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Figure 1: Rationalization of large-scale architectural freeform surfaces with planar, single-, and double-curved panels. Our algorithm
computes a paneling solution that meets prescribed thresholds on positional and normal continuity, while minimizing total production cost.
Reuse of molds (left) and predominant use of simple panels (right) are important drivers of the optimization. (Left: Zaha Hadid Architects,
Lilium Tower, Warsaw. Right: Zaha Hadid Architects, National Holding Headquarters, Abu Dhabi.)

Abstract

The emergence of large-scale freeform shapes in architecture poses
big challenges to the fabrication of such structures. A key problem
is the approximation of the design surface by a union of patches, so-
called panels, that can be manufactured with a selected technology
at reasonable cost, while meeting the design intent and achieving
the desired aesthetic quality of panel layout and surface smooth-
ness. The production of curved panels is mostly based on molds.
Since the cost of mold fabrication often dominates the panel cost,
there is strong incentive to use the same mold for multiple panels.
We cast the major practical requirements for architectural surface
paneling, including mold reuse, into a global optimization frame-
work that interleaves discrete and continuous optimization steps
to minimize production cost while meeting user-specified quality
constraints. The search space for optimization is mainly generated
through controlled deviation from the design surface and tolerances
on positional and normal continuity between neighboring panels. A
novel 6-dimensional metric space allows us to quickly compute ap-
proximate inter-panel distances, which dramatically improves the
performance of the optimization and enables the handling of com-
plex arrangements with thousands of panels. The practical rele-
vance of our system is demonstrated by paneling solutions for real,
cutting-edge architectural freeform design projects.

Keywords: architectural geometry, freeform design, rationaliza-
tion, geometric optimization

1 Introduction

Freeform shapes play an increasingly important role in contempo-
rary architecture. With the emergence of large-scale architectural
freeform surfaces the essential question arises of how to proceed
from a geometrically complex design towards a feasible and afford-
able way of production. This fundamental problem, in the architec-
tural community referred to as rationalization, is largely related to
the issue of paneling, i.e., the segmentation of a shape into simpler
surface patches, so-called panels, that can be fabricated at reason-
able cost with a selected manufacturing process (see Figure 1). The
paneling problem can arise both for the exterior and interior skin of
a building, and plays a central role in the design specification phase
of any architectural project involving freeform geometry.

Recent technological advances enable the production of single- and
double-curved panels that allow a faithful approximation of curved
surfaces. While planar panels are always the most cost-effective,
the progression towards the more expensive general freeform pan-
els depends on the panel material and manufacturing process. Most
commonly, curved panels are produced using molds with the cost
of mold fabrication often dominating the panel cost (see Figure 9).
There is thus a strong incentive to reuse the same mold for the pro-
duction of multiple panels to reduce the overall cost.

Our goal is to find a paneling solution for a given freeform de-
sign that achieves prescribed quality requirements, while minimiz-
ing production cost and respecting application-specific constraints.
The quality of the paneling is mainly determined by the geometric
closeness to the input surface, the positional and normal continu-
ity between neighboring panels, and the fairness of corresponding
panel boundary curves. The cost mostly depends on the size and
number of panels, the complexity of the panel geometry, and the
degree of reuse of molds that need to be custom-built to fabricate
the panels. A key objective of our work is to solve instances of
the paneling problem on large-scale architectural freeform designs
that often consist of thousands of panels. Due to the high complex-
ity and global coupling of optimization objectives and constraints,
manual layout of panels for these freeform surfaces is infeasible,
mandating the use of advanced computational tools.



1.1 Contributions

We introduce a computational approach to freeform surface panel-
ing. As our main contributions, we

• identify the key aspects of the paneling problem that are
amenable to computation and derive a mathematical frame-
work that captures the essential design goals,

• present an algorithmic solution based on a novel global opti-
mization method that alternates between discrete and contin-
uous optimization steps to improve the quality of the paneling
while reducing cost through mold reuse,

• introduce a novel 6-dimensional metric space to allow fast
computation of approximate inter-panel distances, which dra-
matically improves the performance of the optimization and
enables the handling of complex arrangements with thousands
of panels, and

• demonstrate the practical relevance of our system by comput-
ing paneling solutions for real, cutting-edge designs that cur-
rently cannot be realized at the desired aesthetic quality.

1.2 Related Work

Early contributions to the field of freeform architecture come from
research at Gehry Technologies (see e.g. [Shelden 2002]). These
are mostly dedicated to developable or nearly developable surfaces,
as a result of the specific design process that is based on digital
reconstruction of models made from material that assumes (nearly)
developable shapes.

Research on freeform architecture is promoted by the Smart Geom-
etry group (www.smartgeometry.com), whose interest so far mostly
focussed on parametric design tools. These can be helpful for shape
generation processes that have panel properties built into them.
However, such a forward approach makes it very difficult to achieve
the desired shapes and obtain a satisfactory paneling solution for
sufficiently complex geometries.

