Pangolin: An Efficient and Flexible Graph Mining System on CPU and GPU

Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Keshav Pingali
The University of Texas at Austin
{cxh,roshan,gill,pingali}@cs.utexas.edu

ABSTRACT
There is growing interest in graph pattern mining (GPM) problems such as motif counting. GPM systems have been developed to provide unified interfaces for programming algorithms for these problems and for running them on parallel systems. However, existing systems may take hours to mine even simple patterns in moderate-size graphs, which significantly limits their real-world usability.

We present Pangolin, an efficient and flexible in-memory GPM framework targeting shared-memory CPUs and GPUs. Pangolin is the first GPM system that provides high-level abstractions for GPU processing. It provides a simple programming interface based on the extend-reduce-filter model, which allows users to specify application specific knowledge for search space pruning and isomorphism test elimination. We describe novel optimizations that exploit locality, reduce memory consumption, and mitigate the overheads of dynamic memory allocation and synchronization.

Evaluation on a 28-core CPU demonstrates that Pangolin outperforms existing GPM frameworks Arabesque, RStream, and Fractal by 49×, 88×, and 80× on average, respectively. Acceleration on a V100 GPU further improves performance of Pangolin by 15× on average. Compared to state-of-the-art hand-optimized GPM applications, Pangolin provides competitive performance with less programming effort.

PVLDB Reference Format:

1. INTRODUCTION
Applications that use graph data are becoming increasingly important in many fields. Graph analytics algorithms such as PageRank and SSSP have been studied extensively and many frameworks have been proposed to provide both high performance and high productivity [65, 62, 70, 78]. Another important class of graph problems deals with pattern mining (GPM), which has plenty of applications in areas such as chemical engineering [29], bioinformatics [5, 25], and social sciences [35]. GPM discovers relevant patterns in a given graph. One example is triangle counting, which is used to mine graphs in security applications [87]. Another example is motif counting [68, 12], which counts the frequency of certain structural patterns; this is useful in evaluating network models or classifying vertex roles. Fig. 1 illustrates the 3-vertex and 4-vertex motifs.

Compared to graph analytics, GPM algorithms are more difficult to implement on parallel platforms; for example, unlike graph analytics algorithms, they usually generate enormous amounts of intermediate data. GPM systems such as Arabesque [84], RStream [88], and Fractal [30] have been developed to provide abstractions for programmability. Instead of the vertex-centric model used in graph analytics systems [69], Arabesque proposed an embedding-centric programming model. In Arabesque, computation is applied on individual embeddings (i.e., subgraphs) concurrently. It provides a simple programming interface that substantially reduces the complexity of application development. However, existing systems suffer dramatic performance loss compared to hand-optimized implementations. For example, Arabesque and RStream take 98s and 39s respectively to count 3-cliques for a graph with 2.7M vertices and 28M edges, while a custom solver (KClist) [26] counts it in 0.16s.

This huge performance gap significantly limits the usability of existing GPM frameworks in real-world applications.

The first reason for this poor performance is that existing GPM systems provide limited support for application-specific customization. The state-of-the-art systems focus on generality and provide high-level abstraction to the user for ease-of-programming. Therefore, they hide as many execution details as possible from the user, which substantially limits the flexibility for algorithmic customization. The complexity of GPM algorithms is primarily due to combinatorial enumeration of embeddings and isomorphism tests to find canonical patterns. Hand-optimizing implementations exploit application-specific knowledge to aggressively prune the enumeration search space or elide isomorphism tests or both. Mining frameworks need to support such optimizations to match performance of hand-optimized applications.

The second reason for poor performance is inefficient implementation of parallel operations and data structures. Programming parallel processors requires exploring trade-offs between synchronization overhead, memory management, load balancing, and data locality. However, the state-of-the-art GPM systems target either distributed or out-of-

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is held by the owner/authors. Publication rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 8
ISSN 2150-8097
DOI: https://doi.org/10.14778/3389133.3389137
core platforms, and thus are not well optimized for shared-memory multicore/manycore architectures.

In this paper, we present Pangolin, an efficient in-memory GPM framework that provides a flexible embedding-centric programming interface. Pangolin is based on the extend-reduce-filter model, which enables application-specific customization (Section 3). Application developers can implement aggressive pruning strategies to reduce the enumeration search space, and apply customized pattern classification methods to elide generic isomorphism tests (Section 5).

To make full use of parallel hardware, we optimize parallel operations and data structures, and provide helper routines to the users to compose higher level operations. Pangolin is built as a lightweight layer on top of the Galois [7] parallel library and LonestarGPU [18] infrastructure, targeting both shared-memory multicore CPUs and GPUs. Pangolin includes novel optimizations that exploit locality, reduce memory consumption, and mitigate overheads of dynamic memory allocation and synchronization (Section 5).

Experimental results (Section 6) on a 28-core CPU demonstrate that Pangolin outperforms existing GPM frameworks, Arabesque, RStream, and Fractal, by 49×, 88×, and 80× on average, respectively. Furthermore, Pangolin on V100 GPU outperforms Pangolin on 28-core CPU by 15× on average. Pangolin provides performance competitive to state-of-the-art hand-optimized GPM applications, but with much less programming effort. To mine 4-cliques in a real-world web-crawl graph (gsh) with 988 million vertices and 51 billion edges, Pangolin takes ~ 6.5 hours on a 48-core Intel Optane PMM machine [21] with 6 TB (byte-addressable) memory. To the best of our knowledge, this is the largest graph on which 4-cliques have been mined. In summary, Pangolin makes the following contributions:

- We investigate the performance gap between state-of-the-art GPM systems and hand-optimized approaches, and point out two key features absent in existing systems: pruning enumeration space and eliding isomorphism tests.
- We present a high-performance in-memory GPM system, Pangolin, which enables application-specific optimizations and provides transparent parallelism on CPU or GPU. To the best of our knowledge, it is the first GPM system that provides high-level abstractions for GPU processing.
- We propose novel techniques that enable the user to aggressively prune the enumeration search space and elide isomorphism tests.
- We propose novel optimizations that exploit locality, reduce memory usage, and mitigate overheads of dynamic memory allocation and synchronization on CPU and GPU.
- We evaluate Pangolin on a multicore CPU and a GPU to demonstrate that Pangolin is substantially faster than existing GPM frameworks. Compared to hand-optimized applications, it provides competitive performance while requiring less programming effort.

