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PANEL UNIT ROOT TESTS WITH
CROSS-SECTION DEPENDENCE:
A FURTHER INVESTIGATION

JUSHAN BAI AND SERENA NG
Columbia University

An effective way to control for cross-section correlation when conducting a panel
unit root test is to remove the common factors from the data. However, there re-
main many ways to use the defactored residuals to construct a test. In this paper, we
use the panel analysis of nonstationarity in idiosyncratic and common components
(PANIC) residuals to form two new tests. One estimates the pooled autoregressive
coefficient, and one simply uses a sample moment. We establish their large-sample
properties using a joint limit theory. We find that when the pooled autoregressive
root is estimated using data detrended by least squares, the tests have no power. This
result holds regardless of how the data are defactored. All PANIC-based pooled tests
have nontrivial power because of the way the linear trend is removed.

1. INTRODUCTION

Cross-section dependence can pose serious problems for testing the null hypoth-
esis that all units in a panel are nonstationary. As first documented in O’Connell
(1998), much of what appeared to be power gains in panel unit root tests de-
veloped under the assumption of cross-section independence over individual unit
root tests is in fact the consequence of nontrivial size distortions. Many tests have
been developed to relax the cross-section independence assumption. See Chang
(2002), Chang and Song (2002), and Pesaran (2007), among others. An increas-
ingly popular approach is to model the cross-section dependence using common
factors. The panel analysis of nonstationarity in idiosyncratic and common com-
ponents (PANIC) framework of Bai and Ng (2004) enables the common factors
and the idiosyncratic errors to be tested separately, and Moon and Perron (2004)
test the orthogonal projection of the data on the common factors. Most tests are
formulated as an average of the individual statistics or their p-values. The Moon
and Perron (2004) tests (henceforth MP tests) retain the spirit of the original panel
unit root test of Levin, Lin, and Chu (2002), which estimates and tests the pooled
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first-order autoregressive parameter. As pointed out by Maddala and Wu (1999),
the Levin et al. (2002) type tests have good power when autoregressive roots
are identical over the cross sections. On the other hand, pooling individual test
statistics may be more appropriate when there is heterogeneity in the dynamic
parameters.

Many papers have studied the finite-sample properties of various panel unit
root tests. In this paper we try to understand whether the difference in finite-
sample properties can be traced to how the pooled autoregressive coefficient is
estimated. To this end, we first develop a set of MP type tests using the PANIC
residuals, and a panel version of the modified Sargan–Bhargava test (hereafter
the PMSB test) that simply uses the sample moments of these residuals but does
not estimate the pooled autoregressive coefficient. We then use simulations to
show that autoregressive coefficient–based tests have minimal power whenever ρ̂
is constructed using data that are detrended by least squares, irrespective of how
the factors are removed. We develop new PANIC-based pooled tests that do not
require explicit linear detrending. The three PANIC tests have reasonable power
against the trend stationary alternative because they do not involve least squares
detrending.

The rest of the paper is organized as follows. In Section 2, we specify the data
generating process (DGP), introduce necessary notation, and discuss model as-
sumptions. In Section 3, we consider the PANIC residual-based MP type and
PMSB tests. Section 4 discusses issues related to different tests. Section 5 pro-
vides finite-sample evidence via Monte Carlo simulations. Concluding remarks
are given in Section 6, and the proofs are given in the Appendix.

2. PRELIMINARIES

Let Dit = ∑p
j=0 δijt j be the deterministic component. When p = 0, Dit = δi is

the individual specific fixed effect, and when p = 1, an individual specific time
trend is also present. When there is no deterministic term, Dit is null, and we will
refer to this as case p = −1. Throughout the paper, we let Mz = I − z(z′z)−1z′

be a matrix that projects on the orthogonal space of z. In particular, the projection
matrix M0 with zt = 1 for all t demeans the data, and M1 with zt = (1, t)′ demeans
and detrends the data. Trivially, M−1 is simply an identity matrix.

The DGP is

Xit = Dit +λ′
i Ft + eit, (1)

(1− L)Ft = C(L)ηt ,

eit = ρi eit−1 + εit,

where Ft is an r ×1 vector of common factors that induce correlation across units,
λi is an r ×1 vector of factor loadings, eit is an idiosyncratic error, and C(L) is an
r ×r matrix consisting of polynomials of the lag operator L , C(L) = ∑∞

j=0 Cj L j .
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Let M < ∞ denote a positive constant that does not depend on T or N . Also
let ‖A‖ = tr(A′ A)1/2. We use the following assumptions based on Bai and Ng
(2004).

Assumption A.

(a) If λi is nonrandom, ‖λi‖ ≤ M ; if λi is random, E‖λi‖4 ≤ M ;
(b) N−1 ∑N

i=1 λiλ′
i

p→&', an r × r positive definite matrix.

Assumption B.

(a) ηt ∼ i id(0,&η), E‖ηt‖4 ≤ M ;
(b) var((Ft ) = ∑∞

j=0 Cj&ηC ′
j > 0;

(c) ∑∞
j=0 j

∥∥Cj
∥∥< M ; and

(d) C(1) has rank r1,0 ≤ r1 ≤ r .

Assumption C. for each i , εit = di (L)vit, vit ∼ i id(0,1) across i and over t ,
E|vit|8 ≤ M for all i and t ; ∑∞

j=0 j |dij| ≤ M for all i ; di (1)2 ≥ c > 0 for all i and
for some c > 0.

Assumption D. {vis}, {ηt }, and {λj } are mutually independent.

Assumption E. E‖F0‖ ≤ M , and for every i = 1, . . . N , E|ei0| ≤ M .

Assumptions A and B assume that there are r factors. Assumption B allows
a combination of stationary and nonstationary factors. Assumption C assumes
cross-sectionally independent idiosyncratic errors, which is used to invoke some
of the results of Phillips and Moon (1999) for joint limit theory, and for cross-
sectional pooling. This assumption is similar to Assumption 2 of Moon and Perron
(2004). We point out that many properties of the PANIC residuals derived in the
Appendix are not affected by allowing some weak cross-sectional correlations
among vit. The variance of vit in the linear process εit is normalized to be 1; oth-
erwise it can be absorbed into di (L). Assumption D assumes that factors, factor
loadings, and the idiosyncratic errors are mutually independent. Initial conditions
are stated in Assumption E.

For the purpose of this paper we let

Ft = )1 Ft−1 +ηt ,

where )1 is an r ×r matrix. The number of nonstationary factors is determined by
the number of unit roots in the polynomial matrix equation, )(L) = I −)1L =
0. Under (1), Xit can be nonstationary when )(L) has a unit root, or ρi = 1,
or both. Clearly, if the common factors share a stochastic trend, Xit will all be
nonstationary. An important feature of the DGP given by (1) is that the common
and the idiosyncratic components can have different orders of integration. It is
only when we reject nonstationarity in both components that we can say that the
data are inconsistent with unit root nonstationarity.
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Other DGPs have also been considered in the literature on panel unit root tests.
The one used in Phillips and Sul (2003) is a special case of (1) as they only allow
for one factor, and the idiosyncratic errors are independently distributed across
time. Choi (2006) also assumes one factor, but the idiosyncratic errors are allowed
to be serially correlated. However, the units are restricted to have a homogeneous
response to Ft (i.e., λi = 1). A somewhat different DGP is used in Moon and
Perron (2004) and Moon, Perron, and Phillips (2007). They let

Xit = Dit + X0
it, (2)

X0
it = ρi X0

it−1 +uit,

uit = λ′
i ft + εit,

where ft and εit are I(0) linear processes, ft and εit are independent, and εit are
cross-sectionally independent. Notably, under (2), Xit has a unit root if ρi = 1.
This DGP differs from (1) in that it essentially specifies the dynamics of the ob-
served series (e.g., if Dit = 0, then Xit = X0

it), whereas (1) specifies the dynamics
of unobserved components. Assuming X0

i0 = 0 and ρi = ρ for all i , (2) can be
written in terms of (1) as follows:

Xit = Dit +λ′
i Ft + eit,

where (1 − ρL)Ft = ft and (1 − ρL)eit = εit. When ρi = 1 for all i , we have
Ft = Ft−1 + ft and eit = eit−1 + εit. In this case, both Ft and eit are I(1). When
ρi = ρ with |ρ| < 1 for all i , we have Ft = ρFt−1 + ft and eit = ρeit−1 + εit, and
so both Ft and eit are I(0). Thus the common and idiosyncratic components in (2)
are restricted to have the same order of integration. Note that when ρi are hetero-
geneous, (2) cannot be expressed in terms of (1). But under the null hypothesis
that ρi = 1 for all i , (1) covers (2). It follows that the assumptions used for DGP
(1) are also applicable to DGP (2). The model considered by Pesaran (2007) is
identical to DGP (2) as the dynamics are expressed in terms of the observable
variable Xit:

Xit = (1−ρi L)Dit +ρi Xit−1 +uit, (3)

uit = λi ft + εit.

The construction of the test statistics based on defactored processes requires
the short-run, long-run, and one-sided variance of εit defined as

σ 2
εi = E(ε2

it) =
∞
∑
j=0

d2
ij, ω2

εi =
(

∞
∑
j=0

dij

)2

, λεi = (ω2
εi −σ 2

εi )/2,

respectively. Throughout, ω4
εi = (ω2

εi )
2 and ω6

εi = (ω2
εi )

3, etc. As in Moon and
Perron (2004) we assume that the following limits exist and the first three are



1092 JUSHAN BAI AND SERENA NG

strictly positive:

ω2
ε = lim

N→∞
1
N

N

∑
i=1

ω2
εi , σ 2

ε = lim
N→∞

1
N

N

∑
i=1

σ 2
εi ,

φ4
ε = lim

N→∞
1
N

N

∑
i=1

ω4
εi , λε = lim

N→∞
1
N

N

∑
i=1

λεi .