Most previous work on the paneling problem deals with planar
panels. Initial research in this direction dealt with special sur-
face classes [Glymph et al. 2002]. Covering general freeform sur-
faces with planar quad panels could be approached with methods
of discrete differential geometry [Bobenko and Suris 2009] and
led to new ways of supporting beam layout and the related com-
putation of multi-layer structures [Liu et al. 2006; Pottmann et al.
2007]. More recently, this approach was extended to the cover-
ing of freeform surfaces by single-curved panels arranged along
surfaces strips [Pottmann et al. 2008b]. Additional results in this
direction, e.g., hexagonal meshes with planar faces, have been pre-
sented at “Advances in Architectural Geometry” [Pottmann et al.
2008a]. The idea of optimizing for repeated elements by altering
the vertex positions of a given mesh is explored by Fu et al. [2010]
in the context of quad meshes and by Singh and Schaefer [2010] in
the context of triangle meshes, in order to create a set of reusable
pre-fabricated tiles.

Our approach bears some similarity to variational methods for ap-
proximating a surface with simple geometric primitives. Originally
introduced by Cohen-Steiner et al. [2004] for surface approxima-
tion by planes, various extensions have been proposed for addi-
tional surface types, e.g., spheres and cylinders [Wu and Kobbelt
2005], quadrics [Yan et al. 2006], or developable surfaces [Julius
et al. 2005]. Recently, an optimization has been proposed to si-
multaneously partition the input surface, as well as determine the
types and number of shape proxies required [Li et al. 2009]. These

Figure 2: Projects involving double-curved panels where a sepa-
rate mold has been built for each panel. These examples illustrate
the importance of the curve network and the challenges in produc-
ing architectural freeform structures. (Left: Peter Cook and Colin
Fournier, Kunsthaus, Graz. Right: Zaha Hadid Architects, Hunger-
burgbahn, Innsbruck.)

methods optimize for a surface segmentation to reduce the approx-
imation error. In our setting, the segmentation is part of the design
specification and we optimize for position and tangent continuity
across panel boundaries, allowing systematic deviations from the
reference surface to improve the paneling quality and reduce cost.
Enabling mold reuse and aesthetic control, which are key require-
ments of architectural rationalization, necessitates a substantially
different approach both in the underlying formulation of the opti-
mization as well as its implementation. Similarly, state-of-the-art
methods in surface fitting and local registration (see e.g. [Varady
and Martin 2002; Shamir 2008]), while an integral component of
our system, are insufficient to solve large-scale freeform paneling
problems.

In shape analysis, the problems of symmetry detection [Mitra et al.
2006; Podolak et al. 2006] and regularity detection [Pauly et al.
2008] involve identification and extraction of repeated elements,
exact and approximate, in 3D geometry. Subsequently, detected
repetitions can be made exact by symmetrization using subtle mod-
ifications of the underlying meshing structure [Mitra et al. 2007;
Golovinskiy et al. 2009] thus deforming a surface towards an exact
symmetric configuration. These methods, designed to enhance de-
tected symmetries, are unsuited for handling architectural freeform
designs where large repeated sections are exceptions rather than the
norm. Our optimization has a similar symmetrizing effect in en-
abling trading approximation error for a stronger degree of mold
reuse, leading to significant savings in terms of manufacturing cost.

2 Problem Specification

In this section we introduce a specification of the paneling problem
and the corresponding terminology common in architectural design
(see Figure 3). The specification is the result of extensive consul-
tations with architects and our experience with real-world freeform
design projects, some of which we highlight in Section 4.

2.1 Terminology

Panels and molds. Let F be the given input freeform surface
describing the shape of the design. Our goal is to find a collection
P = {P1, . . . , Pn} of panels Pi, such that their union approxi-
mates F . The quality of the approximation strongly depends on
the position and tangent continuity across panel boundaries: Diver-
gence quantifies the spatial gap between adjacent panels, while the
kink angle measures the jump in normal vectors across the panel
intersection curves.
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Figure 3: Terminology and variables used in our algorithm. The reference surface F and the initial curve network C are given as part of
the design specification. The optimization solves for the mold depotM, the panel-mold assignment function A, the shape parameters of the
molds, the alignment transformations Ti, and the curve network samples ck.

Curved panels are commonly produced using a manufacturing
mold Mk. We call the collection M = {M1, . . . , Mm} with
m ≤ n the mold depot. To specify which mold is used to pro-
duce which panel(s), we define a panel-mold assignment function
A : [1, n]→ [1, m] that assigns to each panel index the correspond-
ing mold index. The arrangement of panels in world coordinates is
established by rigid transformations Ti that align each panel Pi to
the reference surface F . Panels produced from the same mold are
sub-patches of the mold surface and need not be congruent.

Let c(Mk) be the fabrication cost of mold Mk and c(Mk, Pi) the
cost of producing panel Pi using mold Mk (see also Figure 9). The
total cost of panel production can then be written as

cost(F,P,M, A) =

m
∑

k=1

c(Mk) +

n
∑

i=1

c(MA(i), Pi). (1)

Ideally, the same mold will be used for the fabrication of multiple
panels to reduce cost. The choice of panel types depends on the de-
sired material and on the available manufacturing technology. Ma-
terials may be transparent or opaque, and include glass, glass-fibre
reinforced concrete or gypsum, various types of metal, and wood.

