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ABSTRACT

Steerable surveillance cameras o�er a unique opportunity to sup-

port multiple vision applications simultaneously. However, state-

of-art camera systems do not support this as they are o�en limited

to one application per camera. We believe that we should break

the one-to-one binding between the steerable camera and the ap-

plication. By doing this we can quickly move the camera to a new

view needed to support a di�erent vision application. When done

well, the scheduling algorithm can support a larger number of ap-

plications over an existing network of surveillance cameras. With

this in mind we developed Panoptes, a technique that virtualizes

a camera view and presents a di�erent �xed view to di�erent ap-

plications. A scheduler uses camera controls to move the camera

appropriately providing the expected view for each application in a

timely manner, minimizing the impact on application performance.

Experiments with a live camera setup demonstrate that Panoptes

can support multiple applications, capturing up to 80% more events

of interest in a wide scene, compared to a �xed view camera.
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Figure 1: Cloud analytics platform for cameras.

1 INTRODUCTION

Surveillance cameras are becoming ubiquitous. �e United King-

dom houses �ve million surveillance cameras, many of them in Lon-

don, which has one surveillance camera for every 11 people [1, 2].

Networked cameras cover key areas of highways, they are mounted

on adaptive tra�c signal systems for tra�c light control, and they

are increasingly deployed in our o�ces and homes (e.g., Nest-

Cam [3]). Many of these cameras can be remotely controlled over

the Internet, feeding live streams to a distant cloud. �is then,

creates an opportunity to harness such cameras for additional vi-

sion analytics applications that gather data far beyond the original

intended purpose of a deployed camera.

Outdoor surveillance cameras can be used for a wide range

of analytic tasks, such as tra�c volume measurements, behavior

mapping, amber alert scanning, pedestrian monitoring, and tra�c

violations. Some of them are shown in Fig 2. Similarly, security

cameras can be used for pet overseeing, security monitoring, baby

activity etc. �e ability to add analytics apps to existing camera

feeds could contribute much to satisfy the data demands of future

envisioned smart home and smart city applications. We therefore

envision a cloud-based platform that allows adding many diverse

analytics applications to existing cameras and support them in a

concurrent manner.

Supporting multiple simultaneous �xed view analytics applica-

tions on the same camera o�en creates challenges because their

view and image requirements tend to di�er. Hitherto cameras are

o�en installed with a speci�c application in mind and their view
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Figure 2: A 180 degree panorama from our PTZ camera, displaying the scene and regions of interest for potential applications.

(i.e., position, orientation) is carefully adjusted to �t this applica-

tion, as shown on the le� in Fig 1. Technology trends are leading to

more 	exible, steerable camera designs, enabling tra�c operators

to steer them occasionally to look for other events of interest. Even

though such cameras could in theory satisfy all applications, le�ing

applications directly issue steering commands would likely lead

to con	icts. Moreover, such steering would need to keep up with

steering and network latencies.

We propose Panoptes,1 a view virtualization system for (electron-

ically or mechanically) steerable cameras. We develop a mobility-

aware scheduling algorithm for steering control, thus enabling

multiple applications to be supported simultaneously on a single

camera, as in Fig 1. Each application can specify its view require-

ments (e.g., orientation, resolution, zoom) and the system provides

it with a view that meets them. We refer to these views as virtual

views. �e goal of virtual view abstraction is to make steering

changes transparent to applications. �is is based on the insight

that temporary steering away of a camera can be easily masked by

replaying the previous virtual view image, if no signi�cant change

occurs in the view at that time.

To know when to steer, our proposed system learns mobility

pa�erns in its view and predicts when motion or change is likely in

each virtual view. Tra�c scenarios, for example, o�en exhibit fairly

regular, constricted motion pa�erns (a car’s movement follows the

roadway, which allow predicting when the car will enter a region

of interest). We bene�t from the continuous form of this motion to

learn mobility pa�erns in the scene for scheduling steering actions.

To summarize, we make the following contributions:

• a virtual view abstraction for sharing a camera among

multiple applications with �xed view requirements.

• a mobility-aware scheduling algorithm that anticipates

object velocity, network latency, and steering speed be-

fore steering the camera to the application speci�c view

(camera position). �e scheduler maximizes the number

of applications served while minimizing the number of

events missed.