The subscript ε may be dropped when context is clear. For future reference, let

ω̂2
ε = 1

N

N

∑
i=1

ω̂2
εi , σ̂ 2

ε = 1
N

N

∑
i=1

σ̂ 2
εi , φ̂4

ε = 1
N

N

∑
i=1

ω̂4
εi , λ̂ε = 1

N

N

∑
i=1

λ̂εi

(4)

be consistent estimates of ω2
ε , σ 2

ε , φ4
ε , and λε, respectively. Assumptions necessary

for consistent estimation of these long-run and one-sided long-run variances are
given in Moon and Perron (2004). These will not be restated here so that we can
focus on the main issues we want to highlight here.

3. PANIC POOLED TESTS

In Bai and Ng (2004) we showed that under (1) testing can still proceed even
when both components are unobserved and without knowing a priori whether
eit is nonstationary. The strategy is to obtain consistent estimates of the space
spanned by Ft (denoted by F̂t ) and the idiosyncratic error (denoted by êit).
In a nutshell, we apply the method of principal components to the first dif-
ferenced data and then form F̂t and êit by recumulating the estimated factor
components. More precisely, when Dit in (1) is zero (p = −1) or an intercept
(i.e., p = 0), the first difference of the model is

(Xit = λ′
i(Ft +(eit.

Denote xit = (Xit, ft = (Ft , and zit = (eit. Then

xit = λ′
i ft + zit

is a pure factor model, from which we can estimate (λ̂1, . . . , λ̂N ) and ( f̂2, . . . , f̂T )
and ẑit for all i and t . Define

F̂t =
t

∑
s=2

f̂s and êit =
t

∑
s=2

ẑis.

When p = 1, we also need to remove the mean of the differenced data, which is
the slope coefficient in the linear trend prior to differencing. This leads to xit =
(Xit − (Xi , ft = (Ft − (F , and zit = (eit − (ei , where (Xi is the sample
mean of (Xit over t and where (F and (ei are similarly defined.
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Bai and Ng (2004) provide asymptotically valid procedures for (a) determining
the number of stochastic trends in F̂t , (b) testing if êit are individually I(1) using
augmented Dickey–Fuller (ADF) regressions, and (c) testing if the panel is I(1)
by pooling the p values of the individual tests. If πi is the p-value of the ADF test
for the i th cross-section unit, the pooled test is

Pê = −2∑N
i=1 logπi −2N√

4N
. (5)

The test is asymptotically standard normal. For a two-tailed 5% test, the null hy-
pothesis is rejected when Pê exceeds 1.96 in absolute value. Note that Pê does
not require a pooled ordinary least squares (OLS) estimate of the AR(1) coeffi-
cient in the idiosyncratic errors. Pooling p values has the advantage that more
heterogeneity in the units is permitted. However, a test based on a pooled esti-
mate of ρ can be easily constructed by estimating a panel autoregression in the
(cumulated) idiosyncratic errors estimated by PANIC, i.e., êit. Specifically, for
DGP with p = −1,0, or 1, pooled OLS estimation of the model

êit = ρêit−1 + εit

yields

ρ̂ = tr(ê ′
−1ê )

tr(ê ′
−1ê−1)

,

where ê−1 and ê are (T −2)× N matrices.
The bias-corrected pooled PANIC autoregressive estimator ρ and the test statis-

tics depend on the specification of the deterministic component Dit. For p = −1
and 0,

ρ̂+ = tr(ê ′
−1ê )− N T λ̂ε

tr(ê ′
−1ê−1)

,

and the test statistics are

Pa =
√

N T (ρ̂+ −1)
√

2φ̂4
ε/ω̂

4
ε

, (6)

Pb =
√

N T (ρ̂+ −1)

√
1

N T 2 tr(ê ′
−1ê−1)

ω̂2
ε

φ̂4
ε

. (7)

For p = 1,

ρ̂+ = tr(ê ′
−1ê )

tr(ê ′
−1ê−1)

+ 3
T

σ̂ 2
ε

ω̂2
ε

= ρ̂ + 3
T

σ̂ 2
ε

ω̂2
ε
,
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and the test statistics are

Pa =
√

N T (ρ̂+ −1)
√

(36/5)φ̂4
ε σ̂ 4

ε /ω̂8
ε

, (8)

Pb =
√

N T (ρ̂+ −1)

√
1

N T 2 tr(ê ′
−1ê−1)

5
6

ω̂6
ε

φ̂4
ε σ̂ 4

ε

, (9)

where λ̂ε, σ̂ 2
ε , ω̂2

ε , and φ̂4
ε are defined in (4). These nuisance parameters are es-

timated based on AR(1) residuals ε̂ = ê − ρ̂ ê−1 = [ε̂1, ε̂2, . . . , ε̂N ] with ε̂i being
(T −2)×1 for all i .1

THEOREM 1. Let ρ̂+ be the bias-corrected pooled autoregressive coefficient
for the idiosyncratic errors estimated by PANIC. Suppose the data are generated
by (1) and Assumptions A–E hold. Then under the null hypothesis that ρi = 1 for
all i , as N ,T → ∞ with N/T → 0, Pa

d→N (0,1) and Pb
d→N (0,1).

Jang and Shin (2005) studied the properties of Pa,b for p = 0 by simulations.
Theorem 1 provides the limiting theory for both p = 0 and p = 1. It shows that
the t tests of the pooled autoregressive coefficient in the idiosyncratic errors are
asymptotically normal. The convergence holds for N and T tending to infinity
jointly with N/T → 0. It is thus a joint limit in the sense of Phillips and Moon
(1999). The Pa and Pb are the analogs of ta and tb of Moon and Perron (2004),
except that (a) the tests are based on PANIC residuals and (b) the method of “de-
factoring” of the data is different from the method of Moon and Perron (2004).
By taking first differences of the data to estimate the factors, we also simultane-
ously remove the individual fixed effects. Thus when p = 0, the êit obtained from
PANIC can be treated as though they come from a model with no fixed effect.
It is also for this reason that in Bai and Ng (2004), the ADF test for êit has a limit-
ing distribution that depends on standard Brownian motions and not its demeaned
variant.

When p = 1, the adjustment parameters used in Pa,b are also different from ta,b
of Moon and Perron (2004). In this case, the PANIC residuals êit have the property
that T −1/2êit converges to a Brownian bridge, and a Brownian bridge takes on the
value of zero at the boundary. In consequence, the Brownian motion component in
the numerator of the autoregressive estimate vanishes. The usual bias correction
made to recenter the numerator of the estimator to zero is no longer appropriate.
This is because the deviation of the numerator from its mean, multiplied by

√
N ,

is still degenerate. However, we can do bias correction to the estimator directly
because T (ρ̂ − 1) converges to a constant. In the present case, T (ρ̂ − 1)

p→ −
3σ 2

ε /ω2
ε . This leads to ρ̂+ as defined previously for p = 1. This definition of ρ̂+

is crucial for the tests to have power in the presence of incidental trends.



PANEL UNIT ROOT TESTS 1095

3.1. The Pooled MSB

An important feature that distinguishes stationary from nonstationary processes is
that their sample moments require different rates of normalization to be bounded
asymptotically. In the univariate context, a simple test based on this idea is the
test of Sargan and Bhargava (1983). If for a given i , (eit = εit has mean zero and
unit variance and is serially uncorrelated, then Zi = T −2 ∑T

t=1 e2
it ⇒ ∫ 1

0 Wi (r)2dr .
However, if eit is stationary, Zi = Op(T −1). Stock (1990) developed the modi-
fied Sargan–Bhargava test (MSB test) to allow εit = (eit to be serially correlated
with short- and long-run variance σ 2

εi and ω2
εi , respectively. In particular, if ω̂2

εi
is an estimate of ω2

εi that is consistent under the null and is bounded under the
alternative,2 MSB = Zi/ω̂2

εi ⇒ ∫ 1
0 W 2

i (r)dr under the null and degenerates to zero
under the alternative. Thus the null is rejected when the statistic is too small. As
shown in Perron and Ng (1996) and Ng and Perron (2001), the MSB has power
similar to the ADF test of Said and Dickey (1984) and the Phillips–Perron test
developed in Phillips and Perron (1988) for the same method of detrending. An
unique feature of the MSB is that it does not require estimation of ρ, which al-
lows us to subsequently assess whether power differences across tests are due to
the estimate of ρ. This motivates the following simple panel nonstationarity test
for the idiosyncratic errors, denoted the panel PMSB test. Let ê be obtained from
PANIC. For p = −1,0, the test statistic is defined as

PMSB =
√

N
(

tr
(

1
NT2 ê ′ê

)
− ω̂2

ε/2
)

√
φ̂4

ε/3
, (10)

where ω̂2
ε/2 estimates the asymptotic mean of (1/NT 2)tr(ê ′ê) and the denominator

estimates its standard deviation. For p = 1, the test statistic is defined as

PMSB =
√

N
(

tr
(

1
NT2 ê ′ê

)
− ω̂2

ε/6
)

√
φ̂4

ε/45
. (11)

The variables ω̂2
ε and φ̂4

ε are defined in (4), and are estimated from residuals ε̂ =
ê − ρ̂e−1, where ρ̂ is the pooled least squares estimator based on ê. The null
hypothesis that ρi = 1 for all i is rejected for small values of PMSB. We have the
following result:

THEOREM 2. Let PMSB be defined as in (11). Under Assumptions A–E, as
N ,T → ∞ with N/T → 0, we have

PMSB
d→N (0,1).

