results in
terms of empirical size for all the tests except for Phillips and Sul and Pesaran tests for
which size distortions strongly decline whatever the spatial error process.
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the B test’s frequency of type I error increases from 17.8% for W (1, 1) to
21.5% for W (5, 5). The Phillips and Sul and Pesaran’s test seem to be the
least affected. These tests yield a frequency of type I error of 10.4% and
10.6% for W (1, 1) and 8.9% and 9.9% for W (5, 5), respectively. This is not
the case for Chang’s test where the corresponding frequencies are 13.7% for
W (1, 1) and 17.6% for W (5, 5). Choi_c’s comparable frequencies are 16.0%
for W (1, 1) and 15.3% for W (5, 5). Figure 1 plots the empirical size of the
panel unit roots tests for various weight matrices, W (j, j), j = 1, ..., 10, for
the spatial autoregressive (SAR) specification. Panel unit roots tests that
allow for cross-section dependence (Choi_c, Pesaran and Phillips and Sul)
have the lowest size distortions and have a decreasing profile as j increases.
This is in contrast to the other panel unit root tests that assume cross-section
independence whose profiles show an empirical size around 20% for various
degrees of sparseness of the weight matrix.
Figure 2 plots the empirical size of the unit roots tests of the spatial

moving average error process for various W (j, j), j = 1, ..., 10. For this
SMA process, the size distortions are worse for W (1, 1) than for W (5, 5) .
Instead of a monotonic evolution as in the case of the SAR, the size distortion
reveals a peak around 10% forW (1, 1) and a convergence to the 5% nominal
size for W (j, j) as j increase from 1 to 10. Again, the Pesaran and Phillips
and Sul tests are the closest to the 5% nominal size no matter what weight
matrix is considered. Figure 2 suggests that, for the SMA specification, the
size distortions of the tests decrease as j increases. This may be due to the
specific structure of the error covariance matrix ΩSMA given in (6), which
depends only on WN and WNW

0
N . Whatever the order contiguity of WN ,

the covariance with the first order neighbor is higher than with all other
covariances. So, the range of spatial dependence is much smaller than that
for a corresponding SAR model.
Figures 3 to 5 plot the empirical size of the unit roots tests with spa-

tial error components (SEC) with different variances for the spillover effects
(σ2ψ = 0.1σ

2
ε, σ

2
ψ = σ

2
ε and σ

2
ψ = 10σ

2
ε). When the spillover error components

(ψt) do not have a higher variance than the local error components (εt), all
the tests have empirical size that is close to the 5% nominal size (see SEC1
and SEC2 in Figures 3 and 4). However, when σ2ψ = 10σ

2
ε (i.e., SEC3 in Fig-

ure 5), the size distortions increase with j. In fact, for W (10, 10), we get the
following empirical size for the various tests considered: Choi (18.4%), MW
(18.2%), Chang (12.5%), Choi_c (12%), Pesaran (8.5%) and Phillips and
Sul (7.2%). What is surprising is that the tests that assume cross-sectional

11



independence have size close to the 5% nominal size whatever the sparse-
ness of the weight matrix is for the SEC specification. Figure 5 suggests
that tests assuming cross-section independence perform overall better than
those allowing for cross-section dependence when the spillover component in
the SEC process has a higher variance than the local error component. In
the group of cross-sectional dependence tests, only Pesaran and Phillips-Sul
tests exhibit empirical sizes which are close to 5%. These two tests allow the
common factors to have differential effects on cross-section units whereas the
Choi and Chang tests do not allow for common factors and suppose that the
cross-sectional correlation is modelled by error component models. In fact,
Choi uses an error component model rather than a factor structure to handle
the cross-dependence. Chang (2002) allows for general cross-sectional depen-
dence of the error terms uit. The key aspect of Chang’s approach is to use a
different estimator whose t-ratios are independent for all cross-sections even,
if they are correlated. However, her non linear IV estimator converges slowly
(at a rate of T 1/4) rather than the usual faster T rate9. These characteris-
tics explain the differences in the specification of the cross dependence and
may be at the origin of the contrasted results for the SEC specification. In
other words, Choi and Chang tests seem to be sensitive to misspecification of
the SEC error correlation while tests assuming cross-section independence –
and Pesaran and Phillips-Sul tests allowing for common factors – perform
better10.
Figure 6 plots the empirical size at the 5% nominal level of the four

tests which explicitly allow for cross-sectional dependence for N = 100 and
T = 50. This is done for the dynamic panel model with individual effects
given by (10). We plot the case when θ = 0.8 and σ2ψ = 10σ