1Panoptes, meaning all-seeing, is named a�er the 100-eyed Argus Panoptes in Greek
mythology.

We evaluated the system with a total of 2870 hours of video

collected over 5 months and demonstrate that Panoptes can support

multiple applications on a steerable camera, capturing up to 80%

more motion events, compared to commonplace �xed view cameras.

2 RELATED WORK

�e space of steerable cameras predominantly focuses on tracking

moving objects, especially people [4, 5]. �ese cameras o�en fol-

low one target or rotate through preset positions to capture more

targets. However, the camera view is tightly bound to one spe-

ci�c application. Ilie et al [6] proposed an active camera control

technique, which explores the space of camera con�gurations and

cluster regions of interest. �is clustering is done based simply on

proximity and does not take expected motion into account.

�emost closely related work is MultiSense [7], which also seeks

to support multiple applications on a steerable camera. MultiSense,

however, addresses a di�erent application domain: applications

that have been designed for steerable cameras and seek to steer the

cameras themselves. It inter- leaves steering requests from these ap-

plications. �e system then focuses on resolving con	icts between

commands issued by di�erent applications, and allocating the sen-

sor resource. MultiSense implemented an application independent

weight-based fair sharing scheme for PTZ cameras. In contrast,

we focus on accommodating multiple �xed-view applications on a

steering camera, which we believe represents the vast majority of

vision analytics applications. Fixed-view applications were usually

developed for regular cameras and do not issue steering commands.

Keeping this in mind, Panoptes adds a layer of abstraction and

conceals steering actions from the applications. �is allows us to

use any conventional vision algorithms in a plug-and-play manner.

It also provides an opportunity for the system to steer camera to

maximize capture of motion.

Panoptes also proposes view virtualization, which generates

candidate camera views that can sometimes support multiple ap-

plications simultaneously by accommodating regions of interest

of di�erent applications in one camera view. MultiSense, in com-

parison, can only accommodate one application at a time through

virtual sensor and multiplexing, where each camera position allows

capture for one application.
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Many important contributions in vision analytics come from the

computer vision community, that has long propounded detection

and recognition algorithms in surveilled environments. Automated

vehicle tracking and classi�cation [8, 9], anomaly detection [10],

pedestrian tracking [11], face recognition [12] have all been widely

explored and enhanced over the years. However, these algorithms

are o�en designed for unchanging camera views, and their perfor-

mance is severely a�ected if the camera moves. Panoptes enables

state-of-art vision algorithms to run concurrently on a single cam-

era, and provides them with expected unchanging views through

the concept of view virtualization.

�ere are also multiple works on multi-camera surveillance net-

works. However, they usually coordinate to support only one ap-

plication, such as tracking people [13], identifying people [14, 15],

or object-tracking [16]. 
reshi et al. [17] suggest greedy algo-

rithms such as weighted round robin to distribute targets to di�er-

ent cameras. Yao et al. [18] propose an adaptive camera assignment

algorithm for assigning resources to objects for a uniformly dis-

tributed computational load. For omnidirectional cameras, Chen

et al. [19] quantitatively formulate the e�ectiveness of a camera in

observing the tracked object and use this metric to decide hand-o�

between cameras. Panoptes is di�erent in utilizing motion pa�erns

to schedule diverse applications.

3 BACKGROUND

Many modern cameras are steerable, either through a mechanical

or an electronic mechanism. Mechanically steerable cameras, more

commonly known as Pan-Tilt-Zoom (PTZ) cameras, as shown in

Fig 3, are frequently used in the surveillance realm. �ey use motors

to rotate the camera along the horizontal and vertical axes (pan

and tilt), and adjust the zoom lens, therefore allowing optical zoom.

However, they can only observe events in one direction at a time.

Mobility-aware scheduling can thus schedule when and where the

camera is pointed at any time.

Figure 3: Mechani-

cally steerable cam-

eras’ 3 degrees of

freedom.