Currently we support five panel types: planes, cylinders,
paraboloids, torus patches, and general cubic patches. Planar pan-
els are easiest to produce, but result in a faceted appearance when
approximating curved freeform surfaces, which may not satisfy the
aesthetic criteria of the design. A simple class of curved panels
are cylinders, a special case of single-curved (developable) pan-
els. Naturally, such panels can lead to a smooth appearance only if
the given reference surface exhibits one low principal curvature.
General freeform surfaces often require double-curved panels to
achieve the desired tolerances in fitting error, divergence, and kink
angles. We consider three instances of such panels: paraboloids,
torus patches, and cubic patches. The former two carry families of
congruent profiles (parabolae and circles, respectively), which typ-
ically simplifies mold production. Cubic panels are most expensive
to manufacture, but offer the highest flexibility and approximation
power. Thus a small number of such molds are often indispensable
to achieve a reasonable quality-cost tradeoff.

Curve Network. The intersection curves between adjacent pan-
els are essential for the visual appearance of many designs (see
Figure 2) and typically affect the structural integrity of the build-
ing, as they often directly relate to the underlying support struc-
ture. An initial layout of these curves is usually provided by the
architect as an integral part of the design. While small deviations
to improve the paneling quality are typically acceptable, the final

solution should stay faithful to the initial curve layout and repro-
duce the given pattern as well as possible by the intersection lines
of adjacent panels. Our paneling algorithm supports arbitrary curve
network topology and is not restricted to predefined patterns. The
collection of all panel boundary curves forms the curve network that
we denote with C. Projecting C onto the input freeform surface F
yields a partitioning of F into a collection S = {s1, . . . , sn} of
segments si. The panel Pi associated with segment si can be cre-
ated by trimming the aligned mold surface M∗

i := Ti(MA(i)). The
trim curves are obtained by projecting the network curves associ-
ated with segment si onto M∗

i .

2.2 The Paneling Problem

We formulate the paneling problem as follows: Approximate a
given freeform surface by a collection of panels of preferred types
such that the total production cost is minimized, while the panel-
ing respects pre-defined thresholds on divergence and kink angle
between adjacent panels, and reproduces the initial curve network
as well as possible. A closer look at this specification reveals that
any solution of the paneling problem has to address the following
central aspects:

• Mold depot: determine the number and types of molds that
should be fabricated.

• Assignments: find the optimal assignment function to estab-
lish which panel is best produced by which mold.

• Registration: compute the optimal shape parameters for each
mold and the optimal alignment of each panel such that the
reference surface is faithfully approximated, thresholds on
kink angles and divergence are met, and the panel intersec-
tions curves respect the design intent.

Mold depot and assignment function determine the total cost of fab-
rication, while registration affects the quality of the rationalization.
Minimizing fabrication cost calls for a maximum amount of mold
reuse and the wider use of panels that are geometrically simple and
thus cheaper to manufacture (see Equation 1). On the other hand,
achieving the design constraints on the paneling quality pushes the
solution towards more complex panel shapes with less potential for
mold reuse.

The high intricacy of the paneling problem arises both from the
large scale of typical projects (1k – 10k panels) and the tight global
coupling of objectives. Neighboring panels are strongly linked lo-
cally through kink angle and divergence measures, but also subject
to a highly non-local coupling through the assignment function that
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Figure 4: Our algorithm allows controlling the amount of deviation
from the reference surface, shown here for the example of the Lilium
tower. Larger deviations enable a more cost-effective solution using
cheaper panels, while still satisfying the thresholds on kink angle
and divergence.

facilitates mold reuse. The cost-quality tradeoffs involved in using
different mold types add additional complexity: It is obvious that
we want to use as many cheap, simple molds as possible. However,
adding one expensive mold might save us from having to add many
cheap molds whose total cost might be higher. Also, using a com-
plex mold at certain places may enable the use of simpler panels in
its surroundings.

3 Paneling Algorithm

A key design decision in our paneling algorithm is to represent the
curve network explicitly as a set of polygonal curves, rather than
computing the boundary curves from the intersection of neighbor-
ing panels (Figure 3). By integrating the corresponding curve ver-
tices ck as free variables in our system, we gain several important
advantages. In particular, we

• avoid numerical instabilities when explicitly computing inter-
sections of neighboring, nearly tangent-continuous patches,

• simplify the specification of surface fitting and continuity con-
straints across neighboring panels (see Section 3.1),

• achieve better quality at lower cost by allowing the curves to
move away from the reference surface as part of the optimiza-
tion (see Figure 4), and

• provide essential means of control for the designer, who can
explicitly specify where neighboring panels should intersect.

An important aspect of the paneling problem is the need to simulta-
neously solve for both discrete and continuous variables. The dis-
crete variables are the number and type of molds constituting the
mold depot M, and the panel-mold assignment function A. The
continuous variables are the shape parameters of the molds, the
transformations Ti that align mold MA(i) to segment si, and the
positions of the curve network samples ck.

