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Abstract

Despite the great progress made by deep CNNs in image

semantic segmentation, they typically require a large num-

ber of densely-annotated images for training and are diffi-

cult to generalize to unseen object categories. Few-shot seg-

mentation has thus been developed to learn to perform seg-

mentation from only a few annotated examples. In this pa-

per, we tackle the challenging few-shot segmentation prob-

lem from a metric learning perspective and present PANet,

a novel prototype alignment network to better utilize the

information of the support set. Our PANet learns class-

specific prototype representations from a few support im-

ages within an embedding space and then performs segmen-

tation over the query images through matching each pixel to

the learned prototypes. With non-parametric metric learn-

ing, PANet offers high-quality prototypes that are represen-

tative for each semantic class and meanwhile discriminative

for different classes. Moreover, PANet introduces a proto-

type alignment regularization between support and query.

With this, PANet fully exploits knowledge from the support

and provides better generalization on few-shot segmenta-

tion. Significantly, our model achieves the mIoU score of

48.1% and 55.7% on PASCAL-5i for 1-shot and 5-shot set-

tings respectively, surpassing the state-of-the-art method by

1.8% and 8.6%.

1. Introduction

Deep learning has greatly advanced the development of

semantic segmentation with a number of CNN based ar-

chitectures like FCN [13], SegNet [1], DeepLab [2] and

PSPNet [29]. However, training these models typically

requires large numbers of images with pixel-level annota-

tions which are expensive to obtain. Semi- and weakly-

supervised learning methods [26, 3, 9, 15] alleviate such

requirements but still need many weakly annotated training

images. Besides their hunger for training data, these models

also suffer rather poor generalizability to unseen classes. To

deal with the aforementioned challenges, few-shot learning,

which learns new concepts from a few annotated examples,

has been actively explored, mostly concentrating on image

Figure 1: Overview of our model (PANet) for few-shot seg-

mentation. PANet first maps the support and query images

into embedding features (circles and triangles respectively)

and learns prototypes for each class (blue and yellow solid

circles). Segmentation over the query is then performed by

matching its features to a nearest prototype within the em-

bedding space (dashed lines). PANet further introduces a

prototype alignment regularization during training to align

the prototypes from support and query images within the

embedding space by performing few-shot segmentation re-

versely from query to support (right panel). Segmentation

masks with dashed border denote ground truth annotations.

classification [25, 23, 24, 18, 6, 20, 12, 14] and a few tar-

geting at segmentation tasks [21, 17, 4, 28, 4, 8].

Existing few-shot segmentation methods generally learn

from a handful of support images and then feed learned

knowledge into a parametric module for segmenting the

query. However, such schemes have two drawbacks and

thus generalize unsatisfactorily. First, they do not differ-

entiate the knowledge extraction and segmentation process,

which may be problematic since the segmentation model

representation is mixed with the semantic features of the

support. We therefore propose to separate these two parts

as prototype extraction and non-parametric metric learning.

The prototypes are optimized to be compact and robust rep-

resentations for each semantic class and the non-parametric

metric learning performs segmentation through pixel-level

matching within the embedding space. Moreover, instead

of using the annotations of the support only for masking as

in previous methods, we propose to leverage them also for
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supervising the few-shot learning process. To this end, we

introduce a novel prototype alignment regularization by per-

forming the few-shot segmentation in a reverse direction.

Namely, the query image together with its predicted mask

is considered as a new support set and used to segment the

previous support images. In this way, the model is encour-

aged to generate more consistent prototypes between sup-

port and query, offering better generalization performance.

Accordingly, we develop a Prototype Alignment Net-

work (PANet) to tackle few-shot segmentation, as shown

in Figure 1. PANet first embeds different foreground ob-

jects and background into different prototypes via a shared

feature extractor. In this way, each learned prototype is rep-

resentative for the corresponding class and meanwhile is

sufficiently distinguishable from other classes. Then, each

pixel of the query image is labeled by referring to the class-

specific prototypes nearest to its embedding representation.

We find that even with only one support image per class,

PANet can provide satisfactory segmentation results, out-

performing the state-of-the-arts. Furthermore, it imposes a

prototype alignment regularization by forming a new sup-

port set with the query image and its predicted mask and

performing segmentation on the original support set. We

find this indeed encourages the prototypes generated from

the queries to align well with those of the supports. Note

that the model is regularized only in training and the query

images should be not confused with the testing images.