2
ε. We compare

the behavior of these tests when the underlying specification includes SAR,

9Chang (2002) proposes a nonlinear instrumental variable approach where the IGF
(Instrument Generating Function) F (yi,t−1) = yi,t−1e−ci|yi,t−1| is used an an instrument
for estimating (1− ρi). The choice of the parameter ci is crucial for the properties of the
test. This parameter should be proportional to

¡
s−1 (∆yi,t)

¢
, the inverse of the standard

deviations of ∆yi,t: ci = KT−1/2s−1 (∆yi,t). Chang notes that when the time dimension
is small (T = 25), her test slightly over-rejects the null and she proposes to use a larger
value of K to correct the upward size distortion. For a critique of this test, see Im and
Pesaran (2003).
10In this context, Breitung and Das (2005) found that the GLS-t statistic may have

severe bias if T is only slightly larger than N and the robust OLS t-statistic performs
slightly worse but outperforms the nonlinear IV test of Chang (2002).
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SMA or the SEC spatial error dependence specifications. For large N and T ,
the Phillips and Sul test and the Pesaran test have the lowest size distortions
for each case (SAR, SMA or SEC). The Choi_c and Chang tests give second
best results. Figure 6 also confirms that the SAR specification leads to the
largest size distortions, followed by the SEC specification (when σ2ψ = 10σ

2
ε).

However, for the SMA specification, and except for W (1, 1), all four tests
have empirical size close to the 5% nominal size.
Table 3 gives the empirical size at the 5% nominal level of all tests consid-

ered for the dynamic panel model with individual effects and deterministic
trends given by (11) (see also the Figures 7 to 9). Results are very similar
to those obtained in Table 2, but the magnitudes are slightly different. For
example, for N = 50, T = 25 and θ = 0.8, the empirical size in Table 2 for
the SAR process with the W(1,1) weight matrix, varied between 10.4% and
17.8%. With a deterministic trend in Table 3, the same empirical size varied
between 12.8% and 18%. For W(5,5), the empirical size varied between 8.9%
and 21.5% in Table 2 and 11.7% and 23.2% in Table 3. Spatial error processes
generate different profiles of size distortions depending on the spatial error
specification: SAR, SMA or SEC.

3.2.4. Sensitivity to Irregular Lattice Structures and Row Stan-
dardization

The spatial weights matrices considered in the paper are regular lattice
structures. Using real irregular lattices structures, as in Anselin and Moreno
(2003) and in Kelejian and Prucha (1999), does not change the conclusions of
the Monte Carlo study. We used real world matrices by taking spatial group-
ings of French administrative communes for dimension N = 50 and 100 (see
section 4 and Figures 10 and 11) and, when the underlying true specification
exhibits SAR or SEC error correlations, we show that the magnitude of size
distortions are similar to the previous cases of the simulation study when
regular lattice structures are used (see the appendix and Tables A1 and A2
which are available upon request from the authors).
We also check if the row-standardization of the spatial weights matrix

has an impact on the degree of spatial correlation and on the size of the
tests. Using the same real world matrices, we checked the impact of the
row-standardization on the size of the test. The non row-standardization
increases the empirical size for SAR for the W(1,1) weight matrix and de-
creases it for the W(5,5) weight matrix. The reverse is true for the SEC3
(i.e., σ2ψ = 10σ

2
ε) specification, where for W(5,5) the empirical size increases
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for non-row standardization as compared to row-standardization. Note that
for the row-standardized weights matrix, as j increases, the value of non-zero
elements (1/2j) decreases and, this in turn may reduce the amount of spatial
correlation. In contrast, for the non row-standardized weights matrix, the
weights are always the same (wij = 1 when i and j are neighbors and wij = 0
when they are not) and the amount of spatial correlation increases with the
order of contiguity. So, the empirical size of these tests will be affected
by whether we row standardize or not. Even for SEC1 where σ2ψ = 0.1σ2ε,
the presence of spatial dependence leads to higher size distortions when the
weight matrix is not row-standardized.

4. EMPIRICAL ILLUSTRATION:
FRENCH INCOMES PER COMMUNE

Following Anselin and Moreno (2003), we consider irregular lattice struc-
tures by taking spatial groupings of N = 50, 100 and 1000 French admin-
istrative communes covering the period 1985-98 (T = 14)11. This data was
obtained from INSEE census on “fiscal household” from fiscal time series at
the municipality level (see the appendix).
Spatial weight matrices may represent high-order contiguity relationships.