2. BACKGROUND AND MOTIVATION

We describe GPM concepts, applications, as well as algorithmic and architectural optimizations in state-of-the-art hand-optimized GPM solvers. Lastly, we point out performance limitations of existing GPM frameworks.

2.1 Graph Pattern Mining

In GPM problems, a pattern \(P \) is a graph defined by the user explicitly or implicitly. An explicit definition specifies the vertices and edges of the graph, whereas an implicit definition specifies the desired properties of the graph of interest. Given an input graph \(G \) and a set of patterns \(S_p \), the goal of GPM is to find the embeddings, i.e., subgraphs in \(G \) that are isomorphic to any pattern \(P \in S_p \). For explicit-pattern problems (e.g., triangle counting), the solver finds only the embeddings. For implicit-pattern problems (e.g., frequent subgraph mining), the solver needs to find the patterns as well as the embeddings. Note that graph pattern matching [30] finds embeddings only for a single explicit-pattern, whereas graph pattern mining (GPM) [3, 84] solves both explicit-pattern problems and implicit-pattern problems. In this work, we focus on connected patterns only.

In the input graph in Fig. 2, colors represent vertex labels, and numbers denote vertex IDs. The 3-vertex pattern is a blue-red-green chain, and there are four embeddings of this pattern in the input graph, shown on the right of the figure. In a specific GPM problem, the user may be interested in some pattern-specific statistical information (i.e., pattern frequency), instead of listing all the embeddings. The measure of the frequency of \(P \) in \(G \), termed support, is also defined by the user. For example, in triangle counting, the support is defined as the total count of triangles.

There are two types of GPM problems targeting two types of embeddings. In a vertex-induced embedding, a set of vertices is given and the subgraph of interest is obtained from these vertices and the set of edges in the input graph connecting these vertices. Triangle counting uses vertex-induced embeddings. In an edge-induced embedding, a set of edges is given and the subgraph is formed by including all the endpoints of these edges in the input graph. Frequent subgraph mining (FSM) is an edge-induced GPM problem.

A GPM algorithm enumerates embeddings of the given pattern(s). If duplicate embeddings exist (autormorphism), the algorithm chooses one of them as the canonical one (namely canonical test) and collects statistical information about these canonical embeddings such as the total count. The canonical test needs to be performed on each embedding, and can be complicated and expensive for complex problems such as FSM. Enumeration of embeddings in a graph grows exponentially with the embedding size (number of vertices or edges in the embedding), which is computationally expensive and consumes lots of memory. In addition, a graph isomorphism (GI) test is needed for each

![Figure 1: 3-vertex motifs (top) and 4-vertex motifs (bottom).](image1)

![Figure 2: An example of the GPM problem.](image2)

![Figure 3: System overview of Pangolin (shaded parts).](image3)
vertex has degree of k. It leads to compute and memory intensive algorithms that are time-consuming to implement.

Graph analytics problems typically involve allocating and computing labels on vertices or edges of the input graph iteratively. On the other hand, GPM problems involve generating embeddings of the input graph and analyzing them. Consequently, GPM problems require much more memory and computation to solve. The memory consumption is not only proportional to the graph size, but also increases exponentially as the embedding size increases [84]. Furthermore, GPM problems require compute-intensive operations, such as isomorphism test and automorphism test on each embedding. Thus, GPM algorithms are more difficult to develop, and conventional graph analytics systems [34, 76, 60, 53, 45, 23, 41, 92, 27, 28] are not sufficient to provide a good trade-off between programmability and efficiency.

2.2 Hand-Optimized GPM Applications

We consider 4 applications: triangle counting (TC), clique finding (CF), motif counting (MC), and frequent subgraph mining (FSM). Given the input graph which is undirected, TC counts the number of triangles while CF enumerates all complete subgraphs (i.e., cliques) contained in the graph. TC is a special case of CF as it counts 3-cliques. MC counts the number of occurrences (i.e., frequency) of each structural pattern (also known as motif or graphlet). As listed in Fig. 1, k-clique is one of the patterns in k-motifs. FSM finds frequent patterns in a labeled graph. A minimum support σ is provided by the user, and all patterns with support above σ are considered to be frequent and must be discovered. Note that a widely used support for FSM is minimum image-based (MNI) support (a.k.a. domain support), which has the anti-monotonic property. It is calculated as the minimum number of distinct mappings for any vertex (i.e., domain) in the pattern over all embeddings of the pattern. In Fig. 2, the MNI support of the pattern is $\min(3, 2, 1) = 1$.

Several hand-optimized implementations exist for each of these applications on multicore CPU [79, 4, 31, 17, 83], GPU [42, 59, 61, 52], distributed CPU [81, 38, 82], and multi-GPU [49, 47, 73]. They employ application-specific optimizations to reduce algorithm complexity. The complexity of GPM algorithms is primarily due to two aspects: combinatorial enumeration and isomorphism test. Therefore, hand-optimized implementations focus on either pruning the enumeration search space or eliding isomorphism test or both. We describe some of these techniques briefly below.

Pruning Enumeration Search Space: In general GPM applications, new embeddings are generated by extending existing embeddings and then they may be discarded because they are either not interesting or a duplicate (automorphism). However, in some applications like CF [28], duplicate embeddings can be detected eagerly before extending current embeddings, based on properties of the current embeddings. We term this optimization as eager pruning. Eager pruning can significantly reduce the search space. Furthermore, the input graphs are converted into directed acyclic graphs (DAGs) in state-of-the-art TC [46], CF [28], and MC [74] solvers, to significantly reduce the search space.

Eliding Isomorphism Test: In most hand-optimized TC, CF, and MC solvers, isomorphism test is completely avoided by taking advantage of the pattern characteristics. For example, a parallel MC solver, PGD [4], uses an ad-hoc method for a specific k. Since it only counts 3-vertex and 4-vertex motifs, all the patterns (two 3-motifs and six 4-motifs as shown in Fig. 1) are known in advance. Therefore, some special (and thus easy-to-count) patterns (e.g., cliques) are counted first, and the frequencies of other patterns are obtained in constant time using the relationship among patterns. In this case, no isomorphism test is needed, which is typically an order-of-magnitude faster [4].

Summary: Most of the algorithmic optimizations exploit application-specific knowledge, which can only be enabled by application developers. A generic GPM framework should be flexible enough to allow users to compose as many of these optimization techniques as possible, and provide parallelization support for ease of programming. Pangolin is the first GPM framework to do so.