The convergence result again holds in the sense of a joint limit. But a sequential
asymptotic argument provides the intuition for the result. For a given i , Zi =
T −2 ∑T

t=1 ê2
it converges in distribution to ω2

εi
∫ 1

0 Vi (r)2dr when p = 1, where Vi is
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a Brownian bridge. Demeaning these random variables and averaging over the i
give the stated result.

Comparing the PMSB test with Pa and Pb tests when p = 1 is of special in-
terest. From Bai and Ng (2004), êit = eit − ei1 − (eiT−ei1)

T −1 (t − 1) + op(1), which
has a time trend component with slope coefficient of Op(T −1/2). Because of the
special slope coefficients, detrending is unnecessary when constructing Pa and Pb
tests, but suitable bias correction for the autoregressive coefficient is necessary to
avoid certain degeneracy (see the discussion of degeneracy following Theorem 1).
Detrending is also unnecessary with the PMSB test because the limit of T − 1

2 êit
is simply a Brownian bridge. Not having to detrend êit is key to having tests with
good finite-sample properties when p = 1.

4. THE MP TESTS

The autoregressive coefficient ρ can also be estimated from data in levels

Xit = (1−ρL)Dit +ρXit−1 +uit, uit = λ′
i ft + εit.

As is standard in the literature on unit roots, there are three models to consider: a
base case model (A) that assumes Dit is null; a fixed effect model (B) that assumes
Dit = ai ; and an incidental trend model (C) that has Dit = ai + bi t . Note that we
use p = −1,0,1 to represent the DGP and use Models A–C to represent how
the trends are estimated. Let ' = (λ1, . . .λN )′ and X and X−1 be T − 1 by N

matrices. Based on the first step estimator ρ̂ = tr(X ′
−1 Mz X)

tr(X ′
−1 Mz X−1)

, one computes the

residuals û = Mz X − ρ̂Mz X−1, from which a factor model is estimated to obtain
'̂ = (λ̂1, . . . , λ̂N )′, where Mz is a projection matrix defined in Section 2. The bias-
corrected, defactored, pooled OLS estimator defined in Moon and Perron (2004)
is

ρ̂+ = tr(X ′
−1 Mz X M'̂)−NTψ̂ε

tr(X ′
−1 Mz X−1 M'̂)

,

where M'̂ = IN − '̂('̂′'̂)−1'̂′ and ψ̂ε is a bias correction term (given subse-
quently) defined on the residuals of the defactored data ε̂ = [Mz X − ρ̂Mz X−1]M'̂.
The MP tests, denoted ta and tb, have the same form as Pa and Pb defined in (6)
and (7), with X and X−1 replacing ê and ê−1 both in ρ̂+ and in the tests. That is,

ta =
√

N T (ρ̂+ −1)
√

Kaφ̂4
ε/ω̂4

ε

,

tb =
√

N T (ρ̂+ −1)

√
1

N T 2 tr(X ′
−1 Mz X−1)Kb

ω̂2
ε

φ̂4
ε

,

where Mz and the parameters ψ̂ε, Ka , and Kb are defined as follows. When the
data are untransformed (Model A) Mz = IT −2, ψ̂ε = λ̂ε, Ka = 2, and Kb = 1.
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When the data are demeaned (Model B), then Mz = M0, φ̂ε = −σ̂ 2
ε /2, Ka = 3,

and Kb = 2. When the data are demeaned and detrended (Model C),3 Mz = M1
and φ̂ε = −σ̂ 2

ε /2, Ka = 15/4, and Kb = 4. Model A is valid when p is −1 or 0 in
the DGP.

There are two important differences between Pa,b and ta,b. First, our tests ex-
plicitly estimate the factors and errors before testing, whereas the MP tests implic-
itly remove the common factors from the data and thus do not explicitly define êit.
As a result of this, the bias adjustments are also different. For p = 1, we obtain a
bias adjustment for ρ̂ directly, whereas Moon and Perron (2004) adjusted the bias
for the numerator of ρ̂. Also, Moon and Perron removed the deterministic terms
by the least squares estimation of the incidental parameters, whereas PANIC takes
the first difference of the data. Note that in the Moon and Perron setup, Models
A and B are both valid for p = 0 because under the null hypothesis that ρ = 1,
the intercepts are identically zero. However, the finite-sample properties of the
MP test are much better when A is used. Model B (demeaning) gives large size
distortions, even though removing the fixed effects seems to be the natural way to
proceed.

It should also be remarked that Moon and Perron (2004) estimated the nui-
sance parameters by averaging over ω̂2

εi and σ̂ 2
εi , where these latter are defined

using ε̂ = ûM'̂. Importantly, ω̂εi is a function of ρ̂ that is biased. However, the
unbiased ρ̂+ itself depends on ω̂εi . This problem can be remedied by iterating ρ̂+

till convergence is achieved. This seems to improve the size of the test when p = 1
but does not improve power. Simulations show that the MP tests are dominated
by Pa,b when p = 1.

Because the MP tests are applied directly to the observable series, one might
infer that ta and tb are testing the observed panel of data. It is worth reiterating
that after the common factors are controlled for, one must necessarily be testing
the properties of the idiosyncratic errors. This is clearly true for (2) because both
the common and idiosyncratic terms have the same order of integration. Although
less obvious, the statement is also true for model (1), in which eit and Ft are not
constrained to have the same order of integration. To see this, assume no deter-
ministic component for simplicity. The DGP defined by (1) can be rewritten as

Xit = ρi Xit−1 +λ′
i Ft −ρiλ

′
i Ft−1 + εit. (12)

Because the defactored approach will remove the common factors, we can ignore
them in the equations. It is then obvious that the ta,b tests (using observable
data) will determine if the (weighted) average of ρi is unity, where the ρi are the
autoregressive coefficients for the idiosyncratic error processes. The same holds
for the test of Pesaran (2007), who estimates augmented autoregressions of the
form (suppressing deterministic terms for simplicity and adapted to our notation)

(Xit = (ρi −1)Xit−1 +d0 X̄t +d1(X̄t + eit,

where X̄t = 1
N ∑N

i=1 Xit. Although (X̄t is observed, it plays the same role as
Ft . As such, the covariate augmented Dickey–Fuller (CADF), which takes an
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average of the t ratios on ρi , is also a test of whether the idiosyncratic errors are
nonstationary. Others control for cross-sectional correlation by adjusting the stan-
dard errors of the pooled estimate. But the method still depends on whether the
factors and/or the errors are nonstationary; see Breitung and Das (2008). To make
statements concerning nonstationarity for the observed series Xit, researchers still
have to separately test if the common factors are nonstationary. PANIC presents
a framework that can establish if the components are stationary in a coherent
manner.

5. FINITE-SAMPLE PROPERTIES

In this section, we report the finite-sample properties of Pê, PMSB, and autore-
gressive coefficient–based tests, Pa,b and ta,b. As p = −1 is not usually a case of
practical interest, we only report results for p = 0 and p = 1. For the ta,b tests, we
follow Moon and Perron (2004) and use Model A for testing (i.e., no demeaning)
instead of B (demeaning) when p = 0. To make this clear, we denote the results by
t A
a,b. For p = 1, the ta,b tests are denoted by tC

a,b (with demeaning and detrending).
Jang and Shin (2005) explored the sensitivity of the MP tests to the method of

demeaning but did not consider the case of incidental trends. Furthermore, they
averaged the t tests of the PANIC residuals, rather than pooling the p values as in
Bai and Ng (2004). Gengenbach, Palm, and Urbain (2009) also compared the MP
tests with PANIC but also for p = 0 only. In addition, all these studies consider
alternatives with little variation in the dynamic parameters. Here, we present new
results by focusing on mixed I(1)/I(0) units and with more heterogeneity in the
dynamic parameters. We report results for four models. Additional results are
available on request.

Models 1–3 are configurations of (1), whereas Model 4 is based on (2). The
common parameters are r = 1, λi is drawn from the uniform distribution such that
λi ∼ U [−1,3], ηt ∼ N (0,1), and εit ∼ N (0,1). The model-specific parameters are

Model 1. )1 = 1, ρi = 1 for all i ;
Model 2. )1 = 0.5, ρi ∼ U [0.9,0.99];
Model 3. )1 = 0.5, ρi = 1 for i = 1, . . . , N/5, ρi ∼ U [0.9,0.99] otherwise;
Model 4. ρi ∼ U [0.9,0.99],

where )1 is the autoregressive coefficient in Ft = )1 Ft−1 +ηt . We consider com-
binations of N ,T taking on values of 20, 50, and 100. The number of replications
is 5,000.

We hold the number of factors to the true value when we evaluate the adequacy
of the asymptotic approximations because the theory does not incorporate sam-
pling variability due to estimating the number of factors. However, in practice,
the number of factors (r ) is not known. Bai and Ng (2002) developed procedures
that can consistently estimate r . Their simulations showed that when N and T are
large, the number of factors can be estimated precisely. However, the number of
factors can be overestimated when T or N is small (say, less than 20). In those
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cases, the authors recommend using BIC3 (Bai and Ng, 2002, p. 202). Alterna-
tively, classical factor analysis can be used to determine the number of factors
for small N or T ; see Anderson (1984, Ch. 14). Gengenbach et al. (2009) found
that the performance of panel unit root tests can be distorted when the number
of common factors is overestimated. It is possible that the BIC3 can alleviate the
problem. Regardless of which criterion to use, the finite-sample distributions of
post–model selection estimators typically depend on unknown model parameters
in a complicated fashion. As Leeb and Potscher (2008) showed, the asymptotic
distribution can be a poor approximation for the finite-sample distributions for
certain DGPs. This caveat should be borne in mind.

