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Abstract 

Background: Rice panicle phenotyping is important in rice breeding, and rice panicle segmentation is the first and 
key step for image-based panicle phenotyping. Because of the challenge of illumination differentials, panicle shape 
deformations, rice accession variations, different reproductive stages and the field’s complex background, rice panicle 
segmentation in the field is a very large challenge.

Results: In this paper, we propose a rice panicle segmentation algorithm called Panicle-SEG, which is based on sim-
ple linear iterative clustering superpixel regions generation, convolutional neural network classification and entropy 
rate superpixel optimization. To build the Panicle-SEG-CNN model and test the segmentation effects, 684 training 
images and 48 testing images were randomly selected, respectively. Six indicators, including Qseg, Sr, SSIM, Precision, 
Recall and F-measure, are employed to evaluate the segmentation effects, and the average segmentation results for 
the 48 testing samples are 0.626, 0.730, 0.891, 0.821, 0.730, and 76.73%, respectively. Compared with other segmenta-
tion approaches, including HSeg, i2 hysteresis thresholding and jointSeg, the proposed Panicle-SEG algorithm has 
better performance on segmentation accuracy. Meanwhile, the executing speed is also improved when combined 
with multithreading and CUDA parallel acceleration. Moreover, Panicle-SEG was demonstrated to be a robust seg-
mentation algorithm, which can be expanded for different rice accessions, different field environments, different 
camera angles, different reproductive stages, and indoor rice images. The testing dataset and segmentation software 
are available online.

Conclusions: In conclusion, the results demonstrate that Panicle-SEG is a robust method for panicle segmentation, 
and it creates a new opportunity for nondestructive yield estimation.
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Introduction

Rice (O. sativa) is an important primary food for a large 

proportion of the world’s population, especially in Asia 

[1–3]. �erefore, rapid screening for crops with high yield 

is extremely important for ensuring the safety of rice pro-

duction and helping to address food shortage problems 

[4, 5]. �e rice panicle, as an important agronomic com-

ponent [6], not only is closely associated with yield [7, 

8] but also plays an important role in disease detection 

[9], nutrition examination [10] and growth period deter-

mination [11]. �us, accurate panicle segmentation is a 

key step in rice field phenotyping [12]. However, because 

of the complexity of the field environment (water reflec-

tions, illumination unbalance and cluttered background) 

(Fig.  1A–C), variations in the rice accessions (Fig.  1D), 

different weather conditions (Fig. 1E) and different repro-

ductive stages (Fig.  1F), which cause differences in the 

colors, textures, size, and shapes in the panicle images, 

accurate panicle segmentation is an enormous challenge 

[13]. �e existing segmentation methods mostly focus on 

two aspects. One aspect is solely based on color informa-

tion. For example, Tang et al. proposed a method (HSeg) 

that relies on Hue plane threshold segmentation for the 

maize tassel [14]. Part of a corn tassel was extracted to 

locate the maize tassel. �e disadvantage is that the same 

component under different illuminations will appear to 

have various colors. �us, segmentation based on color 

information will be seriously affected by the illumina-

tion. Additionally, the color information changes with the 

reproductive stage. In this way, the type of method usu-

ally applies to a certain reproductive period. Except for 

the disadvantages described above, an excess dependence 

on color information will lead to the phenomenon of 

incomplete extraction. �e other aspect is the two-step 

segmentation method. Among these, candidate region 

generation is the first step, and a general classifier is then 

adopted for the classification of candidate regions.

To generate candidate regions, several methods have 

been applied in the current research studies: (1) one of 

the ideas relies on threshold segmentation for different 

color channels. Similarly, Duan et  al. applied an algo-

rithm to extract potted rice panicles from multi-angle 

side-view images [12]. �e hysteresis thresholding based 

on the i2 color plane is applied to extract the panicle can-

didate regions. Obviously, image segmentation of pani-

cles in pot-grown rice, which is inspected in a chamber 

with a stable illumination environment, is relatively sim-

ple compared with phenotyping in field environments. 

(2) Another thought for candidate regions generation is 

utilizing a classifier, such as the support vector machine 

(SVM). �e gray values for different color spaces, such 

as the RGB, HSV and LAB color planes, are calculated as 

the input vector of the SVM classifier. For example, Zhu 

et  al. introduced a wheat ear detection mechanism to 

automatically observe the wheat heading stage [15]. �e 

proposed method is applied to generate wheat ear can-

didate regions with SVM. In addition, Lu et al. developed 

a framework called mTASSEL-S to execute the maize 

tassel segmentation [2]. �e color space conversion is 

used to make a coarse location easier with SVM. (3) Fur-

thermore, there is the consideration that the candidate 

regions could rely on graph-based segmentation. Simi-

larly, Lu et al. in 2016 proposed a method for maize tassel 

segmentation based on region-based color modeling [13]. 

Fig. 1 Challenges in the field based rice panicle segmentation. A Water reflection. B The illumination unbalance in the same plot. C Yellowish rice 
leaves and serious overlapping. D Variance in rice accession. E Different weather conditions. F Different reproductive stages
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�e fusion of graph-based segmentation and superpixel 

generation achieves the division of candidate regions.

