Panini: A Concurrent Programming Model for
Solving Pervasive and Oblivious Interference

Mehdi Bagherzadeh

Hridesh Rajan

Iowa State University, USA
{mbagherz,hridesh}@iastate.edu

Abstract

Modular reasoning about concurrent programs is complicated by
the possibility of interferences happening between any two instruc-
tions of a task (pervasive interference), and these interferences not
giving out any information about the behaviors of potentially inter-
fering concurrent tasks (oblivious interference). Reasoning about
a concurrent program would be easier if a programmer modularly
and statically (/) knows precisely the program points at which in-
terferences may happen (sparse interference), and (2) has some in-
sights into behaviors of potentially interfering tasks at these points
(cognizant interference). In this work we present Panini, a core con-
current calculus which guarantees sparse interference, by control-
ling sharing among concurrent tasks, and cognizant interference,
by controlling dynamic name bindings and accessibility of states of
tasks. Panini promotes capsule-oriented programming whose con-
currently running capsules own their states, communicate by asyn-
chronous invocations of their procedures and dynamically transfer
ownership. Panini limits sharing among two capsules to other cap-
sules and futures, limits accessibility of a capsule states to only
through its procedures and dispatches a procedure invocation on
the static type of its receiver capsule. We formalize Panini, present
its semantics and illustrate how its interference model, using behav-
ioral contracts, enables Hoare-style modular reasoning about con-
current programs with interference.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Software/Program Verification]

General Terms Design, Languages, Verification

Keywords Pervasive interference, oblivious interference, modular
reasoning, capsule-oriented programming, message passing

1. Introduction

Modular reasoning is important for scalable software development
because it allows programmers and tools [} 2] to discharge veri-
fication obligations about a module by just considering the imple-
mentation of the module and the interfaces (not implementations)
of static types named in that module. Concurrent programming, i.e.
the ability to perform two or more simultaneous computations in a
single program, is also vital for creating modern software systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MODULARITY’15 , March 16-19, 2015, Fort Collins, CO, USA

Copyright © 2015 ACM 978-1-4503-3249-1/15/03. .. $10.00

We believe that concurrent programming stubbornly remains diffi-
cult and error-prone because we cannot, yet, do modular reasoning
about concurrent programs.

1.1 Problem

There are two fundamental obstacles to modular reasoning about
concurrent programs [2-4]:

@ the pervasive interference problem, and

@ the oblivious interference problem.

By the pervasive interference we mean that in a concurrent
program, between any two consecutive instructions of a concurrent
task, interleaving instructions of another task could change the state
of the program such that it influences the subsequent behavior of
the first task [3]. This in turn means, there are too many points
in a program that a programmer must analyze before they can
understand the behavior of their program. For example, in the
single straight line code below there could be three interference
points that occur between instructions that read the value of x, read
the value of y, add the two values, and write the value of x.

X=X+Y;

o

That is, this code actually looks like * x = % x + % y where

& denotes an interference point.

By the oblivious interference we mean that interference points
do not give out any information, either concrete or abstract, about
what other concurrent tasks may interfere or what are their behav-
iors. This in turn means, a programmer must consider all potentially
concurrent tasks to determine whether their interleavings would be
harmful and cause interferences (global reasoning). For example,
in the straight line code above, there is no information about how
interfering tasks at interference points ¢ may or may not modify
the values of x and y.

The key difference between pervasive and oblivious interfer-
ence is that the former is about locations of interferences (where)
whereas the latter is concerned about behaviors of interferences
(what). Though, these two are well-known concurrency problems
we coin the terms “pervasive interference” and “oblivious interfer-
ence” to refer to them.

Pervasive and oblivious interference together, make modular
reasoning about concurrent programs difficult [1H5]]. Several prior
techniques have been proposed for controlling interference and
interfering behaviors of concurrent programs. Figure[I]summarizes
closely related works and compares them regarding pervasiveness
and obliviousness of interferences. details the comparison of
previous work regarding pervasive and oblivious interference for
all related works.

Interference
Pervasive | Oblivious
atomicity, transactional memory, v
cooperability, AME
actors, active objects v
rely-guarantee, Owicki-Gries v

Figure 1. Comparison of previous work addressing (v') pervasive
and oblivious interference problems.

Atomicity, transactional memory, cooperability and automatic
mutual exclusion (AME) An atomic block [6H8] is a code block
which is free of interference, i.e. the code in the block behaves as
if it executes sequentially. Atomicity limits the interference points
to the code outside atomic blocks, however, for the code outside
an atomic block interference could still happen between any two
instructions. Atomic blocks do not say anything about behaviors of
interfering tasks at interference points.

Cooperability [3l 5, 9] and automatic mutual exclusion [10-
12| are the inverse of atomic blocks, i.e. the code is atomic and
interference-free unless explicitly specified. These techniques limit
interferences to explicitly specified interference points but similarly
do not say anything about behaviors of interfering tasks.

Actors and active objects Actors [[13H15] encapsulate data and
control and communicate by passing messages. A class of actor
models (similarly active objects [16} [17]) in which actors provide
confinement and do not permit unfettered internal concurrency lim-
its interference points to message sends or receives, i.e. a block
of code between two message receives are atomic (macro-step se-
mantics [[15]). However, actor models that allow uncontrolled inter-
nal concurrency or arbitrary data sharing among actors still could
have interference between any two instructions. Actor models do
not solve the oblivious interference problem because their dynamic
name bindings could make the exact static type of a receiver or
sender of a message unknown. Thus, a programmer cannot tell
which concurrent tasks are interfering at interference points.

Rely-guarantee and Owicki-Gries Rely-guarantee based rea-
soning approaches [1, 4] and Owicki-Gries’s work [[18] specify the
behavior of the environment (other concurrently running tasks) of
a task and thus limit the interference behavior. However, interfer-
ences can still happen between any two instructions.

1.2 Solution: Panini

A concurrent programming model can enable more modular rea-
soning if it provides the following properties to a programmer:

@ Sparse interference: interference points are not pervasive in a
program, instead they can be explicitly identified by certain
program constructs; and

@ Cognizant interference: interference points are not oblivious
in the program, instead each explicitly identified interference
point provides an abstraction of behaviors of all potentially
interfering concurrent tasks.

The language Panini presents such a programming model called
capsule-oriented programming 19, 20]]. Before discussing Panini’s
interference model and semantics, we provide a gentle introduction
using the example in Figure[2] The example declares a capsule type
Counter with a state x, on line[2] and a procedure add, on lines [3}-
[Bl The body of add contains the straight line code shown in the
previous section, which adds y to x. A capsule instance of Counter,
say ¢, can be declared and it behaves like a process.

In Panini, a program is a set of concurrently running capsule
instances which own their states and communicate with each other

through asynchronous procedure invocations. Invocation of a cap-
sule instance procedure appends the invoked procedure to the tail
of the instance’s queue and returns a future [21] for its result. The
single execution thread of a capsule instance dequeues its invoked
procedures from the head of the queue and executes them in the or-
der that they appear in the queue. Invocation and returning of a pro-
cedure transfers the ownership of its parameters and return values
between its invoking and invoked capsule instances, respectively.

capsule Counter {
int x;
void add(int y) {
X=X+Y;
}
}

1= T S SO T S,

Figure 2. Capsule Counter with state x and procedure add.

1.2.1 Sparse Interference to Solve Pervasive Interference

Panini’s semantics controls and limits sharing among two capsule
instances to other capsule instances and futures. This in turn allows
a Panini program to limit its interference points to after capsule
procedure invocations and guarantees sparse interference. As an ex-
ample, there are no interferences in the body of the procedure add
of a capsule instance c of type Counter, which is in contrast with
straight line code in the previous section with pervasive interfer-
ence and possible interferences between any two instructions. This
is because Panini’s semantics guarantees that the state x is owned
and is only accessible to its enclosing capsule instance ¢ and there
is only one thread of execution running ¢ and accessing x. This in
turn allows interferences in the code for the procedure add to be
safely swapped out [22], as if the code runs with no interferences.

A reader familiar with synchronization features in languages
like Java could perhaps achieve the same by implementing the
counter as a class and marking its add method as synchronized,
however, the capsule model saves the programmer from worrying
about if there still could be interferences on line [and whether
acquiring an object-level lock is actually sufficient to protect x. A
lock protects a memory location if, throughout a program, every
access to the location is preceded by acquiring the lock [6].

capsule Counter {
Number x;
void add(Numbery) {
x.add(y.value());

Number value() { return x.value(); }

}

RO T N TR R

Figure 3. Capsule Counter with a reference type state.

To illustrate Panini’s semantics more, consider the capsule
Counter in Figure [3] which creates the possibility of sharing the
state x and the capsule procedure argument y, among an instance of
Counter and other capsule instances, by changing their types from
integer to a reference type Number.

Again, the body of the procedure add of a capsule instance ¢
does not have any interferences. This is because Panini’s semantics
guarantees that not only the state x but also its representation 23],
i.e. the object graph rooted at x, is owned by the instance ¢ and is
only accessible from within c itself. The semantics also guarantees

that upon invocation of the procedure add and throughout its exe-
cution its argument y and its representation is owned by c. This in
turn allows interferences in the code for add to be safely swapped
out, as if the code runs with no interferences.

Note that the alternative using synchronized or locks works
only if proper locks are put in place to guarantee that they protect
not only the state x and its representation but also the parameter y
and its representation [6]. Panini’s semantics does not allow lock
splitting, i.e. protecting fields in a capsule by different locks.

So far we have looked at capsules with no interference points
in the bodies of their procedures. To illustrate capsules with inter-
ference points consider the capsule Client in Figure[d] This capsule
imports an external capsule instance ¢ of type Counter, on line [I}
that a capsule instance of type Client can interact with. The body
of the procedure test of Client contains asynchronous invocations
of procedures value and add on the receiver capsule instance c, on
lines Asynchronous invocation of value, on line 4] appends
the body of the procedure to the end of the queue for ¢ and imme-
diately returns the unresolved future oldVal without waiting for the
execution of value. The future is resolved and ready whenever the
capsule instance ¢ dequeues the body of value from its queue and
executes it. Any attempt to access an unresolved future, e.g. on line
[7] blocks until the future is resolved. Lines[5H6|append the queue of
¢ with invocations of procedures add and value, respectively. The
capsule instance ¢ dequeues its invoked procedures from its queue
in the same order as they appear in the queue and executes them,
i.e. first in first out (FIFO) order. For invocations of value and add,
on lines BH6] execution of value starts after the execution of add
finishes.

capsule Client (Counterc) {
Number oldVal, newVal;
void test(Numbery) {
oldVal = c.value();
c.add(y);
newVal = c.value();
// @ assert newVal >= oldVal; &

© % N B W N —

Figure 4. Capsule Client with JML-like assertion & on line[7}

There are three interference points in the body of test, one right
after each asynchronous invocation of procedures value and add,
on lines BHE| This is because, Panini’s semantics guarantees that
the imported capsule instance c is the only shared resource among
a capsule instance of type Client and other capsule instances in the
system, with unsynchronized access. Other shared resources are fu-
tures oldVal and newVal, however, their accesses are synchronized
and do not cause interference [24]. Panini’s semantics also guar-
antees that upon invocation of add, on line [5] the ownership of its
parameter y is transferred to c, and the body of test does not access
y after its ownership is transferred.

As Figures [2] 3] and [] illustrate, unlike pervasive interference
in which interferences can happen between any two instructions in
a program, Panini’s semantics guarantees that in a Panini program,
potential interference points are explicitly identified and are limited
to after asynchronous procedure invocations.