2.3 Existing GPM Frameworks

Existing GPM systems target either distributed-memory [84, 40, 47] or out-of-core [88, 91, 68] platforms, and they make tradeoffs specific for their targeted architectures. None of them target in-memory GPM on a multicore CPU or a GPU. Consequently, they do not pay much attention to reducing the synchronization overheads among threads within a CPU/GPU or reducing memory consumption overheads. Due to this, naively porting these GPM systems to run on a multicore CPU or GPU would lead to inefficient implementations. We first describe two of these GPM systems briefly and then discuss their major limitations.

Arabesque [84] is a distributed GPM system. It proposes “think like an embedding” (TLE) programming paradigm, where computation is performed in an embedding-centric manner. It defines a filter-process computation model which consists of two functions: (1) filter, which indicates whether an embedding should be processed and (2) process, which examines an embedding and may produce some output. RStream [88] is an out-of-core single-machine GPM system. Its programming model is based on relational algebra. Users specify how to generate embeddings using relational operations such as select, join, and aggregate. It stores intermediate data (i.e., embeddings) on disk while the input graph is kept in memory for reuse. It streams data (or table) from disk and uses relational operations that may produce more intermediate data, which is stored back on disk.

Limitations in API: Most of the application-specific optimizations like pruning enumeration search space and avoiding isomorphism test are missing in existing GPM frameworks, as they focus on providing high-level abstractions but lack support for application-specific customization. The absence of such key optimizations in existing systems results in a huge performance gap when compared to hand-optimized implementations. Moreover, some frameworks like RStream support only edge-induced embeddings but for applications

1 A k-vertex complete subgraph is a connected subgraph in which each vertex has degree of $k - 1$ (i.e., any two vertices are connected).
2 The support of a supergraph should not exceed the support of a subgraph; this allows the GPM algorithm to stop extending embeddings as soon as they are recognized as infrequent.
3 Cliques can be identified by checking connectivity among vertices without generic isomorphism test.
4 For example, the count of diamonds can be computed directly from the counts of triangles and 4-cliques [4].
like CF, the enumeration search space is much smaller using vertex-induced exploration than edge-induced one.

Data Structures for Embeddings: Data structures used to store embeddings in existing GPM systems are not efficient. Both Arabesque and RStream store embeddings in an array of structures (AoS), where the embedding structures consist of a vertex set and an edge set. Arabesque also proposes a space efficient data structure called the Overapproximating Directed Acyclic Graph (ODAG), but it requires extra canonical test for each embedding, which has been demonstrated to be very expensive for large graphs.

Materialization of Data Structures: The list or array of intermediate embeddings in both Arabesque and RStream is always materialized in memory and in disk, respectively. This has significant overheads as the size of such data grows exponentially. Such materialization may not be needed if the embeddings can be filtered or processed immediately.

Dynamic Memory Allocation: As the number of (intermediate) embeddings are not known before executing the algorithm, memory needs to be allocated dynamically for them. Moreover, during parallel execution, different threads might allocate memory for embeddings they create or enumerate. Existing systems use standard (stl) maps and sets, which internally use a global lock to dynamically allocate memory. This limits the performance and scalability.

Summary: Existing GPM systems have limitations in their API, execution model, and implementation. Pangolin addresses these issues by permitting application-specific optimizations in its API, optimizing the execution model, and providing an efficient, scalable implementation on multicore CPU and GPU. These optimizations can be applied to existing embedding-centric systems like Arabesque.

3. Design of Pangolin Framework

Fig. 3 illustrates an overview of the Pangolin system. Pangolin provides a simple API (purple box) to the user for writing GPM applications. The unified execution engine (orange box) follows the embedding-centric model. Important common operations are encapsulated and provided to the user in the helper routines (blue box), which are optimized for both CPU and GPU. The embedding list data structure (green box) is also optimized for different architectures to exploit hardware features. Thus, Pangolin hides most of the architecture oriented programming complexity and achieves high performance and high productivity simultaneously. In this section, we describe the execution model, programming interface (i.e., API), and example applications of Pangolin.

3.1 Execution Model

Algorithm 1 describes the execution engine in Pangolin which illustrates our extend-reduce-filter execution model. To begin with, a worklist of embeddings is initialized with all the single-edge embeddings (line 4). The engine then works in an iterative fashion (line 6). In each iteration, i.e., level, there are three phases: **Extend** (line 8), **Reduce** (line 10), and **Filter** (line 12). Pangolin exposes necessary details in each phase to enable a more flexible programming interface (Section 3.2) than existing systems; for example, Pangolin exposes the **Extend** phase which is implicit in Arabesque.

The **Extend** phase takes each embedding in the input worklist and extends it with a vertex (vertex-induced) or an edge (edge-induced). Newly generated embeddings then form the output worklist for the next level. The embedding size is increased with level until the user defined maximum size is reached (line 14). Fig. 4 shows an example of the first iteration of vertex-based extension. The input worklist consists of all the 2-vertex (i.e., single-edge) embeddings. For each embedding in the worklist, one vertex is added to yield a 3-vertex embedding. For example, the first 2-vertex embedding \{0, 1\} is extended to two new 3-vertex embeddings \{0, 1, 2\} and \{0, 1, 3\}.

After vertex/edge extension, a **Reduce phase** is used to extract some pattern-based statistical information, i.e., pattern frequency or support, from the embedding worklist. The **Reduce** phase first classifies all the embeddings in the worklist into different categories according to their patterns, and then computes the support for each pattern category, forming pattern-support pairs. All the pairs together constitute a pattern map \(p_{map} \) (in line 10). Fig. 5 shows an example of the reduction operation. The three embeddings (top) can be classified into two categories, i.e., triangle and wedge (bottom). Within each category, this example counts the number of embeddings as the support. As a result, we get the pattern-map as \[\{ \text{triangle}, 2 \}, \{ \text{wedge}, 1 \} \]. After reduction, a **Filter** phase may be needed to remove those embeddings which the user are no longer interested in; e.g., FSM removes infrequent embeddings in this phase.