Afterward, the second step of the two-step segmen-

tation method uses a general classifier that is based on 

SIFT features or other features (such as color features, 

morphological features and location features used by 

Duan et  al. [12]) to classify the candidate regions. Guo 

et  al. proposed a powerful method for automatically 

detecting flowering panicles of paddy rice in RGB images 

taken under natural field conditions [16]. Visual words, as 

a coding method, is developed to encode the SIFT fea-

tures for each of the candidate regions. �en, the SVM 

classifier is used as a fine-detection method for the can-

didate regions. �e concept adopted by Zhu et  al. [15] 

is similar to the above approach. �e difference is that 

another encoding algorithm (fisher vector encoding) is 

chosen instead of visual words. Overall, compared with 

segmentation that is based on only color information, the 

two-step segmentation is relatively robust.

To the best of our knowledge, few studies have inves-

tigated rice panicle segmentation. In this study, simple 

linear iterative clustering (SLIC) [17] is used to gener-

ate candidate regions, and convolutional neural network 

(CNN, one of the deep learning technologies) [18] is 

applied as a candidate region classifier. Afterward, the 

entropy rate superpixel (ERS) [19] algorithm is devel-

oped for segmentation result optimization. �e results 

showed that our presented method can be expanded for 

the different field environments, different camera angles, 

different reproductive stages, and indoor rice images. 

Compared with several related segmentation algorithms, 

the proposed Panicle-SEG algorithm shows better per-

formance regarding the segmentation accuracy.

Results

Image analysis pipeline of the Panicle-SEG algorithm

After the image acquisition, the main flow diagram of 

our rice panicle segmentation algorithm (Panicle-SEG 

Fig. 2 The flow diagram of the Panicle-SEG algorithm. A Original field rice image. B Mask image. C SLIC superpixel segmentation result. D Auto-
matic labeling. E Training set and validation set building: The patches were augmented and divided into the training set and validation set. F CNN 
network. G Panicle-SEG-CNN model generation. H Testing sample. I Testing patches generation. J The pre-trained Panicle-SEG-CNN model gener-
ated in off-line training is utilized in testing patches classification, and the testing patches were categorized into candidate panicle and confirmed 
background. K The candidate panicle patches were merged into one image, called the coarse segmentation results. L Entropy rate superpixel 
image. M Optimized segmentation result. N The final segmentation result was obtained after removing small regions
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algorithm) including off-line training and on-line seg-

mentation is shown in Fig.  2. Here, 684 representative 

rice images, including 49 top-view field rice images, 30 

overhead-view field rice images, 302 pot-grown side-view 

images and 303 pot-grown top-view images are selected 

to build the Panicle-SEG-CNN model, in which the illu-

mination changes, weather conditions, panicle shapes, 

rice accessions, cluster background, reproductive stages 

and camera angle condition are all considered (Fig.  1). 

�e detailed process of the proposed Panicle-SEG algo-

rithm is described here as an example of the field top-

view rice image (Fig. 2A). �e off-line training contained 

4 steps: (1) Generation of patches: all the images were 

manually segmented using Photoshop software to obtain 

the mask images (Fig.  2B) for the following automatic 

labeling. Patches were generated using SLIC super-

pixel segmentation (Fig. 2C); (2) Automatic labeling: the 

patches were automatically labeled into 2 categories: can-

didate panicle and confirmed background (Fig.  2D); (3) 

Training set and validation set building: �e patches were 

augmented and divided into the training set (901,895 

patches) and validation set (225,472 patches) (Fig.  2E); 

(4) CNN training and Panicle-SEG-CNN model genera-

tion (Fig. 2F, G). �en, for a testing sample (Fig. 2H), the 

on-line segmentation included 3 steps: (1) Generation of 

patches: �e testing patches were generated using SLIC 

superpixel segmentation (Fig.  2I); (2) Coarse segmenta-

tion by using a pre-trained Panicle-SEG-CNN model: �e 

pre-trained Panicle-SEG-CNN model generated in off-

line training is utilized in testing patch classification, and 

the testing patches were categorized into candidate pani-

cles and confirmed background (Fig. 2J). �en the candi-

date panicle patches were merged into one image, called 

the coarse segmentation result (Fig. 2K); (3) Entropy rate 

superpixel optimization: �e coarse segmentation result 

was combined with the entropy rate superpixel image 

(Fig.  2L) to obtain the optimized segmentation result 

(Fig.  2M). �e final segmentation result (Fig.  2N) was 

obtained after removing small background region.

The processing efficiency of the Panicle-SEG algorithm

Using our computer system (Microsoft Windows 10 PC 

with a 4-core i5 CPU, 3.2  GHz per CPU core, 8  GB of 

memory and a NVIDA GTX 750ti video card), the seg-

mentation process for one testing image with resolution 

of 1815  ×  1971  pixels takes approximately 135–150  s. 

Utilizing multithreading (OpenMP) and CUDA parallel 

acceleration, the processing efficiency could be increased 

to approximately 70  s. Moreover, the Panicle-SEG algo-

rithm was not restricted by the size of the input image, 

which means that it can address any size for the original 

input rice image, such as 800  ×  600  pixels, etc. At the 

same time, with a decreased size of the input image to be 

processed, the time required will obviously be reduced. 