1.2.2 Cognizant Interference to Solve Oblivious Interference

Panini controls and limits accessibility of states of a capsule in-
stance to only through its procedures and dispatches procedure in-
vocations using the static type of their receiver capsule instances.
This in turn, allows a Panini program to limit the interference be-
havior at an interference point to the Kleene closure of procedures

of the static type of the receiver of the procedure invocation and
guarantees cognizant interference. The Kleene closure of a set of
procedures contains the empty set and any concurrent composition
of any number of procedures in the set.

For example, the interfering behavior at the interference point
after the invocation of the procedure value on capsule instance ¢, on
line[d] is contained in the Kleene closure 6 = {c.value(),c.add(_)}*.
This is because Panini’s semantics guarantees that the imported
capsule instance c is the only shared resource with unsynchronized
access between an instance of Client and other capsule instance in
a system. Panini semantics also guarantees that the state of the cap-
sule instance c is only accessible through its procedures add and
value. Finally Panini’s semantics guarantees that the invocation of
value, at the interference point on line [is dispatched using the
static type of its receiver capsule instance ¢ and not its subtype
capsules which may have more procedures than add and value.

To interfere with ¢, other concurrently running capsule instances
in the system can change the state of ¢ by invoking its two proce-
dures add and value any number of times and in any order which
basically is the same as the closure 6. The closure 8 is a closure of 0
or more, concurrently running, invocations of all procedures of the
capsule instance c. The Kleene closure for value and add includes
empty set @ and is closed under the concurrent composition and ex-
ecution operation ||. For example, c.value(), c.value() || c.value(),
c.add(_) and c.value() || c.add(_) are a few elements of 6.

As Figure [] illustrates, unlike oblivious interference in which
the interference behavior is unknown, Panini semantics guarantees
that interference behavior for an interference point after an asyn-
chronous procedure invocation is limited to the Kleene closure of
procedures of the static type of the receiver of the invocation.

1.2.3 Modular Reasoning Using Panini’s Interference Model

Panini’s sparse and cognizant interference enable static modular
reasoning about its concurrent programs. To modularly understand
a module in a Panini program (/) using sparse interference, the in-
terference points of the module can be identified syntactically by
only considering the implementation of the module. This is because
interference points are explicitly identified by asynchronous proce-
dure invocations. (2) using cognizant interference, the interfering
behaviors at interference points can be identified szatically by just
considering the interfaces of static types of receivers of procedure
invocations at these interference points. This is because interfering
behaviors are Kleene closures of procedures of receivers of proce-
dure invocations. (3) for each interference point identified in (1) its
interfering behavior identified in (2) could be inserted at the inter-
ference point in the module to arrive at a result module that takes
interference and its behavior into account. Such a module could be
modularly understood [1] using Hoare-style [25] reasoning.

For example, consider static verification of the assertion ®, on
line [7) of Figure [4 In this example, sparse interference limits the
interference points to after asynchronous invocations of procedures
value and add, on lines E]—@ and cognizant interference limits the
interference behavior at these interference points to the Kleene clo-
sure O = {c.value(),c.add(_)}*. The assertion ® can be modularly
verified after inserting the interfering behavior 6 at each interfer-
ence point in the procedure test using Hoare-style [25]] reasoning.

Such reasoning is modular because the programmer only needs
to consider the implementation of the procedure test and the inter-
face of the static types it refers to, i.e. capsule type Counter. Iden-
tification of interference points and interfering behavior in test is
similarly modular. Behaviors of procedures value and add say that
the former does not change the value of the counter whereas the
latter only increases it. Behaviors of these procedures are specified
by their behavioral contracts, illustrated in §5

1.2.4 Contributions
In summary, the contributions of this work are the following:

e formalization of Panini’s core calculus and its semantics (§2]
and §3)); and

e proving sparse and cognizant properties of Panini’s interference
model (§4); and

e illustration of modular Hoare-style reasoning using behavioral
contracts for concurrent Panini programs with interference (§§]).

§6 briefly discusses Panini’s expressiveness, usability and Kleene
closure analysis. §7]presents related work and §8]concludes.

2. Panini’s Syntax

prog ::= decl

decl ::= capsule C (imp) {
design state proc }

imp:=Di import

state :=T f; state declaration

proc:=Tp (form) { e®} procedure declaration

form =T x formal

program
capsule declaration

design ::= design { ins wire } design declaration

ins:=C i; instance declaration
wire ::=i () ; wiring declaration
en= expression
li.p@)“ global procedure invocation
| self.p (e) local procedure invocation
| self.f state read
| self.f :=e¢ state assignment
| refe reference
| 1e dereference
le:=e reference assignment
| letx=eine let
| x variable
[() unit value

C,De ¢ setof capsule names
T e ¥ setof variable types
fe§ setof state names
p € runUSB set of procedure names
x €X setof variable names
i,jyh €T setof capsule instance names
o, B eDB setof labels

Figure 5. Panini’s core syntax, based on [20].

Figure [5] shows Panini’s expression-based core syntax. In this
figure, the superscript ferm shows a sequence of zero or more
terms. A Panini program is a set of capsule declarations. A cap-
sule declaration contains a capsule name C and declares a set of
imported capsule instances imp, a design design, a set of capsule
states sfafe and capsule procedures proc. A capsule instance can
interact and invoke procedures of two kinds of other capsule in-
stances: imported and locally declared. An import declaration de-
clares an imported capsule instance by specifying its capsule type
D and capsule name i. A local design declaration declares a set of
local capsule instances ins and specifies their connections together
in a wiring declaration wire. A wiring declaration i(j) assigns cap-
sule instances j to the imported capsule instances of the capsule i.
Local capsule instances of a local capsule’s design are not accessi-
ble to other capsules.

Capsule instances of a Panini program interact only by invok-
ing procedures of each other. A procedure declaration of a capsule
has a variable return type 7, a name p, set of formal parameters
form and a body e. Body of a capsule procedure is a sequence of
global and local expressions. Using global expressions, a procedure
can asynchronously invoke a procedure of another capsule instance.
However, using local expressions, a procedure of a capsule can syn-
chronously invoke another procedure of the same capsule, access
the state of the capsule through self£ or allocate and access mem-
ory locations. Labels * denote possible interference points after
asynchronous procedure invocations. The sequence of expressions
e1;e; is a syntactic sugar for the let expression let x = ¢j inej
in which variable x is free in e;.

Panini’s type system, in §A] distinguishes capsule types C from
variable types 7. Unlike variable types, capsule types cannot sub-
type each other and thus their exact types are statically known. This
in turn enables statically-bound procedure invocations in which the
exact type of the receiver of a capsule is statically known.

To illustrate, Figure[d]declares a capsule type Client with the im-
ported capsule ¢ of capsule type Counter and a procedure test with
formal parameter y of variable type Number. The procedure body is
a sequence of three asynchronous invocations of procedures value

and add which are statically dispatched on the imported capsule
instance c. As another example, the capsule type Main in Figure [6]
declares a design declaration on lines 2Ho] that includes declara-
tions of two capsule instances client and counter of types Client
and Counter, respectively. The design declaration contains a wiring
declaration on line 3| that connects the client and counter instances
by passing counter as the client’s imported capsule instance.

capsule Main() {

design {
Counter counter; /I a counter
Client client ; /I a client
client (counter); /I a wiring

void run() { client.test(); }

}

© 9w B W N =

Figure 6. Design and wiring declarations in capsule Main.

3. Operational Semantics

In Panini’s operational (dynamic) semantics each concurrently run-
ning capsule instance owns its states and their representations, i.e.
reference graphs reachable from its states; dynamically transfers
ownership of parameters and return values of its global procedure
invocations; and uses only one thread of execution to dequeue and
execute its invoked procedures. These in turn result in the follow-
ing properties of a Panini programs that are critical to its sparse and
cognizant interference model:

1. sharing among two capsule instances is limited to their im-
ported capsule instances and unresolved future locations;

2. states of a capsule instance and their representations are only
accessible through its procedures.

Panini’s interference model and its underlying properties are for-
malized in §4] Panini’s type system is formalized in §A]
3.1 Dynamic Objects

Panini’s dynamic semantics relies on three additional expressions
I, resolve and OWE, shown in Figure [/} that are not part of its
surface syntax. The expression / represents a memory location

in the store. The expression resolve(l,e,id, p) returns the result
of the asynchronous invocation of procedure p with body e into
future location / in the invoking capsule instance id. The ownership
transfer exception OWE denotes accessing a transferred location that
a capsule instance no longer owns or transferring a location in the
representation of a capsule’s state.

Added syntax:

en=..
|7 memory location
| resolve(l,e,id, p) resolve a future location
| oOWE ownership transfer exception

Evaluation contexts:
&u=—lipv.&e.)|self.p(v.&e..)
| self.f := & |ref&|!&
|& :=e|letx = & ine

Evaluation relations < and ~5: # <> #" and £ - ¥/

Domains:
A= |X|| X
Y = (Pid,e.Q,S,rI)

global (program) configurations
capsule instance configurations
capsule records

state maps

queues

local stores

1= {iy —idy} instance maps
vi= values
1 location values
| e unresolved future values
| transferred location values
Actions:
a: =
| read(id, 1) read
| write(id,) write
| invoke(id,id',p,!) invoke
| resolve(id,id',p,1) resolve
| local(id) local

le £ setof locations
id,id’ € M set of capsule identifiers
ke K isfinite
P program declarations

Figure 7. Added syntax, evaluation contexts, configurations and
actions in Panini’s semantics.

Panini’s operational semantics transitions from one global (pro-
gram) configuration to another, as shown in Figure[7] A global con-
figuration %" is a concurrent composition || of capsule instance
configurations X'| A capsule configuration X contains a unique cap-
sule identifier id, a queue Q with an expression e under evaluation
at its head, a local store S, a capsule record r and an instance map-
ping I. A queue is a possibly empty queue of expressions e. The
local store is a mapping from locations / accessible to the capsule
instance to their values v. The capsule record contains the static
capsule type C of the instance and a state mapping F from capsule
fields f to locations. The instance mapping maps the names of im-
ported and locally declared capsule instances i to their identifiers
id. A capsule configuration also includes P which contains capsule
declarations, similar to the class table in Featherweight Java, and is

! Concurrent composition || is commutative, i.e. £ || £’ is equal to £’ || Z.

similarly used to look up declarations and procedure bodies when
invoking a procedure.

In Panini, a value can be a location /. A value can also be an
unresolved future value € that denotes the result of an asynchronous
procedure invocation before it is ready; or it can be a transferred
value [] denoting the value of a location whose ownership has been
transferred and no longer is accessible to a capsule instance.

Panini uses a left-most inner-most call-by-value evaluation pol-
icy. Evaluation contexts, in Figure [/| specify the evaluation order
of an expression and the evaluation position in the expression.

Execution of a Panini program produces a trace of observable
actions. Actions are basic units of execution and each action rep-
resents execution of a single indivisible (atomic) instruction. Fig-
ure [/| shows a core set of actions observed during the execution
of a Panini program. An action can be: a read or write of a mem-
ory location / by a capsule instance id; asynchronous invocation of
a procedure p of another capsule id’ with the future result /; re-
solving the result of an asynchronous procedure invocation into the
future location /; or it can be a local action of a capsule id, such as
invocation of a synchronous procedure of the capsule or dequeuing
an expression from its queue.

3.2 Local and Global Semantics

Panini’s operational semantics has two sets of evaluation rules for

its local and global semantics. A local evaluation % denotes transi-
tion from a capsule configuration to another performing the action

a. A local transition in turn causes a global transition < from one
program configuration to another in which capsule instances run
concurrently. A preemptive scheduler nondeterministically chooses
a capsule instances for evaluation at each point in time.