To illustrate these ideas, we use a k-order contiguity matrix for different data
samples containing N − 1 potential neighborhoods in French municipalities
(for N = 50, 100 and 1000). Figure 10 shows the pattern of 0 and 1 values
in a (N − 1 =) 49 by 49 grid for the 5-nearest neighborhoods. Note that a
non-zero entry in row i, column j denotes that neighborhoods i and j have
borders that touch and are therefore considered “neighbors”. Of the 2401
possible elements in the 49 by 49 matrix, there are only 250 non-zero ele-
ments, designated on the axis of Figure 10 by the sparseness value of 10%
(= 250/2500). These non-zero entries reflect the contiguity relations between
the 5-nearest neighborhoods. The five-order contiguity matrix shown in Fig-
ure 10 is asymmetric. This reflects the fact that neighborhood j may be one
of the 5-nearest neighborhoods to i, but j may have some other 5-nearest
neighborhoods not including i.

11N = 50 was obtained by restricting our sample to communes with more than 36,500
fiscal households in 1985. N = 100 was obtained by restricting our sample to communes
with more than 23,500 fiscal households in 1985, and N = 1000 was obtained by restricting
our sample to communes with more than 3495 fiscal households in 1985.
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When we increase the number of municipalities (fromN = 50 toN = 100,
see figure 11), the sparseness (i.e., the percent of non-zero links between the
5-nearest neighbors) decrease to 5%. There are only 500 non-zero elements
of the 9801 possible elements in the 99 by 99 matrix. Then, for a k-order
spatial contiguity matrix for (N − 1) neighbors, the sparseness is given by
k/N%.
Using the net real income per fiscal household per commune (in logs)

as the single yi,t series, we first checked the degree of spatial dependence
with CD statistics. As N increases from 50 to 100 to 1000, the average
cross-section error correlation coefficients bρ decrease from 65.33% to 64.46%
to 42.16%, (see Table 4 which is available upon request from the authors).
These results were obtained for the model given by (10) with individual
effects only. Similar values were obtained for the model given by (11) with
individual effects and deterministic trends. The CD statistics are highly
significant, signalling strong cross-section dependence among the net real
incomes in French communes. As N increases, the underlying spatial matrix
becomes more sparse.
Turning to the unit root tests, we emphasize that T = 14 is smaller

than the T used in the Monte Carlo experiments. In fact, we know that
the size of the unit root tests is sensitive to the time length. For small N
(N = 50) which is associated with strong cross-section dependence, panel
unit root tests which do not account for cross-sectional dependence do not
reject the null of panel unit roots except for LLC test. Levin et al. (2002,
p. 18) argue that good performance for their test “depends crucially upon
the independence assumption across individuals, and hence not applicable if
cross sectional correlation is present”.
When we increase N from 50 to 1000, with the spatial dependence becom-

ing more sparse, panel unit root tests that do not account for cross-sectional
dependence do not reject the null of panel unit roots. The exceptions are the
LLC and IPS tests for the model given by (10) with individual effects only.
Tests that account for cross-sectional dependence, do not reject the null of
panel unit roots except for Pesaran’s test and the Phillips and Sul test. These
conflicting results may be attributed to the short time series length (T = 14).
Pesaran and Choi’s frameworks are restricted factor models, contrary to the
unrestricted factor model of Phillips and Sul and the Chang test which allow
for general cross-sectional dependence of the error terms. Breitung and Pe-
saran (2006) argue that the application of factor models in the case of weak
correlation does not yield valid test procedures. They also emphasize that
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testing for unit roots in the common components are likely to require large
panels, with the power of the test being good only when T is large.
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5. CONCLUSION

Using Monte Carlo simulations, this paper studied the performance of
panel unit root tests when spatial effects are present that account for cross-
section correlation. Our results show that there can be considerable size
distortions in panel unit root tests. The tests of Choi (2002), Chang (2002),
Pesaran (2005) and Phillips and Sul (2003) which explicitly allow for the
cross-sectional dependence have better performance than other classic panel
unit root tests that assume cross-sectional independence. For the SAR spec-
ification of cross-sectional dependence, we get the largest size distortions of
the panel unit root tests. In contrast, the SMA specification of cross-sectional
dependence leads to the lowest size distortions of empirical size except for a “1
ahead and 1 behind” weight matrix. The Kelejian and Robinson (1995) SEC
specification also generates small size distortions except when the spillover
error components have a higher variance than the local error components.
For the applied econometrician, the message from these experiments is that
size distortions of panel unit root tests is highly sensitive to the underlying
spatial dependence specification (especially to the SAR model and SEC error
specifications) and to the sparseness of the spatial weight matrix.
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APPENDIX