To illustrate the main point of this paper, namely, tests that explicitly detrend
the data first to construct ρ̂ have no power, we additionally report results for two
tests that we will denote P D

a and P D
b . These tests obtain ρ̂+ from Model B for

DGP with p = 0 and Model C when p = 1. The former is a regression of êit on
êit−1, plus an individual specific constant. The latter adds a trend. The tests use the
same adjustments as ta and tb of Moon and Perron (2004). Although detrending
renders the numerator of ρ̂+ nondegenerate, it also removes whatever power the
tests might have, as we now see.

Results are reported in Table 1 for p = 0 and Table 2 for p = 1. The rejection
rates of Model 1 correspond to finite-sample size when the nominal size is 5%.
Models 2, 3, and 4 give power. Power is not size adjusted to focus on rejection
rates that one would obtain in practice. Table 1 shows that for p = 0 PMSB, Pa ,
and Pb seem to have better size properties. Apart from size discrepancies when T
is small, all tests have similar properties.

The difference in performance is much larger when p = 1. Table 2 shows
that ta , tb, P D

a , and P D
b are grossly oversized, and both tests use least-squares-

detrended data to estimate ρ. The P D
a and P D

b have no power. On the other
hand, Pê, PMSB, Pa , and Pb are much better behaved. Importantly, these tests
either do not need a pooled estimate of ρ or they do so without linearly detrend-
ing ê. Moon et al. (2007) find that the MP tests have no local power against the
alternative of incidental trends. Our simulations suggest that this loss of power
arises as a result of detrending the data to construct ρ̂.

Assuming cross-section independence, Phillips and Ploberger (2002) proposed
a panel unit root test in the presence of incidental trends that maximizes average
power. It has some resemblance to the Sargan–Bhargava test. Although optimality
of the PMSB test is not shown here, the PMSB does appear to have good finite-
sample properties. The panel unit root null hypothesis can thus be tested without
having to estimate ρ.

Incidental parameters clearly create challenging problems for unit root testing
using panel data, especially for tests based on an estimate of the pooled autore-
gressive coefficient. The question arises as to whether alternative methods of de-
trending might help. In unreported simulations, the finite-sample size and power
of P D

a and P D
b under generalized least squares detrending are still unsatisfactory.

One way of resolving this problem is to avoid detrending altogether. This is the
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TABLE 1. Rejection rates when p = 0 in DGP

N T Pê PMSB Pa Pb P D
a P D

b t A
a t A

b

Model 1 (Size): F ∼ I(1),eit ∼ I(1)
20 20 0.210 0.004 0.118 0.085 0.099 0.103 0.145 0.105
20 50 0.073 0.017 0.116 0.077 0.072 0.071 0.101 0.066
20 100 0.057 0.020 0.108 0.074 0.063 0.063 0.101 0.063
50 20 0.278 0.007 0.098 0.080 0.129 0.130 0.170 0.147
50 50 0.074 0.022 0.100 0.078 0.078 0.077 0.084 0.058
50 100 0.059 0.031 0.098 0.076 0.067 0.064 0.085 0.064

100 20 0.400 0.007 0.114 0.099 0.163 0.162 0.192 0.178
100 50 0.067 0.020 0.101 0.083 0.082 0.081 0.076 0.059
100 100 0.058 0.034 0.089 0.074 0.070 0.069 0.072 0.058

Model 2 (Power): F ∼ I(0),eit ∼ I(0)
20 20 0.578 0.160 0.837 0.770 0.105 0.065 0.966 0.938
20 50 0.879 0.971 1.000 0.999 0.025 0.003 1.000 1.000
20 100 1.000 1.000 1.000 1.000 0.005 0.000 1.000 1.000
50 20 0.854 0.478 0.978 0.971 0.117 0.075 0.999 0.998
50 50 0.997 1.000 1.000 1.000 0.020 0.003 1.000 1.000
50 100 1.000 1.000 1.000 1.000 0.003 0.000 1.000 1.000

100 20 0.974 0.752 0.999 0.999 0.130 0.088 1.000 1.000
100 50 1.000 1.000 1.000 1.000 0.012 0.002 1.000 1.000
100 100 1.000 1.000 1.000 1.000 0.001 0.000 1.000 1.000

Model 3 (Power): F ∼ I(0),eit mixed I(0), I(1)
20 20 0.479 0.070 0.601 0.516 0.097 0.073 0.880 0.830
20 50 0.738 0.692 0.931 0.895 0.054 0.021 0.969 0.949
20 100 0.995 0.918 0.978 0.962 0.033 0.010 0.981 0.968
50 20 0.751 0.189 0.832 0.795 0.113 0.081 0.980 0.970
50 50 0.970 0.964 0.996 0.995 0.035 0.013 0.999 0.998
50 100 1.000 0.999 1.000 1.000 0.027 0.006 1.000 1.000

100 20 0.929 0.345 0.963 0.956 0.128 0.094 0.998 0.998
100 50 1.000 1.000 1.000 1.000 0.029 0.009 1.000 1.000
100 100 1.000 1.000 1.000 1.000 0.017 0.003 1.000 1.000

Model 4 (Power): F ∼ I(0),eit ∼ I(0)
20 20 0.506 0.122 0.752 0.679 0.108 0.074 0.818 0.734
20 50 0.784 0.897 0.984 0.976 0.031 0.009 0.987 0.981
20 100 0.996 0.993 0.998 0.998 0.014 0.003 0.999 0.998
50 20 0.776 0.376 0.918 0.895 0.122 0.088 0.933 0.912
50 50 0.959 0.961 0.985 0.981 0.037 0.016 0.988 0.982
50 100 1.000 0.997 0.998 0.997 0.030 0.012 0.998 0.997

100 20 0.925 0.592 0.966 0.962 0.142 0.106 0.968 0.960
100 50 0.994 0.992 0.996 0.995 0.037 0.021 0.997 0.995
100 100 1.000 0.999 1.000 0.999 0.033 0.015 1.000 1.000

Note: Pê,PMSB, Pa , Pb, P D
a ,and P D

b are tests based on PANIC residuals ê. The first four are defined in (5), (11),
(8), and (9). The tests P D

a and P D
b are constructed in the same way as ta and tb , but they estimate ρ+ from an

autoregression using ê with a constant; t A
a and t A

b are MP tests that do not demean the data.
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TABLE 2. Rejection rates when p = 1 in DGP

N T Pê PMSB Pa Pb P D
a P D

b tC
a tC

b

Model 1 (Size): F ∼ I(1),eit ∼ I(1)
20 20 0.367 0.003 0.077 0.056 0.627 0.661 0.931 0.932
20 50 0.079 0.016 0.095 0.067 0.272 0.274 0.366 0.346
20 100 0.063 0.021 0.098 0.062 0.139 0.135 0.152 0.139
50 20 0.582 0.004 0.077 0.063 0.868 0.887 0.998 0.998
50 50 0.069 0.018 0.076 0.058 0.435 0.435 0.588 0.566
50 100 0.054 0.023 0.077 0.058 0.203 0.204 0.238 0.227

100 20 0.790 0.012 0.092 0.085 0.971 0.977 1.000 1.000
100 50 0.068 0.017 0.080 0.068 0.627 0.632 0.833 0.818
100 100 0.062 0.030 0.070 0.058 0.295 0.296 0.368 0.354

Model 2 (Power): F ∼ I(0),eit ∼ I(0)
20 20 0.382 0.004 0.105 0.075 0.640 0.673 0.980 0.980
20 50 0.171 0.157 0.471 0.386 0.324 0.288 0.708 0.652
20 100 0.644 0.828 0.960 0.933 0.172 0.092 0.332 0.214
50 20 0.623 0.007 0.102 0.082 0.889 0.902 1.000 1.000
50 50 0.256 0.388 0.678 0.632 0.540 0.498 0.915 0.889
50 100 0.924 0.992 0.998 0.997 0.296 0.197 0.692 0.598

100 20 0.838 0.005 0.112 0.101 0.985 0.987 1.000 1.000
100 50 0.444 0.766 0.926 0.914 0.788 0.762 0.994 0.992
100 100 0.998 1.000 1.000 1.000 0.504 0.368 0.915 0.873

Model 3 (Power): F ∼ I(0),eit mixed I(0), I(1)

20 20 0.373 0.003 0.092 0.068 0.630 0.662 0.980 0.979
20 50 0.149 0.107 0.379 0.300 0.315 0.285 0.710 0.667
20 100 0.514 0.575 0.814 0.757 0.173 0.109 0.385 0.262
50 20 0.614 0.005 0.079 0.067 0.876 0.894 1.000 1.000
50 50 0.204 0.244 0.521 0.471 0.506 0.477 0.917 0.899
50 100 0.794 0.892 0.963 0.950 0.268 0.196 0.754 0.675

100 20 0.836 0.004 0.090 0.081 0.983 0.987 1.000 1.000
100 50 0.320 0.481 0.752 0.719 0.735 0.711 0.995 0.993
100 100 0.975 0.995 0.999 0.999 0.404 0.318 0.947 0.927

Model 4 (Power): F ∼ I(0),eit ∼ I(0)