Figure [§] shows Panini’s substitution-based operational seman-
tics for normal execution, i.e. no exceptions thrown. Figure [I0]
shows its exceptional operational semantics.

3.2.1 Sequential Synchronous Local Semantics

Local evaluation relation ~> in a capsule instance denotes evalua-
tion of an expression e at the head of its queue to another expression
¢’ and performing the action a. This evaluation causes transition
from a capsule configuration to another with a possibly modified
queue and local storg} In local semantics, a capsule instance can
access its state through self, allocate and access memory loca-
tions, invoke a procedure of itself or dequeue an expression in its
queue. Local evaluation is synchronous and sequential, i.e., a cap-
sule instance only has one execution thread.

A capsule can read and write its state through the variable sel£
in the rules (STATE READ) and (STATE ASSIGN). A capsule state is
accessible through state mapping F and local store S. A capsule’s
state name is mapped to a location in F' and then there is a mapping
between the state location and its value in S. To read the value of
a state in (STATE READ), the notation F[f =[] checks if the field
name f maps to a location / and the notation S[I = v] checks if the
value of the location in the local store is equal to v and if so returns
v. Reading a state stored at the location / by a capsule instance id
causes a read(id,[) action in the execution trace of the program. To
assign a value to a state in (STATE ASSIGN), the notation S[I := vE]
replaces the old value of the location [with its new value v, such
that the rest of S stays intact. Similar to read, writing a state stored
at the location / by capsule instance id causes a write(id,l) action.

A capsule can also create a reference, dereference it and assign
to it in the rules (REF), (DEREF) and (REF AsSIGN). To create a new
reference with a value v in (REF), fresh(l) returns a fresh location

2 Evaluation of a configuration does not change its mapping / and record r.
3 Notation S[I = v] does not modify S whereas S[/ := v] does.

Local evaluation relation ~: (P,id,

&e].0,8, 1) % (Pid, &[e').Q', S, r,1)

(STATE READ)

(Pid, £[sel£.f].0,S[l = v, [C.F[f =),1) L

(STATE ASSIGN)

~

(P id, £1v].0.8,[C.F,1)

(Pid. £lse1.f :=v].0.S.[CFIf =1).1) """ (P.id, £[).0,]1 =], [C.F].1)
(SELF PROC INVOC)
(Pleapsule C(.){.. T p(Tx){e} . }.id, &[sel£.p(v)].0,S. [C.FI.I) " (p.id, &l [v/3]].0.5,[C.F].I)
(REF) (DEREF)
fresh(l) v£E
(Pid, &[rev].0.8. 1 1) "L (Pid £10.0.51:=v,r1) (Pid, 611 10,811 =v],r0) L (Pid, £1v.0,5.1.1)

(REF ASSIGN)

(P.id. £11:=1].0.81 #].rt) "L

(Pid,&v].Q,8[1:=v],r1)

(FIFO DEQUEUE)
(Pid,ve.0,8,1,1) "L

s

(LET BINDING)
local(id
(Pid,&[1et x=v ine].Q,S,n1) oeal(id)

(Pid, &lelv/x]].0,8, 1)

(Pid,e.Q,8,1,I)

Global evaluation relation <: % || (Pid,

&le].0.8,n1) < 7 || (Pid,&[e).Q', S, r. 1)

(CONGRUENCE)
(Pid,&e].0,S, 1) < (Pid, &[¢'].0',S . r,1)
H || (Pid, &£[e).Q.S,1) < A || (Pid,&[¢).Q, S, r1)

(PrROC INVOC)
id =1(G) Y =(Pid,.Q.5,[C.F)I'Yex

capsule C'(D j){..T p(T x){e} ..} €P

"' =eV/x,I'(j)/j] R=reach(v,S)
H' =xy <P,id/,e’.Q’.resolve(l,e”,id,p),S/ DR, [C’.F/],I’>

vl' € dom(F). R = Ureach(l’,S) RNR =0 fresh(l)
invoke(id id'
K| (P.id, 81ip()].0,8,1C.F|,1) "
(RESOLVE)
R = reach(v,S) vl € dom(F). R = Ureach(l’,S) RNR =0

P 0| (Pid, £10.0,S]l = €] SR, [C.F,1)

L =(Pid,e.Q,S[l =¢€|,r,I) € X H' = W (Pid e.Q,S[l:=v]|©R,1I)

| <P,id’,resolve(l,v,id,p).Q/,S’,[C/.F'],I/>

resolve(id' ,id p,l
f

)J{,/’ || (Pid' ,v.Q',S'©OR,[C'.F'|,I')

Figure 8. Local and global operational semantics of Panini.

which then is mapped to its value in the local store of the capsule.
A fresh location is a location that does not belong to the local
store of any other capsule instance in the program, as shown in
Figure 0] By mapping the newly allocated location [to its value
in the local store S, the rule (REF) makes the capsule instance id
the owner of the location / as well. To dereference a location /
in (DEREF), its value is retrieved from the store unless the value
is equal to the unresolved future value €. Trying to dereference
an unresolved future value causes the capsule instance to block.
The capsule instance unblocks and can continue execution when
the value of the future is resolved, i.e. is not equal to € anymore.
The blocking condition v # € in (DEREF) synchronizes access to
unresolved future locations and does not allow concurrent access to
them. To assign to a reference in (REF ASSIGN), its value is simply
updated in the local store of the capsule. Again, trying to assign to
an unresolved future location causes the capsule instance to block.
Evaluation rules (REF), (DEREF) and (REF ASSIGN) perform their
corresponding write, read and write actions, respectively.

A reference location manipulated by these rules resides in a cap-
sule’s local store unless its ownership is transferred to another cap-
sule via a procedure invocation. In other words, a capsule instance

cannot access locations in other capsule instances if their ownership
is not transferred to the capsule through procedure invocations.

A capsule instance can synchronously invoke a procedure of
itself in (SELF ProcC INvOC). Invocation of a local procedure causes
the body of the procedure to replace the procedure invocation
after proper substitutions for its formal parameters X and imported
capsule instances j. The notation e[v/%] substitutes in e the formal
parameters x with their values v. Invocation of a local procedure of
a capsule instance id causes a local action local(id).

In (FIFO DEQUEUE), after evaluation of the head of the queue in
a capsule instance to a value v, the next expression in the queue is
moved to the head of the queue for evaluation, if the queue is not
empty. Dequeue blocks until the queue of the capsule instance is
not empty. Dequeuing a queue of a capsule instance causes a local
action as well. Semantics of a let expression is standard.

3.2.2 Concurrent Asynchronous Global Semantics

Global evaluation relation < denotes concurrent local evaluations
of capsule instances of a Panini program as well as their asyn-
chronous interactions through procedure invocations.

The rule (CONGRUENCE) plays the role of a preemptive sched-
uler that nondeterministically chooses a capsule instance id in the

global configuration % to take an atomic action at each point in
time, according to the local semantic rules.

In (PrOC INVOC), a capsule instance id asynchronously invokes
the procedure p of a capsule instance with the name i. The invok-
ing capsule finds the identifier id’ for the invoked capsule name
i in its instance mapping /, finds its corresponding configuration
Y/ in the global configuration .# and retrieves the body e of its
invoked procedure p. It then replaces in e the formal parameters
X of p with their values v and imports j of its capsule type C’
with their identifiers from instance mapping I’, to arrive at e”.
Then it wraps ¢ in a resolve expression with a fresh future lo-
cation / for returning the result of the invocation to its invoking
capsule id and appends the resolve expression to the tail of the
queue Q' of the invoked capsule instance id’. The notation #
(Pid e .Q .resolve(l,¢",id,p),S' ®R,[C'.F'],I') denotes over-
riding the configuration (P,id’,¢’.Q',S',[C’'.F'],I) of the capsule
instance id’ in the global configuration %", where W is an overrid-
ing union operation. A resolve expression resolve(l,e,id, p) is a
sugar for let x = ¢ in resolve(/,x,id, p) where x is free in e.

Because of the asynchrony of the procedure invocation, in
(Proc INvoC) the control immediately returns back to the invoking
capsule id without waiting for the execution of the invoked proce-
dure p. The future location / is now shared between the invoking
and invoked capsule instances, marked in the invoking capsule in-
stance id as an unresolved future location with its value €. The
invocation expression performs an invoke(id,id’, p,1) action.

The resolve expression ensures that the result of its evaluation
is sent back to the invoking capsule instance when it is ready and
is going to be accessible through the future location. In (RESOLVE),
the invoked capsule instance id’ returns the result v of the evaluation
of its expression e to the invoking capsule id and assigns the
value to the future location / in its store, i.e. S[I := v]. The resolve
expression performs a resolve(id’,id, p,1) action.

The rule (Proc INvoc) along with (FIFO DEQUEUE) enforce
the first in first out (FIFO) evaluation order of expressions in the
queue of a capsule where (Proc INvoc) appends to the tail of
the queue and (FIFO DEQUEUE) dequeues from its head. A Panini
program terminates normally when for each capsule instance id in
the program configuration the expression at the head of the queue
is evaluated to a value and the queue is empty, i.e. (P,id,v.e,S,r,1).

To illustrate, consider the capsule Client, in Figure [4 and its
asynchronous invocation of the procedure value of the capsule
Counter, on line] Upon invocation of value on the capsule in-
stance ¢ its body, on lines [6] of Figure 3] is wrapped in a resolve
expression and is appended to the tail of ¢’s queue. The control
immediately returns to Client and the unresolved future NewVal is
shared between the client and counter capsule instances as a place-
holder for the invocation’s result. Any attempt to access NewVal in
the client capsule, e.g. on line [/ blocks until ¢ dequeues the re-
solve expression for invocation of value and executes it to resolve
the future.

Asynchronous invocation, blocking expressions and proce-
dure execution order Asynchronous invocations of capsule pro-
cedures and blocking access to unresolved future locations impose
an order on executions of invoke procedures which may or may not
be the same as in a synchronous setting. To illustrate, the procedure
add, on line 5] of Figure[] is invoked on the capsule instance ¢ be-
fore value is invoked on the same instance, on line[6] This in turn
means the body of add is appended to the queue of ¢ and shows up
before the body of value in the queue. Consequently, the invoked
procedure add is executed before value because of the FIFO exe-
cution of the queue in c. This is true, even if either add or value
or both contain blocking expressions, e.g. trying to access an unre-
solved future, in their body because the execution of value in ¢ does
not start before the execution of add is finished.

capsule Client (Counter ¢, Counterd) { ..
void test(Numbery) {

d.add(y);
newVal = c.value();

® 9w B W N —

In contrast, consider invocations of procedures add and value on
different capsule instances ¢ and d, in the above variation of Client,
on linesPH3] In this example, add and value procedures can execute
in any arbitrary order because instances ¢ and d run concurrently
and can execute bodies of their invoked procedures add and value
in any arbitrary order. This is true even with blocking expressions
in the bodies of add or value procedures or both.

In other words, for asynchronous invocations of procedures of
the same capsule instance, (FIFO DEQUEUE) ensures that these pro-
cedures run in the same order they are invoked, even if they contain
blocking expressions. This in turn guarantees that blocking does
not disrupt modular reasoning using Kleene closures, because pro-
cedure invocations in a closure are on the same receiver instance.