Following Anselin and Moreno (2003) and Kelejian and Prucha (1999),
we use real irregular lattice structures. These were obtained by taking spatial
groupings of the largest French administrative communes12. Using the 1985
net real income per fiscal household per commune (in logs) as the initial
value for yi0, we simulate our model with individual effects. We use µi ∼
iid.U (0, 0.02), δi ∼ iid.U (0, 0.02) and uit is either iid.N (0, σ2i ) with σ

2
i ∼

iid.U (0.5, 1.5) or follows a spatial error specification (SAR, SMA or SEC)
with σ2ε = 1 and θ1 = θ2 = θ3 = 0.8 and σ

2
ψ = 0.1σ

2
ε, σ

2
ε or 10σ

2
ε. We consider

only one time period length (T = 25). Figures 10 and 11 show the sparseness
of the weight matrix for the 50 and 100 largest French communes. Table A1,
which is available upon request from the authors, gives the empirical size of
the panel unit root tests as the sparseness of the weight matrix increases for
N = 50 and 100. There are considerable size distortions when the underlying
true specification exhibits SAR or SEC error correlations.
With the same set of simulated data, we checked the impact of the row-

standardization on the size of the test (see Table A2, available upon request
from the authors). The non row-standardization strongly increases the em-
pirical sizes for SAR for the W(1,1) weight matrix and decreases it for the
W(5,5) weight matrix. The reverse is true for the SEC3 (i.e., σ2ψ = 10σ2ε)
specification, where for W(5,5) the empirical size increases for non-row stan-
dardization as compared to row-standardization.
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W(j,j)

j N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100
1 14.98 14.73 4.91 4.85 0.29 0.27 1.63 1.65 3.05 3.06 8.56 4.19 2.81 1.38 0.16 0.08 0.93 0.47 1.74 0.87
2 22.7 22.28 6.06 5.98 0.47 0.46 3.34 3.42 8.33 8.42 12.97 6.33 3.46 1.7 0.27 0.13 1.91 0.97 4.76 2.39
3 28.81 28.28 6.52 6.44 0.54 0.53 4.26 4.37 12.84 13.05 16.46 8.04 3.73 1.83 0.3 0.15 2.43 1.24 7.33 3.71
4 33.79 33.18 6.79 6.69 0.57 0.56 4.81 4.95 16.77 17.13 19.31 9.43 3.88 1.9 0.32 0.16 2.74 1.41 9.58 4.87
5 37.93 37.27 6.98 6.85 0.59 0.59 5.17 5.34 20.15 20.67 21.67 10.59 3.98 1.95 0.33 0.17 2.95 1.52 11.51 5.87
6 41.36 40.71 7.1 6.97 0.6 0.6 5.43 5.61 23.08 23.78 23.63 11.57 4.05 1.98 0.34 0.17 3.1 1.6 13.19 6.76
7 44.24 43.68 7.18 7.05 0.61 0.61 5.63 5.82 25.74 26.54 25.28 12.42 4.1 2.00 0.35 0.17 3.21 1.66 14.71 7.54
8 46.63 46.24 7.25 7.11 0.62 0.62 5.78 5.98 28.06 28.99 26.64 13.14 4.14 2.02 0.35 0.18 3.3 1.7 16.03 8.24
9 48.58 48.47 7.29 7.15 0.63 0.62 5.9 6.13 30.14 31.2 27.76 13.78 4.16 2.03 0.36 0.18 3.37 1.74 17.22 8.87

10 50.16 50.46 7.33 7.19 0.63 0.63 5.99 6.23 32.02 33.21 28.66 14.34 4.18 2.04 0.36 0.18 3.42 1.77 18.3 9.44

W(j,j)

j N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100
1 14.99 14.7 4.88 4.83 0.23 0.25 1.64 1.67 3.02 3.07 8.56 4.18 2.79 1.37 0.15 0.07 0.93 0.47 1.72 0.87
2 22.72 22.25 6.03 5.96 0.46 0.4 3.36 3.43 8.31 8.4 12.98 6.33 3.44 1.69 0.26 0.13 1.92 0.97 4.74 2.39
3 28.82 28.24 6.5 6.41 0.52 0.52 4.24 4.38 12.84 13.06 16.47 8.03 3.71 1.82 0.3 0.15 2.42 1.24 7.33 3.71
4 33.79 33.12 6.76 6.67 0.56 0.56 4.78 4.95 16.74 17.11 19.3 9.42 3.86 1.89 0.32 0.16 2.73 1.41 9.56 4.86
5 37.91 37.19 6.94 6.83 0.58 0.58 5.14 5.35 20.13 20.65 21.66 10.57 3.96 1.94 0.33 0.16 2.94 1.52 11.5 5.87
6 41.32 40.61 7.06 6.93 0.59 0.59 5.39 5.62 23.09 23.78 23.61 11.55 4.03 1.97 0.33 0.17 3.08 1.6 13.19 6.76
7 44.19 43.55 7.14 7.00 0.6 0.6 5.58 5.82 25.69 26.54 25.25 12.38 4.08 1.99 0.34 0.17 3.19 1.65 14.68 7.54
8 46.57 46.1 7.21 7.07 0.61 0.61 5.73 5.98 28.01 29.04 26.61 13.1 4.12 2.01 0.35 0.17 3.27 1.7 16.00 8.25
9 48.52 48.31 7.25 7.11 0.62 0.62 5.84 6.12 30.08 31.25 27.72 13.73 4.14 2.02 0.35 0.18 3.33 1.74 17.19 8.88