Given a mold depot M and assignments A, we use a continuous
nonlinear least-squares optimization (Section 3.1) to globally im-
prove the curve network and mold alignments. Such a least-squares
optimization alone, however, does not ensure that the user-specified
thresholds on kink angles and divergence are met, nor can it be used
to determine a mold depot or assignments. The core challenge and
main contribution of our algorithm is to find a mold depot and an as-

signment function that minimize cost and at the same time meet the
specified thresholds. Minimizing cost in geometric terms means ap-
proximating the design with as many simple and repetitive elements
as possible. In Section 3.2 we show how this difficult objective can
be mapped to a generalized set cover problem, a classical problem
in computer science. We present an efficient approximation algo-
rithm that on its own provides a solution to the paneling problem.
Due to the exponential complexity of possible mold-panel assign-
ments this algorithm can only employ local registrations and there-
fore neither supports globally coupled continuous registration nor
optimization of the curve network to allow deviations from the ref-
erence surface. Since the algorithm described in Section 3.2 enables
solving for all the discrete variables we call it Discrete Optimization
in contrast to the global Continuous Optimization of Section 3.1. To
combine the strengths of the discrete and continuous optimization
we present an iterative scheme in Section 3.3 to interleave the two
to obtain a powerful global paneling algorithm. We demonstrate
in Figure 8 how this interleaved iteration significantly improves the
paneling compared to only applying the algorithm described in 3.2.

3.1 Continuous Optimization Step

The continuous step aims at reducing the deviation to the reference
surface, the divergence, and the kink angles by optimizing the con-
tinuous variables, i.e., the shape parameters of the molds, the rigid
alignments of mold surfaces to segments, and the positions of the
curve network samples. During this optimization, the panel-mold
assignments are kept fixed.

A mold surface Mk is specified in a canonical coordinate system as
a function of a set of parameters that we store in a vector mk (see
Appendix). Depending on the type of mold surface, mk contains
zero (plane) to six entries (cubic). The rigid transformations Ti

that align mold surface MA(i) to the corresponding surface seg-
ment si are initialized by the the local alignments computed in the
discrete optimization. The curve network C is represented by sam-
ples cl ∈ IR3, l = 1, . . . , L, where L ≈ 9|S| in all our examples.
We denote with i(l) and j(l) the indices of the two surface segments
adjacent to the boundary curve sample cl. For notational brevity of
the subsequent formulae, we omit the more complex adjacencies at
corner points of the curve network. These are handled analogously
by considering all combinations of neighbors.

The explicit representation of the curve network enables direct con-
trol of the panel intersection curves and allows formulating objec-
tive functions for inter-panel position and tangent continuity using
simple closest-points projections. Effectively, the curve network
serves as a “glue” that binds the panels to the surface at the curve
samples. Since the manufacturing process mandates that the panel
surfaces are smooth and exhibit a low variation of curvature, we
found that additional samples in the interior of the segments are not
required.

Surface fitting. The deviation of the curve network from the un-
derlying reference surface F is measured as

Efit =
L

∑

l=1

‖cl − fl‖2, (2)

where fl is the closest point on F from cl.

Divergence. We measure the divergence indirectly using the dis-
tances between the curve network samples and the closest points of
the adjacent aligned mold surfaces as

Ediv =

L
∑

l=1

‖cl − xi(l)‖2 + ‖cl − xj(l)‖2, (3)



where xi(l) is the point closest to cl on the aligned mold sur-
face M∗

i(l). The point xj(l) is defined analogously. Minimizing Ediv

ensures that neighboring panels fit together nicely without leaving
undesirable gaps and that the curve network stays spatially close to
the aligned mold surfaces.

Kink angles. Tangent continuity is achieved by minimizing the
kink angle energy

Ekink =
L

∑

l=1

‖n(xi(l))− n(xj(l))‖2, (4)

where n(xi(l)) is the normal vector of the aligned mold M∗
i(l) at

xi(l), and analogously for n(xj(l)) (Figure 3).

Curve fairness. The curve network is coupled to the surface
through the surface fitting energy, but can move freely along the
surface. To maintain the design intent encoded in the initial curve
layout, we need to prevent strong undulations and large tangential
motions of the boundary curves. Fortunately, the explicit represen-
tation of the curve network allows us to directly control its motion.
We avoid tangential drift entirely by restricting the displacements of
the curve network to the normal direction of the underlying refer-
ence surface. This simplification has the additional benefit of reduc-
ing the number of optimization variables for the curve network to
one third and thus significantly improves performance. The shape
of the curves is controlled using an additional fairness term on the
curve deformation. Let cl = c′

l + dln
′
l, where c′

l is the initial po-
sition of the curve network sample on the reference surface, n′

l is
the corresponding surface normal, and dl is the displacement mag-
nitude. A fairness term can then be defined directly on the normal
displacements as

Efair =
∑

(j1,j2)∈C

(dj1 − dj2)
2, (5)

where (j1, j2) is an index pair denoting an edge of the polygonal
representation of the curve network C.