Note that **Reduce** and **Filter** phases are not necessary for all applications, and they can be disabled by the user. If they are used, they are also executed after initializing single-edge embeddings (line 4) and before entering the main loop (line 6). Thus, infrequent single-edge embeddings are filtered out to collect only the frequent ones before the main loop starts. Note that this is omitted from Algorithm 1 due to lack of space. If **Reduce** is enabled but **Filter** is disabled, then reduction is only required and executed for the last iteration, as the pattern map produced by reduction is not used in prior iterations (dead code).

3.2 Programming Interface

Pangolin exposes flexible and simple interfaces to the user to express application-specific optimizations. Listing 1 lists user-defined functions (APIs) and Algorithm 2 describes how these functions (marked in blue) are invoked by the Pangolin execution engine. A specific application can be created by defining these APIs. Note that all the functions are not mandatory; each of them has a default return value.

In the **Extend** phase, we provide two functions, \texttt{toAdd} and \texttt{toExtend}, for the user to prune embedding candidates aggressively. When they return false, the execution engine avoids generating an embedding and thus the search space is reduced. More specifically, \texttt{toExtend} checks whether
Algorithm 2 Compute Phases in Vertex-induced Mining

1: procedure EXTEND(in威尔, out威尔)
2: for each embedding $emb \in$ in威尔 in parallel do
3: for each vertex v in emb do
4: if toEXTEND(emb, v) = true then
5: $\text{if toAdd}($emb$, u) = true then$
6: insert emb $\cup u$ to out威尔
8: $\text{procedure REDUCE(queue, p_map)}$
9: for each embedding $emb \in$ queue in parallel do
10: Pattern $pt \leftarrow$ GETPATTERN(emb)
11: Support $sp \leftarrow$ GETSUPPORT(emb)
12: $\text{p_map}[pt] \leftarrow$ AGGREGATE($\text{p_map}[pt], sp$)
13: $\text{procedure FILTER(in威尔, p_map, out威尔)}$
14: for each embedding $emb \in$ in威尔 in parallel do
15: Pattern $pt \leftarrow$ GETPATTERN(emb)
16: if toDISCARD(pt, p_map) = false then
17: insert emb to out威尔

1 bool toExtend(Embedding emb, Vertex v);
2 bool toAdd(Embedding emb, Vertex u);
3 bool toAdd(Embedding emb, Edge e);
4 Pattern getPattern(Embedding emb);
5 Support getSUPPORT(Embedding emb);
6 Support Aggregate(Support $s1$, Support $s2$);
7 bool toDiscard(Pattern pt, PatternMap map);

Listing 1: User-defined functions in Pangolin.

A vertex in the current embedding needs to be extended. Extended embeddings can have duplicates due to automorphism. Fig. 4 illustrates automorphism: two different embeddings (3, 5, 4) and (2, 5, 4) can be extended into the same embedding (2, 5, 4, 3, 4). Therefore, only one of them (the canonical embedding) should be kept, and the other (the redundant one) should be removed. This is done by a canonical test in toAdd, which checks whether the newly generated embedding is a qualified candidate. An embedding is not qualified when it is a duplicate or it does not have certain user-defined characteristics. Only qualified embeddings are added into the next worklist. Application-specific knowledge can be used to specialize the two functions. If left undefined, toExtend returns true and toAdd does a default canonical test. Note that the user specifies whether the embedding exploration is vertex-induced or edge-induced. The only difference for edge-induced extension is in lines 5 to 7: instead of vertices adjacent to v, edges incident on v are used.

In the REDUCE phase, getPattern function specifies how to obtain the pattern of an embedding. Finding the canonical pattern of an embedding involves an expensive isomorphism test. This can be specialized using application-specific knowledge to avoid such tests. If left undefined, a canonical pattern is returned by getPattern. In this case, to reduce the overheads of invoking the isomorphism test, embeddings in the worklist are first reduced using their quick patterns [84], and then quick patterns are aggregated using their canonical patterns. In addition, getSupport and Aggregate functions specify the support of an embedding and the reduction operator for the support, respectively.

Lastly, in the FILTER stage, toDiscard is used to remove uninteresting patterns. This usually depends on the support for the pattern (that is in the computed pattern map).

Complexity Analysis. Consider an input graph G with n vertices and maximum embedding size k. In the EXTEND phase of the last level (which dominates the execution time and complexity), there are up to $O(n^k)$ embeddings in the input worklist. Each embedding has up to $k − 1$ vertices to extend. Each vertex has up to d_{max} neighbors (candidates). In general, each candidate needs to check connectivity with $k − 1$ vertices, with a complexity of $O(log(d_{max}))$ (binary search). An isomorphism test needs to be performed for each newly generated embedding (size of k) to find its pattern. The state-of-the-art algorithm to test isomorphism has a complexity of $O(e^{\sqrt{k \log k}})$ [8]. Therefore, the overall worst-case complexity is $O((n^k)^k d_{max} log(d_{max}) e^{\sqrt{k \log k}})$.

Pangolin also provides APIs to process the embeddings or pattern maps at the end of each phase (e.g., this is used in clique-listing, which is a variant of clique-finding that requires listing all the cliques). We omit this from Algorithm 2 and Listing 1 for the sake of brevity. To implement the application-specific functions, users are required to write C++ code for CPU and CUDA _device_ functions for GPU (compiler support can provide a unified interface for both CPU and GPU in the future). Listing 2 lists the helper routines provided to the user by Pangolin. These routines are commonly used in GPM applications; e.g., to check connectivity, to test canonicality, as well as an implementation of domain support. They are available on both CPU and GPU, with efficient implementation on each architecture.

Comparison With Other GPM APIs: Existing GPM frameworks do not expose toExtend and getPattern to the application developer (instead, they assume these functions always return true and a canonical pattern, respectively). Note that existing embedding-centric frameworks like Arabesque can be extended to expose the same API functions in Pangolin so as to enable application-specific optimizations (Section 3), but this is difficult for relational model based systems like RStream, as the table join operations are inflexible to allow this fine-grained control.

3.3 Applications in Pangolin

TC, CF, and MC use vertex-induced embeddings, while FSM uses edge-induced embeddings. Listings 3 to 6 show CF, MC, and FSM implemented in Pangolin (we omit TC...
1 bool toExtend(Embedding emb, Vertex v) {
2 return emb.getLastError() == v;
3 }
4 bool toAdd(Embedding emb, Vertex u) {
5 for v in emb.getVertices() except last:
6 if (!isConnected(v, u)) return false;
7 return true;
8 }

Listing 3: Clique finding (vertex induced) in Pangolin.

due to lack of space). For TC, extension happens only once, i.e., for each edge \((v_0, v_1)\), \(v_1\) is extended to get a neighbor \(v_2\). We only need to check whether \(v_2\) is connected to \(v_0\). If it is, this 3-vertex embedding \((v_0, v_1, v_2)\) forms a triangle.