Intriguingly, image sensor reso-

lution (e.g., hundreds of megapix-

els [20]) and processing advances

have led to the availability of om-

nidirectional, or 360◦ cameras. �e

lens and image sensor in some of

these cameras are designed to cover

a wide view, frequently a 360◦ view

through a �sheye lens, with no abil-

ity to zoom. �ese cameras place

much higher requirements on the

quality of the lens and it is di�cult

to match the quality of an optical

zoom in motorized PTZ cameras.

�ey are not electronically steer-

able and thus mobility-awareness may not be very useful to these

cameras. Although popularly, 360◦ cameras are constructed by

mounting multiple cameras on a rig, pointing in various directions.,

where each has the ability to zoom. �ese are, in-e�ect, electron-

ically steerable cameras. �ey do not require any moving parts,

which simpli�es construction, deployment, and eliminates mechan-

ical wear. �ey also o�er near-zero camera steering latency since

there is no need to wait until the motor has moved the camera and

overall one can expect such designs to lower costs and signi�cantly

increase the usage of steerable cameras.

By virtualizing views from the panoramic scene for each appli-

cation, a 360◦ camera can contrive electronic steering by extracting

and transmi�ing only the virtual views over the network, thus

making the system bandwidth e�cient. Mobility-awareness can

enable the 360◦ system to control the precise camera needed for

conducting speci�c operations such as zoom and input resolution

for an application.

For a readily deployable and practical system, we prototype and

demonstrate our system on existing mechanically steerable PTZ

cameras. However, the proposed work is generic in its applicabil-

ity to both, mechanically (PTZ) and electronically (360) steerable

cameras.

Existing control standards. While steerable cameras are usu-

ally manually steered via a joystick by the operator, they do o�er

standard network APIs that are also suitable for automatic con-

trol. �e Open Network Video Interface Forum, or ONVIF [21],

is a global open industry forum that standardizes communication

between IP-based security products, and has de�ned a standard

for controlling steerable cameras. ONVIF is built upon Web ser-

vice standards. It uses Simple Object Access Protocol (SOAP) for

message transfer, WSDL (Web Service De�nition Language) for

describing the service and XML for data description syntax. Some

manufacturers also provide their proprietary SDK (e.g. [22]) for

controlling additional camera parameters. However, neither ON-

VIF [23] nor the proprietary APIs automate camera steering to

facilitate support for multiple concurrent applications.

Analytics Use Cases. While there are many potential use-cases

of analytics with steerable cameras spanning residential, commer-

cial, and public se�ings, we consider a concrete example in a tra�c

related-se�ing.

Tra�c Volume Monitoring is useful for tra�c and parking plan-

ning, tra�c light timing, and real-time tra�c or parking informa-

tion services. Typically car counting algorithms [8, 24, 25] track

key features along the entry point and the exit point of a route [26].

License Plate Scanning is increasingly deployed for applications

such as toll booth payment, amber alert scanning, speed monitoring

systems etc. Typical LPR vision algorithms scan the image frame to

locate a license plate and runs character recognition techniques [27,

28] on the small region within the detected plate.

No Turn on Red prevents drivers from turning right when the

tra�c signal is red. It is a violation increasingly being caught by

the use of auto-enforcement cameras. �is application need not

run continuously, but only when the tra�c light is red.

While such vision algorithms can seemingly be run in parallel

on the same camera-feed, several challenges exist in practice. We

discuss them next.

4 CAMERA ANALYTICS CHALLENGES

Cloud computing services can easily provide processing resources

for many analytics applications, but the use of multiple analytics

applications on the same steerable camera feed is challenging due

to the following factors.
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(a) Panoramic view of partial camera coverage. Camera can

only observe a small area at a time, known as the Camera

View. (b) Extracting Virtual Views from di�erent camera views.

Figure 4: Virtual View abstraction from scene.

Sensitivity to view changes. �e setup of many existing vision

systems is view-speci�c. Even slight view changes through steering

could bring de�ned regions of interest such as the inboxes and

outboxes in tra�c volume monitoring out of alignment with the

roadway.

Con�icting view requirements. Vision applications are fre-

quently interested in di�erent parts of the panoramic view. Volume

monitoring requires a wider view that contains a path from an

inbox to the outbox. License plate recognition requires a zoomed

view that focuses on area where the license plate of a vehicle is

likely to be oriented towards the camera. In many cases, these

requirements con	ict, meaning that they cannot be achieved with

one camera orientation and zoom level.