Panel centering. With the exception of plane and cylinder
molds, we need an additional energy term to facilitate mold reuse.
Panels that are fabricated from the same mold should cover a simi-
lar region of the mold surface to reduce wastage in fabrication. For
this purpose we add a centering energy that minimizes tangential
drifting of the mold center away from the segment center:

Ecen =
n

∑

i=1

‖bi − pi‖2. (6)

Here bi is an approximation of the barycenter of segment si com-
puted as the average of all adjacent curve segment samples, and pi

is the projection of bi onto the mold-surface normal at the center
of the aligned mold M∗

i . For torus molds we include an additional
variable that positions the center along the defining circle (see Ap-
pendix). Figure 5 illustrates the effect of the centering energy.

Global optimization. The above continuous energy terms are
combined into a global energy

E = αfitEfit + αdivEdiv + αkinkEkink + αfairEfair + αcenEcen, (7)

where the weights α allow additional control of the optimization.
The unknown variables in E that we solve for are: the mold pa-
rameters mk, the rigid transformations Ti, and the positions of the
curve network samples cl. For the Ti we use the formulation based
on instantaneous velocities that ensures rigidity of the transforma-
tion [Pottmann and Wallner 2001]. The global energy E is mini-
mized using a Gauss-Newton solver.

panels

mold base surfacemold base surface

Figure 5: A low weight for Ecen may result in scattered molds (red)
over a base primitive leading to wastage and increased cost. A
higher weight results in tightly clustered molds (green) enabling
cost-effective production of a significantly smaller mold.

Parameters. As detailed in Section 3.2, our system allows the
user to provide thresholds ǫ for divergence and δ for kink an-
gles. To balance the corresponding optimization objectives, we set
αkink = (ǫ/δ)2αdiv in Equation 7. This ensures that a divergence
of ǫ receives the same penalty as a kink angle of δ. The free pa-
rameters have an intuitive meaning and offer direct control of the
paneling quality. The specific values for these parameters depend
on the user preferences. Figure 4 illustrates the effect of αfit to con-
trol the deviation from the reference surface using values of 0.0001
and 1000, respectively. Figure 5 demonstrates the influence of αcen.
For all other examples we use the same set of parameters: αfit = 1,
αdiv = 1000, αfair = 1, αcen = 10.

3.2 Discrete Optimization Step

The discrete optimization finds a mold depot and a corresponding
panel-mold assignment function that minimize cost while respect-
ing the specified divergence and kink angle thresholds. During the
discrete optimization, the curve network is fixed. The essential ge-
ometric information required in this step is stored in the curve net-
work samples and corresponding normal vectors that we obtain by
averaging for each curve network sample the normals of all neigh-
boring panels of the current solution. We therefore represent each
surface segment by the associated curve network samples and nor-
mals, and use these to evaluate divergence and kink angles. This
segment representation allows an efficient fitting of molds to seg-
ments based on local registration independent of the neighboring
panels, using local versions of the divergence, kink angle, and cen-
tering energies (Equations 3, 4, 6).

To enrich the mold depot, we first create new candidate molds by
locally aligning each of the available panel types to each of the
segments. These t|S| new molds, where t is the number of panel
types, together with the existing mold depot of the current solution
form the setM′ of candidate molds. The algorithm optimizes for
a new mold depot as a subset M ⊆ M′ of all candidate molds
that enables paneling at minimal cost, while satisfying the current
thresholds on divergence and kink angle.

Set cover. Assume that we have determined for each mold
Mk ∈ M′ the set Sk = {sk1

, . . . , skl
} of surface segments that

can be approximated by Mk within the prescribed tolerances. We
can compute the potential fabrication costs attributed to set Sk as
c(Sk) = c(Mk) + |Sk| c(Mk, P∗), i.e., the cost of the mold plus
for all assigned panels the cost c(Mk, P∗) of producing a panel with
mold Mk.

Finding the optimal mold depot and mold-segment assignments
now amounts to covering the set of segments S = {s1, . . . , sn}
with sets Sk of minimal total cost. This optimization is reminiscent
of the classical weighted set cover problem [Johnson 1974], where



the weights correspond to production costs. While this problem is
known to be NP-hard, a polynomial-time approximation strategy
can be used to find an approximate solution whose cost is guaran-
teed to be within log n times the cost of the optimal solution. It has
been shown that log n is the best possible approximation ratio of
any polynomial-time algorithm [Feige 1998].

What distinguishes our setting from the classical weighted set cover
problem is that each segment is eventually assigned to only one set.
Thus our weights (costs) depend on which segment is assigned to
which set: Once a mold has been chosen, all segments covered
by the corresponding set have to be removed from the sets of the
remaining candidate molds. Nevertheless, the proof for the log n
approximation ratio of the polynomial-time weighted set cover al-
gorithm directly translates to our more general setup.