For CF in Listing 3, the search space is reduced by extending only the last vertex in the embedding instead of extending every vertex. If the newly added vertex is connected to all the vertices in the embedding, the new embedding forms a clique. Since cliques can only grow from smaller cliques (e.g., 4-cliques can only be generated by extending 3-cliques), all the non-clip embeddings are implicitly pruned. Both TC and CF do not use \textsc{Reduce} and \textsc{Filter} phases.

Listing 5 shows MC. An extended embedding is added only if it is canonical according to automorphism test. In the \textsc{Reduce} phase, the quick pattern of each embedding is first obtained and then the canonical pattern is obtained using an isomorphism test. In Section 1.2 we show a way to customize this pattern classification method for MC to improve performance. \textsc{Filter} phase is not used by MC.

FSM is the most complicated GPM application. As shown in Listing 4, it uses the custom domain support routines provided by Pangolin. An extended embedding is added only if the new embedding is (automorphism) canonical. FSM uses the \textsc{Filter} phase to remove embeddings whose patterns are not frequent from the worklist. Despite the complexity of FSM, the Pangolin implementation is still much simpler than hand-optimized FSM implementations \cite{82, 1, 32}, thanks to the Pangolin API and helper routines.

4. SUPPORTING APPLICATION-SPECIFIC OPTIMIZATIONS IN PANGOLIN

In this section, we describe how Pangolin’s API and execution model supports application-specific optimizations that: (1) enable enumeration search space pruning and (2) enable the eliding of isomorphism tests.

4.1 Pruning Enumeration Search Space

Directed Acyclic Graph (DAG): In typical GPM applications, the input graph is undirected. In some vertex-induced GPM applications, a common optimization technique is \textit{orientation} which converts the undirected input graph into a directed acyclic graph (DAG) \cite{23, 6}. Instead of enumerating candidate subgraphs in an undirected graph, the direction significantly cuts down the combinatorial search space. Orientation has been adopted in triangle counting \cite{74}, clique finding \cite{26}, and motif counting \cite{71}.

1 bool toAdd(Embedding emb, Edge e) {
2 return isAutoCanonical(emb, e);
3 }
4 Support getSupport(Embedding emb) {
5 return getDomainSupport(emb);
6 }
7 Pattern getPattern(Embedding emb) {
8 return getIsoCanonicalBliss(emb);
9 }
10 Support Aggregate(Support s1, Support s2) {
11 return s1 + s2;
12 }
13 bool toDiscard(Pattern pt, PatternMap map) {
14 return map[pt] < MIN_SUPPORT;
15 }

Listing 5: Frequent subgraph mining (edge induced).

![Figure 7: Convert an undirected graph into a DAG.](image1)

![Figure 8: Examples of eliding isomorphism test for 4-MC.](image2)
Pattern getPattern(Embedding emb) {
 if (emb.size() == 3) {
 if (emb.getNumEdges() == 3) return F1;
 else return P0;
 } else return getIsoCanonicalBliss(emb);
}

Listing 6: Customized pattern classification for 3-MC.

Customized Pattern Classification: In the REDUCE phase (Fig. 5), embeddings are classified into different categories based on their patterns. To get the pattern of an embedding, a generic way is to convert the embedding into a canonical graph that is isomorphic to it (done in two steps, as explained in Section 3.2). Like Arabesque and RStream, Pangolin uses the Bliss [51] library for getting the canonical graph or pattern for an embedding. This graph isomorphism approach is applicable to embeddings of any size, but it is very expensive as it requires frequent dynamic memory allocation and consumes a huge amount of memory. For small embeddings, such as 3-vertex and 4-vertex embeddings in vertex-induced applications and 2-edge and 3-edge embeddings in edge-induced applications, the canonical graph or pattern can be computed very efficiently. For example, we know that there are only 2 patterns in 3-MC (i.e., wedge and triangle in Fig. 1). The only computation needed to differentiate the two patterns is to count the number of edges (i.e., a wedge has 2 edges and a triangle has 3), as shown in Listing 6. This specialized method significantly reduces the computational complexity of pattern classification. The getPattern function in Pangolin enables the user to specify such customized pattern classification.

5. IMPLEMENTATION ON CPU AND GPU

The user implements application-specific optimizations using the Pangolin API and helper functions, and Pangolin transparently parallelizes the application. Pangolin provides an efficient and scalable parallel implementation on both shared-memory multicore CPU and GPU. Its CPU implementation is built using the Galois [70] library and its GPU implementation is built using the LonestarGPU [18] infrastructure. Pangolin includes several architectural optimizations. In this section, we briefly describe some of them: (1) exploiting locality and fully utilizing memory bandwidth [33, 10]; (2) reducing the memory consumption; (3) mitigating the overhead of dynamic memory allocation; (4) minimizing synchronization and other overheads.

5.1 Data Structures for Embeddings

Since the number of possible k-embeddings in a graph increases exponentially with k, storage for embeddings grows rapidly and easily becomes the performance bottleneck. Most existing systems use array-of-structures (AoS) to organize the embeddings, which leads to poor locality, especially for GPU computing. In Pangolin, we use structure of arrays (SoA) to store embeddings in memory. The SoA layout is particularly beneficial for parallel processing on GPU as memory accesses to the embeddings are fully coalesced.

5.2 Avoiding Data Structure Materialization

Loop Fusion: Existing GPM systems first collect all the embedding candidates into a list and then call the user-defined function (like toAdc) to select embeddings from the list. This leads to materialization of the candidate embeddings list. In contrast, Pangolin preemptively discards embedding candidates using the toAdc function before adding it to the embedding list (as shown in Algorithm 2), thereby avoiding the materialization of the candidate embeddings.
5.3 Dynamic Memory Allocation

Inspection-Execution: Compared to graph analytics applications, GPM applications need significantly more dynamic memory allocations and memory allocation could become a performance bottleneck. A major source of memory allocation is the embedding list. As the size of embedding list increases, we need to allocate memory for the embeddings in each round. When generating the embedding list, there are write conflicts as different threads write to the same shared embedding list. In order to avoid frequent resize and insert operation, we use inspection-execution technique to generate the embedding list.