For example, when the resolution of the input image is 

1392 ×  1040  pixels, the segmentation time in the GPU 

mode is about 20–22 s. Furthermore, the CPU frequency, 

CPU cores and performance of the video card, to a large 

extent, will impact the time for segmentation. We pack 

the panicle segmentation project (Panicle-SEG) with an 

installer. �e whole testing images and the Panicle-SEG 

installation file in CPU/GPU mode are available online 

at: http://plantphenomics.hzau.edu.cn/checkiflogin_

en.action (username: UserPP; password: 20170108pp), 

and the detailed software implementation procedure is 

illustrated in Additional file  1: Video S1 and Additional 

file  2: Appendix S1. �e detailed software implementa-

tion is as follows: (1) Install the “setup_Panicle-SEG_cpu.

exe” or “setup_Panicle-SEG_gpu.exe” file. (2) Open the 

command line and enter to the current file path. (3) Open 

the “Readme.txt” and revise the parameters if needed. 

(4) Copy the revised content in “Readme.txt” and paste 

to the command line. (5) Waiting for the rice panicle 

segmentation (the cost time depends on your computer 

performance). (6) �e segmentation results are shown in 

“segmentation_results” file.

Performance evaluation of the testing set using six 

indicators

In this study, after 684 representative rice images were 

used to train the Panicle-SEG-CNN model, another 

48 testing images, including 24 field-based top-view 

images, 12 field-based overhead-view images (heading 

stage, filling stage and mature stage), 12 indoor images (7 

side-view and 5 top-view) were selected to test the seg-

mentation algorithm. To evaluate the performance of the 

segmentation, six indicators, including the Qseg, Sr [20], 

Structural Similarity Index (SSIM) [21], Precision, Recall, 

and the F-measure [22] are adopted. Among them, the 

range of Qseg is from 0 to 1. Namely, the higher the value 

(approach to 1), the more accurate the segmentation is. 

Conversely, the closer the value is to 0, the worse the con-

sistency is. So, the value of Qseg reflects the consistency 

of all the image pixels, including panicle foreground part 

and background part. And the value of Sr represents the 

consistency of only panicle part. From the perspective of 

an image, it reflects the completeness of the segmenta-

tion results. �e computational formula for Qseg and Sr 

are provided in Eqs. 1, 2. �e SSIM is applied to describe 

the degree of similarity between the segmentation images 

and the ground truth images. �e SSIM model ana-

lyzes the structure of the image information from three 

aspects, including the brightness, structure similarity 

and contrast. �e range of the SSIM is from 0 to 1, and 

http://plantphenomics.hzau.edu.cn/checkiflogin_en.action
http://plantphenomics.hzau.edu.cn/checkiflogin_en.action
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the higher the value is, the more similar the two images 

are. Precision and Recall are the most basic indicators 

to reveal the final segmentation results. Precision illus-

trates the accuracy of the segmentation algorithm, and 

Recall represents the completeness of the segmented rice 

panicles. �e computational formulas for Precision and 

Recall are provided in Eqs. 3, 4. In practice, Precision and 

Recall interact with each other. When Precision is high, 

Recall will be low. Sometimes, we need to balance these 

two indicators. To accomplish this goal, the F-measure is 

proposed. �e computational formula is shown in Eq. 5. 

�e higher the value of the F-measure is, the more per-

fect the rice panicle segmentation will be.

(1)Qseg =

n∑

i=0

m∑

j=0

(A(v)i,j ∩ B(v)i,j)

n∑

i=0

m∑

j=0

(A(v)i,j ∪ B(v)i,j)

(2)Sr =

n∑

i=0

m∑

j=0

(A(v)i,j ∩ B(v)i,j)

n∑

i=0

m∑

j=0

B(v)i,j

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F =
2 × Precision × Recall

Precision + Recall
× 100 (% )

where, A in Eqs. 1, 2 means the panicle pixels (v = 255) 

or background pixels (v = 0) segmented by our Panicle-

SEG, and B in Eqs. 1, 2 represents a reference set of man-

ually segmented panicle pixels (v = 255) or background 

pixels (v =  0). �e value of m and n reflects the image 

row and column and i, j are the pixel coordinate of the 

images. In Eqs.  3–5, the TP, TN, FP, and FN represent 

the numbers of true positives, true negatives, false posi-

tives, and false negatives, respectively. True positives 

(TP) are when the predicted results and the correspond-

ing ground truth are both rice panicle pixels. True nega-

tives (TN) represent that the predicted results and the 

corresponding ground truth are both background pixels. 

False positives (FP) were determined as those pixels that 

were classified as rice panicle pixels, but the ground truth 

of those pixels are background. �e False negatives (FN) 

are those pixels that belong to the ground truth, but they 

are not correctly discriminated.

For the Panicle-SEG segmentation algorithm, the mean 

values of the Qseg, Sr, SSIM, Precision, Recall and the 

F-measure (%) were 0.626, 0.730, 0.891, 0.821, 0.730, and 

76.73%, respectively. �e standard deviations of the Qseg, 

Sr, SSIM, Precision, Recall, and the F-measure (%) for 48 

testing samples were 0.072, 0.090, 0.088, 0.074, 0.090, and 

5.46% respectively. �e performance and the final rice 

panicle segmented results for 48 testing images are listed 

in Additional file 3: Table S1.