3.2.3 Ownership Transfer Semantics

To control sharing, Panini’s global semantics uses dynamic trans-
fer of ownership for parameters and the return value of a procedure
invocation. Transferring the ownership of a location from one cap-
sule to another removes that location and locations reachable from
it, i.e. its reach (representation), from the local store of the for-
mer instance and adds them to the local store of the latter. This in
turn guarantees that an invocation of a procedure does not cause
sharing of its parameters and the result between the invoking and
invoked capsule instances. Panini’s ownership transfer is similar
to ownership transfer in Singularity [26], changing threads access
sets in a multithreaded program [27] or inferred ownership trans-
fer semantics in SOTER [28] for programs in the actor language
ActorFoundry [29].

In (Proc INvoC), upon invocation of a capsule’s procedure
the ownership of the actual parameters v of the procedure and
their reach reach(v,S), in Figure] is transferred from the in-
voking capsule instance to the invoked capsule. The auxiliary
function ©, in Figure [9] removes locations from a local store
of a capsule instance whereas & adds locations to the local
store of the capsule instance. For example, in the configura-
tion (P,id,£[l].Q,S[l :== €] &R, [C.F],I), locations R are removed
from the local store S of the invoking capsule instance id and in
(P,id' ,¢'.Q' xesolve(l,e",id,p),S' ®R,[C'.F'],I') the locations
R are added to the local store S’ of the invoked capsule instance id’.

After transferring a location, © maps the value of a transferred
location to L. This in turn means that the capsule instance does not
own the transferred location anymore and any attempt to access it
results in an exceptional state.

A state of a capsule instance or its reach cannot be transferred
to another capsule instance. The condition RN R’ = 0 checks that
there is no shared location among transferred locations and their
reach R and the locations in the capsule’s state or its reach R'.

In (RESOLVE), upon returning the result of an invocation, the
ownership of the resolved future value, holding the result, and its
reach in the local store of the invoked capsule instance are trans-
ferred to the invoking capsule instance. Similar to (PROC INVOC),
the state of the invoked capsule instance cannot be transferred when
returning the result of an invocation.

To illustrate, the ownership of the parameter y on line 3] of the
procedure test in Figure]is transferred from the invoking instance

of capsule Client to the invoked capsule instance c. The ownership
of the future newVal on line [§]is transferred from invoked capsule
instance c to the invoking capsule Client when the future is resolved
and is ready.

(FRESH)
V(P,idk, &ex]-Ok, Sk, i, Ii) € H . | & dom(Sy)
fresh(l)
(REACH) (REACH LOCATION)
ve{(),0} v {0,00 Sph=v]

reach(v,S) = o reach(v,S) = {(v,')} Ureach(v',S)

(& REACH)
v{(l'V)}eR
SeR=(Se(V)e®R\{IY)})

(© LOCATION)
So{(,v)}=S[I:=0

(¢ REACH)
(I'V)er
SoR=(Sa("V)®R\{('V)})

(© LOCATION)
S& (l,v) =S[l:=v]

i.p(@)%) = {*} Ulabels(e)
self.p(e)) = labels(e)

self.f :=e) = labels(e)

ref ¢) = labels(e)

le) = labels(e)

e) = ey) = labels(e;) Ulabels(ey)

let x = ej in ey) = labels(e;) Ulabels(ey)
Tp (T x){e*}) ={*} Ulabels(e)

labels
labels
labels
labels
labels
labels

N NN S N N S

Figure 9. Panini’s auxiliary functions.

3.3 Exceptional Semantics

A Panini program terminates abnormally, throwing an exception
OWE, if a capsule instance attempts to access a location whose
ownership is transferred or pass or return capsule states or their
representations into/from global procedure invocations. Figure [I0]
shows Panini’s exceptional semantics.

In rules (X DEREF) and (X REF ASSIGN), attempting to derefer-
ence or assign to a location that is transferred out and is not owned
by a capsule instance anymore results in throwing an ownership
transfer exception OWE. A transferred location is marked with the
value [, by the transfer operation . In rules (X Proc INvoc) and
(X RESOLVE), attempting to pass capsule states or any location in
their reach as actual parameters or results of global procedure in-
vocations, i.e. RNR’ # 0, causes throwing the ownership exception
and termination of the program. A Panini program terminates ab-
normally when a capsule instance id in the program evaluates the
head of its queue to OWE, i.e. (P, id,OWE.Q, S,r,I).

In Panini’s core semantics, for simplicity and without loss of
generality, exceptions are final states and the program terminates
after throwing an exception. However, in the current prototype im-
plementation of Panini’s compiler, a violation of ownership transfer
semantics is detected using a modular static analysis incorporated
into its type system and is reported as a compile time warning rather
than terminating the program at runtime.

3.4 Initial Configuration

Evaluation of a Panini program follows a phase which builds the
program’s initial global and local configurations. Figure [TT] shows
Panini’s initial configuration rules. The initial configuration phase

(X DEREF)
(Pid, &)1 10,811 =00, r,1) N (P id, oWE.Q, 5,1 1)

(X REF ASSIGN)
write(id,[)

(Pid, &1 :=v].0,8[1=0,r1) "= (P,id,OWE.Q, S, 1, 1)

(X PROC INVOC)
R = reach(v,S)
vl € dom(F). R = Ureach(l’,S)

invoke(id,id' p,l
K| (Pid, &li.p(3)).0,8,[C.F], 1) "

RNR #0

(P.id,OWE.Q, S, [C.F],I)

(X RESOLVE)
R = reach(v,S)
vl € dom(F). R = Ureach(l’,S) RNR #0

resolve(id,id' ,p,l)
-

| <P, id,resolve(l,v,id ,p).Q,S, [C.F],I>
(P,id,OWE.Q, S, [C.F|,I)

Figure 10. Exceptional semantics of Panini, select rules.

takes a Panini program and recursively processes design declara-
tions of its capsules, such that for each capsule instance declara-
tion in a design declaration it instantiates a capsule instance and for
each wiring declaration it connects the declared capsule instances
together.

The initial configuration phase starts with the rule (MAIN). The
rule constructs a special capsule instance main of capsule Main with
the identifier 0, i.e. Construct(Main main,0). The capsule Main is
the entry point to a Panini program. The rule (MAIN) sets the cap-
sule instance main to the global configuration % and calls func-
tions instantiateRec and wireupRec, in rules (INSTANTIATE REC)
and (WIREUP REC), to recursively instantiate and connect other cap-
sule instances of the program.

For a capsule instance declaration C i, declared in the enclosing
capsule instance id and a global configuration JZ°, the function
instantiateRec, defined in (INSTANTIATE REC) instantiates a capsule
configuration ¥’ with the identifier id’ and name i, using instantiate;
changes the instance mapping / of its enclosing capsule instance to
map the name i to its identifier id’, i.e. I[i := id'] and adds ¥’ to ¢
to create a new global configuration .#”. To process the capsule
instance declarations C’ i’ in newly created id’, instantiateRec is
recursively called with the new global configuration #”.

For a wiring declaration i(j) declared in the enclosing cap-
sule instance id and the global configuration %", the function
wireupRec, defined in (WIREUP REC), connects instances i and j,
using wireup, to construct the new configuration X for i; replaces
the old configuration ¥; with its new configuration X} in ¢ to arrive
at a new global configuration .#”. To process the wiring declara-
tions i’ () for the newly wired capsule instance id;, wireupRec is
recursively called with the identifier id; and the new global config-
uration %",

Function instantiate defined in (INSTANTIATE) simply instanti-
ates the capsule configuration X for the capsule instance declara-
tion C i in its enclosing capsule id. Function wireup in (WIREUP)
connects capsule instances i and j in their enclosing capsule id.

To illustrate, consider the capsule Main in Figure [§] In this ex-
ample, Construct(Main main,0) creates a capsule instance config-
uration for Main with the identifier O; then it calls instantiateRec for
the instantiation of capsule instances counter and client, declared
on lines[3H4] followed by a call to wireupRec to connect the counter
and client instances, as declared on line[3]

(MAIN)
o = instantiate(Main main,0) = (P,0,e.0Q, S, [Main.F),I)
capsule Main(){T f design{ins wire} proc} € P
YV Ci€ins. S = instantiateRec(4},0,C i)

Y i(j) € wire . " = wireupRec(.X#,0,i(}))

construct(Main main,0) = %"

(INSTANTIATION REC)
¥ =(Pid e.0',8,[C" F'|,I') = instantiate(id,C i)
Y =(Pid,e.Q,S,[C.F],I)
A=Y (P,id,e.Q,8,[C.F|Ii:=id]) UL
v C' i €ins. A" = instantiateRec(¥" id' ,C' ')
instantiateRec(¥ ,id,C i) = &

(WIRING REC)
S = (Pid,e.Q,S,[C.F|,I) € %
L, = (Pid;,0.0:,8;,[Ci.F],I,) € X T =wireup(id,i(j))
capsule C;(imp){.. design{ins wire} .}epP X' = WX}
Vi'(j) € wire . #" = wireupRec(#" id;,i' (j))
wireupRec (X ,id,i(j)) = A"

id; = 1(i)

(INSTANTIATE)
fresh(id") capsule C(..){T f design{ins wire} proc} € P
F=0 S=0

I=0 Q=e N(TLETf. fresh(l),F[f:=1],S[l:= ()]
L=(P,id e.0,5,[C.F],I)
instantiate(id,C i) =X
(WIREUP)

L= (Pid,e.Q,S,[C.F|,I) € X
id; = 1(i) L, = (P,id;,.0:,S;, [Ci. F],Ii) € X
Vjej. idj=1(j),(Pidj,e.0;,S;,[Ci.FI;) € H
capsule C;(imp){.. design{ins wire} ..} €P
L =(Pid;,#.0;,5;,[Ci.F;|,Y(D h) € imp, j € j. L;[h:=id}])
wireup(id,i(j)) = X

Figure 11. Rules to create initial configuration of Panini programs.

There is no sharing of memory locations among capsule in-
stances in the initial configuration of a Panini program, as shown
in Lemmal[Tl

LEMMA 1. (No sharing of memory locations in initial configura-
tion) LetY = (P,id, £e].Q,S,r,I) and ¥' = (P,id', £[¢'|.0,S',r . I")
be two arbitrary capsule instance configurations in the initial con-
figuration ¢ for a Panini program P constructed using the rules
in Figure ie. XY € . Let A = dom(S)Ndom(S') be the
intersection of domains of the stores S and S'. Then A = 0.

In other words, there is no sharing between local stores of
capsule instances in the initial configuration of a program.

Proof Sketch: The proof is based on the cases of the initial con-
figuration rules of Figure @ The rule (INSTANTIATE) is the only
rule allocating memory locations and mapping them in the stores
of capsule instances. The rule only uses fresh locations for instanti-
ation of each capsule instance and thus does not cause any sharing
among capsule instances and thus their local stores.

3.5 Actions: Conflict and Happens-Before Relations

Evaluation of a Panini program, with its nondeterministic preemp-
tive scheduler, results in a trace of interleaved actions, shown in
Figure[7] performed by different capsule instances of the program.
However, as illustrated in Figures 2} [B|and] for a trace of a cap-
sule’s procedure, interleaving actions of other capsule instances can
be moved in the trace, such that they only appear right after the

global procedure invocations in the trace, i.e. sparse interference.
This is because of Panini’s conflicting and happens-before relations
and mover properties of its actions which in turn are affected by
sharing semantics of Panini.

In the following, we define the execution trace of a Panini
program, the conflict and happens-before relations and prove mover
properties of its comprising actions using Lipton’s reduction theory
[22]. Definitions E-Eare adapted from previous work [24].