The generation include 3 steps. In the first step, we only calculate the number of newly generated embeddings for each embedding in the current embedding list. We then use parallel prefix sum to calculate the start index for each current embedding, and allocate the exact amount of memory for all the new embeddings. Finally, we actually write the new embeddings to update the embedding list, according to the start indices. In this way, each thread can write to the shared embedding list simultaneously without conflicts. Fig. 11 illustrates the inspection process. At level i, there are 4 embeddings e_0, e_1, e_2, e_3 in the embedding list, which will generate 1, 2, 1, 3 new embeddings respectively.

![Figure 10: Edge blocking.](image1)

![Figure 11: Inspection-execution.](image2)

5.4 Other Optimizations

GPM algorithms make extensive use of connectivity operations for determining how vertices are connected in the input graph. For example, in k-cliques, we need to check whether a new vertex is connected to all the vertices in the current embedding. Another common connectivity operation is to determine how many vertices are connected to given vertices v_0 and v_1, which is usually obtained by computing the intersection of the neighbor lists of the two vertices. A naive solution of connectivity checking is to search for one vertex v_0 in the other vertex v_1’s neighbor list sequentially. If found, the two vertices are directly connected. To reduce complexity and improve parallel efficiency, we...
generalize the binary search approach proposed for TC [46] to implement connectivity check in Pangolin. This is particularly efficient on GPU, as it improves GPU memory efficiency. We provide efficient GPU and GPU implementations of these connectivity operations as helper routines, such as isConnected (Listing 2), which allow the user to easily compose pruning strategies in applications.

In summary, when no algorithmic optimization is applied, programming in Pangolin should be as easy as previous GPM systems like Arabesque. In this case, performance gains over Arabesque is achieved due to the architectural optimizations (e.g., data structures) in Pangolin. To incorporate algorithmic optimizations, the user can leverage Pangolin API functions (e.g., toExtend and toAdd) to express application-specific knowledge. While this involves slightly more programming effort, the user can get an order of magnitude performance improvement by doing so.

6. EVALUATION
In this section, we compare Pangolin with state-of-art GPM frameworks and hand-optimized applications. We also analyze Pangolin performance in more detail.

6.1 Experimental Setup
We compare Pangolin with state-of-the-art GPM frameworks: Arabesque [84], RStream [88], G-Miner [19], Kaleido [91], Fractal [30], and AutoMine [66]. Arabesque, G-Miner, and Fractal support distributed execution, while the rest support out-of-core execution. None of them support GPU execution. Kaleido and AutoMine results are reported from their papers because they are not publicly available. We also compare Pangolin with the state-of-the-art hand-optimized GPM applications [11, 14, 20, 3, 73, 52, 53, 54].

We test the 4 GPM applications discussed in Section 3.3, i.e., TC, CF, MC, and FSM. k-MC and k-CF terminate when subgraphs reach a size of k vertices. For k-FSM, we mine the frequent subgraphs with |k – 1| edges. Table 1 lists the input graphs used in the experiments. We assume that the input graphs are symmetric, have no self-loops, and have no duplicate edges. We represent the input graphs in memory in a compressed sparse row (CSR) format. The neighbor list of each vertex is sorted by ascending vertex ID.

The first 3 graphs — Mi, Pa, and Yo — have been previously used by Arabesque, RStream, and Kaleido. We use the same graphs to compare Pangolin with these existing frameworks. In addition, we include larger graphs from SNAP Collection [58] (T), Or, Koblenz Network Collection [56] (Tw), DistGraph [52] (Pdb), and a very large web-crawl [15] (Gsh). Except Pdb, other larger graphs do not have vertex labels, therefore, we only use them to test TC, CF, and MC. Pdb is used only for FSM.

Unless specified otherwise, CPU experiments were conducted on a single machine with Intel Xeon Gold 5120 CPU 2.2GHz, 4 sockets (14 cores each), 190GB memory, and 3TB SSD. AutoMine was evaluated using 40 threads (with hyper-threading) on Intel Xeon E5-2630 v4 CPU 2.2GHz, 2 sockets (10 cores each), 64GB of memory, and 2TB of SSD. Kaleido was tested using 56 threads (with hyper-threading) on Intel Xeon Gold 5117 CPU 2.0GHz, 2 sockets (14 cores each), 128GB memory, and 480GB SSD. To make our comparison fair, we restrict our experiments to only use 2 sockets of our machine, but we only use 28 threads without hyperthreading. For the largest graph, Gsh, we used a 2 socket machine with Intel’s second generation Xeon scalable processor with 2.2 Ghz and 48 cores, equipped with 6TB of Intel Optane PMM [39] (byte-addressable memory technology). Our GPU platforms are NVIDIA GTX 1080 Ti (11GB memory) and Tesla V100 (32GB memory) GPUs with CUDA 9.0. Unless specified otherwise, GPU results reported are on V100.

RStream writes its intermediate data to the SSD, whereas other frameworks run all applications in memory. We exclude preprocessing time and only report the computation time (on the CPU or GPU) as an average of 3 runs. We also exclude the time to transfer data from CPU to GPU as it is trivial compared to the GPU compute time.

6.2 GPM Frameworks
Table 2 reports the execution time of Arabesque, RStream, Kaleido, Fractal, and Pangolin. The execution time of G-Miner and AutoMine is reported in Table 3 and Table 4 respectively (because it does not have other applications or datasets respectively). Note that Kaleido and AutoMine results on 28-core and 20-core CPU, respectively, are reported from their papers. We evaluate the rest on our 28-core CPU, except that we evaluate Pangolin for gsh on 48-core CPU. Fractal and AutoMine use DFS exploration [59, 50], whereas the rest use BFS. Pangolin is an order-of-magnitude faster than Arabesque, RStream, Fractal, and G-Miner. Pangolin outperforms Kaleido in all cases except 4-MC on patent. Pangolin on CPU is comparable or slower than AutoMine but outperforms it by exploiting the GPU.

For small inputs (e.g., TC and 3-CF with Mi), Arabesque suffers non-trivial overhead due to the startup cost of Graph. For large graphs, however, due to lack of algorithmic (e.g., eager pruning and customized pattern classification) and data structure optimizations, it is also slower than Pangolin. On average, Pangolin is 49× faster than Arabesque.