Slow camera tuning speeds. Mechanically steerable cameras

have an inherent latency due to the time taken by the camera to pan,

tilt or zoom. Most modern cameras pan at a speed of 100◦/second,

and capture images during the transitions, but for the most part,

vision applications cannot use these blurry frames.

Variable network latency. Steering commands from a remote

location will reach the camera a�er a variable and potentially sig-

ni�cant delay, particular for the emerging LTE connected cameras.

LTE measurements show average latencies of 70ms but frequent

spikes to 200ms and beyond [29].

5 SYSTEM DESIGN

We propose a system-level approach to the aforementioned chal-

lenges, that aims to support multiple applications simultaneously

by steering the camera towards expected motion. Rather than ex-

posing camera steering control and associated latencies to each

application, the system makes steering transparent to applications:

it aims to present an unchanged virtual view to each application

even when the camera has moved. By creating separate unchanging

virtual views for each application, it addresses application’s sensi-

tivity to view changes. �e system then exploits mobility awareness

to manage con	icts as well as mask network and steering latencies.

�is means that the system learns where to expect mobility and

seeks to steer the camera in time to observe motion events.

View Virtualization. A Virtual View is an application-speci�c

abstraction of the camera view. It is de�ned by

VV = {priority, ROI, R, fr } (1)

Figure 5: Virtual View mapping across camera views for car

counting application.

Traditionally, one camera is bound to one application. Panoptes

associates every application to a corresponding virtual view, de�ned

by its requirements at initialization. It is assigned a priority and a

region of interest in the scene, its ROI . �e application also speci�es

a required resolution, R, and an acceptable frame rate, f r .

Typically, the virtual view for an analytics application is simply

the view that the camera would be steered to by the operator if this

application were running in isolation. Many vision applications

only use a smaller part of the camera view, a region of interest

(ROI). For those applications, a virtual view can be de�ned as a

rectangular subregion of a camera view. Such views are virtual

because the actual camera position may not be completely aligned

with this view. If the actual view encompasses the virtual view,

the system simply extracts the virtual view region from the actual

camera view and presents this to the application (as long as the

resolution requirements can be met), shown in Fig 4b. As a camera

pans or tilts, the system updates the region to be extracted so that

the extracted virtual view remains unchanged, as demonstrated in

Fig 5.

Virtualization becomes more challenging when several virtual

views do not completely �t in a camera view (or the zoom factor

cannot satisfy resolution requirements). In this case, the system

scheduler seeks to intelligently steer the camera to still maximize

the capture of events of interest in all views. �is is based on

predicting when events (motion) occurs in a camera view. Since

there exists a risk that events of interest will be missed, application

developers can select whether this process should be transparent to

the vision application or whether the application should be noti�ed

when the virtual view is not actively monitored by the system.

�e �rst option is important to support legacy applications. �e
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Figure 6: System Overview.

second allows more sophisticated applications be�er estimate the

uncertainty inherent in their analytics results.

Scheduling Views with Motion Prediction. O�en, applica-

tions are interested in video sequences where motion occurs in

the view. In most scenes, the degree of motion determines how

frequently the view needs to be updated. For example, if a cam-

era monitors a parking lot, it could turn away without any loss

of information, when no vehicle or person is approaching. Any

missing static parts of the video can be easily reconstructed from

a single image or a short video sequence. �is insight then allows

the system to choose what part of the scene a camera must capture,

when there are no simultaneous motion events across those views.

If the system can accurately predict when a moving entity will enter

a virtual view, it can steer the camera just in time to capture this

motion event. We therefore propose that cameras learn mobility

pa�erns in their scene and use this awareness to predict motion

events.

System Overview. While our proposed camera control system

works for both, mechanically and electronically steerable cameras,

we build our prototype using PTZ cameras as they are a large part

of the existing infrastructure across countries. At di�erent camera

positions, these cameras view di�erent regions of the scene. We

call these camera views, rendered on a panoramic view in Fig 4a.

Each camera view may have one or more virtual views for di�erent

applications, as illustrated in Fig 4b. Our system consists of two

primary components: View Virtualization and Mobility Awareness.