DEFINITION 1. (Trace) An execution trace of a Panini program P
is a total order of actions a, as defined in Figure[]] performed by
individual capsule instances in the program configuration & when
evaluating the program thorough local and global evaluation rules

of Figure[§]

DEFINITION 2. (Adjacent and neighbor actions) Two actions a
and b in a trace T are adjacent if one follows immediately af-
ter another. Two adjacent actions a and b are neighbors if they
are performed by different capsule instances, i.e. instance(a) #
instance(b). The auxiliary function instance returns the capsule
identifier of an action.

DEFINITION 3. (Commuting and conflicting actions) Let a; and
ay be neighbor actions of capsule instances id| and id, in an exe-

. ai ar .

cution trace Jty — 1 < Jb. Then actions ay and a; commute,
written as ay '# ap, if swapping them in the trace results in the
same final state in the trace starting with the same start state, i.e.

a ., a . . .
Ky — A — . Otherwise, a and ay conflict, written as a)#ay.

There are several conflicting actions in Panini considering its
semantics: read or write of an unresolved future location conflicts
with the resolution of the same future location and invoke action
of a procedure of a capsule instance conflicts with another invoke
action on the same capsule instance.

A happens-before relation < [30] orders the conflicting actions.
For example, in Panini resolution of a future location / by a cap-
sule instance id must happen-before any reads (or writes) of the
location by another capsule instance id’, i.e. resolve(id,id’,1,p) <
read(id',1). Figure [12| shows Panini’s conflicting actions and their
happens-before relations. The happens-before relation is a transi-
tively closed partial order [3].

(Pid',£[e).Q.S[l=¢],n1) € X
read(id',1) # resolve(id,id',1,p)

(Pid',£[e).Q.S[l=¢],n1) € X
write(id',1) # resolve(id,id',1,p)

invoke(id;,id,p,1) # invoke(ids,id,p’,l)

resolve(id,id',1,p) < read(id',l) resolve(id,id',1,p) < write(id',l)

Figure 12. Conflicting actions in Panini where # denotes conflict
and their happens-before < relation.

DEFINITION 4. (Right, left, both and non-mover actions) Let a;
and ay be neighbor actions of capsule instances id| and idy in an
arbitrary execution trace J¢ N H & .

Then ay is a right mover if swapping a; with ay in the trace
results in the same final state in the trace beginning with the same
start state, i.e. K 4] 4 . Conversely, ay is a left mover if
swapping it with ay results in the same final state. An action that
can be swapped with its both left and right neighbor actions in any
trace is a both mover. Conversely, an action that cannot be swapped
with neither its left nor right neighbors is a non-mover.

Panini’s semantics determines mover properties of its actions.
Lemma 2] specifies mover properties of Panini’s actions.

LEMMA 2. (Panini action’s mover properties) Let 7 be the exe-
cution trace of an arbitrary Panini program P.

Then, in trace T read and write actions read(id,l) and write(id, 1)

of a capsule instance id of a memory location [are right movers, as
defined in Definition ' a global invocation action invoke(id, id . p,1)
of a procedure p from the invoking capsule id to the invoked
capsule id and result | is a non-mover; and a resolve action
resolve(id,id',p,1) for this global invocation is a left mover.

Proof Sketch: The proof is based on happens-before relations
of Panini’s actions in Figure[I2] The resolution of a future location
must happen before any read or write of the location and thus in
a trace of a program, a read action read(id,!) of future location /
cannot be swapped with a left neighbor action resolve(id',id,l,_)
resolving the same location. Thus, a read action is a right mover.
The same applies to an action writing a future location. Simi-
larly, a resolve action is a left mover. Swapping an invoke action
invoke(id',id,_,) invoking a procedure of capsule id with another
left or right neighbor invoke action invoke(id” ,id,_,) on the same
capsule id results in different program states especially different
queues for the capsule instance id. Thus an invoke action is a non-
mover. The notation _ denotes irrelevant values in actions.

3.6 Sharing of Capsule Instances and Futures

Panini limits sharing among two capsules to their imported capsule
instances and unresolved futures of their procedure invocations.

capsule Main() {
design {
Counter counter;
Client client1, client2;
client1 (counter);
client2 (counter);
}o.
}

® N o U kW —

Figure 13. Sharing counter among client1 and client2.

Panini’s semantics allows an imported capsule instance to be
freely shared among other instances as specified in a design decla-
ration of their enclosing capsule. For example, in the design decla-
ration of Figure [T3] the capsule instance counter is shared among
two client instances client1 and client2, on lines BH6}

Panini’s semantics limits sharing of memory locations to unre-
solved future locations, as shown by LemmaE} A future location,
which is a placeholder for the result of an asynchronous procedure
invocation, is shared among its invoking and invoked capsule in-
stances as long as it is unresolved and accesses to it are synchro-
nized. That is, any attempt to access an unresolved future location
in the invoking capsule instance blocks until the future is ready.

LEMMA 3. (Sharing of unresolved future locations) Let ¥ =
(Pid,&e].Q,S,r,1) and X' = (Pid',£[¢').Q/,S',r,I') be two ar-
bitrary capsule instance configurations in a global configuration
¥ for a Panini program P, i.e. LY € ¢ . Let T be the execution
trace of the program P. Let A = domr(S) Ndomy(S') be the inter-
section of domains of the stores S and S' minus their transferred
locations with the value 0. Let action a and a’ be any of the read
and write actions of a location | in A in the trace 7 by capsule
instances id and id', respectively.
Then either A =0 or:

(). VI€A. S[l=¢] ¥ S'[l = ¢€]; and

(ii). VI€ A, a € {read(id,l),write(id,)},a’ € {read(id',1),write(id’,I)} .

a<d Vd=<a.

In other words, (i) the only memory locations that local stores S
and S' may share are unresolved future locations with (ii) synchro-
nized accesses (reads and writes), i.e. with happens-before relation
between their reads and writes.

Transferred locations with values [J are irrelevant and thus taken
out in domp of local stores, because any attempt to access them
terminates the program. The notation Y denotes an exclusive logical
disjunction, in which at most one of the disjuncts can be true.

Proof Sketch: The proof is by cases on Panini’s normal
and exceptional semantics rules in figures [§] and [I0} happens-
before relations in Figure [T2] and Lemma [I} Initial configura-
tion does not cause any sharing of memory location among cap-
sule instances; dynamic transfer of ownership of locations among
capsule instances in Panini’s dynamic semantics, and especially
(Proc INvocC) and (RESOLVE), limits sharing of locations among
capsules to only unresolved future locations; and rules (DEREF)
and (REF ASSIGN) synchronize access to these shared future loca-
tions by enforcing that resolving of a future location in one capsule
instance must happen-before any of its reads or writes in other
capsule instances.

4. Sparse and Cognizant Interference

Panini guarantees sparse interference by limiting sharing among
two capsules to other capsule instances and unresolved futures and
guarantees cognizant interference by limiting accessibility of states
of a capsule instance to only through its procedures and dispatching
a procedure invocation on the static type of its receiver capsule. In
this section we formalize and provide proof sketches of Panini’s
sparse and cognizant interferences. Full proofs can be found in §B]

4.1 Sparse Interference

Theorem [3] formalizes Panini’s sparse interference property which
limits the interference points of a program to points after its global
procedure invocations.

THEOREM 5. (Sparse interference in Panini) Let P be a pro-
gram in Panini. Let % be a set of labels after global capsule
invocations and after procedure bodies in P, i.e. & = {*|* ¢
labels(P), i.p(e)* € PV T p(form){e *} € P} where the aux-
iliary function labels is defined in Figure[9] Then % is the set of all
potential interference points for P.

Proof Sketch: The proof is based on Lemma [2] where in a
trace of a capsule’s procedure, interfering actions of other capsule
instances can be safely moved to either after the global procedure
invocation actions in the trace or to the beginning or end of the
execution of the trace. The interference at the beginning of the trace
of a procedure can be safely moved out to the trace of its invoking
procedure, either to the end of the invoking procedure’s trace or
after one of its global procedure invocations.

4.2 Cognizant Interference

Theorem [6] formalizes Panini’s cognizant interference property
which limits the interfering behavior at each global invocation in-
terference point to Kleene closure of behaviors of procedures in the
static type of the invocation’s receiver.

THEOREM 6. (Cognizant interference in Panini)

Let ¥ = (Pid,&[i.pr(€)%;€].0,S,r,1) be the configuration for cap-
sule instance id in the global configuration &, such that the cap-
sule is about to evaluate the sequence expression i.py(€)%*;e at the
head of its queue with a single interference point %, i.e, there is
no other interference in other expressions e and e in the sequence.
LetY = (P,id ,&[¢').Q .reso1ve(l,e,,id, py),S',[C' .F'|,I') € X

be the capsule configuration for capsule name i right at the in-
terference point %, i.e. right after execution of invocation i.py(e)
in X. Let C' be the static capsule type for i with declared proce-
dures py .. pp, i.e. capsule C'(..) {design state T| pi(..){e1}
« T pe(){ex} - T pu(.){en}} € P. Also let €|, ..e), be bod-
ies of procedure py, .., p, with their formal parameters substituted
with their values from their invocation sites and their local capsule
names substituted with their identifiers from instance mappings I'.
Also let 0 be the interfering behavior of other capsule instances in
the program at the interference point ©.

Then, 0 is the Kleene closure of behaviors of procedures of the
capsule id', i.e. 0 = {e},..,e},}*.

Proof Sketch: The proof is by cases on local and global evalua-
tion rules in Figure[§]and that Panini limits sharing of memory lo-
cations to unresolved future locations with synchronized access, in
Lemma 3] and limits accessibility of the state of a capsule instance
to only through global invocation of its procedures, in LemmaEl

LEMMA 4. (Global accessibility through procedures) Let ¥ =
(P.id, £[e].0,8,[C.F|,1) and ¥ = (Pid,£[e).Q'.S,[C'.F.I')
be arbitrary capsule instance configurations in a global configura-
tion K, i.e. T,Y € A . Let C be the static capsule type of id with
states f and procedures p ..py, i.e. capsule C(..) {designT f
Uy pi(.){e1} .. Up pu(..){en}} € P.

Then during evaluation of program P, the capsule instance id'
can access (read and write) states f of the instance id only through
its procedures p1 .. pp, and not directly through memory locations.

Proof Sketch: The proof follows from Lemma[3|that guarantees
the only shared locations among capsules are unresolved future
locations and the rules (PrRoc INvocC) and (RESOLVE) in Figure |§|
that prevent transfer of ownership of states of a capsule or its reach
during procedure invocations and resolving of their results.

5. Hoare-Style Modular Reasoning

Standard Hoare logic [25] does not take interference into account
and cannot be used right out of the box to reason about concurrent
programs [11 [2]. Panini’s sparse and cognizant interference enable
use of Hoare logic in the presence of interference by making inter-
ference points of a Panini program and their interfering behaviors
statically known.

In Panini’s Hoare logic, the only rule that needs to take into ac-
count interference is the rule for global procedure invocations. This
is because Panini’s sparse interference limits interference points to
after global procedure invocations. Other rules can be used as if
they are interference-free. To take into account the interference it is
sufficient to consider the interfering behavior at each interference
point [1].

To illustrate, consider the Hoare triple {Pre} i.p(v) {Post}
which says that if the execution of the global procedure invocation
i.p(V) starts in a state satisfying the predicate Pre and procedure
p of the capsule instance i executes and terminates, it terminates
in a state satisfying the predicate Post. To take into account the
interference, the triple becomes {Pre} i.p(v)* {Post} in which *
is an interference point. The new triple says if the execution of the
procedure p of the capsule instance i starts in a state satisfying Pre
and is interfered with by execution of some interfering tasks at %,
if execution of p terminates, it terminates in a state satisfying the
predicate Post.