Comparison of Panicle-SEG segmentation results with the 

other three approaches

To verify the superiority of the Panicle-SEG algorithm, 

the other three well-established algorithms, including 

HSeg [14], i2 hysteresis thresholding [12], and jointSeg 

Fig. 3 The means and standard deviations of six evaluation indicators for the testing set. Six indicators, including the Qseg, Sr, SSIM, Precision, 
Recall, and the F-measure (%) are adopted to evaluate the performance of the segmentation result. The color columns and black lines represent the 
means and standard deviations for the testing set, respectively. Additionally, the color differences of the columns show the various segmentation 
algorithms (Panicle-SEG, HSeg, i2 hysteresis thresholding, and jointSeg)
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[13], were used. �e means and standard deviations of 

the six evaluation indicators for the 48 testing images 

were estimated (Fig. 3). In Fig. 3, the color columns and 

black lines represent the means and standard deviations, 

respectively. Additionally, the color difference in the col-

umns shows the various segmentation algorithms. Except 

for the Panicle-SEG algorithm, the other three contrast 

algorithm’s standard deviations are relatively large, which 

reflects their weak adaptability to different field test-

ing images. In addition, for the Panicle-SEG algorithm, 

the average of Qseg is about 0.626, which is significantly 

higher than other three contrast algorithms. So, the pro-

posed algorithm has better consistency of both panicle 

foreground part and background part. And the mean 

value of SSIM for the Panicle-SEG algorithm is higher 

than that of the other three contrast algorithms. Moreo-

ver, the F-measure is a comprehensive indicator, and it 

accounts for Precision and Recall; it can achieve 0.767 

using our Panicle-SEG algorithm compared with 0.398, 

0.441, and 0.209 for HSeg, i2 hysteresis thresholding, 

and jointSeg, respectively. �is phenomenon shows that 

the Panicle-SEG algorithm could accurately segment rice 

panicles and guarantee the integrity of panicle segmen-

tation. �e comparison results of the testing set for the 

HSeg, i2 hysteresis thresholding, and jointSeg algorithms 

are shown in Additional file 4: Table S2.

Four representative testing images were selected to 

compare the segmented results obtained from differ-

ent approaches (Fig. 4). In the third column of Fig. 4, the 

HSeg segmentation results are established. Large back-

ground pixels existed, and the average of SSIM is only 

approximately 0.5. In addition, i2 hysteresis thresholding 

is a novel idea that was originally proposed for indoor 

potted side-view rice images segmentation. �e color 

Fig. 4 Comparison to state-of-the-art segmentation approaches. Four representative field rice images are selected to illustrate the segmentation 
effect. The first column reflects the original top-view rice images in the field. The second column is the manual panicle segmentation result using 
Photoshop software. The third column to the sixth column represents the rice panicle segmentation results using HSeg, i2 hysteresis thresholding, 
jointSeg, and Panicle-SEG algorithm. A The upright panicles are partially hidden in the rice leaf blade. B The bend growth panicles are basically 
exposed above the rice leaf blade. C The awn exists in the rice panicle, and the illumination is uneven in the same field plot rice image. D On a 
cloudy day, the panicle color appears to be gray
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information in the i2 plane and artificial neural network 

(ANN) modeling were considered for panicle segmenta-

tion. �e fourth column in Fig. 4 shows the segmentation 

results. Additionally, jointSeg was originally proposed for 

maize tassel segmentation in the field. �us, we retrain 

the model using 684 training images with default param-

eters for a fair comparison, and the fifth column in Fig. 4 

shows the result. Compared with the HSeg and jointSeg 

algorithms, the algorithm based on i2 hysteresis thresh-

olding is good at edge-preserving, which means that the 

edge of rice panicle can be well separated and kept. And 

the dividing lines fit the edge of the rice panicle well. 

Moreover, the background using i2 hysteresis threshold-

ing is obviously cleaner. However, because of the depend-

ence on the panicle color, it can hardly resolve white rice 

panicles caused by cloudy weather. �e last column in 

Fig. 4 is our Panicle-SEG segmentation result. In such a 

complex field environment, the method we proposed still 

has a stronger ability for panicle segmentation accuracy. 

�e edges and the structural integrity of the rice panicles 

maintain are well maintained. Above all, in our previ-

ous work, the i2 method [12], which relies on the color 

and position information, is proposed to extract panicle 

region. While, the proposed Panicle-SEG algorithm is 

independent of the color and position information (pani-

cles usually locate at the upper part of the rice plant), 

which gives it stronger robustness.