20 20 0.367 0.006 0.114 0.085 0.656 0.686 0.939 0.939
20 50 0.143 0.117 0.390 0.314 0.299 0.274 0.380 0.324
20 100 0.506 0.639 0.844 0.796 0.149 0.094 0.148 0.087
50 20 0.610 0.010 0.122 0.102 0.885 0.898 0.998 0.997
50 50 0.198 0.265 0.528 0.478 0.476 0.449 0.608 0.563
50 100 0.747 0.846 0.903 0.891 0.239 0.183 0.245 0.182

100 20 0.823 0.016 0.156 0.144 0.975 0.979 1.000 1.000
100 50 0.332 0.559 0.762 0.737 0.696 0.676 0.824 0.796
100 100 0.936 0.943 0.959 0.955 0.388 0.313 0.407 0.322

Note: Pê,PMSB, Pa , Pb, P D
a ,and P D

b are tests based on PANIC residuals ê. The first four are defined in (5), (11),
(8), and (9). The tests P D

a and P D
b are constructed in the same way as ta and tb , but they estimate ρ+ from

an autoregression using ê with a constant and a linear trend. The tests tC
a and tC

b are MP tests that detrend the
observable data.
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key behind the drastic difference in the properties of Pa and Pb on the one hand,
and P D

a , P D
b , ta , and tb on the other. Still, the Pê, PMSB, Pa , and Pb tests require

that N or T not be too small, or else the test is oversized. Overall, tests of nonsta-
tionarity in panel data with incidental trends are quite unreliable without N and
T being reasonably large.

In a recent paper, Westerlund and Larsson (2009) provide a detailed analysis
of pooled PANIC test Pê. Their justification of the procedure is more rigorous
than what was given in Bai and Ng (2004); they also provide a small-sample bias
correction. It should be stressed that Pê is not the only way to construct a pooled
test in the PANIC framework. As we showed in this paper, Pa , Pb and PMSB
are also PANIC-based pooled tests. Our simulations show that all PANIC-based
pooled tests have good finite-sample properties.

6. CONCLUSION

In this paper, we (a) develop a PANIC-based estimate of the pooled autoregres-
sive coefficient and (b) develop a PMSB test that does not rely on the pooled au-
toregressive coefficient. Upon comparing their finite-sample properties, we find
that tests based on the autoregressive coefficient have no power against incidental
trends whenever linear detrending is performed before estimating the pooled au-
toregressive parameter. The PMSB test, the original PANIC pooled test of the p
values, and the new Pa and Pb tests all have satisfactory properties. None of these
tests require a projection ê on time trends.

It is worth emphasizing that tests that control cross-section correlation only per-
mit hypotheses concerning the idiosyncratic errors to be tested. To decide if the
observed data are stationary or not, we still need the PANIC procedure to see if
the factors are stationary. In fact, PANIC goes beyond unit root testing by show-
ing that the common stochastic trends are well defined and can be consistently
estimated even if eit are I(1) for all i . This is in contrast with a fixed N spurious
system in which common trends are hardly meaningful.

NOTES

1. A kernel estimate based on (êit, although consistent under the null hypothesis that all units are
nonstationary, is degenerate under the specific alternative that all units are stationary. Accordingly,
nuisance parameters are estimated using ε̂it instead of (êit.

2. Estimation of ω2
εi is discussed in Perron and Ng (1998).

3. As long as the data are demeaned and detrended, the projection matrix M1 must be used even if
the true DGP is given by Model A.
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APPENDIX

Assumptions A–E are assumed when analyzing the properties of PANIC residuals êit.

LEMMA 1. Let CN T = min[
√

N ,
√

T ]. The PANIC residuals êit satisfy, for p = −1,0,

1
N T 2

N

∑
i=1

T

∑
t=1

ê2
it = 1

N T 2

N

∑
i=1

T

∑
t=1

e2
it + Op(C−2

N T ).

Proof of Lemma 1. From Bai and Ng (2004, p. 1154), êit = eit − ei1 +λ′
i H−1Vt −

d ′
i F̂t where Vt = ∑t

s=2 vs , vt = f̂t − H ft , and di = λ̂i − H−1′λi . Rewrite the preceding
expression as êit = eit + Ait with Ait = −ei1 +λ′

i H−1Vt −d ′
i F̂t . Thus ê2

it = e2
it +2eit Ait +

A2
it. It follows that

1
N T 2

N

∑
i=1

T

∑
t=1

ê2
it = 1

N T 2

N

∑
i=1

T

∑
t=1

e2
it +2

1
N T 2

N

∑
i=1

T

∑
t=1

eit Ait

+ 1
N T 2

N

∑
i=1

T

∑
t=1

A2
it = I + I I + I I I . (A.1)

Bai and Ng (2004, p. 1163) show that 1
T 2 ∑T

t=1 A2
it = Op(C−2

N T ) for each i . Averaging over

i , it is still this order of magnitude. In fact, by the argument of Bai and Ng (2004),

I I I = 1
N T 2

N

∑
i=1

T

∑
t=1

A2
it ≤ 3

1
T

(
1
N

N

∑
i=1

e2
i1

)

+ 3

(
1

T 2

T

∑
t=1

‖Vt‖2

)(
1
N

N

∑
i=1

‖λi H−1‖2

)

+
(

1
N

N

∑
i=1

‖di ‖2

)
1

T 2

T

∑
t=1

‖F̂t‖2

= Op(T −1)+ Op(N−1)+ Op

([
min[N 2,T

]−1
)

= Op(C−2
N T ).

Next, consider I I (ignoring the factor of 2),

II = − 1
N T 2

N

∑
i=1

T

∑
t=1

eitei1 + 1
N T 2

N

∑
i=1

T

∑
t=1

eitλ
′
i H−1Vt − 1

N T 2

N

∑
i=1

T

∑
t=1

eitd
′
i F̂t = a +b + c.

The proof of a = Op(C−2
N T ) is easy and is omitted (one can even assume ei1 = 0).

Consider b.
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‖b‖ ≤
∥∥∥∥∥

1
N T 2

N

∑
i=1

T

∑
t=1

λi eit

∥∥∥∥∥
∥∥H−1Vt

∥∥

≤



 1
T 2

T

∑
t=1

∥∥∥∥∥N−1/2
N

∑
i=1

λi eit

∥∥∥∥∥

2



1/2

N−1/2

(
1

T 2

T

∑
t=1

∥∥H−1Vt
∥∥2
)1/2

.

By (A.4) of Bai and Ng (2004, p. 1157), N−1/2
(

1
T 2 ∑T

t=1 ‖H−1Vt‖2
)1/2

= Op(N−1) =
Op(C−2

N T ). The first expression is Op(1) because (N T )−1/2 ∑N
i=1 λi eit = Op(1). Thus

b = Op(C−2
N T ). Consider c:

‖c‖ ≤ 1√
T



 1
T

T

∑
t=1

[
1
N

N

∑
i=1

eitdi

]2



1/2(

1
T 2

T

∑
t=1

‖F̂t‖2

)1/2

= Op(T −1/2)



 1
T

T

∑
t=1

[
1
N

N

∑
i=1

eitdi

]2



1/2

.

Using equation (B.2) of Bai (2003), i.e.,

di = H
1
T

T

∑
s=1

fsεis + Op(C−2
N T ), (A.2)

and ignoring H for simplicity, we have

1
N

N

∑
i=1

eitdi = 1
N

N

∑
i=1

eit
1
T

T

∑
s=1

fsεis + T 1/2 Op(C−2
N T ),

noting that eit = T 1/2 Op(1). If we can show that for each t ,

E

(
1
N

N

∑
i=1

eit
1
T

T

∑
s=1

fsεis

)2

= O(T −1)+ O(N−1), (A.3)

then c = Op(T −1/2)[Op(T −1/2) + Op(N−1/2) + T 1/2 Op(C−2
N T )] = Op(C−2

N T ). But
the preceding expression is proved for the case of t = T subsequently (see the proof of
(A.7)); the argument is exactly the same for every t . Thus I I = Op(C−2

N T ), and the lemma
follows. n

LEMMA 2. If N/T 2 → 0, then the PANIC residuals êit satisfy, for p = −1,0,

1√
N T

N

∑
i=1

T

∑
t=1

êit−1(êit = 1√
N T

N

∑
i=1

T

∑
t=1

eit−1(eit + Op(
√

N/T )+ Op(C−1
N T ). n
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Proof of Lemma 2. Using the identity 1
T ∑T

t=2 êit−1(êit = 1
2T ê2

iT − 1
2T ê2

i1 −
1

2T ∑T
t=2((êit)

2 and the corresponding identity for 1
T ∑T

t=2 eit−1(eit, then Lemma 2
is a consequence of Lemma 3, which follows. n

LEMMA 3. If N/T 2 → 0, then the PANIC residuals êit satisfy, for p = −1,0,

(i) 1√
N T

∑N
i=1(ê2

i1 − e2
i1) = Op(

√
N/T ),

(ii) 1√
N T

∑N
i=1(ê2

iT − e2
iT) = Op(

√
N/T )+ Op(C−1

N T ),

(iii) 1√
N T

∑N
i=1 ∑T

t=2[((êit)
2 − ((eit)

2] = Op(
√

N/T )+ Op(C−1
N T ).

Proof of Lemma 3. Proof of (i). Because êi1 is defined to be zero, it follows that the

left-hand side of (i) is (
√

N/T )
(

1
N ∑N

i=1 e2
i1

)
= op(1) if

√
N/T → 0.