The structure design of the proposed PANet has several

advantages. First, it introduces no extra learnable parame-

ters and thus is less prone to over-fitting. Second, within

PANet, the prototype embedding and prediction are per-

formed on the computed feature maps and therefore seg-

mentation requires no extra passes through the network. In

addition, as the regularization is only imposed in training,

the computation cost for inference does not increase.

Our few-shot segmentation model is a generic one. Any

network with a fully convolutional structure can be used as

the feature extractor. It also learns well from weaker an-

notations, e.g., bounding boxes or scribbles, as shown in

experiments. To sum up, the contributions of this work are:

• We propose a simple yet effective PANet for few-shot

segmentation. The model exploits metric learning over

prototypes, which differs from most existing works

that adopt a parametric classification architecture.

• We propose a novel prototype alignment regularization

to fully exploit the support knowledge to improve the

few-shot learning.

• Our model can be directly applied to learning from a

few examples with weak annotations.

• Our PANet achieves mIoU of 48.1% and 55.7% on

PASCAL-5i for 1-shot and 5-shot settings, outper-

forming state-of-the-arts by a margin up to 8.6 %.

2. Related work

Semantic segmentation Semantic segmentation aims to

classify each pixel of an image into a set of predefined

semantic classes. Recent methods are mainly based on

deep convolutional neural networks [13, 10, 1, 29, 2].

For example, Long et al. [13] first adopted deep CNNs

and proposed Fully Convolutional Network (FCN) which

greatly improves segmentation performance. Dilated con-

volutions [27, 2] are widely used to increase the receptive

field without losing spatial resolution. In this work, we fol-

low the structure of FCN to perform dense prediction and

also adopt dilated convolutions to enjoy a larger receptive

field. Compared to models trained with full supervision, our

model can generalize to new categories with only a handful

of annotated data.

Few-shot learning Few-shot learning targets at learning

transferable knowledge across different tasks with only a

few examples. Many methods have been proposed, such as

methods based on metric learning [25, 23], learning the op-

timization process [18, 6] and applying graph-based meth-

ods [20, 12]. Vinyals et al. [25] encoded input into deep

neural features and performed weighted nearest neighbor

matching to classify unlabelled data. Snell et al. [23] pro-

posed a Prototypical Network to represent each class with

one feature vector (prototype). Sung et al. [24] used a sep-

arate module to directly learn the relation between support

features and query features. Our model follows the Proto-

typical Network [23] and can be seen as an extension of it

to dense prediction tasks, enjoying a simple design yet high

performance.

Few-shot segmentation Few-shot segmentation is re-

ceiving increasing interest recently. Shaban et al. [21] first

proposed a model for few-shot segmentation using a con-

ditioning branch to generate a set of parameters θ from

the support set, which is then used to tune the segmen-

tation process of the query set. Rakelly et al. [16] con-

catenated extracted support features with query ones and

used a decoder to generate segmentation results. Zhang et

al. [28] used masked average pooling to better extract fore-

ground/background information from the support set. Hu et

al. [8] explored guiding at multiple stages of the networks.

These methods typically adopt a parametric module, which

fuses information extracted from the support set and gener-

ates segmentation.

Dong et al. [4] also adopted the idea of prototypical

networks and tackled few-shot segmentation using metric

learning. However, the model is too complex, involving

three training stages and complicated training configura-

tions. Besides, their method extracts prototypes based on an

image-level loss and uses prototypes as guidance to tune the

segmentation of the query set rather than obtaining segmen-

tation directly from metric learning. Comparatively, our

9198



Figure 2: Illustration of the pipeline of our method in a 2-way 1-shot example. In block (a), PANet performs a support-

to-query few-shot segmentation. The support and query images are embedded into deep features. Then the prototypes are

obtained by masked average pooling. The query image is segmented via computing the cosine distance (cos in the figure)

between each prototype and query features at each spatial location. Loss Lseg is computed between the segmentation result

and the ground truth mask. In block (b), the proposed PAR aligns the prototypes of support and query by performing a

query-to-support few-shot segmentation and calculating loss LPAR. GT denotes the ground truth segmentation masks.

model has a simpler design and is more similar to the Proto-

typical Network [23]. Besides, we adopt late fusion [17] to

incorporate the annotation masks, making it easier to gen-

eralize to cases with sparse or updating annotations.