Discussion

Segmentation results under different rice accessions or 

illumination environments

Because of the differences in the rice accessions, the 

panicles’ textures and shapes could be quite different. In 

Fig.  4A, the upright panicles are partially hidden in the 

rice leaf blades. For Fig. 4B, the bend growth panicles are 

basically exposed above the rice leaf blades. At the same 

time, the panicle awn exists in Fig. 4C. �e last column 

shows the rice panicle segmentation result using the Pan-

icle-SEG algorithm. In each of these three scenarios, com-

pared with the other three segmentation algorithms, the 

Panicle-SEG algorithm has a stronger ability to perform 

rice panicle segmentation, and panicle integrity is well 

maintained. �us, the proposed Panicle-SEG algorithm 

is well suited to panicle segmentation with varying rice 

accessions (totally, 71 rice accessions are used for train-

ing and testing processing). Moreover, the weather, as an 

important field factor, influences the performance of the 

panicle segmentation result. In Fig. 4C, the illumination 

intensity in the right image part has a significant differ-

ence from that of the left image part, which will cause 

the situation that pixels could appear in different colors. 

�e highlighted panicle parts look pale. On the other 

hand, caused by a cloudy day, the panicle color in Fig. 4D 

appears gray. �is type of issue can still be addressed by 

the proposed Panicle-SEG algorithm. Additionally, the 

Fig. 5 Two field rice images having different illumination. A High brightness. B Low brightness
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illumination differences (Fig. 5) and illumination uneven-

ness (Additional file 5: Figure S1) are common phenom-

ena in the field environment. Surely, the brightness in 

Fig. 5A is significantly brighter than Fig. 5B. But the value 

of SSIM for the two segmented images can reach more 

than 0.890, which reflects that the segmented images and 

the manual segmentation results have a high degree of 

similarity. And, the average of Qseg of these two bright-

ness conditions is over 0.62. So, the proposed algorithm 

has better consistency of both panicle foreground part 

and background part even in different illumination con-

ditions. Furthermore, the difference in illumination is not 

only in different field plot images, but also in different 

areas of the same image like Additional file 5: Figure S1. 

In this way, the proposed Panicle-SEG algorithm can still 

solve this problem well. So, both highlighted regions and 

gray panicles can be well segmented. �is algorithm does 

not rely on the weather, illumination, shape deformation, 

and rice accessions, which illustrates strong robustness 

and stability.

Fig. 6 Panicle segmentation results under overhead-view camera angle with different reproductive stages. A Heading stage. B Filling stage. C 
Mature stage
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Segmentation results under different camera angles 

and different reproductive stages

In the field environment, the overhead-view is also com-

monly used for field rice image acquisition. Figure 6A–C 

show three overhead-view field rice images with differ-

ent reproductive stages (heading stage, filling stage and 

mature stage). �e second column in Fig.  6A–C repre-

sents the manual segmentation results using PhotoShop 

software. And the last column reflects the correspond-

ing Panicle-SEG segmentation result. For heading stage 

in Fig. 6A, the Qseg, Sr, SSIM, Precision, Recall, and the 

F-measure (%) can achieve 0.662, 0.758, 0.970, 0.840, 

0.758, and 79.7%, respectively. For filling stage in Fig. 6B, 

the Qseg, Sr, SSIM, Precision, Recall, and the F-meas-

ure (%) are 0.657, 0.876, 0.943, 0.724, 0.876 and 79.3%, 

respectively. And for mature stage in Fig. 6C, the Qseg, Sr, 

SSIM, Precision, Recall, and the F-measure (%) are 0.712, 

0.873, 0.779, 0.795, 0.873 and 83.2%, respectively. In this 

way, the proposed Panicle-SEG segmentation algorithm 

can not only adapt to different camera angles, but also 

has good segmentation result for different growth peri-

ods. �is allows us to use this algorithm to perform more 

work such as growth period detection, etc.

Segmentation results under an indoor inspection 

environment

As a highly-robust panicle segmentation algorithm, the 

indoor potted rice images acquired by the RGB camera 

from top-view and side-view are also suitable for panicle 

segmentation using Panicle-SEG. �e original indoor rice 

images, manually segmented images, and Panicle-SEG 

segmented results are shown in the left column, center 

column, and right column of Fig. 7, respectively. As illus-

trated in Fig. 7, the F-measure (%) is above 84%, the Qseg 

is above 0.7 and the SSIM values are all above 0.99. �us, 

the proposed Panicle-SEG algorithm also has strong flex-

ibility for indoor top-view rice images (Fig.  7A), indoor 

side-view rice images with green leaves (Fig.  7B), and 

indoor side-view rice images with yellow leaves (Fig. 7C).

Conclusion

In this study, we establish a robust and open image seg-

mentation software for segmenting rice panicle based on 

deep learning and superpixel optimization. Compared 

with other approaches, the Panicle-SEG algorithm has 

better performance on segmentation accuracy. Moreover, 

the Panicle-SEG can be expanded for different field envi-

ronments, different camera angles, different reproduc-

tive stages, and even indoor rice images. Surly, accurate 

panicle segmentation is the first step and prerequisite 

for extracting image-based rice panicle traits. After the 

segmentation, many traits can be obtained for breed-

ing and phenotyping, such as: Growth period detection 

(like heading period detection) [15], panicle develop-

ment (area change, color change, maturity test) [23], yield 

estimation [24] and so on. �is study provided a robust 

image segmentation method for rice panicles in the field, 

which would potentially facilitate rice breeding or rice 

phenotyping in future.