�e key processing steps are depicted in Fig 6. �e virtual view

mapper extracts an application’s virtual view from the current

camera view and passes it to the analytics application.

Meanwhile the predictor computes location estimates for moving

entities in the scene and provides these predictions to the sched-

uler. �e scheduler steers the camera to maximize motion capture.

�e virtual view mapper obtains the current camera position from

the scheduler to accurately map raw frames to virtual views for

applications. During the initialization phase, the system learns

common trajectories from the scene and stores them as a mobility

map, providing information on motion distribution in the scene.

Mobility map is used by the Prediction Zone Generator to identify

prediction zones corresponding to virtual views. �is information

is then passed on to the Camera View Selector for determining can-

didate camera views, and aid in mobility-aware scheduling. We

discuss the details of these components in the following sections.

6 MOBILITY AWARENESS

In this section, we present the details of mobility-awareness in

steerable cameras.

6.1 Learning Mobility Patterns

Most environments have common motion pa�erns, speci�c to the

scene being observed. We discuss below how we learn these pat-

terns.

6.1.1 Sensing motion paths. �e tracking module tracks all ac-

tive entities in the scene and learns their trajectories. �is is per-

formed during the initialization phase, and continuously updated

during camera operation. Each trajectory is initialized by the initial

position of the object. �is position is determined by detecting

foreground blobs in the image sequence. �e detected blobs are

tracked using a Kalman Filter. �e e�ciency of a Kalman �lter in

estimating trajectories of multiple moving targets has well been

established in the vision community [8, 30], and it enables us to

handle brief occlusions. We can further improve this by replacing

it with more sophisticated tracking schemes. �ese techniques

exploit the spatio-temporal context information along with motion

constraints, signi�cantly promoting the robustness of tracking in

the presence of longer occlusions. �e detected trajectories are

archived by the system.

6.1.2 Mobility Maps. We de�ne a mobility map as a two dimen-

sional distribution of motion in the scene. Fig 8b shows the mobility

map generated over a scene. A scene is de�ned as the maximum

possible panoramic view of the camera. We create the mobility

map by dividing the entire scene in discrete cells. Each pixel in

the camera image belongs to one cell in the grid. We empirically

chose square cells of sixty pixels each. By probing into the history

of trajectories, we assign each cell a motion quotient, Qm , which

quanti�es how much of the motion in the scene transpires in that

cell. For any cell k , it is de�ned as:

Qm (k ) =
Motion events in the cell k

Motion events in the scene
(2)

Here, motion events correspond to frames with moving objects.

Our objective is to maximize motion capture from the scene, and

this metric helps us distinguish between regions of high motion

events from those with relatively fewer motion events. �e ROI

for any virtual view is de�ned as the set of cells in that virtual

view. Additionally, every virtual view also has a motion probability

a�ribute, pm . It is the sum of the motion quotients of all cells in

the virtual view, and is given by:

pm =
∑

k ∈C

Qm (k ) (3)

where C is the set of cells in that virtual view.

6.1.3 Motion Prediction. Camera se�ings, such as pan-tilt-zoom

cannot be changed instantaneously. To capture motion in a virtual

view, it is important to have prior information of ensuing motion
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Figure 7: Coordinate frame mapping using homography.

events, to adjust camera se�ings for a future time instant. �e

predictor is implemented as a decision tree based on the following

spatio-temporal features: the current location of the object, speed,

and heading. Instead of looking at an entire sequence, we only

consider the speed and heading in the last transition, i.e. from the

previous cell to the current cell. For every position sample obtained

from the tracking module, the predictor probes the mobility map

database for all trajectories that match the three features. We calcu-

late speed as the number of pixels traversed by the object from one

frame to the next. For those trajectories that most closely match

the criteria, the predictor looks up the cell where majority of the

matched tracks appeared a�er time tla . We call this the lookahead

time. �e resultant cell number is returned to the scheduler as the

predicted position. If the predicted cell belongs to a virtual view,

the scheduler acts accordingly. �is is an empirical data-driven

model and is independent of the scene. �us it can be applied to

any tra�c environment. In scenarios with slower objects, such as

people, where motion is less regular, Panoptes could be adapted by

shortening the look ahead time.