3. Method

3.1. Problem setting

We aim at obtaining a segmentation model that can learn

fast to perform segmentation from only a few annotated im-

ages over new images from the same classes. As in previous

works [21], we adopt the following model training and test-

ing protocols. Suppose we are provided with images from

two non-overlapping sets of classes Cseen and Cunseen. The

training set Dtrain is constructed from Cseen and the test set

Dtest is constructed from Cunseen. We train the segmentation

model M on Dtrain and evaluate on Dtest.

Both the training set Dtrain and testing set Dtest con-

sist of several episodes. Each episode is composed of a

set of support images S (with annotations) and a set of

query images Q. Namely, Dtrain = {(Si,Qi)}
Ntrain

i=1 and

Dtest = {(Si,Qi)}
Ntest

i=1 , where Ntrain and Ntest denote the

number of episodes for training and testing respectively.

Each training/testing episode (Si,Qi) instantiates a C-

way K-shot segmentation learning task. Specifically, the

support set Si has K 〈image, mask〉 pairs per semantic class

and there are in total C different classes from Cseen for train-

ing and from Cunseen for testing, i.e. Si = {(Ic,k,Mc,k)}
where k = 1, 2, · · · ,K and c ∈ Ci with |Ci| = C. The

query set Qi contains Nquery 〈image, mask〉 pairs from the

same set of classes Ci as the support set. The model first ex-

tracts knowledge about the C classes from the support set

and then applies the learned knowledge to perform segmen-

tation on the query set. As each episode contains different

semantic classes, the model is trained to generalize well.

After obtaining the segmentation model M from the train-

ing set Dtrain, we evaluate its few-shot segmentation perfor-

mance on the test set Dtest across all the episodes. In partic-

ular, for each testing episode the segmentation model M is

evaluated on the query set Qi given the support set Si.

3.2. Method overview

Different from existing few-shot segmentation methods

which fuse the extracted support features with the query

features to generate the segmentation results in a paramet-

ric way, our proposed model aims to learn and align com-

pact and robust prototype representations for each semantic

class in an embedding space. Then it performs segmenta-

tion within the embedding space via non-parametric metric

learning.

As shown in Figure 2, our model learns to perform seg-

mentation as follows. For each episode, it first embeds the

support and query images into deep features by a shared

backbone network. Then it applies the masked average

pooling to obtain prototypes from the support set, as de-

tailed in Section 3.3. Segmentation over the query images

is performed by labeling each pixel as the class of the near-

est prototype. A novel prototype alignment regularization

(PAR) introduced in Section 3.5 is applied over the learn-

ing procedure to encourage the model to learn consistent

embedding prototypes for the support and query.

We adopt a VGG-16 [22] network as the feature extrac-

tor following conventions. The first 5 convolutional blocks

in VGG-16 are kept for feature extraction and other layers

are removed. The stride of maxpool4 layer is set to 1 for

maintaining large spatial resolution. To increase the recep-

tive field, the convolutions in conv5 block are replaced by

dilated convolutions with dilation set to 2. As the proposed
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PAR introduces no extra learnable parameters, our network

is trained end-to-end to optimize the weights of VGG-16 for

learning a consistent embedding space.

3.3. Prototype learning

Our model learns representative and well-separated pro-

totype representation for each semantic class, including the

background, based on the prototypical network [23]. In-

stead of averaging over the whole input image [23], PANet

leverages the mask annotations over the support images to

learn prototypes for foreground and background separately.