Pure predicates In Hoare logic, predicates Pre and Post must
be side effect free and if they invoke a procedures the procedures
must be pure. A procedure is pure if it does not change the state of
its program. In Panini the state of a program not only includes local
stores of its capsule instances but also their queues. That is, a Panini
procedure is pure if it does not change stores or queues of capsule

instances in the program, including itself. To meet such a require-
ment a pure procedure in a capsule instance can only read states or
invoke other pure procedures of its enclosing capsule instance via
sel£. Predicates Pre and Post can only invoke pure procedures of
their enclosing capsule instance and cannot invoke pure procedures
of other capsule instances. This is because invocation of a pure pro-
cedure of another capsule instance adds the invoked procedure to
the queue of invoked capsule instance and changes the state of the
system, i.e. the predicate is not pure.

Interference-free predicates In a Hoare triple {Pre} e {Post}
in a capsule instance in Panini, predicates Pre and Post are free
from interference. This is because, these pure predicates only read
states of their enclosing capsule instance and invoke only its pure
procedures. Corresponding actions for reading states and invoca-
tion of self procedures are both movers and thus any interference in
the predicates can be moved out, as if it appears to happen before
evaluation of Pre or after the evaluation of Post.

1 capsule Client (Counter c) {

2 Number newVal, oldVal;

3 /| @ requires y.value() >= 0

4 /l @ ensures newVal >= oldVal
5 void test(Numbery) {

6 oldVal = c.value();

7 c.add(y);

8 newVal = c.value();

9

}

1 capsule Counter {

12 Number x;

13 /| @ requires y.value() >=0

14 /| @ ensures self.value() >= \old(self .value());
15 void add(Numbery) { .. }

16 /| @ pure

17 Number value() { .. }

Figure 14. Static verification of the behavioral contract of test.

Behavioral contracts In Panini, a behavioral contract for a
procedure specifies the precondition and postcondition of a pro-
cedure. Figure [T4] illustrates the contracts for procedure test of
capsule Client with its pre and postconditions, on lines BH4] The
contract says if the execution of the procedure test starts in a
state satisfying the precondition y.value() >= 0 and its execu-
tion terminates, it terminates in a state satisfying the postcondition
newVal >= oldVal. Similarly, the contract for procedure add of
capsule Counter, on lines [[3HT4] says it only increases the value
of the counter provided that the parameter y is a positive number.
Finally, the contract for value, on line [T6] says it is a pure proce-
dure and does not change the state of its enclosing capsule or any
other capsule in the program. The precondition and postcondition
of a behavioral contract are free from interference.

Modular reasoning Hoare-style reasoning can be used to stati-
cally verify the contract of procedure test. To illustrate, consider
static verification of the method test in the capsule Client. The
Hoare triple representing such verification looks like the following:

I = {y.value() >= 0}
self.oldVal = c.value();
c.add(y)
self.newVal = c.value();
{self.newVal >= self.oldVal}

The notation I' |= {Pre} e {Post} denotes that the Hoare triple
{Pre} e {Post} is valid in the typing environment I'.

Following Panini’s sparse interference, interferences only hap-
pens after global procedure invocations. Thus, the Hoare triple be-
comes like the following to take into account the interference, with
@ denoting the interference points:

I' &= {y.value() >= 0}
self.oldVal = c.value() * ;
cadd(y) ¢

o

self.newVal = c.value() * ;
{self.newVal >= self.oldVal}

Following Panini’s cognizant interference, the interfering be-
havior at the interference points in the above Hoare triple is 0 =
{c.value(),c.add(_)}*, i.e. the Kleene closure of procedure of the
static capsule type Counter for the receiver ¢ of the global proce-
dure invocations:

I' = {y.value() >= 0}
self.oldVal = c.value(y); {c.value(),c.add(_)}* ;

c.add(y); {c.value(),c.add(_)}* ;

self.newVal = c.value(); {c.value(),c.add(_)}* ;
{self.newVal >= self.oldVal}

The above triple could be easily verified assuming c.value() is
pure and c.add(_) only increases the counter, according to their
contracts. This is because the closure {c.value(),c.add(_)}* either
maintains the value of the counter ¢ or increases it, which in turn
means self.newVal >= self.oldVal. Such reasoning is modular
because it only uses the implementation of Client and the interface
(contract) of procedures of the capsule Counter it refers to. The
notation _ stands for the parameter of the procedure add. The exact
value of this parameter is not statically known, however, using the
precondition of add, on line[T3] we know it is a positive number.

Without sparse and cognizant interference, one must consider
the possibility of interferences with unknown behaviors between
any two instructions of a program and its contracts [2].

Adding a procedure, say subtract, to the capsule Counter, in Fig-
ure[T4] which decreases the counter changes the interference behav-
iors to the Kleene closure {value(),add(_),subtract(_)}*. Using
this closure, one cannot verify the postcondition of the procedure
add anymore. However, this is not a limitation and is not specific to
Panini. A similar situation happens in other reasoning techniques
including rely-guarantee [4} 31]], Owicki-Gries work [18], etc.

Similar to sequential reasoning, completeness of our reasoning
is proportional to completeness of procedure specifications. That is,
using incomplete specifications we can still reason about whatever
specifications specify. For example, using the contract of add in
Figure |14| we can reason about values of a counter, however, we
cannot reason about other values which are part of its state but not
mentioned in the contract.

6. Discussion

Expressiveness, usability, scalability and concurrency granular-
ity Panini language implementation [20] has been tried out on hun-
dreds of thousands of lines of code of concurrent programs includ-
ing translations of JavaGrande, NPB and Streamlt benchmarks and
actor programs from Basset, Habanero and Jetlang [32] covering a
variety of patterns including master/worker, pipeline, event based
coordination, loop parallelism. Our experience shows that Panini
programs usually perform as well as their corresponding multi-
threaded programs. During our experiences we did not run into any
issues with granularity of capsules or Panini’s ownership model.
However, the focus of this paper is on the formalization of Panini’s
semantics, interference model and modular reasoning.

Closure analysis Analysis of a Kleene closure can grow with
the number of procedures in a capsule. However, Panini’s cognizant
interference is still a significant improvement over oblivious inter-
ference in which interfering behavior is completely unknown. Clo-
sure analysis could be further improved for example by eliminating
pure procedures from closures or use of procedure invocation pro-
tocols to eliminate invalid invocation sequences and similar direc-
tions which are part of our future work plans. Also, we conjecture
that number of a capsule’s procedures on average will be on par
with average number of methods in a class, which is not a large
number. For all Java projects in SourceForge as of Sep 2013, this
average is about 8 methods, as obtained using Boa [33].

7. Related Work

Actors and active objects Our work builds on the actor model [13].
Some variants of the actor model, such as Erlang [14]], guarantee
confinement, i.e. no shared locations among actors, and use a single
thread of execution per actor. Actors of this variant address the per-
vasive interference via their macro-step semantics [[15)] which limits
interference points to message receive sites in the code. However,
variants of the actor model which do not guarantee confinement,
e.g. Scala Actors [34], or allow multiple unsynchronized execution
threads per actor instance, e.g. Habanero [35], could still suffer
from pervasive interference. Actor models and their variants also
do not address the oblivious interference problem due to their dy-
namic binding of actor names and message names (in some cases),
e.g. ActorFoundry [29], which in turn does not allow the static type
of actor instances to be known statically.

Active objects [36], similar to actors, encapsulate their state
and control. Variants of active objects that guarantee confinement
and synchronized access to memory in active objects, such as
JCoBox [16], address the pervasive interference problem. Several
techniques including ownership type systems [17] or immutable
data [16] can be used to enforce confinement. Again, dynamic
binding of names could lead to oblivious interference.

Atomicity, transactional memory, cooperability and automatic
mutual exclusion (AME) Transactional memory [37] is a concur-
rent programming model that enforces atomic blocks at runtime.
There are also a variety of static [6] and dynamic [[7] analyses to de-
tect atomicity violations. Atomic sets [8] put fields of objects into
atomic sets such that access to the fields in these sets is guaranteed
to be atomic. These techniques are not concerned about oblivious
interference and only partially address the pervasive interference
by limiting the interference points to outside of specified atomic
blocks. However, interference outside atomic blocks and between
atomic blocks can still be pervasive [3]. An atomic block is an
interference-free block of code.

Automatic mutual exclusion [10H12] inverts the model of
atomic blocks in transactional memory such that code is run atom-
ically unless explicitly specified using yield expressions. Similarly,
cooperative reasoning [3 5] and observationally cooperative mul-
tithreading [9] limit interleaving points to yield expressions. Task
Types [38]] enforce pervasive atomicity, i.e. every piece of code
must be in some atomic block, through a data-centric technique
for specification of shared objects and syntactically explicated ac-
cesses to share objects. These techniques address the pervasive
interference, however, they are not concerned about the oblivious
interference problem.

Rely-guarantee and Owicki-Gries’s work In rely-guarantee
reasoning [4] a module satisfies a guarantee condition after each
instruction and in turn can assume the rely condition satisfied by
the environment. Previous work [1] leverages rely-guarantee rea-
soning for thread-modular verification of multithreaded programs
in which rely and guarantee conditions are specified for threads and
their environments. Similarly, in Owicki and Gries’s work [18]] and

its variations [39] each instruction is annotated by an interference-
free assertion which must hold locally in the presence of concur-
rent interfering tasks. These techniques extend Hoare logic and ad-
dress the oblivious interference problem via environment assump-
tions, however, they still assume pervasive interference between
each two instructions. Atomic actions [40] combine atomicity and
rely-guarantee reasoning through iterative use of abstraction and
reduction to infer atomic blocks. Rely-guarantee addresses oblivi-
ous interference, however, interferences outside atomic blocks and
between each two atomic blocks can still be pervasive.

Concurrent separation logic and abstract predicates In con-
current separation logic [41]] accesses to a shared resource are syn-
chronized through mutual exclusion and guaranteed to preserve the
resource invariants. Use of permissions enables read-sharing [42].
Concurrent separation logic can be treated as a specialization of
rely-guarantee for well-synchronized programs [43]]. Concurrent
abstract predicates [44, 45| are self-stable predicates that combine
separation logic with permissions to enable fine-grained modular
reasoning about concurrent programs presenting a fiction of dis-
jointness over shared resources. Resource specifications in these
techniques limit the interference behavior and address oblivious in-
terference, however, interferences among each two accesses to a
shared resource can still be pervasive [3].

Aspect-orientation Interference between aspects and base
code, its pervasiveness and obliviousness is discussed in aspect-
oriented programming languages [46| 47]. However, solutions for
interference problems of these sequential languages are not directly
applicable to concurrent programming models.

Data race freedom There is a vast number of previous work
on finding, fixing and preventing data races [23|148H51]. However,
the absence of data races does not guarantee the absence of inter-
ferences and errors due to interferences [6].

Reconciliation of concurrency and modularity Panini and its
capsule-oriented programming model follow previous work [S52-
54] that suggests that modularity and concurrency goals are inter-
twined and could be reconciled.

8. Conclusion and Future Work

In this paper, we presented Panini, a core concurrent calculus with
a sparse and cognizant interference model to address pervasive and
oblivious interference problems. We formalized Panini, presented
its semantics and illustrated how its interference model, using be-
havioral contracts, enables Hoare-style modular reasoning about its
concurrent programs with interference.

One avenue of future work is to design and implement Panini
as an industrial strength programming language and evaluate its
interference model, safety, performance [55] and programmability.
Another avenue of the future work is to investigate the implications
of unbounded capsule creation and passing on reasoning about
properties of interest for concurrent programs, such as deadlock
detection and sequential consistency [S6].