Algorithm. Let S ′ ⊆ S be the set of all uncovered segments at
any point of the algorithm. We define the efficiency of a set Sk rel-
ative to S ′ as the function φ(Sk,S ′) = |Sk|/c(Sk), where both the
size of the set Sk and its cost are adapted to only consider elements
in S ′. Efficiency measures the number of panels for segments in
S ′ that can be produced by mold Mk relative to the corresponding
cost. Let σ be the unknown collection of covering sets and σ′ the
collection of all sets Sk that have not yet been chosen for σ.

Our algorithm to determine the covering sets starts with an empty
collection σ. Thus the collection σ′ contains the sets Sk of all can-
didate molds in M′ and the set S ′ contains all segments that can
be covered with the sets in σ′. We then successively add the set Si

with highest efficiency to the current solution. The segments of Si

are removed from S ′, the efficiency of all remaining sets is updated,
and the algorithm is iterated until all segments are covered.

σ ← ∅, σ′ ← {S1, . . . ,S|M′|}, S ′ ← S1 ∪ . . . ∪ S|M′|

while S ′ 6= ∅
eval. φ(Sk,S ′) ∀Sk ∈ σ′ update efficiencies

Si ← arg maxSk∈σ′ φ(Sk,S ′) set with max. efficiency

σ ← σ ∪ {Si} add to covering sets

S ′ ← S ′ − Si, σ′ ← σ′ − {Si} remove covered segments

end

The covering sets in the solution σ define the mold depotM. For
all segments that cannot be covered by any of the initial sets Sk

we add and assign the best-fit cubic mold. Once the mold depot has
been selected, a gather step re-computes the panel-mold assignment
function by selecting for each segment the cheapest valid mold from
the depotM. In case a segment is covered by multiple molds of the
same cost, we pick the one with the smallest maximal distance to
the curve network.

Sets initialization. A critical bottleneck in the set cover opti-
mization is the estimation of the initial sets Sk. To avoid the exhaus-
tive computation of aligning every mold with every segment using
nonlinear registration, we implement a pruning step that discards
mold-segment pairs based on a conservative estimate of the corre-
sponding registration distance. For this purpose, we introduce a 6D
metric space that facilitates efficient approximate distance compu-
tations between molds and surface segments without the need for
an explicit alignment.

We first select for each segment si its least-squares optimal cubic
mold Ci ∈M′ as the segment’s representative. The cubic mold Ci

provides the best local approximation possible for this segment in
the current configuration. To estimate whether a given mold sur-
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Figure 6: Progressive panel assignments for different iterations
(decreasing thresholds) of the paneling algorithm (Lilium tower).

face Mk ∈ M′ is a suitable candidate for segment si, we com-
pute an approximate alignment distance between Mk and Ci. By
mapping both patches to points in a 6D space as described in the
Appendix, this computation amounts to simple Euclidean distance
evaluations. Finding potential molds to fit a given segment then
only requires a range query in the 6D space that is performed ef-
ficiently using spatial data structures such as a kd-tree [Arya and
Mount 1993]. This pruning step typically leads to a reduction in
explicit mold-segment registrations to about 1% – 5%. For this
substantially smaller set, we then perform the full nonlinear regis-
tration as described above to build the sets Sk.

3.3 Interleaved Iteration

Our algorithm iteratively executes the discrete and continuous op-
timization steps in an interleaved fashion. The exponential number
of possible panel-mold assignments mandates the use of local reg-
istration methods in the discrete optimization. As a result, the set
cover algorithm produces a mold depot and assignment function
that is too costly for the given thresholds. Therefore, we start the it-
erations with thresholds well above the specified target values ǫ for
divergence and δ for kink angles. Thresholds are then successively
reduced after each iteration until the target values are reached.

We use the following fixed scheduling scheme for all our examples:
We start the optimization with ǫ′ = ǫ+10mm and δ′ = δ +5◦ and
apply 10 iterations of alternating discrete/continuous optimization
steps, reducing the thresholds in each iteration by 1mm and 0.5◦.

The algorithm starts with a mold depot consisting of a single plane.
We perform an initialization step that first determines all panels that
do not meet the target thresholds (ǫ, δ). These panels are replaced
by locally fitting a separate mold of the cheapest type that satisfies
the thresholds (ǫ′, δ′). Subsequently, we perform a continuous op-
timization step. This initialization is applied before every discrete
optimization to reverse unsuccessful assignments of the set cover
and avoid a premature fixing of panel-mold assignments.