There are two strategies to exploit the segmentation masks

i.e., early fusion and late fusion [17]. Early fusion masks

the support images before feeding them into the feature

extractor [21, 8, 4]. Late fusion directly masks over the

feature maps to produce foreground/background features

separately [28, 16]. In this work, we adopt the late fu-

sion strategy since it keeps the input consistency for the

shared feature extractor. Concretely, given a support set

Si = {(Ic,k,Mc,k)}, let Fc,k be the feature map output by

the network for the image Ic,k. Here c indexes the class and

k = 1, . . . ,K indexes the support image. The prototype of

class c is computed via masked average pooling [28]:

pc =
1

K

∑

k

∑
x,y F

(x,y)
c,k 1[M

(x,y)
c,k = c]

∑
x,y 1[M

(x,y)
c,k = c]

, (1)

where (x, y) indexes the spatial locations and 1(·) is an in-

dicator function, outputting value 1 if the argument is true

or 0 otherwise. In addition, the prototype of background is

computed by

pbg =
1

CK

∑

c,k

∑
x,y F

(x,y)
c,k 1[M

(x,y)
c,k /∈ Ci]

∑
x,y 1[M

(x,y)
c,k /∈ Ci]

. (2)

The above prototypes are optimized end-to-end through

non-parametric metric learning as explained below.

3.4. Nonparametric metric learning

We adopt a non-parametric metric learning method to

learn the optimal prototypes and perform segmentation ac-

cordingly. Since segmentation can be seen as classification

at each spatial location, we calculate the distance between

the query feature vector at each spatial location with each

computed prototype. Then we apply a softmax over the

distances to produce a probability map M̃q over semantic

classes (including background). Concretely, given a dis-

tance function d, let P = {pc|c ∈ Ci}∪{pbg} and Fq denote

the query feature map. For each pj ∈ P we have

M̃
(x,y)
q;j =

exp(−αd(F
(x,y)
q , pj))

∑
pj∈P exp(−αd(F

(x,y)
q , pj))

. (3)

The predicted segmentation mask is then given by

M̂ (x,y)
q = argmax

j

M̃
(x,y)
q;j . (4)

The distance function d commonly adopts the cosine

distance or squared Euclidean distance. Snell et al. [23]

claimed using squared Euclidean distance greatly outper-

forms using cosine distance. However, Oreshkin et al. [14]

attributed the improvement to interaction of the different

scaling of the metrics with the softmax function. Multiply-

ing the cosine distance by a factor α can achieve comparable

performance as using squared Euclidean distance. Empiri-

cally, we find that using cosine distance is more stable and

gives better performance, possibly because it is bounded

and thus easier to optimize. The multiplier α is fixed at

20 since we find learning it yields little performance gain.

After computing the probability map M̃q for the query

image via metric learning, we calculate the segmentation

loss Lseg as follows:

Lseg = −
1

N

∑

x,y

∑

pj∈P

1[M (x,y)
q = j] log M̃

(x,y)
q;j , (5)

where Mq is the ground truth segmentation mask of the

query image and N is the total number of spatial locations.

Optimizing the above loss will derive suitable prototypes

for each class.

3.5. Prototype alignment regularization (PAR)

In previous works, the support annotations are used only

for masking, which actually does not adequately exploit the

support information for few-shot learning. In this subsec-

tion, we elaborate on the prototype alignment regularization

(PAR) that exploits support information better to guide the

few-shot learning procedure and helps enhance generaliz-

ability of the resulted model from a few examples.

Intuitively, if the model can predict a good segmenta-

tion mask for the query using prototypes extracted from the

support, the prototypes learned from the query set based on

the predicted masks should be able to segment support im-

ages well. Thus, PAR encourages the resulted segmentation

model to perform few-shot learning in a reverse direction,

i.e., taking the query and the predicted mask as the new sup-

port to learn to segment the support images. This imposes

a mutual alignment between the prototypes of support and

query images and learns richer knowledge from the sup-

port. Note all the support and query images here are from

the training set Dtrain.

Figure 2 illustrates PAR in details. After obtaining

a segmentation prediction for the query image, we per-

form masked average pooling accordingly on the query fea-

tures and obtain another set of prototypes P̄ = {p̄c|c ∈
Ci} ∪ {p̄bg}, following Eqns. (1) and (2). Next, the non-

parametric method introduced in Section 3.4 is used to pre-

dict the segmentation masks for the support images. The
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predictions are compared with the ground truth annotations

to calculate a loss LPAR. The entire procedure for imple-

menting PAR can be seen as swapping the support and

query set. Concretely, within PAR, the segmentation prob-

ability of the support image Ic,k is given by

M̃
(x,y)
c,k;j =

exp(−αd(F
(x,y)
c,k , p̄j))

∑
p̄j∈{p̄c,p̄bg}

exp(−αd(F
(x,y)
c,k , p̄j))

, (6)

and the loss LPAR is computed by

LPAR = −
1

CKN

∑

c,k,x,y

∑

pj∈P

1[M (x,y)
q = j] log M̃

(x,y)
q;j .