Methods

Experimental materials and field-based image acquisition

In this study, the experimental paddy field with a total 

area of 1200  m2 is located in Wuhan, Hubei province, 

China (30.5N, 114.3E). Rice (O. sativa) seeds were sown 

and germinated during the summer of 2016. �e field 

plot farming method was explained as followed. Each 

field plot (90  ×  90  cm2) has 20 rice plants of the same 

variety, which are planted in five rows and four columns. 

Considered the edge effect, a guard row of rice plants was 

planted on the boundary between two adjacent plots. In 

total, 71 rice accessions were used for training and testing 

processing in this work. For each plot, two images (top-

view and overhead-view, respectively) were extracted. 

�e imaging bracket (Additional file  6: Figure S2) was 

used to obtain rice plot images. Two cameras (Nikon D40 

camera hosting a 23.7 ×  15.6 mm CCD matrix, 35 mm 

focal length lens, 3008 ×  2000 pixels and Nikon D7100 

camera hosting a 23.5 × 15.6 mm CMOS matrix, 17 mm 

focal length lens, 4000 × 6000 pixels), including top-view 

and overhead-view camera were mounted at the top and 

the side of the imaging bracket, respectively. Wireless 

shutter was used to trigger the cameras to take images 

when the imaging bracket moving manually in the paddy 

field.

Generation of patches

For classification problems, the traditional machine 

learning algorithms, such as ANN, must acquire hand-

crafted features. However, these hand-crafted features 

are not guaranteed to provide the subsequent learning 

algorithm with the optimal description of the data. At 

the same time, it is difficult to extract satisfactory fea-

tures for complicated situations. CNN is very similar to 

ANN (they are composed of neurons that have learn-

able weights and biases), except for the difference that 

the inputs of the CNN are images, which means that 

the CNN has the ability to learn features independently 

instead of extracting features manually. Since the input 

image sizes of the CNN should be consistent, the first 

step is to generate training patches with the same size.

�e pixel-level segmentation approaches have achieved 

a moderate degree of success. At the same time, ignoring 

the neighborhood information will have a serious impact 

on the edge-preserving ability of the segmentation algo-

rithm. �us, the idea of processing the image patches 
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Fig. 7 Panicle segmentation results for indoor pot-grown rice images. A Indoor top-view rice images. B Indoor side-view rice image with green 
leaves. C Indoor side-view rice image with yellow leaves
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with similar characteristics instead of single pixels has 

contributed to overcoming the influence of noise, accel-

erating the processing speed, and improving the panicle 

edge-preserving ability. Moreover, the input of the CNN 

requires a unified size of the images. To achieve this goal, 

SLIC was applied to extract superpixel image patches. 

�e clustering algorithm with color information in the 

LAB color space and position coordinate were adopted 

to generate superpixel regions. At the same time, the 

superpixel regions with fundamental coincident size and 

shape also meet the requirements of generating uniform 

patches. SLIC algorithm has two parameters: K and M. K 

is the number of superpixel, and M is superpixel compact 

degree. In our paper, the compact coefficient (M) is set to 

10 and remains unchanged for all the samples (training 

set and testing set). In the training process, the number 

of superpixel (K) is set to 20,000 for the training images 

with a resolution of 1815  ×  1971  pixels. For different 

size of input images in the testing process, we expect the 

area of each superpixel regions to be basically consistent. 

So, the fixed proportional relation (1815 × 1971/20,000) 

was used to calculate the number of superpixel (K) for a 

new testing sample. �e red irregular polygons in Fig. 8 

represent SLIC superpixel regions. Compared to the 

other superpixel generation algorithm, the computing 

speed is faster than the others, and the algorithm has a 

good ability for edge preservation. However, the shape 

of these SLIC superpixel regions is irregular, and thus, 

they cannot be directly used as CNN input. �erefore, 

a small window called a patch (32  ×  32  pixels), which 

is centered on the weighted centre of the current SLIC 

superpixel region, is given to the CNN. Detailed process-

ing for patches generation using SLIC method has been 

described in Additional file 7: Appendix S2.

Automatic labeling

CNN offline training is a supervised process, which 

means that the input patches and their corresponding 

labels are both needed. Due to the limitation of having 

enormous numbers of samples, it is unrealistic to label 

each patch manually. �us, a rapid and accurate labe-

ling method was proposed in this work. Two images are 

needed. �e first image is an original field rice image 

(Fig.  2A), and the second image is the corresponding 

mask image with a high degree of segmentation accuracy 

(Fig.  2B), which is obtained manually using PhotoShop 

software. �e white part in the mask image represents the 

foreground area of the rice panicle. Firstly, SLIC super-

pixel regions were generated as discussed in the previous 

section, such as the red irregular polygons in Fig. 8. �e 

black point represents the weighted center of the SLIC 

superpixel region. �e region centered on the black point 

and enclosed by a white box (32 × 32 pixels) is the sample 

patch on the corresponding SLIC superpixel region. �e 

Fig. 8 Patch generation approaches based on SLIC. The black point represents the weighted center of the current SLIC superpixel region 
(irregularly shaped red regions). The region centered on the black point and enclosed by a white box (32 × 32 pixels) is the training patch on the 
corresponding SLIC superpixel region. (1), (2), and (3) are the zoomed-in versions of the white box training patches, and the percentage is the ratio 
between the foreground panicle regions to the corresponding SLIC superpixel region in each patch
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boxes (1), (2), and (3) in Fig. 8 are the zoom-in versions 