6.2 Identifying Prediction Zones

We introduce prediction zones as substitute views for a camera to

monitor. In the event where a virtual view is not in the camera’s

view but a prediction zone is, a motion event in the prediction zone

can trigger camera control. Prediction zone is de�ned as the subset

of cells capable of predicting motion in a virtual view. Inclusion of

prediction zones in a camera view enables the camera to capture

motion even for virtual views that may not be in the current camera

view. We use the lookahead time, tla for predicting whether an

object will be in a virtual view at the end of that time. Analogously,

any cell where an object was tla seconds before appearing in the

virtual view, is likely to trigger prediction for that virtual view.

Typically, the approach area leading up to a virtual view constitutes

its prediction zone. For each virtual view, we deduce the prediction

zones from the history of trajectories. We construct a View Table,

where every virtual view is associated with its probability of motion

pm , and prediction zones PZ :

View Table : VV → PZ ,pm (4)

Each prediction zone also has a motion probability pzm , computed

as in Equation 3.

(a) Virtual Views. (b) Mobility Map.

(c) Prediction Zones (yellow)

and candidate camera views

(green).

(d) Default Camera View (red).

Figure 8: Camera View Selection steps (Snapshots from our

implementation).

6.3 Mapping Virtual Views

To ensure that applications are transparent to camera steering, the

system must successfully map virtual views from a camera view

to any other camera view as the camera steers. While coordinate

frame mapping is one of the oldest ideas in computer vision, previ-

ous proposals either (i) map the scene to camera coordinates, or (ii)

require complete camera calibration. �e camera coordinate sys-

tem alone cannot achieve this mapping, specially for mechanically

steerable cameras with moving parts. Minor manufacturing defects

can cause errors that accumulate over time and can gravely a�ect

system performance. Moreover, steerable cameras are equipped

with a wide-angle lens that su�ers from high lens distortion, which

varies from camera to camera. For a truly scalable surveillance

system, calibrating each camera or relying on the numbers pro-

vided by the manufacturer is not only an inconvenience, but also

impractical.

In contrast, we take advantage of homography [31] to map the

entire scene to a global reference frame. �is approach works for all

steerable cameras, irrespective of the manufacturer, and scales eas-

ily. Homography is the projective transformation from one image

to another, and can be used e�ciently to compute camera rotation,

and relate one camera view to other camera views. We use the view

from a prede�ned position of the camera as the reference frame and

map all points in subsequent frames to the reference frame, frame

0. Homography matrices, 3 × 3 matrix H , can be concatenated to

relate points in current frame to points in the reference frame. 0Hn

is the concatenation of intermediate homographies between frame

n and frame 0, given by

0Hn =
0H1 ×

1H2......... ×
n−1Hn . (5)

Fig 7 demonstrates this mapping from one frame to another. We

compute the homographies during camera initialization by using

the SURF [32] feature detector to detect keypoints in frames. By

using features from the scene, the system can adaptively update
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Data: Res - Camera View Resolution

Data: n - Number of applications

Result: CamView[] - Candidate Camera Views

begin
VV ← createVirtualViews(n)

foreach v ∈ VV do
candidateView.add(v)

for i ← 2 to n do
B = getBoundingBox(v,VV (i ))

if B.dimensions < Res then
candidateView.add(VV (i ))

v ← B
else

PZ = getPredictionZones(VV (i ))

foreach pz ∈ PZ do
Bpz = getBoundingBox(v,pz) if

Bpz .dimensions < Res then
candidateView.add(pz)

v ← Bpz
end

end

end

end

CamView.add(candidateView)
end

end
Algorithm 1: Finding Candidate Camera Views.

Data: CamView[] - Candidate Camera Views

tla - Prediction Look Ahead Time

begin
CamViewcurrent ← CamView (0)

foreach f rame do
S ← getCurrentObjectPosition(frame)

foreach s ∈ S do
f uture[s] = predict(s, tla )

end

destination = maxPriority(f uture)

cv = getCameraView(destination)

CamViewcurrent ← cv

startTimer();

if timerEnd then
CamViewcurrent ← CamViewnext

end

end

end
Algorithm 2: Mobility-Aware Scheduling.

homographies and accurately map points from any view to the

reference frame, eliminating any errors accumulated over time.