10 50.1 50.28 7.29 7.15 0.62 0.63 5.92 6.23 32.00 33.23 28.63 14.29 4.16 2.03 0.35 0.18 3.39 1.77 18.28 9.45

SEC1 : σ 2
ψ  = 0.1 σ 2

ε  , SEC2 : σ 2
ψ  = σ 2

ε  and SEC3 : σ 2
ψ  = 10 σ 2

ε .

 W(j,j): "j ahead and j behind" weights matrix

SEC2

Table 1 - Cross section correlations for dynamic panels (1000 replications)
T=25 and θθθθ=0.8

Individual effects
Average CD statistic Average correlation coefficient (%)

SEC2 SEC3

Individual effects and deterministic trends
Average CD statistic Average correlation coefficient (%)

SEC3 SAR SMA SEC1SAR SMA SEC1

SAR SMA SEC1 SEC2 SEC2 SEC3SEC3 SAR SMA SEC1



                                                                 
T θ

N 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100
25 4.2 5.3 3.7 3.1 3.8 3.7 5.6 5.3 5.6 5.0 5.6 4.7 4.9 4.6 4.4 5.8 3.9 3.1
50 4.7 8.1 5.3 4.7 4.1 4.2 5.0 4.5 5.1 4.2 5.0 5.2 4.0 4.1 5.3 4.8 3.1 2.7

25 0.8 17.4 19.1 17.8 14.5 16.3 14.8 16.9 17.3 16.7 17.7 16.0 17.5 13.7 13.0 10.6 8.8 10.4 10.3
0.4 7.1 7.5 5.4 5.2 5.6 5.0 7.0 7.7 6.7 6.9 6.7 7.0 5.5 5.9 6.4 6.5 4.7 4.1

50 0.8 18.9 22.3 18.6 16.7 17.3 12.0 16.1 15.0 15.7 14.9 15.3 13.9 14.5 13.4 9.7 8.7 9.4 9.4
0.4 9.9 12.1 7.4 6.1 7.8 5.3 6.7 6.0 6.8 5.4 6.3 6.1 6.5 6.2 5.4 5.5 4.0 3.6

25 0.8 10.4 11.2 8.9 8.1 9.2 8.1 10.2 11.1 10.0 10.4 9.8 10.3 8.3 8.3 7.0 6.9 7.0 5.3
0.4 6.3 6.9 4.8 4.7 5.4 4.9 6.3 6.6 6.0 6.6 6.3 6.6 5.2 5.9 6.3 6.0 4.8 3.6

50 0.8 12.9 14.4 10.6 9.7 10.7 6.9 9.1 9.0 8.9 8.8 10.0 8.5 8.8 8.6 6.4 5.1 6.9 5.5
0.4 8.8 11.0 6.9 5.9 7.3 4.9 6.5 5.7 6.5 5.5 5.7 5.9 6.0 6.2 5.1 4.7 3.6 4.4

25 0.8 4.8 6.2 4.3 4.0 4.3 4.3 5.8 6.1 5.4 6.1 5.5 6.4 4.7 3.4 5.2 5.7 4.4 4.0
0.4 4.3 5.9 4.4 3.8 5.0 4.3 5.7 5.9 5.8 6.0 5.6 6.2 5.0 4.0 4.5 5.6 4.0 3.3

50 0.8 4.9 7.1 4.5 5.1 4.3 3.7 5.3 5.0 5.2 4.8 5.3 4.6 5.0 4.0 5.4 5.6 3.1 2.6
0.4 4.9 7.5 5.1 4.7 4.5 3.9 5.0 5.2 4.7 5.2 4.7 4.8 4.5 4.7 5.4 6.0 3.4 2.8