of the white box training patches, and the percentages in 

each patch represent the ratio between the foreground 

panicle areas (the white part in the mask image) to the 

corresponding areas of the SLIC superpixel region. �e 

sample patch is labeled category zero (confirmed back-

ground) if the percentage of the current patch is equal to 

zero; otherwise, it is labeled category one (candidate for 

panicle). �e advantage of this labeling method is that it 

guarantees that all of the categories zero samples do not 

contain foreground panicle pixels, which can improve 

the classification accuracy of the CNN. However, as long 

as the patch has foreground panicle pixels, regardless of 

how many it has, the labeling method will still tag it to 

a candidate panicle patch, which means that the coarse 

segmentation result is likely to contain background pix-

els. �us, the optimization processing is needed.

Training set and validation set building

Given the patch labeling proposals, the next question is 

how to build a training set and validation set. Here, 684 

representative rice images are selected as the total sample 

set, in which the water reflection, illumination unbalance, 

cluttered background, rice accession, weather conditions, 

and reproductive stage are all considered (Fig.  1). For 

the progress of the sample patch generation, the num-

ber of category zero (negative) samples is far larger than 

the number of category one (positive) samples. �us, 

sample balance is necessary. All of the positive samples 

are chosen as a sample set. For the negative samples, 

the Gaussian mixture model (GMM) [25] is applied for 

unsupervised clustering. �e mean value and standard 

deviation of each of the training patches in RGB color 

space are extracted as the input vector of GMM. In total, 

9 categories are obtained, and equivalent samples are 

selected randomly from each category to join the sam-

ple set. Considering the complications of the field-based 

environment, the next step is to augment the dataset. 

�us, to simulate the illumination change, the intensity 

component of the image in HSV color space is adjusted. 

At the same time, the wind influence and image defocus 

phenomenon is also common in the field-based imag-

ing environment, which will cause image blur condition. 

Gaussian blur with 3 ×  3 smoothing Gaussian kernel is 

adopted to simulate this situation. �ese augmented 

images are all appended to the sample set, from which 

twenty percent of the sample set is randomly selected 

as the validation set (225,472 patches), and the remain-

ing eighty percent is selected as the training set (901,895 

patches) (Additional file 8: Figure S3). Detailed process-

ing and parameters for the samples set building and data 

augmentation have been described in Additional file  7: 

Appendix S2.

CNN training and Panicle-SEG-CNN model generation

Caffe, an open source deep learning framework, was used 

in this work [26]. �e detailed software implementa-

tion strategy using Caffe is discussed at Additional file 7: 

Appendix S2. Considering that the input size of the color 

patches is 32 × 32 pixels, which is similar to the cifar10 

dataset, a CNN network developed for the cifar10 data-

set was applied for our rice patch classification. Figure 9 

shows the architecture of the CNN network, which is 

composed of 5 layers (3 convolution layers and 2 fully 

connected layers). �e detailed hyper-parameters for 

each layer in our CNN network can refer to Additional 

file  9: Figure S4. In this way, the CNN transforms the 

original patch layer by layer from the original pixel values 

to the final class scores.

When the training set is ready, the first step is data 

preprocessing. One necessary process is to subtract the 

mean value over the training set from each pixel. �en, 

the CNN is trained by iteratively passing the training 

images and adjusting the network weights and biases 

based on the classification accuracy in the validation 

set. Additionally, the entire update process is based on 

Fig. 9 Convolutional neural network model for training the patch category classification. The primary architecture of the network is composed of 5 
layers (3 convolution layers and 2 fully connected layers)
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the stochastic gradient descent (SGD) with momentum 

algorithm. �e start of the base learning rate is 0.001. 

�en, we decreased the learning rate by a factor of 0.3 

for 20,000 iterations, 100,000 iterations, 160,000 itera-

tions, 240,000 iterations and 320,000 iterations. At the 

same time, we set the start value of the momentum to 

0.9, which remained unchanged for all the training pro-

cessing. And the maximum number of iterations is set to 

600,000. �e final training model (Panicle-SEG-CNN) is 

saved to disk according to the Google Protocol Buffers, 

which can be called by using the Caffe C++ interface in 

the testing process. Detailed training processing has been 

described in Additional file 7: Appendix S2.

Coarse segmentation by using the pre-trained 

Panicle-SEG-CNN model

For a testing rice image, the first operation is the test-

ing patches generation. �e SLIC superpixel algorithm is 

applied to generate the testing patches. �en, we ran each 

test patch through the pre-trained Panicle-SEG-CNN 

model, to obtain the category of each patch. �e SLIC 

superpixel region, which corresponds to the positive test-

ing patch, will be retained as the candidate rice panicle 

region. In turn, the SLIC superpixel region, which cor-

responds to the negative testing patch, will be removed 

as a confirmed background. �e coarse segmentation 

result will be joined together by combining the candidate 

panicle patches. As discussed in the Automatic labeling 

section, the coarse segmentation result is likely to con-

tain some background pixels. At the same time, the CNN 

classification cannot ensure that all of the testing patches 

were classified correctly. �us, the optimization algo-

rithm is needed.