Acknowledgements We would like to thank Modularity’15
reviewers and Yuheng Long. This work was supported in part by
NSF grants CCF-08-46059, CCF-11-17937 and CCF-14-23370.

References

[1] Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verifi-
cation of multithreaded programs. Theor. Comput. Sci.’05 338(1-3)

[2] Rodriguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G.,
Robby: Extending JML for modular specification and verification of
multi-threaded programs. In: ECOOP’05

[3] Yi, J., Sadowski, C., Flanagan, C.: Cooperative reasoning for preemp-
tive execution. In: PPoPP’11

[4] Jones, C.B.: Specification and design of (parallel) programs. In:
IFIP’83

[51 Yi, J., Disney, T., Freund, S.N., Flanagan, C.: Cooperative types for
controlling thread interference in Java. In: ISSTA’12
[6] Flanagan, C., Qadeer, S.: Types for atomicity. TOPLAS’08 30(4)
[7] Farzan, A., Madhusudan, P.: Causal atomicity. In: CAV’06
[8] Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J.: A type system for
data-centric synchronization. In: ECOOP’ 10
[9] Stone, C.A., O’Neill, M.E., Team, T.O.: Observationally cooperative
multithreading. In: SPLASH’11
[10] Isard, M., Birrell, A.: Automatic mutual exclusion. In: HOTOS’07
[11] Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional
memory and automatic mutual exclusion. TOPLAS’11 33(1)
[12] Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with
isolation and cooperation. In: OOPSLA’07
[13] Agha, G., Hewitt, C.: Concurrent programming using actors: Exploit-
ing large-scale parallelism. In: Foundations of Software Technology
and Theoretical Computer Science’85
[14] Armstrong, J., Williams, R., Virding, M., Wikstroem, C.: Concurrent
Programming in ERLANG. Prentice-Hal (1996)
[15] Agha, G.A., Mason, I.A., Smith, S.F,, Talcott, C.L.: A foundation for
actor computation. J. Funct. Program.’97 7(1)
[16] Schifer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects
to concurrent components. In: ECOOP’10
[17] Clarke, D., Wrigstad, T., Ostlund, J., Johnsen, E.B.: Minimal owner-
ship for Active Objects. In: APLAS’08
[18] Owicki, S., Gries, D.: An axiomatic proof technique for parallel
programs. Acta Informatica’75 6(4)
[19] Rajan, H.: Capsule-oriented programming. In: ICSE’15
[20] Rajan, H., Kautz, S.M., Lin, E., Mooney, S.L., Long, Y., Upadhyaya,
G.: Capsule-oriented programming in the Panini language. Technical
Report 14-08, Iowa State University (2014)
[21] Welc, A., Jagannathan, S., Hosking, A.: Safe Futures for Java. In:
OOPSLA’05

[22] Lipton, R.J.: Reduction: A method of proving properties of parallel
programs. CACM’75 18(12)

[23] Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program-
ming: preventing data races and deadlocks. In: OOPSLA’02

[24] Yi, J.: Cooperability: a new property for multithreading. PhD thesis
(2011)

[25] Hoare, C.A.R.: An axiomatic basis for computer programming.
CACM’69 12(10)

[26] Fihndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.,
Larus, J.R., Levi, S.: Language support for fast and reliable message-
based communication in Singularity OS. OSR’06 40(4)

[27] Jacobs, B., Smans, J., Piessens, F., Schulte, W.: A statically verifiable
programming model for concurrent object-oriented programs. In:
FMSE’06

[28] Negara, S., Karmani, R.K., Agha, G.: Inferring ownership transfer for
efficient message passing. In: PPoPP’11

[29] ActorFoundry. http://osl.cs.uiuc.edu/af/

[30] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. CACM’78 21(7)

[31] Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification
for shared-memory programs. In: ESOP’02

[32] Rajan, H., Kautz, S.M., Lin, E., Kabala, S., Upadhyaya, G., Long, Y.,
Fernando, R., Szakdcs, L.: Capsule-oriented programming. Technical
Report 13-01, Iowa State University (2013)

[33] Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories.
In: ICSE’13

[34] Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci.”’09 410

http://osl.cs.uiuc.edu/af/

[35] Imam, S.M., Sarkar, V.: Integrating task parallelism with actors. In:
OOPSLA’12

[36] Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral
pattern for concurrent programming. In: Pattern languages of program
design 2. Addison-Wesley (1996)

[37] Larus, J., Kozyrakis, C.: Transactional memory. CACM’08 51(7)

[38] Kulkarni, A., Liu, Y.D., Smith, S.F.: Task types for pervasive atomic-
ity. In: OOPSLA’10

[39] Nipkow, T., Nieto, L.: Owicki/Gries in Isabelle/HOL. In: FASE’99

[40] Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In:
POPL’09

[41] OHearn, P.W.: Resources, concurrency, and local reasoning. Theor.
Comput. Sci.’07 375(1-3)

[42] Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission
accounting in separation logic. In: POPL’05

[43] Feng, X., Ferreira, R., Shao, Z.: On the relationship between concur-
rent separation logic and assume-guarantee reasoning. In: ESOP’07

[44] Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J.,
Vafeiadis, V.: Concurrent abstract predicates. In: ECOOP’10

[45] Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predi-
cates. In: Programming Languages and Systems’ 14

[46] Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quan-
tification and obliviousness. Technical report (2000)

[47] Rinard, M., Salcianu, A., Bugrara, S.: A classification system and
analysis for aspect-oriented programs. In: FSE’04

[48] Boyapati, C., Rinard, M.: A parameterized type system for race-free
Java programs. In: OOPSLA’01

[49] Bond, M.D., Coons, K.E., McKinley, K.S.: Pacer: Proportional detec-
tion of data races. In: PLDI’ 10

[50] Flanagan, C., Freund, S.N.: Fasttrack: Efficient and precise dynamic
race detection. In: PLDI’09

[51] Ratanaworabhan, P., Burtscher, M., Kirovski, D., Zorn, B., Nagpal,
R., Pattabiraman, K.: Detecting and tolerating asymmetric races. In:
PPoPP’09

[52] Rajan, H.: Building scalable software systems in the multicore era. In:
FoSER’10

[53] Rajan, H., Kautz, S.M., Rowcliffe, W.: Concurrency by modularity:
Design patterns, a case in point. In: OOPSLA/Onward!’ 10

[54] Long, Y., Mooney, S.L., Sondag, T., Rajan, H.: Implicit invocation
meets safe, implicit concurrency. In: GPCE’10

[55] Upadhyaya, G., Rajan, H.: An automatic actors to threads mapping
technique for JVM-based actor frameworks. In: AGERE!" 14

[56] Long, Y., Bagherzadeh, M., Lin, E., Upadhyaya, G., Rajan, H.: Quan-
tification of sequential consistency in actor-like systems: An ex-
ploratory study. Technical Report 14-03, Iowa State University (2014)

A. Static Semantics

Panini’s type system distinguishes between two kinds of types:
variable types and capsule types. Unlike variable types that can sub-
type each other, capsule types cannot. This in turn, allows the exact
type of the receiver of a global capsule invocation to be statically
known. The type system also ensures that capsule instances cannot
be passed as parameters or returned as return values of procedure
invocations by requiring procedure parameters and return values to
be of variable types.

A.1 Type Attributes

Panini’s typing rules use type attributes of Figure[I3] In this figure
variable types are unit and reference types and capsule types are
capsule names declared in a Panini program P.

The typing judgment P,IL,T" e : 6 says that for a program
P in the typing environment I" and store typing environment I,

the expression e has the type 8. The typing environment I" maps
variable names to variable types T and capsule names to capsule
types C and the store typing environment IT maps locations to their
variable types.

0 = type attributes
| T variable types
|C capsule types

T :=
| unit unit types
| ref(T) reference types

Iu={x:T,i:C}
D:={l:T}

variable typing environment
store typing environment

PILT Fe:6 typing judgement

Figure 15. Type attributes

The notation P = 0 in Panini’s typing rules denotes that 0 is a
valid variable or capsule type and the notation ¢ denotes well-
typedness in the context of the declaration of a capsule type C.

A.2 Typing Rules

Figure [I6] shows Panini’s select typing rules. (T-CAPSULE DECL)
type checks a capsule declaration. It ensures that the declarations of
the capsule’s imports, design, states and procedures are well typed.
An import declaration is well typed if its imported names are of
valid capsule types, i.e. P+ D. A well typed design declaration
has well typed instance and wiring declarations. Similar to import
declarations, an instance declaration is well typed if its declared
name is of valid capsule type, i.e. P+ G. A state declaration is well
typed if it declares a state name of a variable type, i.e. P+ T. This
is because capsule instances cannot be part of state of other capsule
instances. Wiring and procedure declarations should type check in
the context of imported and locally declared capsule instances in
the design declaration.

(T-ProC DECL) type checks a procedure declaration in the con-
text of a capsule type C. It ensures that capsule instances cannot be
declared as formal parameters or the return value of a procedure, by
requiring them to be of variable types. This in turn prevents capsule
instances to be passed to or returned from procedure invocations in
(T-Proc INvoc). The rule also checks that the type of the body e of
the procedure is a <: subtype of its return type.

(T-Proc INvocC) type checks a global procedure invocation. It
ensures that the receiver i of the invocation is of capsule type C and
its actual parameters and return value are of variable types. It also
checks that the receiver’s capsule type contains the invoked method
p and the actual parameters passed to the procedure are subtypes
of formal parameters of the procedure. I'(i) returns the type of a
capsule name i in the typing environment I'. Type checking of local
procedure invocations in (T-SELF PROC INVOC) is similar.

(T-WIRING DECL) type checks a wiring declaration by ensuring
that types of capsule names j passed to a wiring declaration are the
same as capsule types declared in the import declaration of capsule
type C. This is because capsule types do not subtype each other.

(T-RESOLVE) type checks a resolve expression. It ensures that
the variable type of the expression e is a subtype of the variable
type of the location that is going to hold the value of e. I1({) returns
the variable type of the location / in the typing environment IT.

(T-¢) and (T-OJ) type check unresolved future value € and [J
value of transferred locations, respectively. These two values can
have any arbitrary variable type T'. (T-REF) type checks a reference
creation expression. It ensures that capsule names cannot be stored

(T-CAPSULE DECL)

Vproc € proc. P,i:D, h:Gt¢ proc Vwire € wire. P, i:D, h:GF wire vDeD. P+D vGeG. PFG VI e€T. P-T
Pt capsule C(Di){ design{G h wire} T f proc }
(T-PrOC DECL)
PILL x:T,self:Chke:T" pPILT -T' T" < T’ VT eT. PILT T
PILT Fc T' p(T x){e}
(T-WIRING DECL)
C=T(i) capsuleC(Dh){.}eP Vj€jDeD.D==TI())
P,ILT +i(j)
(T-PrOC INVOC)
c=T1(i) capsule C(.){.T" p(T'¥){'} .}epP Vece. PILT Fe:T,T<:T’
P,ILT Fip(e): T"
(T-SELF PrROC INVOC)
PILT self:C capsule C(.){..T" p(T"¥){'} .} e P Vece. pPILT Fe: T, T <:T’
P,ILT I-self.p(e): T"
(T-STATE-READ) (T-STATE-ASSIGN)
PILT Fself:C capsuleC(.){.Tf.}eP PILT Fe:T capsule C(.){.T'f.} epP T<:T
PILT -self.f:T PJILT self.f:=e:T
(T-RESOLVE) (T-DEREF) (T-REFERENCE) (T-0) (T-¢)
PILT Fe:T T <:TI(1) PILT Fe:ref(T) PILT Fe:T PET PET
P,ILT + resolve(l,e,id,p):T PILT Fe!:T P,ILT Frefe:ref(T) pEO:T Pre:T

Figure 16. Panini’s select typing rules.

in the store, by requiring e to be of a variable type. The same is true
in (T-REF ASSIGN).