(7)

Without PAR, the information only flows one-way from the

support set to the query set. By flowing the information

back to the support set, we force the model to learn a con-

sistent embedding space that aligns the query and support

prototypes. The aligning effect of the proposed PAR is val-

idated by experiments in Section 4.3.

The total loss for training our PANet model is thus

L = Lseg + λLPAR.

where λ serves as regularization strength and λ = 0 reduces

to the model without PAR. In our experiments, we keep λ as

1 since different values give little improvement. The whole

training and testing procedures for PANet on few-shot seg-

mentation are summarized in Algorithm 1.

3.6. Generalization to weaker annotations

Our model is generic and is directly applicable to other

types of annotations. First, it accepts weaker annotations

on the support set, such as scribbles and bounding boxes

indicating the foreground objects of interest. Experiments

in Section 4.4 show that even with weak annotations, our

model is still able to extract robust prototypes from the sup-

port set and give comparably good segmentation results for

the query images. Compared with pixel-level dense annota-

tions, weak annotations are easier and cheaper to obtain [9].

Second, by adopting late fusion [17], our model can quickly

adapt to updated annotations with little computation over-

head and thus can be applied in interactive segmentation.

We leave this for future works.

4. Experiments

4.1. Setup

Datasets We follow the evaluation scheme proposed

in [21] and evaluate our model on the PASCAL-5i [21]

dataset. The dataset is created from PASCAL VOC 2012 [5]

with SBD [7] augmentation. The 20 categories in PASCAL

VOC are evenly divided into 4 splits, each containing 5 cat-

egories. Models are trained on 3 splits and evaluated on the

rest one in a cross-validation fashion. The categories in each

Algorithm 1: Training and evaluating PANet.

Input : A training set Dtrain and a testing set Dtest

for each episode (Si,Qi) ∈ Dtrain do
Extract prototypes P from the support set Si using

Eqns. (1) and (2)

Predict the segmentation probabilities and masks

for the query image using Eqns. (3) and (4)

Compute the loss Lseg as in Eqn. (5)

Extract prototypes P̄ from the query set Qi using

Eqns. (1) and (2)

Predict segmentation probabilities for the support

images using Eqn. (6)

Compute the loss LPAR as in Eqn. (7)

Compute the gradient and optimize via SGD

end

for each episode (Si,Qi) ∈ Dtest do
Extract prototypes P from the support set Si using

Eqns. (1) and (2)

Predict the segmentation probabilities and masks

for the query image using Eqns. (3) and (4)

end

split can be found in [21]. During testing, previous methods

randomly sample 1,000 episodes for evaluation but we find

it is not enough to give stable results. In our experiments,

we average the results from 5 runs with different random

seeds, each run containing 1,000 episodes.

Following [8], we also evaluate our model on a more

challenging dataset built from MS COCO [11]. Similarly,

the 80 object classes in MS COCO are evenly divided

into 4 splits, each containing 20 classes. We follow the

same scheme for training and testing as on the PASCAL-

5i. Nquery = 1 is used for all experiments.

Evaluation metrics We adopt two metrics for model

evaluation, mean-IoU and binary-IoU. Mean-IoU measures

the Intersection-over-Union (IoU) for each foreground class

and averages over all the classes [21, 28]. Binary-IoU treats

all object categories as one foreground class and averages

the IoU of foreground and background [16, 4, 8]. We mainly

use the mean-IoU metric because it considers the differ-

ences between foreground categories and therefore more

accurately reflects the model performance. Results w.r.t.

the binary-IoU are also reported for clear comparisons with

some previous methods.