7 PANOPTES CAMERA CONTROL

�e camera control system needs to make one key decision: where

to look at any given time. We use the mobility awareness concepts

presented in Section 6 for camera control.

Figure 9: Sample timeline for events under mobility-aware

scheduling.

7.1 Camera View Selection

It is not always best to aim the camera at one virtual view, because

the requirements of a virtual view can o�en be satis�ed while also

simultaneously keeping other virtual views in the camera view. A

camera view refers to a particular pose or orientation of the camera

that views a part of the entire available scene, as shown in Fig 4a,

and is given by:

CV = {p, t, z, v ⊆ V } (6)

where p, t , z are the pan, tilt, zoom values for that camera pose, and

V is the set of all virtual views.

We compute candidate camera views, where each is an optimal

combination of one of more virtual views and/or prediction zones

that �t the camera’s �eld of view (FOV). An application’s virtual

view is said to �t a camera view if its bounding box is in the camera’s

FOV and the zoom se�ing of the camera is the same as that required

by the application. �e camera view selection technique, as also

seen in Algorithm 1, takes a greedy approach and iterates over all

virtual views. In each iteration, it selects a virtual view and a�empts

to �t it with all the other virtual views one by one. If the subset of

virtual views under consideration �ts into the camera FOV, their

bounding box now serves as a temporary view, and the algorithm

goes on to �nd other virtual views that �t the camera FOV with the

temporary view. For any virtual view that does not �t, the system

tries to include as many of its prediction zones as possible. �e

algorithm outputs candidate camera views. Fig 8c shows snapshots

from our implementation, where the virtual views are in blue, the

prediction zones in yellow and the candidate camera views in green.

It might seem intuitive to select a camera view that supports the

largest number of applications (i.e. �ts the largest number of virtual

views), but we noticed that o�en a large number of virtual views

can exhibit far less motion events.

Given the set of candidate camera views, we de�ne the impor-

tance I for each camera view based on motion probabilities of the

virtual views in it and priorities of the associated applications.

I =
∑

i ∈S

Pr (VVi ) ∗ [pm (VVi ) + pzm (VVj )] (7)
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(a) Sparse: Suburban Tech Center. (b) Medium: Campus Parking. (c) Dense: US Route 1.

Figure 10: Test environments with di�erent motion densities.

where, S is the set of virtual views in the camera view, Pr (VVi ) is

the priority of the application i, pm (VVi ) is the motion probability

of Virtual View i, as de�ned in Equation 3, and pzm (VVj ) is the

motion probability of prediction zones of virtual view j , where j � S .

�is metric accounts for application priority as well as expected

motion in the corresponding virtual view, by weighing probability

of motion with application priority.

From all the candidate camera views, the system selects the one

with the maximum important I as the default camera view. Fig 8d

marks the chosen default camera view in red. �e scheduler starts at

the default camera view and scans other camera views in decreasing

order of Importance.

7.2 Mobility-Aware Scheduling

�e Panoptes mobility-aware scheduler scans candidate camera

views periodically, and predicts future positions for objects in its

view. When the predicted position belongs to a virtual view, the

camera is steered to the view containing that virtual view. �e dwell

time at each camera view is directly proportional to its importance,

I . �e scheduler always prioritizes predictions for a higher priority

application, and captures them �rst.

Keeping in mind that most applications are interested in motion,

we de�ne η as motion capture e�ciency. For each application, the

scheduler aims to maximize:

Max .
Motion events captured

Actual motion events
(8)

�e scheduler can e�ciently predict motion in any virtual view

due to the presence of prediction zones in candidate camera views.

�e camera uses these prediction as triggers to look away from the

current camera view, and capture events in the predicted view.

Fig 9 shows a sample sequence diagram for scheduling camera

views in Panoptes. �e camera starts at the default view, and then

periodically steers to the other views. Prediction for a virtual view

triggers the camera to fall out of scanning order and steer to the

view containing the virtual view.