The inner loop of the optimization consists of the following steps:

• discrete optimization

• continuous optimization

• re-initialization

• reduce ǫ′, δ′

At the end of the optimization we apply a discrete step using the
target thresholds to generate the final mold depot and assignment
function. Figure 6 illustrates the iterations of the paneling algo-
rithm. Panels for which the target thresholds cannot be met man-
date the fabrication of custom freeform molds. An important benefit
of our approach is that the global discrete/continuous optimization
leads to a small number of these custom molds (see also Figure 8).
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Figure 7: Paneling results with varying kink angle thresholds δ and fixed divergence thresholds ǫ = 6mm for the design of the National
Holding Headquarters. The images on the right show a solution using only planar panels of which 3,796 do not meet the prescribed divergence
threshold. The zooms show reflection lines to illustrate inter-panel continuity which successively improves with lower kink angle thresholds.
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assignment based on local fitting (top). Just one single application of our discrete optimization greatly reduces cost without loss in surface
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paneling (bottom). This solution contains 90% single curved panels and a very small number of custom molds, leading to a significantly
reduced cost compared to greedy and local methods. The zoom on the right shows that our algorithm supports arbitrary curve network
topology, including t-junctions. (Zaha Hadid Architects, Dongdaemun Design Plaza and Park, Seoul.)
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Figure 9: Glass vs. concrete. Different relative costs for mold fab-
rication and panel production for two different materials affect the
distribution of panel types. For glass, costs for producing double
curved molds are significantly higher than for concrete, resulting
in a solution with more cylindrical panels. (Zaha Hadid Architects,
interior skin of Heydar Aliyev Merkezi Cultural Center, Baku.)

4 Evaluation and Discussion

Means of control. We allow the designer to explore the space of
paneling solutions using two main modes of control: (i) specify-
ing the quality using thresholds for divergence and kink angles (see
Figure 7), and (ii) allowing the paneling solution to deviate from
the reference surface in order to achieve a more cost-effective so-
lution while maintaining the original design intent (see Figure 4).
Due to our choice of αfit (Section 3.1) the maximal deviation from
the reference surface is within 10-20cm for all our results (aver-
age panel size 4m2). Unless stated otherwise, we use the cost set
of glass panels as denoted in Figure 9 and the target thresholds
(ǫ, δ) = (6mm, 3◦).

Case Studies. Paneling solutions strongly depend on the design
(reference surface and curve network), the choice of material, and
the manufacturing technology. We explore the implications of these
design decisions on various contemporary architectural freeform
projects from leading architects in Figures 9, 10, and 11. Fig-
ure 8 demonstrates the effectiveness of the core components of our
paneling algorithm. The most complex case study is the Dongdae-
mun Design Plaza and Park project (Figure 8) consisting of 8,385
panels. For this example, one step of discrete optimization takes
on average 30 minutes, while one step of continuous optimization
requires about 10 minutes, leading to a total computation time of
430 minutes. All computations are performed on a 3GHz Intel R©

CoreTM2 Duo with 3Gb of memory.
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Figure 10: Paneling solutions for different curve networks on the
Lilium tower. Significant changes in the curve network layout result
in different paneling solutions. The left curve network, being closer
to a conjugate network [Pottmann et al. 2007], is better suited for
rationalization with planar and single curved panels.

Extensibility. Our framework for paneling architectural freeform
surfaces takes important practical requirements into consideration.
It is extensible in various ways to account for further specific needs
and constraints. These include restrictions on mold reuse (restrict-
ing the use of the same mold to only parts of the surface deter-
mined by the assembling schedule; restricting the number of panels
to be produced by the same mold), region-specific quality criteria
(for example using higher thresholds for hardly visible parts), or
explicit specification of panel types allowed for selected segments.
Currently our system supports five important panel types. Incorpo-
rating further types is not difficult, but may require some thought to
integrate them into a metric space for fast panel-segment distance
computations (see Appendix). Since all our architectural designs
are segmented rather uniformly, our current cost model does not
take panel sizes into account. Panel sizes could be easily included,
however, by specifying a cost per square meter for each panel type
and adopting the discrete optimization accordingly.
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Figure 11: Distribution of panel types and mold reuse for two dif-
ferent refinement levels of the curve network. The histograms on
the right illustrate mold reuse for the top image, where the x-axis
denotes how many panels can be produced by a mold and the y-
axis indicates the number of panels corresponding to these molds.
(Mario Bellini Architects, Rudy Ricciotti, Museum of Islamic Arts
at Louvre Museum, Paris.)

Limitations. Although we achieve reasonable computation times
for our examples, very large models (> 50k segments) may only
be effectively handled by splitting them into several parts that are
treated separately. Even if splitting of a large model is not neces-
sary, the performance may not allow the user to fully exploit the
potential of the available control mechanisms (thresholds, allowed
deviation from reference surface).

In our current problem formulation we expect an initial curve net-
work as part of the design. Certain materials like gypsum are suit-
able for producing freeform surfaces without visible seams. Hence
the aesthetics of the curve network plays a minor role. While our
framework could be extended to allow stronger movement of the
curve network, the additional flexibility of freely optimizing over
the curve layout is currently not exploited in our algorithm.

Future Work. There are a number of desirable extensions to our
method that constitute challenging problems for future research.
One direction would be to incorporate further important aspects
into the optimization, e.g., structural feasibility and efficiency of
the underlyling support structure, especially if it is aligned with the
network of panel boundaries. This may be done using properly
simplified mechanical models, in extension of work by Whiting et
al. [2009], and should lead to a new powerful tool for form-finding.
The optimization could also include energy performance values or
try to optimally integrate solar panels. These and related extensions
towards the optimized use of the building would be in the spirit of
the Building Information Modeling paradigm. To our knowledge
the paneling problem is also of interest to the ship-hull construction
industry. We plan to investigate this application in future work.