Implementation details We initialize the VGG-16 net-

work with the weights pre-trained on ILSVRC [19] as in

previous works [21, 4, 28]. Input images are resized to (417,

417) and augmented using random horizontal flipping. The

model is trained end-to-end by SGD with the momentum of

0.9 for 30,000 iterations. The learning rate is initialized to

1e-3 and reduced by 0.1 every 10,000 iterations. The weight

decay is 0.0005 and the batch size is 1.
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Method
1-shot 5-shot ∆

#Params
split-1 split-2 split-3 split-4 Mean split-1 split-2 split-3 split-4 Mean Mean

OSLSM [21] 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9 3.1 272.6M

co-FCN [16]† 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 41.4 0.3 34.2M

SG-One [28] 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1 0.8 19.0M

PANet-init 30.8 40.7 38.3 31.4 35.3 41.6 52.7 51.6 40.8 46.7 11.4 14.7M

PANet 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7 7.6 14.7M

Table 1: Results of 1-way 1-shot and 1-way 5-shot segmentation on PASCAL-5i dataset using mean-IoU metric. ∆ denotes

the difference between 1-shot and 5-shot. †: The results of co-FCN in mean-IoU metric are reported by [28].

Method 1-shot 5-shot ∆

FG-BG [16] 55.0 - -

Fine-tuning [16] 55.1 55.6 0.5

OSLSM [21] 61.3 61.5 0.2

co-FCN [16] 60.1 60.2 0.1

PL [4] 61.2 62.3 1.1

A-MCG [8] 61.2 62.2 1.0

SG-One [28] 63.9 65.9 2.0

PANet-init 58.9 65.7 6.8

PANet 66.5 70.7 4.2

Table 2: Results of 1-way 1-shot and 1-way 5-shot segmen-

tation on PASCAL-5i dataset using binary-IoU metric. ∆
denotes the difference between 1-shot and 5-shot.

Baselines We set a baseline model which is initialized

with the weights pre-trained on ILSVRC [19] but not fur-

ther trained on PASCAL-5i, denoted as PANet-init. We

also compare our PANet with two baseline models FG-BG

and fine-tuning from [16]. FG-BG trains a foreground-

background segmentor which is independent of the support

and fine-tuning is used to tune a pre-trained foreground-

background segmentor on the support.

4.2. Comparison with stateofthearts

PASCAL-5i Table 1 compares our model with other

methods on PASCAL-5i dataset in mean-IoU metric. Our

model outperforms the state-of-the-art methods in both 1-

shot and 5-shot settings while using fewer parameters. In

the 5-shot task, our model achieves significant improvement

of 8.6%. Using binary-IoU metric, as shown in Table 2, our

model also achieves the highest performance. It is worth

noting that our method does not use any decoder module or

post-processing techniques to refine the results.

As Tables 1 and 2 show, the performance gap between 1-

shot and 5-shot settings is small in other methods (less than

3.1% in mean-IoU), implying these methods obtain little

improvement with more support information. In contrast,

our model yields much more significant performance gain

(up to 7.6% in mean-IoU) since it learns more effectively

from the support set. The evaluation results of our baseline

Method
mean-IoU binary-IoU

1-shot 5-shot 1-shot 5-shot

PL [4] - - 42.7 43.7

SG-One [28] - 29.4 - -

PANet 45.1 53.1 64.2 67.9

Table 3: Results of 2-way 1-shot and 2-way 5-shot segmen-

tation on PASCAL-5i dataset.

Method
mean-IoU binary-IoU

1-shot 5-shot 1-shot 5-shot

A-MCG [8] - - 52 54.7

PANet 20.9 29.7 59.2 63.5

Table 4: Results of 1-way 1-shot and 1-way 5-shot segmen-

tation on MS COCO dataset.

model PANet-init also confirm this point. Without training,

it rivals the state-of-the-art in 5-shot settings and gains more

than 11% in mean-IoU when given more support images.

As in [4, 28], we evaluate our model on multi-way few-

shot segmentation tasks. Without loss of generality, we per-

form evaluations on 2-way 1-shot and 2-way 5-shot seg-

mentation tasks. Table 3 summarizes the results. Our PANet

outperforms previous works by a large margin of more than

20% in both metrics.

Qualitative results for 1-way and 2-way segmentation are

shown in Figure 3 and Figure 4. Without any decoder struc-

ture or post-processing, our model gives satisfying segmen-

tation results on unseen classes with only one annotated

support image. This demonstrates the strong learning and

generalization abilities of our model. Note that the proto-

type extracted from the same support image can be used

to successfully segment the query images with appearance

variations. For example, in Figure 3 row 1, our model suc-

cessfully segments bicycles: cluttered with other objects

(1st example), viewed from a different perspective (2nd ex-

ample), with only parts shown (3rd example). On the other

hand, prototypes extracted from one part of the object can

be used to segment whole objects of the same class (row
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Figure 3: Qualitative results of our model in 1-way 1-shot segmentation on PASCAL-5i (row 1 and 2) and MS COCO (row

3 and 4).