25 0.8 5.5 7.1 4.1 5.1 4.3 5.3 9.5 8.0 9.4 7.8 8.8 8.5 6.4 7.0 6.6 5.8 6.8 5.9
0.4 4.8 5.4 4.3 3.1 3.8 3.9 7.9 6.9 7.7 6.8 7.1 7.6 5.9 5.5 5.7 5.8 5.5 4.6

50 0.8 7.5 9.9 6.3 6.8 4.7 4.1 7.6 7.1 7.9 7.1 8.1 6.9 7.8 6.3 7.1 7.1 5.5 4.2
0.4 6.4 7.9 6.0 5.8 4.6 3.6 7.6 6.2 7.9 5.9 8.6 6.0 7.1 5.4 6.8 7.4 4.5 3.6

25 0.8 18.9 23.7 21.5 20.9 18.6 19.7 19.3 22.4 19.9 21.9 15.3 19.1 17.6 15.7 9.9 10.4 8.9 11.4
0.4 6.0 6.7 4.1 4.0 3.7 4.9 5.3 6.0 5.2 6.1 5.3 5.6 4.5 4.7 3.8 5.6 4.1 3.7

50 0.8 21.2 23.3 23.5 24.3 21.2 16.5 19.8 19.8 20.4 19.8 16.4 19.0 17.1 17.6 9.8 11.2 7.9 8.4
0.4 6.9 8.5 6.1 4.8 5.3 3.9 5.2 5.0 4.9 5.5 5.1 5.6 4.5 4.6 5.5 6.0 3.0 3.8

25 0.8 6.9 8.0 5.6 4.6 5.5 5.0 6.0 7.9 5.9 7.9 6.2 6.4 5.5 5.1 4.6 5.5 3.5 6.1
0.4 5.3 5.8 3.5 3.4 3.4 4.2 4.7 5.9 4.9 5.7 5.1 5.3 4.5 4.8 3.7 5.6 4.5 3.5

50 0.8 8.7 9.8 6.9 5.7 5.8 4.4 7.0 5.7 6.6 5.7 5.7 6.1 5.8 5.6 6.3 6.0 5.0 3.9
0.4 6.4 8.1 5.8 4.8 5.3 4.0 5.1 5.0 5.2 5.1 5.4 5.0 4.4 4.6 5.7 5.8 3.8 2.8

25 0.8 3.8 5.3 3.6 3.1 3.9 4.2 5.6 5.9 5.6 6.0 6.0 5.9 5.1 4.3 5.2 6.2 3.9 3.6
0.4 4.3 5.2 3.7 2.7 4.1 3.8 5.8 5.9 6.0 5.9 5.8 5.3 4.9 4.5 4.3 5.6 4.6 3.3

50 0.8 4.1 6.8 5.0 4.6 4.5 3.5 5.7 4.6 5.6 5.0 5.3 4.4 5.1 4.7 5.7 5.7 3.5 1.8
0.4 4.2 7.3 5.1 4.7 4.2 3.7 5.6 4.6 5.3 4.6 4.9 5.0 4.2 4.8 5.5 5.5 2.6 2.2

25 0.8 5.2 6.4 5.2 5.4 4.3 4.2 15.1 15.3 15.5 15.9 12.3 15.5 11.3 11.6 9.0 8.0 7.4 7.8
0.4 4.6 5.2 4.4 3.7 3.2 7.8 7.6 8.5 7.6 8.2 6.5 8.2 6.0 6.1 5.8 5.6 5.9 6.7

50 0.8 7.4 10.9 6.6 6.1 5.9 3.4 15.2 15.9 16.0 15.7 13.6 15.3 13.0 11.6 10.2 9.6 6.0 6.6
0.4 5.9 8.6 5.4 4.9 5.3 3.5 7.3 6.1 7.2 6.1 6.7 6.2 6.7 6.1 6.6 7.1 3.9 3.9

No Spatial: standard case without spatial correlation ---  W(j,j): "j ahead and j behind" standardized weights matrix --- SEC1: σ 2
ψ  = 0.1 σ 2

ε  ---  SEC3: σ 2
ψ  = 10 σ 2

ε  

Table 2 - Empirical size (%) of the panel unit root tests at 5% level for dynamic panels with individual effects (1000 replications)

PS

SMA , θ2=0.4 ; 0.8

No Spatial

SAR , θ1=0.4 ; 0.8

W(1,1)

LLC B IPS MW

W(5,5)