For RStream, the number of partitions P is a key performance knob. For each configuration, we choose P to be the
best performing one among 10, 20, 50, and 100. RStream
only supports edge-induced exploration and does not support
pattern-specific optimization. This results in extremely
large search spaces for CF and MC because there are many
more edges than vertices. In addition, RStream does not
scale well because of the intensive use of mutex locks for
updating shared data. Lastly, Pangolin avoids inefficient
data structures and expensive redundant computation (iso-
morphism test) used by RStream. Pangolin is 88× faster
than RStream on average (Kaleido [21] also observes that
RStream is slower than Arabesque).

On average, Pangolin is 2.6× faster than Kaleido (7.4×,
3.3×, 2.4×, and 1.6× for TC, CF, MC, and FSM respectively).
This is mainly due to DAG construction and cus-
tomized pattern classification in Pangolin.

Pangolin is on average 80× faster than Fractal. Frac-
tal is built on Spark and suffers from overheads due to it.
More importantly, some optimizations in hand-optimized
DFS-based applications like PGD [4] and KClist [26] are
not supported in Fractal, which limits its performance.
AutoMine uses a key optimization [4, 26] to remove the
redundant computation that can only be enabled in DFS-
based exploration. Due to this, when pattern size
k is large like in 5-CF and 4-MC, AutoMine is faster than Pangolin.
However, since Pangolin uses BFS-based exploration which
easily enables GPU acceleration, Pangolin on GPU is on
average 5.8× faster than AutoMine. It is not clear how
to enable DFS mode for GPU efficiently, especially when k
is large. Note that for all the applications, AutoMine can
only do counting but not listing, because it has no automor-
phism test during extension (instead it uses post-processing
to address the multiplicity issue). FSM in AutoMine uses
frequency (which is not anti-monotonic) instead of domain
support, and thus it is not comparable to FSM in Pangolin.

6.3 Hand-Optimized GPM Applications

We compare hand-optimized implementations with Pan-
golin on CPU and GPU. We report results for the largest
datasets supported on our platform for each application.
Note that all hand-optimized applications involve substantially
more programming effort than Pangolin ones. As
shown in Table 3, hand-optimized TC has 4× more lines of
code (LoC) than Pangolin TC and the other hand-optimized
applications have one or two orders of magnitude more LoC
than Pangolin ones. The Pangolin code for MC is shown in
Listings 4 and 5. The lines in the other Pangolin applica-
tions are as simple as that in MC. Hand-optimized solvers
must handle parallelism, synchronization, memory allocation,
etc, while Pangolin transparently handles all of that,
making it easier for the user to write applications.

In Table 3a we compare with GAP [11] and DistTC [44],
the state-of-the-art TC implementations on CPU and GPU,
respectively. It is clear from Table 3 and Table 5a that TC
implementations in existing GPM frameworks are orders of
magnitude slower than the hand-optimized implementation in
GAP. In contrast, Pangolin performs similar to GAP on
the same CPU. Pangolin is also faster than DistTC on the
same GPU due to its embedding list data structure, which
has better load balance and memory access behavior.

Table 3 compares our 4-clique with KClist [26], the state-
of-the-art CF implementation. Pangolin is 10 to 20× slower
than KClist on the CPU, although GPU acceleration of
Pangolin significantly reduces the performance gap. This is
because KClist constructs a shrinking local graph for each
edge, which significantly reduces the search space. This
optimization can only be enabled in the DFS exploration.
In Table 3b we observe the same trend for 3-MC compared
with PGD, the state-of-the-art MC solver for multicore CPU [4]
and GPU [73]. Note that PGD can only do counting, but not
listing, as it only counts some of the patterns and the other
patterns’ counts are calculated directly using some formu-
las. In contrast, MC in Pangolin can do both counting and
listing. Another limitation of PGD is that it can only handle
3-MC and 4-MC, while Pangolin handles arbitrary k.
As PGD for GPU (PGD-GPU) [73] is not released, we estimate
PGD-GPU performance using their reported speedup [73] on
Titan Black GPU. Pangolin-GPU is 20% to 130% slower.

Table 4a and Table 5a compares our 3-FSM and 4-FSM,
respectively, with DistGraph [22, 23]. DistGraph supports
both shared-memory and distributed platforms. DistGraph
supports a runtime parameter σ, which specifies the
minimum support, but we had to modify it to add the max-
imum size k. On GPU, Pangolin outperforms DistGraph for
3-FSM in all cases, except for $\sigma=5K$ with support 5K. For
graphs that fit in the GPU memory (M_1, Pa), Pangolin on
GPU is 6.9× to 290× faster than DistGraph. In compar-
ison, the GPU implementation of DistGraph is only 4× to
9× faster than its CPU implementation [52] (we are not able
to run their GPU code and we cannot compare
with their reported results as they do not evaluate the same datasets). For 4-FSM, Pangolin is 22% to 240% slower than DistGraph. The slowdown is mainly due to the algorithmic differences: DistGraph adopts DFS exploration and a recursive approach which reduces computation and memory consumption, while Pangolin does BFS exploration.

6.4 Scalability and GPU Performance

Although Pangolin is an in-memory processing system, Pangolin can scale to very large datasets by using large memory systems. To demonstrate this, we evaluate Pangolin on the Intel Optane PMM system and mine a very large real-world web crawl, Gash. As shown in Table 4b, TC and 3-CF only take 2 and 11 minutes, respectively. 4-CF is much more compute and memory intensive, so it takes ~ 6.5 hours.

Fig. 12 illustrates how the performance of Pangolin applications scales as the number of threads increases for different applications on Yo. Pangolin achieves good scalability by utilizing efficient, concurrent, scalable data structures and allocators. For TC, we observe near linear speedup over single-thread execution. In contrast, FSM’s scalability suffers due to the overheads of computing domain support.

To test weak scaling, we use the RMAT graph generator to generate graphs with vertices $|V| = 2^n$ from 2^{20} to 2^{25} and average degree $d = 20$. Fig. 13 reports the execution time normalized to that of $rmat_{20}$ (log-log scale). The execution time grows exponentially as the graph size increases because the enumeration search space grows exponentially.

Fig. 14 illustrates speedup of Pangolin applications on GPU over 28-core CPU. Note that due to the limited memory size, GPUs fail to run some applications and inputs. On average, 1080Ti and V100 GPUs achieve a speedup of 6× and 15× respectively over the CPU. Specifically, we observe substantial speedup on CF and MC. For example, the V100 GPU achieves 50× speedup on 4-MC for Yo, demonstrating the suitability of GPUs for these applications.