Proof of (ii). From êiT = eiT + AiT, it is sufficient to show that (a) 1√
N T

∑N
i=1 A2

iT =
Op(

√
N/T ) and that (b) 1√

N T
∑N

i=1 eiT AiT = Op(
√

N/T )+ Op

(
C−1

N T

)
. Using ‖VT ‖2/

T = Op(N−1) and di = Op(1/min[
√

T , N ]), it is easy to show that the expression in (a)
is Op(

√
N/T ). Consider (b).

1√
N T

N

∑
i=1

eiT AiT = −1√
N T

N

∑
i=1

eiTei1 + 1√
N T

N

∑
i=1

eiTλ′
i H−1VT − 1√

N T

N

∑
i=1

eiTd ′
i F̂T .

(A.4)

The first term on the right-hand side can be shown to be Op(T −1/2). Consider the second
term. Under ρi = 1, eiT = ∑T

t=1 εit,
∥∥∥∥∥

1√
N T

N

∑
i=1

eiTλ′
i H−1VT

∥∥∥∥∥ ≤ ‖VT ‖‖H−1‖√
T

∥∥∥∥∥
1√
N T

(
N

∑
i=1

T

∑
t=1

λi εit

)∥∥∥∥∥

= Op(1)
‖VT ‖√

T
= Op(C−1

N T )

(see Bai and Ng, 2004, p. 1157). For the last term of (A.4), from T −1/2 F̂T = Op(1), we
need to bound

1√
N T

N

∑
i=1

eiTdi =
(

N
T

)1/2
(

1
N

N

∑
i=1

eiTdi

)

. (A.5)

From di = Op(min[N ,
√

T ]−1), we have N−1 ∑N
i=1 eiTdi = Op(1). Thus (A.5) is op(1)

if N/T → 0. But N/T → 0 is not necessary. To see this, first use di in (A.2) to obtain

1
N

N

∑
i=1

eiTdi = 1
N

N

∑
i=1

eiT
1
T

T

∑
s=1

fsεis + Op(T 1/2)Op(C−2
N T ). (A.6)

We shall show

E

(
1
N

N

∑
i=1

eiT
1
T

T

∑
s=1

fsεis

)2

= O(T −1)+ O(N−1). (A.7)



PANEL UNIT ROOT TESTS 1107

From eiT = ∑T
t=1 εit, the left-hand side of (A.7) is

1
N 2

N

∑
i=1

N

∑
j=1

1
T 2

T

∑
s,k,t,h

E( fs fkεisεitεjkεjh). (A.8)

Consider i -= j . From cross-sectional independence and the independence of factors
with the idiosyncratic errors, E( fs fkεisεitεjkεjh) = E( fs fk)E(εisεit)E(εjkεjh). To see
the key idea, assume εit are serially uncorrelated; then E(εisεit) = E(ε2

it) for s = t and 0
otherwise. Similarly, E(εjkεjh) = E(ε2

jk) for h = k and 0 otherwise. From E(ε2
it) =

σ 2
i for all t , terms involving i -= j have an upper bound (assume E(ε2

it) ≤ σ 2
i under

heteroskedasticity)

1
N 2

N

∑
i -= j

σ 2
i σ 2

j
1

T 2

T

∑
s,k

|E( fs fk)| = O(T −1)

because T −1 ∑T
s,k |E( fs fk)| ≤ M under weak correlation for fs . If εit is serially correlated,

then the sum in (A.8) for i -= j is bounded by

1
N 2

N

∑
i -= j

(
1

T 2

T

∑
s,k

|E( fs fk)|
)(

max
s

T

∑
t=1

|E(εisεit)|
)(

max
k

T

∑
h=1

|E(εjkεjh)|
)

≤ 1
N 2

N

∑
i -= j

(
1
T

T

∑
s,k

|E( fs fk)|
)( ∞

∑
/=0

|γi (/)|
)( ∞

∑
/=0

|γj (/)|
)

,

where γi (/) is the autocovariance of εit at lag / and γj (/) is similarly defined. Replace σ 2
i

by ∑∞
/=0 |γi (/)| < ∞ (and similarly for σ 2

j ); the same conclusion holds.

Next consider the case of i = j . Because 1
T 2 ∑T

s,t,k,h E( fs fkεisεitεikεih) = O(1), we

have 1
N 2 ∑N

i=1
1

T 2 ∑T
s,t,k,h E( fs fkεisεitεikεih) = O(N−1), proving (A.7). Combining

(A.5)–(A.7),

1√
N T

N

∑
i=1

eiTdi =
(

N
T

)1/2 [
Op(T −1/2)+ Op(N−1/2)+ T 1/2 Op(C−2

N T )
]

= Op(
√

N/T )+ Op

(
C−1

N T

)
.

This proves (b). Combining (a) and (b) yields (ii).
Proof of (iii). From (êit = (eit −ait, where ait = λ′

i H−1′vt +d ′
i f̂t , we have

1√
N T

N

∑
i=1

T

∑
t=2

[((êit)
2 − ((eit)

2] = − 2√
N T

N

∑
i=1

T

∑
t=2

((eit)ait +
1√
N T

N

∑
i=1

T

∑
t=2

a2
it.

From Bai and Ng (2004, p. 1158), T −1 ∑T
t=2 a2

it = Op(C−2
N T ); thus the second term on the

right-hand side of the preceding expression is bounded by
√

N Op(C−2
N T ). Consider the
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first term

1√
N T

N

∑
i=1

T

∑
t=2

((eit)ait = 1√
N T

N

∑
i=1

T

∑
t=2

((eit)λ
′
i H−1′vt

+ 1√
N T

N

∑
i=1

T

∑
t=2

((eit)d
′
i f̂t = I + I I.

By the Cauchy–Schwartz inequality,

I ≤ ‖H−1‖
(

1
T

T

∑
t=2

∥∥∥∥∥N−1/2
N

∑
i=1

(eitλi

∥∥∥∥∥

)1/2(
1
T

T

∑
t=2

‖vt‖2

)1/2

= Op(1)Op(C−1
N T ).

For I I , it suffices to show that I I = op(1) when f̂t is replaced by ft . Now

∥∥∥∥∥
1√
N T

N

∑
i=1

T

∑
t=2

((eit)d
′
i ft

∥∥∥∥∥≤ T −1/2

(
N

∑
i=1

d2
i

)1/2


 1
N

N

∑
i=1

∥∥∥∥∥T −1/2
T

∑
t=2

(eit ft

∥∥∥∥∥

2



1/2

.

The preceding expression is T −1/2
(

∑N
i=1 d2

i

)1/2
Op(1) = Op(

√
N/T ), because

∑N
i=1 d2

i = Op(N/min(N 2,T )). Thus (iii) is equal to
√

N Op(C−2
N T ) + Op(C−1

N T ) +
Op(

√
N/T ) = Op(C−1

N T )+ Op(
√

N/T ). n

LEMMA 4. For p = 1, the PANIC residuals satisfy, with N ,T → ∞,

(i)
1

N T 2

N

∑
i=1

T

∑
t=1

ê2
it = 1

N T 2

N

∑
i=1

T

∑
t=1

(ẽit)
2 + Op(C−2

N T ),

(ii)
1√
N T

N

∑
i=1

T

∑
t=1

êit−1(êit = 1√
N T

N

∑
i=1

T

∑
t=1

ẽit−1(ẽit + Op(
√

N/T )+ Op(C−1
N T ),

where ẽit = eit − ei1 − eiT − ei1/(T −1)(t −1).

Proof of Lemma 4. This is an argument almost identical to that in the proof of
Lemmas 1 and 2. The details are omitted. Note that when p = 1, the PANIC residuals
êit are estimating ẽit; see Bai and Ng (2004). n

Let êτ
it denote the regression residual from regressing êit on a constant and a linear trend.

We define eτ
it similarly.

LEMMA 5. For p = 1, the PANIC residuals êτ
it satisfy,

(i)
1

N T 2

N

∑
i=1

T

∑
t=1

(êτ
it)

2 = 1
N T 2

N

∑
i=1

T

∑
t=1

(eτ
it)

2 + Op(C−2
N T ),

(ii)
1√
N T

N

∑
i=1

T

∑
t=1

êτ
it−1(êτ

it = 1√
N T

N

∑
i=1

T

∑
t=1

eτ
it−1(eτ

it + Op(
√

N/T )+ Op(C−1
N T ).

Proof of Lemma 5. Using the properties for V τ
t and F̂τ

t derived in Bai and Ng (2004),
the proof of this lemma is almost identical to that of Lemmas 1 and 2. The details are
omitted. n
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LEMMA 6. Suppose that Assumption C holds. Under ρi = 1 for all i , we have, as
N ,T → ∞,

(i) 1
N T 2 ∑N

i=1 ∑T
t=1 e2

it−1
p→ 1

2ω2
ε ,

(ii) with N/T → 0,
√

N
(

1
N T ∑N

i=1 ∑T
t=1 eit−1εit − λ̄N

)
d→N
(

0, 1
2φ4

ε

)
,

(iii) 1
N T 2 ∑N

i=1 ∑T
t=1

(
eτ

it−1

)2 p→ 1
15ω2

ε ,

(iv) with N/T → 0,
√

N
(

1
N T ∑N

i=1 ∑T
t=1 eτ

it−1εit + 1
2 σ̄ 2

N

)
d→N
(

0, 1
60φ4

ε

)
,

(v) 1
N T 2 ∑N

i=1 ∑T
t=1(ẽit)

2 p→ 1
6ω2

ε ,

where eτ
it is the demeaned and detrended version of eit and ẽit = eit − ei1 −

eiT − ei1/(T −1)(t − 1), λ̄N = 1
N ∑N

i=1 λεi , σ̄ 2
N = 1

N ∑N
i=1 σ 2

εi , and λεi , σ 2
εi , ω2

ε ,
and φ4

ε are all defined in Section 2.