SEC3 , θ3=0.4 ; 0.8

SEC1 , θ3=0.4 ; 0.8

SEC1 , θ3=0.4 ; 0.8

SAR , θ1=0.4 ; 0.8

SMA , θ2=0.4 ; 0.8

SEC3 , θ3=0.4 ; 0.8

Choi Choi_c Chang IV Pesaran



T θ
N 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

25 4.0 4.9 3.8 3.7 4.9 5.8 6.1 6.5 5.9 5.7 6.3 6.0 4.9 4.7 4.1 5.4 5.1 4.2
50 6.5 8.4 5.6 4.5 4.0 4.6 4.6 4.2 4.4 4.2 4.5 3.5 4.2 3.8 4.7 5.2 1.9 1.9

25 0.8 15.7 15.5 18.0 15.7 17.4 15.6 17.4 16.6 17.3 16.6 17.5 15.3 13.5 13.2 13.2 11.7 12.8 12.0
0.4 7.2 6.9 6.4 6.1 7.3 7.2 7.5 8.0 7.5 7.6 7.2 7.6 5.5 5.9 5.4 6.0 5.5 5.2

50 0.8 18.6 20.1 19.3 17.7 12.8 9.8 15.5 16.3 16.4 16.0 15.7 14.8 14.2 13.0 11.0 9.9 8.8 7.7
0.4 8.7 12.7 7.8 6.8 6.2 5.3 6.3 6.2 6.6 6.7 6.5 6.2 5.8 5.8 5.5 5.9 3.3 3.5

25 0.8 9.7 10.1 9.1 8.9 10.0 10.1 10.5 12.3 10.9 12.0 10.7 11.1 8.2 8.7 8.2 7.3 7.9 7.4
0.4 6.5 6.7 5.3 5.6 7.1 7.0 7.3 7.8 7.2 7.2 7.0 7.4 5.1 6.3 5.7 5.7 6.6 4.9

50 0.8 10.9 15.2 11.1 10.7 7.5 3.8 7.4 8.4 7.4 8.6 7.6 8.4 8.8 8.4 6.8 6.5 5.4 3.9
0.4 8.5 11.3 7.0 6.1 5.6 5.9 6.1 5.8 5.8 5.8 6.2 6.1 5.8 5.3 5.4 5.9 3.9 2.8

25 0.8 4.4 6.2 4.8 4.5 4.3 4.9 5.4 5.8 5.3 5.5 5.9 6.3 4.9 3.7 3.8 5.8 3.8 5.2
0.4 3.8 5.7 4.6 4.5 5.5 4.5 6.0 5.9 5.6 5.6 6.1 5.9 5.1 3.9 4.1 6.2 5.0 4.0

50 0.8 6.4 8.2 5.0 5.2 3.4 3.5 4.6 4.1 4.7 4.0 4.8 4.0 4.5 3.9 4.6 6.1 2.9 2.0
0.4 6.7 8.3 5.2 4.8 4.0 4.0 4.0 3.5 4.3 3.7 4.0 4.1 4.6 4.2 4.8 5.0 2.9 2.3

25 0.8 5.7 5.9 4.5 6.9 5.4 5.6 7.7 10.3 8.2 9.5 8.0 10.2 6.2 7.1 6.2 7.6 5.8 5.8
0.4 4.8 4.3 4.2 4.2 4.6 5.2 7.6 9.3 7.5 8.7 7.4 8.7 6.1 5.5 5.6 6.7 5.5 4.8

50 0.8 6.1 9.0 6.8 7.8 4.7 5.6 8.7 9.1 8.6 8.7 8.3 8.4 7.5 6.4 5.8 7.5 3.7 2.9
0.4 5.0 7.7 6.3 6.0 4.0 4.8 7.0 7.6 7.2 7.0 6.8 7.9 7.2 5.3 5.6 6.9 3.0 2.9

25 0.8 19.0 22.5 22.3 21.1 20.8 22.5 23.1 23.3 23.2 22.7 18.4 19.0 18.1 15.2 12.8 13.7 11.7 12.3
0.4 6.3 6.1 4.4 4.3 6.1 5.5 7.0 7.3 7.2 6.5 6.9 6.9 4.6 4.8 4.5 5.9 4.0 4.5

50 0.8 23.8 26.0 23.8 25.4 19.7 14.0 20.7 20.3 20.9 20.8 16.8 18.8 16.6 17.6 12.3 12.1 6.3 8.8
0.4 7.5 10.8 6.6 4.9 4.0 4.4 5.0 4.8 5.1 4.9 4.5 4.5 4.4 4.7 4.5 5.3 2.7 2.6