Entropy rate superpixel optimization

Entropy rate superpixel segmentation is another super-

pixel segmentation algorithm. Figure  10A shows the 

entropy rate superpixel image, which has 5000 super-

pixel regions. Figure  10B reflects the corresponding 

SLIC superpixel image, which has 20,000 superpixel 

regions. Both algorithms have the ability to accomplish 

boundary adherence. At the same time, the entropy 

rate superpixel algorithm with fewer superpixel regions 

can achieve a beneficial effect on the edge preservation. 

Meantime, the entropy rate superpixel image has larger 

background regions and relatively smaller foreground 

panicle regions, which provides an advantage for seg-

mentation optimization. So, a relatively small entropy 

rate superpixel region, around 5000 (for image with 

resolution of 1815 × 1971 pixels in training processing), 

Fig. 10 The principle of entropy rate superpixel optimization. A Entropy rate superpixel image. The typical characteristic of the entropy rate 
superpixel image is having larger background regions and relatively small foreground panicle regions, and the algorithm has stronger abilities in 
edge preservation. B SLIC superpixel image. The edge of the SLIC superpixel region is relatively regulated. Sometimes, the foreground pixels and 
background pixels can exist in the same SLIC superpixel region, such as in the white dotted boxes (1) and (2) dpi
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is a good option after experimental analysis (can refer 

to Additional file  7: Appendix S2). For different size of 

input images in the testing process, the fixed propor-

tional relation (1815  ×  1971/5000) was used to calcu-

late the number of entropy rate superpixel region for a 

new testing sample. �e process for entropy rate super-

pixel optimization is as follows: First, we assume that the 

coarse segmentation is the correct segmentation result. 

In this place, all of the pixels in the candidate panicle 

regions at the coarse segmentation result were marked 

as a gray value of 255 (panicle pixels), and the pixels in 

the confirmed background regions were marked as a 

gray value of 0 (background pixels). �en, the number of 

panicle pixels and background pixels within each entropy 

rate superpixel region are calculated. �e entropy rate 

superpixel region was considered to be the final rice 

panicle region if the ratio of the panicle pixel number to 

the total pixel number in each entropy rate superpixel 

region is greater than the optimization parameter. Here, 

a satisfactory result can be obtained by using the opti-

mization parameter 0.9 in this paper. �e detailed opti-

mization parameter discussion can refer to Additional 

file 7: Appendix S2. Subsequently, small regions with an 

area smaller than a predefined area threshold (500 pixels 

in this study) were removed.

�e proposed entropy rate superpixel segmentation, as 

a highly efficient and strongly feasible optimization algo-

rithm, has unique advantages in the following respects. 

First, errors could occur in the CNN classification in 

the coarse segmentation result. Some background SLIC 

superpixel regions could be classified to candidate pani-

cle regions. Commonly, relative to the large entropy rate 

superpixel background region, the area of error of the 

SLIC superpixel region accounts for a relatively small 

proportion. �us, after the optimization, the segmen-

tation noise caused by error classification can be sig-

nificantly suppressed. Second, because the edges of the 

SLIC superpixel regions are relatively well-regulated, 

the foreground pixels and background pixels could 

exist in the same SLIC superpixel region, similar to the 

white dotted boxes (1) and (2) in Fig.  10. For example, 

suppose that these regions are classified into candidate 

panicle regions, which will lead to poor edge segmenta-

tion results in the coarse result. In contrast, entropy rate 

superpixel segmentation has a stronger ability for edge 

preservation, which will retain the accuracy and the 

completeness of the edge extraction after the optimiza-

tion algorithm.

In ERS optimization, there are three parameters (the 

number of entropy rate superpixel regions, balancing 

parameter, and optimization parameter) that need to be 

predefined. Detailed parameters selection can refer to 

Additional file 7: Appendix S2.

Speed up the segmentation project

In this study, the whole segmentation project is devel-

oped in C++ using the OpenCV library [27]. Addition-

ally, the Caffe framework for CNN classification was 

encapsulated in the project by calling the C++ interface. 

�e OpenMP, as an application programming interface 

that supports multi-platform shared memory in C++, 

was applied to increase the speed of the project. �e per-

formance of the acceleration depends on the CPU fre-

quency and the number of CPU cores. At the same time, 

Caffe’s integration with CUDA and the cuDNN library 

accelerates Caffe processing models. CUDA is a paral-

lel computing platform that was created by NVIDIA, 

and the cuDNN library was developed for deep learning 

with GPU acceleration. �e uses of high-performance 

GPUs have changed the traditional opinions about 

acceleration and greatly shorten the processing time of 

the segmentation algorithm. Here, the parallel comput-

ing using GPU is adopted in the CNN classification. In 

this way, the time for the rice panicle segmentation can 

achieve approximately 70 s per image, with a resolution 

of 1815 × 1971 pixels. Of course, the current segmenta-

tion project has the potential to be faster in the future. 

For example, the GPU acceleration can be applied in the 

process of entropy rate superpixel segmentation.
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