6.5 Memory Consumption

The peak memory consumption for Arabesque, RStream, and Pangolin on the same 28-core CPU platform is illustrated in Fig. 15. We observe that Arabesque always requires the most memory because it is implemented in Java using Giraph which allocates a huge amount of memory. In contrast, Pangolin avoids this overhead and reduces memory usage. Since Pangolin does in-memory computation, it is expected to consume much more memory than RStream which stores its embeddings in disk. However, we find that the difference in memory usage is trivial because aggressive search space pruning and customized pattern classification significantly reduce memory usage. Since this small memory cost brings substantial performance improvement, we believe Pangolin makes a reasonable trade-off.

6.6 Impact of Optimizations

We evaluate the performance improvement due to the optimizations described in Section 4 and Section 5. Due to lack of space, we present these comparisons only for the GPU implementations, but the results on the GPU are similar. Fig. 16a shows the impact of orientation (DAG) and user-defined eager pruning (Prune) on 4-CF. Both techniques significantly improve performance for TC (not shown) and CF. Fig. 16b demonstrates the advantage of using Galois memory allocators instead of std allocators. This is particularly important for FSM as it requires intensive memory allocation for counting support. Fig. 16c illustrates that customized pattern classification used in MC and FSM yields huge performance gains by eliding expensive generic isomorphism tests. Fig. 16d shows that materialization of temporary embeddings causes 11% to 37% slowdown for MC. This overhead exists in every application of Arabesque (and RStream), and is avoided in Pangolin. In Fig. 17, we evaluate the performance of our proposed embedding list data structure with SoA layout and inspection-execution. Compared to the straight-forward embedding queue (mimic the AoS implementation used in Arabesque and RStream), the k-MC performance is 2.1× to 4.7× faster. Another optimization is employing binary search for connectivity check. Fig. 17b shows that binary search can achieve up to 6.6× speedup compared to linear search. Finally, Fig. 18 illustrates the last level cache (LLC) miss counts in the vertex extension phase of k-CF. We compare two data structure schemes for the embeddings, AoS and SoA. We observe a sharp reduction of LLC miss count by switching from AoS to SoA. This further confirms that SoA has better locality than AoS, due to the data reuse among embeddings.

7. RELATED WORK

GPM Applications: Hand-optimized GPM applications target various platforms. For triangle counting, Shun et al. [79] present a parallel, cache-oblivious TC solver on multi-core CPUs that achieves good cache performance without fine-tuning cache parameters. TriCore [46] is a multi-GPU TC solver that uses binary search to increase coalesced memory accesses, and it employs dynamic load balancing. There are several distributed TC solvers [51, 58, 74] too.

Chiba and Nishizeki (C&N) [24] proposed an efficient k-clique listing algorithm which computes the subgraph induced by neighbors of each vertex, and then recurses on the subgraph. Danisch et al. [26] refine the C&N algorithm for parallelism and construct DAG using a core value based ordering to further reduce the search space. PGD [4] counts 3 and 4-motifs by leveraging a number of proven combinatorial arguments for different patterns. Some patterns (e.g., cliques) are counted first, and the frequencies of other patterns are obtained in constant time using these combinatorial arguments. Escape [71] extends this approach to 5-vertex subgraphs and leverages DAG to reduce search space.

gSpan [80] is an efficient sequential FSM solver which does depth-first search (DFS) based on a lexicographic order. GraMi [22] proposes an approach that finds only the minimal set of instances to satisfy the support threshold and avoids enumerating all instances. DistGraph [82] parallelizes gSpan for both shared-memory and distributed CPUs. Each
worker thread does the DFS walk concurrently. It introduces a customized dynamic load balancing strategy which splits tasks on the fly and recomputes the embedding list from scratch after the task is sent to a new worker. Scalemine\cite{1} solves FSM with a two-phase approach, which approximates frequent subgraphs in phase-1, and uses collected information to compute the exact solution in phase-2. There are other GPM applications, e.g., maximal cliques\cite{21}, maximum clique\cite{63},\cite{2}, and subgraph listing\cite{64,77,13,54,58,49,55}. All the above hand-optimized solvers employ various optimizations to reduce computation and improve hardware efficiency. However, they achieve high performance at the cost of tremendous programming efforts, while Pangolin provides a unified model for ease of programming.

GPM Frameworks: For ease-of-programming, GPM systems such as Arabesque\cite{84}, RStream\cite{88}, G-Miner\cite{19}, and Kaleido\cite{61} have been proposed. They provide a unified programming interface to the user which simplifies application development. However, their interface is not flexible enough to enable application specific optimizations. Instead of the BFS exploration used in these frameworks, Fractal\cite{90} employs a DFS strategy to enumerate subgraphs, which reduces memory footprint. AutoMine\cite{69} is a compiler based system using DFS exploration. In contrast, Pangolin uses the BFS approach that is inherently more load-balanced, and is better suited for GPU acceleration.

Approximate GPM: There are approximate solvers for TC\cite{86,72,55}, CF\cite{69,48}, MC\cite{81,16}, and FSM\cite{7}.

8. CONCLUSION

We present Pangolin, a high-performance, flexible GPM system on shared-memory CPUs and GPUs. Pangolin provides a simple API that enables the user to specify eager enumeration search space pruning and customized pattern classifications. To exploit locality, Pangolin uses an efficient structure of arrays (SoA) for storing embeddings. It avoids materialization of temporary embeddings and blocks the schedule of embedding exploration to reduce the memory usage. It also uses inspection-execution and scalable memory allocators to mitigate the overheads of dynamic memory allocation. These application-specific and architectural optimizations enable Pangolin to outperform prior GPM frameworks, Arabesque, RStream, and Fractal, by 49×, 88×, and 80×, on average, respectively, on the same 28-core CPU. Moreover, Pangolin on V100 GPU is 15× faster than that on the CPU on average. Thus, Pangolin provides performance competitive with hand-optimized implementations but with much better programming experience.

Acknowledgments

The research was supported by NSF grants 1406355, 1618425, 1705092, and 1725322; NSF grant 61802416; and DARPA contracts FA8750-16-2-0004 and FA8650-15-C-7563. We thank Intel for providing the Intel Optane DC PMM machine.
9. REFERENCES