Proof of Lemma 6. Parts (i) and (ii) are from Lemma A.2 of Moon and Perron
(2004). Parts (iii), (iv), and (v) can be proved using similar arguments as in Moon and
Perron (2004). These are all joint limits. To provide intuition and justification for the
parameters involved, we give a brief explanation of the preceding results using se-
quential argument. Consider (i). For each i , as T → ∞, 1

T 2 ∑T
t=2 e2

it−1
d→ω2

εi Ui , where

Ui = ∫ 1
0 Wi (r)2dr with EUi = 1

2 . Thus, for fixed N , 1
N ∑N

i=1
1

T 2 ∑T
t=2 e2

it−1
p→ 1

2 ω̄2
N ,

where ω̄2
N = 1

N ∑N
i=1 ω2

εi . Part (i) is obtained by letting N go to infinity. Consider (ii).

For each i , 1
T ∑T

t=2 eit−1(eit
d→ω2

εi Zi + λεi , where Zi = ∫ 1
0 Wi (r)dWi (r) and λεi is

one-sided long-run variance of εit = (eit (i.e.,λεi = [ω2
εi − σ 2

εi ]/2). Thus for fixed N ,
√

N
(

1
N T ∑N

i=1 ∑T
t=1 eit−1εit − λ̄N

)
d→ 1√

N
∑N

i=1 ω2
εi Zi . Because Zi are independent and

identically distributed (i.i.d.), zero mean, and var(Zi ) = 1
2 , we obtain (ii) by the central

limit theorem as N → ∞. Similar to (i), (iii) follows from 1
T 2 ∑T

t=2(eτ
it−1)2 d→ω2

εi U
τ
i ,

where U τ
i = ∫ 1

0 W τ (r)2dr with E(U τ
i ) = 1/15. For (iv), 1

T ∑T
t=2 eτ

it−1(eτ
it

d→ω2
εi Zτ

i +
λεi , where Zτ

i = ∫ 1
0 W τ (r)dW(r). From E(Zτ

i ) = − 1
2 , we have E(ω2

εi Zτ
i ) + λεi =

−σ 2
εi /2. Thus,

√
N
(

1
N T ∑N

i=1 ∑T
t=1 eτ

it−1εit + 1
2 σ̄ 2

N

)
d→ 1√

N
∑N

i=1 ω2
εi Zτ

i . Because

var(Zτ
i ) = 1

60 , (iv) is obtained by the central limit theorem when N → ∞. For (v),
1

T 2 ∑T
t=1(ẽit)

2 d→ω2
εi Vi with Vi = ∫ 1

0 B2
i (r)dr, where Bi is a Brownian bridge. Part (v)

follows from E(Vi ) = 1/6. The proofs of these results under joint limits are more involved;
the details are omitted because of similarity to the arguments of Moon and Perron (2004).
Note that joint limits in (iii) and (iv) require N/T → 0. Also see the detailed proof for the
joint limit in Lemma 8. n

Proof of Theorem 1. For p = −1,0, Lemmas 1 and 2 show that pooling êit is asymp-
totically the same as pooling the true errors eit. Let ρ+ (resp. ρ̂+) be the bias-corrected
estimator based on the true idiosyncratic error matrix e and λ̄N (resp. ê and the estimated
λ̄N ). Under the null of ρi = 1 for all i , we have

√
N T (ρ+ −1) =

√
N T

tr
(

e′
−1(e

)
− N T λ̄N

tr(e′
−1e−1)

=
√

N
[
tr
(

1
N T e′

−1(e
)

− λ̄N

]

1
N T 2 tr(e′

−1e−1)
. (A.9)
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By Lemma 6(i) and (ii), (A.9) converges in distribution to N
(

0,
2φ4

ε
ω4

ε

)
as N ,T → ∞ with

N/T → 0. This limiting distribution does not change when λ̄N is replaced by its estimate
λ̂N because

√
N (λ̂N − λ̄N ) = op(1); see Moon and Perron (2004). By Lemmas 1 and 2

the limiting distribution continues to hold when e is replaced by ê. That is,
√

N T (ρ̂+ −1)
d→N
(

0,
2φ4

ε
ω2

ε

)
. Thus, Pa =

√
N T (ρ̂+ − 1)/

√
2φ̂4

ε /ω̂4
ε

d→N (0,1), as N ,T → ∞ with

N/T → 0.
For the Pb test, multiply equation (A.9) on each side by [(1/N T 2)tr(e′

−1e−1)]1/2,

whose limit is (ωε/2)1/2 by part (i) of Lemma 6. We obtain

√
N T (ρ+ −1)

(
1

N T 2 tr(e′
−1e−1)

)1/2

=
√

N
[

tr
(

1
N T

e′
−1(e

)
− λ̄N

](
1

N T 2 tr(e′
−1e−1)

)−1/2
,

which converges to N (0,φ4
ε /ω2

ε ), as N ,T → ∞ with N/T → ∞. It follows that Pb =
√

N T (ρ̂+ −1)
(
(1/N T 2)tr(ê′

−1ê−1)
)1/2√

ω̂2
ε/φ̂4

ε
d→N (0,1).

For p = 1, recall that êit estimates ẽit = eit − ei1 − eiT − ei1/(T −1)(t − 1). Let ẽ be
the matrix consisting of elements ẽit. Note that ẽiT ≡ 0 for all i . And ∑T

t=1 ẽit−1(ẽit =
1
2 ẽ2

iT − 1
2 ∑T

t=1((ẽit)
2 = − 1

2 ∑T
t=1((ẽit)

2. But (ẽit = εit − ε̄i . Thus 1
T ∑T

t=1 ẽit−1(ẽit =
− 1

2T ∑T
t=1(εit − ε̄i )

2 p→ − 1
2σ 2

εi . Thus 1
N T ∑N

i=1 ∑T
t=1 ẽit−1(ẽit

p→ − 1
2σ 2

ε . Together with
Lemma 6(v),

1
N T tr( ẽ′

−1(ẽ )
1

N T 2 tr( ẽ′
−1ẽ−1)

p→−σ 2
ε /2

ω2
ε/6

= −3(σ 2
ε /ω2

ε ).

For given N , the preceding limit is −3σ̄ 2
N /ω̄2

N , where σ̄ 2
N = 1

N ∑N
i=1 σ 2

εi and ω̄2
N =

1
N ∑N

i=1 ω2
εi . Again, let ρ+ denote the bias-corrected estimator based on ẽ and the true

parameters (σ̄ 2
N , ω̄2

N ), i.e.,

ρ+ =
tr( ẽ′

−1ẽ )

tr( ẽ′
−1ẽ−1)

+ 3
T

σ̄ 2
N

ω̄2
N

.

Then

T (ρ+ −1) =
1

N T tr( ẽ′
−1(ẽ )

(1/N T 2)tr( ẽ′
−1ẽ−1)

+3
σ̄ 2

N

ω̄2
N

= A
B

+ σ̄ 2
N /2

ω̄2
N /6

,

where A = 1
N T tr(ẽ′

−1(ẽ) and B = (1/N T 2)tr(ẽ′
−1ẽ−1). It follows that

√
N T (ρ+ −1) = 1

B

√
N
(

A + σ̄ 2
N /2
)

+ 3
B

σ̄ 2
N

ω̄2
N

√
N
(

B − ω̄2
N /6
)

.

Note

√
N (A + σ̄ 2

N /2) = −1
2

1√
N T

N

∑
i=1

T

∑
t=1

[(εit − ε̄i )
2 −σ 2

εi ] = Op

(
1√
T

)
.
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By Lemma 9, as N ,T → ∞ with N/T → 0,

√
N (B − ω̄2

N /6) =
√

N

[
1

N T 2

N

∑
i=1

T

∑
t=1

(ẽit)
2 − ω̄2

N /6

]
d→N (0,φ4

ε /45).

From B
p→ω2

ε/6 by Lemma 6(v), we have

√
N T (ρ+ −1)

d→18
σ 2
ε

ω4
ε

N

(

0,
φ4

ε

45

)

= N

(

0,
36
5

φ4
ε σ 4

ε

ω8
ε

)

.

By Lemma 4, the result continues to hold when ẽit is replaced by êit and (σ̄ 2
N , ω̄2

N ) is
replaced by (σ̂ 2

ε , ω̂2
ε ) because

√
N (σ̂ 2

ε − σ̄ 2
N ) = op(1) and

√
N (ω̂2

ε − ω̄2
N ) = op(1); see

Moon and Perron (2004). That is,

√
N T (ρ̂+ −1)

d→N

(

0,
36
5

φ4
ε σ 4

ε

ω8
ε

)

.

Thus

Pa =
√

N T (ρ̂+ −1)

/√
36
5

φ̂4
ε σ̂ 4

ε

ω̂8
ε

d→N (0,1).

For Pb, using [(1/N T 2)tr(ê′
−1ê−1]1/2 p→(ω2

ε/6)1/2, we have

√
N T (ρ̂+ −1)

[
1

N T 2 tr(ê′
−1ê−1)

]1/2
d→N

(

0,
6
5

φ4
ε σ 4

ε

ω6
ε

)

.