Soundness Proof of Panini’s type soundness follows standard
progress and preservation arguments and thus is omitted.

B. Proofs

Theorem[5| (Sparse interference in Panini)

Proof : Let read(id), write(id), invoke(id) and resolve(id) stand
as shorter versions of read(id,_), write(id,_), invoke(id,_,_,_) and
resolve(id,_, _,) of capsule instance id where _ denotes irrelevant
values that do not matter to the discussion.

Let 4 , denote a subtrace corresponding to execution of pro-
cedure p of capsule instance id. 4, starts with the first action of
the procedure, as, and ends with the resolve action resolve(id) of
the procedure, with actions of procedures of other capsule instances
interleaving. Furthermore, lets partition .7z , to smaller subtraces
Teub Such that actions invoke(id), resolve(id) and ag only end up at
the beginning or end of the subtrace. Subtraces 7, do not overlap
and their concatenation results in Zq ,. A subtrace g, has one
of the following four shapes: (1) it starts and ends with invoke ac-
tions invoke(id) with zero or more read and write actions of id, i.e.
read(id) or write(id) in between (2) it starts with a; and ends with
an invoke action invoke(id) with read and write actions of id in be-
tween; (3) it start with an invoke(id) and ends in resolve(id) with
read and write actions of id in between; or (4) it start with a; and
end with resolve(id) with read and write actions of id in between.
In any of these subtraces, actions of other capsules are interleaving.

In a subtrace 7, of form (1), using Lemma [2] any read and
write actions read(id) and write(id) can be right swapped such that
they form a transaction with the invoke action at the end of the sub-
trace. A transaction is a sequence of actions of a capsule instance
that behaves as if executed sequentially with no interference. This
in turn means, all neighboring actions of other capsule instances

in 7,;, move to after the invoke action at the start of the subtrace.
In a subtrace of form (2), right swapping read and write actions
read(id) and write(id) causes them to form a transaction with the
invoke action at the end of the subtrace. Consequently, all neigh-
boring actions in this subtrace moves to before the ay action, i.e.
before the execution of the body of the procedure p. In a subtrace
of form (3) right swapping of read(id) and write(id) causes them to
form a transaction with read(id) and thus all neighboring actions of
other capsules move to after the invoke at the beginning of the sub-
trace. Finally in a subtrace of form (4), right swap of read(id) and
write(id) causes the whole subtrace to form a transaction and all
neighboring actions move to before the execution of the procedure
p- In other words, all the neighboring actions interleaving with ac-
tions of procedure p of capsule instance id can be moved to either
before the execution of the procedure or to after invocation actions
invoke(id) of the procedure. The interference at the beginning of
the trace of the procedure p can be safely moved out to the trace
of its invoking procedure, either to the end of the invoking proce-
dure’s trace or after one of its global procedure invocations. This
argument could be repeated for execution of all procedure bodies
in the trace .7 of a Panini program P.

Theorem[6] (Cognizant interference in Panini)

Proof : The proof is by cases on local and global evaluation
rules in Figure[§]and the following properties of Panini which lim-
its sharing of memory locations to unresolved future locations with
synchronized access; i.e. Lemma [3] and limits accessibility of the
state of a capsule instance to only through global invocation of its
procedures, i.e. Lemma Let resolve(¢}) stand as abbreviation
for resolve(_, e’l ,_,_) in which _ denotes irrelevant values. Cap-
sule instances id’ and id are shared among other capsule instances
in the global configuration .#" and thus could be susceptible to in-
terference. Using Lemma@], the state of id’ can only be accessed
and modified through invocation of its procedures.

Case analysis for dynamic semantic rules:

(PrOC INVOC): at the interference point *, Panini’s global proce-
dure invocation along with preemptive and nondeterministic sched-
uler in (CONGRUENCE) allows any arbitrary number (zero or more)
of procedures of id’ to be invoked and their bodies, with their for-
mal parameters substituted with their values and sel£ substituted
with id’, to be appended to its queue Q. Consequently the queue
of id’ will be of the form
&le].Q' .xresolve(l,¢},id).{resolve(e}),..,resolve(e))}*, in
which zero or more bodies of the invoked procedures are appended
to the end of the queue.

(FIFO DEQUEUE): at the interference point %, Panini’s dequeue
rule (FIFO DEQUEUE) along with the scheduler (CONGRUENCE) al-
low an arbitrary number of resolve expressions of procedure bodies
to be dequeued from Q' and evaluated.

(OTHER): the global rule (RESOLVE) or other local rules (STATE READ),

(STATE ASSIGN), (REF), (DEREF), (REF ASSIGN), (LET BINDING) and
(SELF PrROC INVOC), do not cause any invocation of procedures of
the capsule id’ and thus are irrelevant to interfering behavior at %.

For the capsule instance id, using Lemma[d] its state can only
be accessed and modified through invocation of its procedures.
At interference point %, any invocation of procedures of id using
(Proc INvoC) is appended to the end of its queue Q for later de-
queuing using (FIFO DEQUEUE) and local sequential execution and
thus does not interfere at *. Other dynamic semantic rules do not
invoke any procedure on id and thus do not interfere at *.

Thus, according to the aforementioned case analysis of the
dynamic semantics rules, the interfering behavior of other capsule
instances at the interference point * is 8 = {¢},.., ¢}, }*.

Lemma[3] (Sharing of unresolved future locations)

Transferred locations with values [J are irrelevant and thus taken
out in domp of local stores, because any attempt to access them
terminates the program. The notation ¥ denotes an exclusive logical
disjunction, in which at most of the disjuncts can be true.

Proof : The proof is by cases on Panini’s normal and excep-
tional dynamic semantics rules in Figure[§]and Figure[I0] happens-
before relations in Figure[I2]and Lemmall]as the following.

Initial configuration Using Lemma/l|there is no shared loca-
tion among capsule instances in the initial configuration, i.e. A =0,
and thus the lemma holds.

Dynamic semantics Rules (PRoC INVOC) and (RESOLVE) trans-
fer ownership of memory locations among local stores of the invok-
ing and invoked capsule instances. For each procedure invocation,
these rules share a fresh future location among the invoking and
invoked capsule instances and set the value of the shared location
in the local store of the invoking instance to €. However, the con-
dition RNR' = 0 in these two rules prevents them to share other
memory locations, upon transferring ownership of parameters of
the procedure invocation or returning its result.

The rule (REF) allocates a fresh location in the local store of a
capsule instance and thus does not cause any sharing.

The rules (DEREF) and (REF ASsIGN) block when attempting
to read or write an unresolved future location with the value €.
This means for an unresolved future location / with value € in
the capsule instance X, its read action a = read(id,l) does not
unblock unless the value of the future location is resolved by the
capsule instance X; any write action a’ = write(id', 1) of the location
[by the capsule instance id should happen before the location is
resolved, because of ownership transfer after resolve. That is, @’ <
resolve(id' ,id,l,_) < a which in turn means @’ <a because of the
transitivity of the happens-before relation [3]]. In other words, there
is a happens-before relation between a and o’ and thus they are
synchronized. The same applies to other combination of a and

d' actions in (ii) in the lemma. Other rules in Panini’s normal
and exceptional dynamic semantics do not cause any transfer of
ownership or memory allocation.

Lemmal| (Global accessibility through procedures)

Proof : Using Lemma [3] there is no shared location among
local stores S and S’ of capsule instances, except future locations
for returning the result of procedure invocations among capsules.

Let [be a shared future location among capsules id and id'
when id’ invokes a procedure of id. The future location cannot
be used to modify the state of id because, upon the invocation
the rule (Proc INvOC) guarantees that the future location is fresh
and thus does not point to any state of id; during the execution
of the procedure body, the rules (DEREF) and (REF ASSIGN) ensure
that any attempts to access the location in id blocks until the
future is resolved; and after the future location is resolved, the rule
(RESOLVE) ensures that the resolved future does not point to any
state of id or locations reachable from it.

Lemma[2] (Paniniaction’s mover properties)

Proof : Let a be an action with left and right neighbors a; and a,
respectively in the subtrace a; — a < a,. We replace a with read,
write, invoke and resolve actions of a capsule instance id to show
their mover properties in an arbitrary trace with arbitrary left and
right neighbor actions from other capsule instances.

In a subtrace a; < read(id,l) — a,, the read action of a loca-
tion / conflicts with a left neighbor resolve(id,id’, p,1) action of the
same location. This is because swapping the read action with its left
neighbor allows reading a future location even before it is resolved.
However, Panini’s happens-before relations, in Figure[I2] does not
allow this by ensuring that a future location is resolved before it
is read or otherwise it blocks, i.e. resolve(id,id',p,l) < read(id,1).
This in turn means the read action cannot be a left mover. Since
resolving of a future location must happen before its read, a resolve
action resolve(id,id’,p,[) cannot be right neighbor to the read ac-
tion read(id,[) and thus the read action can be safely swapped with
any of its right neighbors, i.e. the read action is a right mover. The
same argument applies to a write action write(id,l) and thus a write
action is a right mover too.

Similarly, a resolve action resolve(id, id’, p,[) in a subtrace a; <
resolve(id,id’,p,l) < a, only conflicts with read and write actions
from and to the same location [, i.e. read(id,l) and write(id,l).
Again, based on Panini’s happens-before relation a read or write
of a future location happens only after the future is resolved and
thus the read and write actions of a future location cannot be left
neighbors to their resolve actions. This in turn means that the
resolve action is a left mover and not a right mover.

An invoke action invoke(id,id',p,!) only conflicts with another
invoke action if they both invoke procedures on the same capsule
instance id’, since they both modify the queue of the capsule id’.
In a subtrace a; < invoke(id,id',p,l) < a, the invocation action
cannot be safely swapped with neither its left nor its right neighbors
and thus is a non-mover. This is because they neighbors could be
invocation actions on the same capsule instance id’.

It is worth to note that local actions as well as read and write of
non future locations are both movers.

Finally, in (X DEREF) and (X REF ASSIGN), trying to dereference
or assign to a transferred location not owned by the capsule instance
anymore, causes the program to throw an ownership transfer excep-
tion OWE and terminate. In (X Proc INvoc) and (X RESOLVE), the
program terminates by throwing an ownership transfer exception
upon any attempts to leak the states of an instance or its reach by
passing them or returning them from a global procedure invocation.

	Introduction
	Problem
	Solution: Panini
	Sparse Interference to Solve Pervasive Interference
	Cognizant Interference to Solve Oblivious Interference
	Modular Reasoning Using Panini's Interference Model
	Contributions

	Panini's Syntax
	Operational Semantics
	Dynamic Objects
	Local and Global Semantics
	Sequential Synchronous Local Semantics
	Concurrent Asynchronous Global Semantics
	Ownership Transfer Semantics

	Exceptional Semantics
	Initial Configuration
	Actions: Conflict and Happens-Before Relations
	Sharing of Capsule Instances and Futures

	Sparse and Cognizant Interference
	Sparse Interference
	Cognizant Interference

	Hoare-Style Modular Reasoning
	Discussion
	Related Work
	Conclusion and Future Work
	Static Semantics
	Type Attributes
	Typing Rules

	Proofs