5 Conclusion

We have cast the paneling of architectural freeform surfaces into a
global optimization problem that takes into account panel produc-
tion cost, reuse of manufacturing molds, and various constraints on
surface quality. The solution is based on a combination of discrete
and continuous optimization, as well as a new inter-panel distance
approximation for complexity reduction. We have demonstrated the
performance of our system on several complex freeform designs by
leading contemporary architects.

Although our research in paneling is primarily inspired by archi-
tecture, the problem is of relevance in the broader context of ge-
ometric modeling. Approximation of a general shape by a nearly
smooth union of aesthetically arranged panels of a limited number
of types is a significant extension of the state-of-the-art in surface
rationalization. Simultaneously deciding on the number of differ-
ent panel types required, while optimizing their parameters leads
to an interesting and unusual mixture of discrete and continuous
global optimization with potential applications in other domains.
Finally, mold reuse by making relations explicit across different
object parts and removing redundancies in the shape information
content, goes beyond symmetry detection and symmetrization to-
wards global shape understanding.
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Appendix

We efficiently estimate registration errors in a 6D metric space to
avoid more than 95% of the costly nonlinear mold-segment align-
ments for the discrete optimization step of Section 3.2. We define
a mapping of planes, paraboloids, and cubic patches into this space
and show how cylinders and tori can be approximated with cubics.
Representing segments by their best fitting cubic polynomial then
allows calculating upper bounds on the registration error through
simple 6D Euclidean distances computations.

Distances between cubic polynomials. We represent a cubic
polynomial patch in the principle frame of the patch center as

Pi(x, y) = aix
2 + biy

2 + cix
3 + dix

2y + eixy2 + fiy
3.

Our goal is to find potential mold candidates for a given segment.
We thus consider the domain D = [−L, L]2, where L is half the
segment side length computed on the initial curve network. Since
these approximate distances are only used for pruning, it is suffi-
cient to assume a quadratic shape even for non-quadratic segments.
We define the L2-distance Eij = E(Pi, Pj) between two polyno-
mials Pi and Pj by optimizing over the relative shift in z-direction

Eij = min
τ

∫∫

D

(ax2+by2+cx3+dx2y+exy2+fy3+τ)2dxdy,
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Figure 12: Maximal kink angle and divergence averaged by fit-
ting 400 randomly selected molds to all the 7265 segments of the
National Head Quarters design. The values are sorted by our ap-
proximate panel-segment distances to demonstrate the strong cor-
relation of the approximative and the exact fitting errors.

where a := ai − aj , etc. Since the integral can be factored into the
form Aτ2 +2Bτ +C, we obtain Eij = C−B2/A for the optimal
value of τ = −B/A . Substituting d̄i = di + fi and ēi = ci + ei

and reordering terms yields

Eij = 4L2(
4L4

45
a2+

4L4

45
b2+

L6

15
d̄2+

L6

15
ē2+

8L6

105
c2+

8L6

105
f2).

By setting Ē =
√

E/(4L2), our distance measure between cu-
bic patches corresponds to the canonical Euclidean distance where
every cubic is represented as a point in the 6D Euclidean space as

Pi =

(

2L2

3
√

5
ai,

2L2

3
√

5
bi,

L3

√
15

d̄i,
L3

√
15

ēi,

√
8L3

√
105

ci,

√
8L3

√
105

fi

)T

.

Since we are interested in the shape of the cubic rather than its
specific orientation, we consider for every cubic Pi all four right
handed coordinate transformations and another four with a flipped
normal direction z:

P ∗
i = {Pi(x, y), Pi(−y, x), Pi(−x,−y), Pi(y,−x),

−Pi(x,−y),−Pi(y, x),−Pi(−x, y),−Pi(−y,−x)}

which correspond to eight points in the derived Euclidean space.
We finally define our approximative distance measure as

d(Pi, Pj) = min
P ′

j
∈P∗

j

Ē(Pi, P
′
j),

which defines a metric on the space of cubic polynomials.

Cylinder and torus. Planes and paraboloids can be directly de-
scribed as cubic polynomials with zero higher order coefficients.
For cylinders and tori, we use the Taylor expansion expressed in
the coordinate system of the principle frame at a center point on the
mold as an approximation. For cylinders with radius R the only
nonzero coefficient is thus ai = 1/(2R).

Torus molds are defined by a merid-
ian radius R1, a parallel radius R2,
and angle σ that determines where
on the meridian the mold center lies.
Since this representation has three
parameters, we use the third-order
Taylor expansion

R2

R1

σ

T3(x, y) = −1

2
(

1

R1
x2 +

cos σ

R
y2 +

R2 sin σ

R2R1
xy2), (8)

where R := R2 + R1 cos σ, and −1/R1 and −(cos σ)/R are the
principal curvatures at the mold center.