Normalizing leads to Pb
d→N (0,1). This completes the proof of Theorem 1. n

Remark. If demeaning and detrending are performed when p = 1, the following analysis
will be applicable. The bias-corrected estimator is

√
N T (ρ+ −1) =

√
N T

tr
(

eτ ′
−1(eτ

)
+ N T σ̄ 2

N /2

tr
(

eτ ′
−1eτ

−1

) =
√

N
(

1
N T tr(eτ ′

−1(eτ )+ σ̄ 2
N /2
)

1
N T 2 tr

(
eτ ′
−1eτ

−1

) .

By Lemma 6(iii) and (iv), the preceding expression converges to N
(

0,
15φ4

ε
4ω4

ε

)
, as N ,T →

∞ with N/T → 0. Replacing eτ by êτ and replacing σ̄ 2
N by σ̂ 2

N do not change the limit

because of
√

N
(
σ̂ 2

N − σ̄ 2
N

)
= op(1); see Moon and Perron (2004) and Lemma 5. This

implies

√
N T (ρ̂+ −1)

d→N

(

0,
15φ4

ε

4ω4
ε

)

as N ,T → ∞ with N/T → 0. Thus, Pa =
√

N T (ρ̂+ − 1)
/√

15φ̂4
ε

4ω̂4
ε

d→N (0,1). From the

limit for
√

N T (ρ̂+− 1) and Lemma 6(iii),
√

N T (ρ̂+ − 1)
(
(1/N T 2)tr(êτ ′

−1êτ
−1)
)1/2 d→

N
(
0,

φ4
ε

4ω2
ε

)
. It follows that Pb =

√
N T (ρ̂+ − 1)

(
(1/N T 2)tr(êτ ′

−1êτ
−1)
)1/2√

4ω̂2
ε/φ̂4

ε
d→

N (0,1).
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LEMMA 7. The PANIC residuals satisfy, as N ,T → ∞ with N/T 2 → 0,

(i) for p = −1,0,

1√
N T 2

N

∑
i=1

T

∑
t=1

(êit)
2 = 1√

N T 2

N

∑
i=1

T

∑
t=1

e2
it +op(1);

(ii) for p = 1,

1√
N T 2

N

∑
i=1

T

∑
t=1

(êit)
2 = 1√

N T 2

N

∑
i=1

T

∑
t=1

(ẽit)
2 +op(1),

where ẽit = eit − (eiT − ei1)(t −1)/(T −1).

Proof of Lemma 7. Proof of (i). This follows from Lemma 1 upon multiplying by
N 1/2 on each side of the equation and noting

√
N Op(C−2

N T ) = op(1) if N/T 2 → 0.
Proof of (ii). This follows from Lemma 4(i) upon multiplying by

√
N on each side and

noting
√

N Op(C−2
N T ) = op(1). n

LEMMA 8. Under Assumption C and ρi = 1 for all i , as N ,T → ∞ with N/T → 0,

√
N

[
1

N T 2

N

∑
i=1

T

∑
t=1

e2
it − ω̄2

N

/
2

]
d→N (0,φ4

ε /3),

where ω̄2
N = 1

N ∑N
i=1 ω2

εi and φ4
ε = limN→∞ 1

N ∑N
i=1 ω4

εi .

Proof of Lemma 8. We first give a sequential argument, which provides a useful
intuition. For each i , 1

T 2 ∑T
t=2 e2

it
d→ω2

εi Ui , where Ui = ∫ 1
0 Wi (r)2dr with E

∫ 1
0 Wi (r)2 dr =

1
2 and var(Ui ) = 1

3 . Thus, the sequential limit theorem implies, for fixed N ,

√
N

[
1

N T 2

N

∑
i=1

T

∑
t=1

e2
it − ω̄2

N /2

]
d→ 1√

N

N

∑
i=1

ω2
εi

(
Ui − 1

2

)
, as T → ∞.

Because Ui are i.i.d. with mean 1
2 and variance 1

3 , from the central limit theorem over the
cross sections, the right-hand side of the preceding expression converges in distribution to
N (0,φ4

ε /3), as N → ∞.
The argument for a joint limiting theory is more involved. From the Beveridge–Nelson

decomposition,

εit = di (1)vit + ε∗
it−1 − ε∗

it,

where ε∗
it = ∑∞

j=0 d∗
ijvit− j with d∗

ij = ∑∞
k= j+1 dik. The assumption on di (L) ensures that

E[(ε∗
it)

2] is bounded. Let Sit = ∑t
s=1 vis. The cumulative sum of the preceding expression

gives

eit = di (1)Sit + ε∗
i0 − ε∗

it.
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Taking the square on each side and then summing over i and t ,

1√
N T 2

N

∑
i=1

T

∑
t=1

e2
it = 1√

N T 2

N

∑
i=1

di (1)2
T

∑
t=1

S2
it +

1√
N T 2

N

∑
i=1

T

∑
t=1

di (1)Sit(ε
∗
i0 − ε∗

it)

+
√

N
T

1
N

N

∑
i=1

1
T

T

∑
t=1

(ε∗
i0 − ε∗

it)
2.

The last term is op(1) if
√

N/T → 0. By the Cauchy–Schwarz inequality, the middle term
on the right-hand side is bounded by

(N/T )1/2 1
N

N

∑
i=1



|di (1)|
(

1
T 2

T

∑
t=1

S2
it

)1/2(
1
T

T

∑
t=1

(ε∗
i0 − ε∗

it)
2

)1/2


= (N/T )1/2 Op(1),

which is op(1) if N/T → 0. Thus, if N/T → 0, we have

1√
N T 2

N

∑
i=1

T

∑
t=1

e2
it = 1√

N T 2

N

∑
i=1

di (1)2
T

∑
t=1

S2
it +op(1).

Let YiT = 1
T 2 ∑T

t=1(S2
it − ES2

it), where ∑T
t=1 ES2

it = 1
2 (T + 1)T . Notice that ω2

εi = di (1)2.
We have

1√
N

N

∑
i=1

[
1

T 2

T

∑
t=1

e2
it − ω̄2

N /2

]

= 1√
N

N

∑
i=1

ω2
εi YiT +

√
N

2T
ω̄2

N +op(1).

The variables YiT are i.i.d. over i , having zero mean and finite variance. Furthermore,
YiT

d→Ui − 1
2 . Direct calculation shows that EY2

iT → 1
3 , which is equal to E(Ui − 1

2 )2.
This implies that YiT is uniformly integrable over T . The rest of the conditions of
Theorem 3 of Phillips and Moon (1999) are satisfied under our assumptions. Thus by
their Theorem 3, as N ,T → ∞ jointly,

1√
N

N

∑
i=1

ω2
εi YiT

d→N (0,φ4
ε /3).

This completes the proof of Lemma 8. n

LEMMA 9. Under Assumption C and ρi = 1 for all i , and as N ,T → ∞ with
N/T → 0, we have

√
N

[
1

N T 2

N

∑
i=1

T

∑
t=1

(ẽit)
2 − ω̄2

N /6

]
d→N (0,φ4

ε /45),

where ẽit = eit − (eiT − ei1)(t −1)/(T −1) and ω̄2
N and φ4

ε are defined in Lemma 8. n

Proof of Lemma 9. Again, we first consider a sequential argument. For each fixed i ,
1

T 2 ∑T
t=2 ẽ2

it
d→ω2

εi Vi , as T → ∞, where Vi = ∫ 1
0 Bi (r)2dr with Bi a Brownian bridge, and

so EVi = 1/6 and var(Vi ) = 1/45. Thus, as T → ∞ with fixed N ,

√
N

[
1

N T 2

N

∑
i=1

T

∑
t=1

ẽ2
it − ω̄2

N /6

]
d→ 1√

N

N

∑
i=1

ω2
εi

(
Vi − 1

6

)
.
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Letting N go to infinity and by the central limit theorem over i , we obtain the limiting
distribution as stated in the lemma. The proof for the joint limit follows the same argument
as in Lemma 8. The details are omitted. n

Proof of Theorem 2. Consider the case for p = −1,0. By Lemma 7(i),

1√
N

N

∑
i=1

[
1

T 2

T

∑
t=1

(êit)
2 − ω̂2

ε/2

]

= 1√
N

N

∑
i=1

[(
1

T 2

T

∑
t=1

e2
it

)

− ω̄2
N /2

]

−
√

N (ω̂2
ε − ω̄2

N )/2+op(1).

By Lemma 8, the first term on the right-hand side converges in distribution to N (0,φ4
ε /3)

jointly as N ,T → ∞ with N/T → 0. In addition,
√

N (ω̂2 − ω̄2
N ) = op(1), if N/T → 0

(see Moon and Perron, 2004). It follows that

PMSB =
1√
N

∑N
i=1

[
1

T 2 ∑T
t=1(êit)

2 − ω̂2
ε/2
]

√
φ̂4

ε /3

d→N (0,1).

Next consider p = 1. By Lemma 7(ii),

1√
N

N

∑
i=1

[
1

T 2

T

∑
t=1

(êit)
2 − ω̂2

ε/6

]

= 1√
N

N

∑
i=1

[
1

T 2

T

∑
t=1

(ẽit)
2 − ω̄2

N /6

]

−
√

N (ω̂2
ε − ω̄2

N )/6+op(1).

By Lemma 9, the first term on the right-hand side converges in distribution to N (0,φ4
ε /45)

jointly as N ,T → ∞ with N/T → 0. The second term,
√

N (ω̂2
ε − ω̄2

N ), is again op(1)
with N/T → 0. It follows that

PMSB =
1√
N

∑N
i=1

[
1

T 2 ∑T
t=1(êit)

2 − ω̂2
ε/6
]

√
φ̂4

ε /45

d→N (0,1),

as N ,T → ∞ with N/T → 0. This completes the proof of Theorem 2. n