2 in Figure 3). It demonstrates that the proposed PANet is

capable of extracting robust prototypes for each semantic

class from a few annotated data. More qualitative examples

can be found in the supplementary material.

We also present some challenging cases that fail our

model. As the first failure case in Figure 3 shows, our model

tends to give segmentation results with unnatural patches,

possibly because it predicts independently at each location.

But this can be alleviated by post-processing. From the sec-

ond failure case, we find our model is unable to distinguish

between chairs and tables since they have similar prototypes

in the embedding space.

MS COCO Table 4 shows the evaluation results on MS

COCO dataset. Our model outperforms the previous A-

MCG [8] by 7.2% in 1-shot setting and 8.2% in 5-shot set-

ting. Compared to PASCAL VOC, MS COCO has more

object categories, making the differences between two eval-

uation metrics more significant. Qualitative results on MS

COCO are shown in Figure 3.

Figure 4: Qualitative results of our model in 2-way 1-shot

segmentation on PASCAL-5i.
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Method 1-shot 5-shot

PANet w/o PAR 47.2 54.9

PANet 48.1 55.7

Table 5: Evaluation results of our PANet trained with and

without PAR on PASCAL-5i in mean-IoU metric.

Annotations 1-shot 5-shot

Dense 48.1 55.7

Scribble 44.8 54.6

Bounding box 45.1 52.8

Table 6: Results of using different types of annotations in

mean-IoU metric.

4.3. Analysis on PAR

The proposed PAR encourages the model to learn a con-

sistent embedding space which aligns the support and query

prototypes. Apart from minimizing the distances between

the support and query prototypes, the models trained with

PAR get better results (shown in Table 5) as well as faster

convergence of the training process.

Aligning embedding prototypes By flowing the infor-

mation from the query set back to the support set via PAR,

our model can learn a consistent embedding space and align

the prototypes extracted from the support and query set.

To verify this, we randomly choose 1,000 episodes from

PASCAL-5i split-1 in the 1-way 5-shot task. Then for each

episode we calculate the Euclidean distance between pro-

totypes extracted from the query set and the support set.

The averaged distance computed by models with PAR is

32.2, much smaller than 42.6 by models without PAR. With

PAR, our model is able to extract prototypes that are better

aligned in the embedding space.

Speeding up convergence In our experiments, we ob-

serve that models trained with PAR converge faster than

models without it, as reflected from the training loss curve

in Figure 5. This shows the PAR accelerates convergence

and helps the model reach a lower loss, especially in 5-shot

setting, because with PAR the information from the support

set can be better exploited.

4.4. Test with weak annotations

We further evaluate our model with scribble and bound-

ing box annotations. During testing, the pixel-level annota-

tions of the support set are replaced by scribbles or bound-

ing boxes which are generated from the dense segmentation

masks automatically. Each bounding box is obtained from

one randomly chosen instance mask in each support image.

As Table 6 shows, our model works pretty well with very

sparse annotations and is robust to the noise brought by the

bounding box. In 1-shot learning case, the model performs

Figure 5: Training loss of models with and without PAR.

Figure 6: Qualitative results of our model on 1-way 1-shot

segmentation using scribble and bounding box annotations.

The scribbles are dilated for better visualization.

comparably well with two different annotations, but for 5-

shot learning, using scribbles outperforms using bounding

box by 2%. A possible reason is with more support infor-

mation, scribbles give more representative prototypes while

bounding boxes introduce more noise. Qualitative results of

using scribble and bounding box annotations are shown in

Figure 6.

5. Conclusion

We propose a novel PANet for few-shot segmentation

based on metric learning. PANet is able to extract robust

prototypes from the support set and performs segmentation

using non-parametric distance calculation. With the pro-

posed PAR, our model can further exploit the support infor-

mation to assist training. Without any decoder structure or

post-processing step, our PANet outperforms previous work

by a large margin.
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