25 0.8 7.0 7.2 5.7 5.7 7.6 6.4 7.7 8.0 8.0 7.7 7.5 7.5 5.3 5.1 5.0 6.2 5.7 5.4
0.4 5.4 5.9 3.8 4.0 5.4 4.8 7.0 6.5 6.9 6.1 6.4 6.2 4.1 4.9 4.1 5.5 4.9 4.3

50 0.8 8.7 12.1 7.2 6.7 4.9 4.7 6.5 6.4 5.8 6.7 5.5 5.8 5.1 5.8 5.1 5.8 2.9 2.5
0.4 7.1 9.4 5.7 5.0 3.9 4.0 4.9 4.2 4.3 4.6 4.3 4.3 4.6 4.3 4.7 4.8 2.5 1.6

25 0.8 3.7 5.4 4.2 3.9 5.1 5.1 5.7 6.5 5.8 6.3 5.9 6.4 5.1 4.3 3.5 5.5 4.5 4.2
0.4 3.8 5.6 4.1 3.5 5.3 5.4 5.8 6.2 6.0 6.0 5.7 6.2 4.7 4.8 4.0 6.0 5.3 4.6

50 0.8 6.1 8.2 5.0 4.9 3.9 4.5 4.5 4.2 4.5 4.1 4.0 4.4 4.8 4.3 5.3 5.5 3.2 2.1
0.4 6.4 8.0 5.2 4.9 4.0 4.5 4.5 4.5 4.1 4.3 4.2 4.0 4.8 4.1 4.9 5.1 3.7 1.3

25 0.8 5.3 6.3 5.6 6.4 6.4 6.6 14.5 16.8 15.1 16.3 14.3 15.8 11.3 11.3 10.5 11.4 8.4 9.1
0.4 3.7 4.7 4.5 3.8 5.0 5.6 9.2 8.6 9.0 8.0 8.2 9.1 6.8 6.2 6.6 7.6 6.0 6.4

50 0.8 6.4 9.3 6.9 6.3 4.9 5.3 16.5 16.7 16.9 16.5 14.9 18.0 13.0 11.2 11.5 12.7 6.5 6.7
0.4 6.6 9.4 5.6 5.4 4.6 4.8 6.5 8.5 6.3 8.2 6.4 8.7 6.1 5.8 5.8 8.0 4.1 2.1

No Spatial: standard case without spatial correlation ---  W(j,j): "j ahead and j behind" standardized weights matrix --- SEC1: σ 2
ψ  = 0.1 σ 2

ε  ---  SEC3: σ 2
ψ  = 10 σ 2

ε  

Table 3 - Empirical size (%) of the panel unit root tests at 5% level for dynamic panels with individual effects and deterministic trends (1000 replications)

LLC B Choi_c

No Spatial

SAR , θ1=0.4 ; 0.8

W(1,1)

Chang IV PesaranIPS MW Choi PS

SEC3 , θ3=0.4 ; 0.8

SMA , θ2=0.4 ; 0.8

SEC1 , θ3=0.4 ; 0.8

SEC3 , θ3=0.4 ; 0.8

W(5,5)

SAR , θ1=0.4 ; 0.8

SMA , θ2=0.4 ; 0.8

SEC1 , θ3=0.4 ; 0.8



Fig. 1 - Spatial AutoRegressive (SAR) error process
Individual effects
N=50, T=25, θθθθ=0.8
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Fig. 2 - Spatial Moving Average error process (SMA)
Individual effects
N=50, T=25, θθθθ=0.8
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Fig. 3 - Spatial Error Component process (SEC1)
Individual effects

N=50, T=25, θθθθ=0.8, σσσσ2
ψψψψ = 0.1σσσσ2

εεεε 
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Fig. 4 - Spatial Error Component process (SEC2)
Individual effects

N=50, T=25, θθθθ=8, σσσσ2222
ψψψψ = σσσσ2222
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Fig. 5 - Spatial Error Component process (SEC3)
Individual effects

N=50, T=25, θθθθ=0.8, σσσσ2
ψψψψ = 10 σσσσ2
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Fig. 6 - Panel unit root tests that allow for cross-section dependence
Individual effects, N=100, T=50, θθθθ=0.8, σσσσ2222
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Fig. 7 - Spatial AutoRegressive (SAR) error process
Individual effects and deterministic trends

N=50, T=25, θθθθ=0.8
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Fig. 8 - Spatial Moving Average (SMA) error process
Individual effects and deterministic trends

N=50, T=25, θθθθ=0.8
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Fig. 9 - Spatial Error Component process (SEC3)
Individual effects and deterministic trends

N=50, T=25, θ=0.8,θ=0.8,θ=0.8,θ=0.8, 
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