Traditional scheduling schemes cannot be applied to camera view

scheduling domain. In a time-based fair-share scheduling scheme,

o�en the camera ends up looking at no motion in one view while

missing motion in another. A priority-only scheduling scheme

is ine�cient because high priority events may be less frequent,

such as ‘no-turn-on-red’, and with this scheme the camera spends

most of its time capturing no motion for the high priority view and

missing other relevant motion events in the scene.

7.3 Steering and Network Latency

In a real-time scenario, high network latency can cause the control

signal to the camera to be delayed, which in turn can lead to failure

in capturing motion events. In addition, camera steering latency

also has to be taken into account. As the candidate camera views

are pre-known, we can assume a constant speed between these

views. Our PTZ camera [33] o�ers a speed of 400◦/second between

presets. We account for the steering latency by predicting object

location for a future time, tla , which is dependent on the camera

steering speed. If the camera has zero steering latency, one should

ideally, be able to switch from one view to another in no time.

However, even with zero steering latency, events will be missed

when prediction cannot be made from the current camera view, due

to the absence of prediction zones. �e control algorithm adapts

by predicting for tla ≈ 1 second. When a prediction occurs for a

virtual view, the corresponding camera view is scheduled for time

tla − ∆t later, where ∆t is the steering delay.

More cameras are being installed in remote locations and relying

on the internet to communicate the video streams. O�ine storage

of videos may not be a�ected greatly by this delay, but it becomes

non-negligible for real-time camera control. A delayed control

command to the camera could lead to the steering starting much

later than intended, leading up to missed motion in the destination

camera view. We consider the case of a wireless link under LTE

latency to evaluate system performance under network delays.

8 TEST SCENARIOS

We evaluate our system across three environments with diverse

tra�c densities.

Sparse Tra�c. We mounted an IP camera [33] on the roof of

our building, in a suburban technology center, overlooking a street

and a parking lot. We recorded the video stream from this camera

24/7 for over 5 months. Fig 10a shows the three example virtual

views in the scene. Note that not all appear in the camera view at

the same time.

MediumTra�c. We installed a GoPro Hero 4 camera on the 5th

	oor of a campus building, overlooking a huge parking lot, shown

in Fig 10b. �is data was collected over 2 months. GoPro cameras
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(b) Medium Motion.
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(c) Dense Motion.

Figure 11: Comparison of mobility aware scheduling scheme with baseline schemes for camera view selection. Darker shade

represents higher priority.

have a wide �eld of view (FOV) and in this se�ing it is able to

capture the entire visible scene from the building. �is parking lot

is closest to the classroom building and hence the camera captures

a large number of pedestrians walking on sidewalks and across the

parking lot.

Dense Tra�c. We collaborated with the New Jersey Depart-

ment of Transportation (NJDOT) to obtain few days’ video feeds

from their surveillance cameras at US Route 1. A snapshot from

the video feed is shown in Fig 10c. �is is a heavy vehicular tra�c

scenario, devoid of pedestrians. �e rate of simultaneous motion

events is extremely high in this environment.

9 IMPLEMENTATION

To ensure a hardware agnostic solution, we used the ONVIF [21]

standard for controlling the camera. Our control algorithm is thus

general enough to be realized on any ONVIF-compliant camera.

We use OpenCV’s implementation for our tracking algorithm [34].

Figure 12: PTZ camera in-

stalled on the roof for data

collection.

�e PTZ camera used for

our data collection is a Pelco

Spectra Professional [33], as

shown in Fig 12. It streams

1080p H.264 video data at 30

fps. We set up a desktop on

the same network as the cam-

era, and captured the video

stream 24/7. All our code, in-

cluding the stream capturing

job, was wri�en in C++ us-

ing OpenCV and libVLC [35]

libraries. We set each candi-

date camera view as a preset.

Since active cameras typically

o�er faster pan-tilt speed between presets, this gives us the ben-

e�t of extremely low latency. For our camera, this speed was

400◦/second. �is implies that the camera can switch between

any two views in less than a second. �e motion anticipation, there-

fore, need only be one second ahead in time, allowing the camera

ample time to switch to the required view to capture motion.

Camera Initialization. �e initialization procedure starts right

a�er camera setup to infer mobility pa�erns from the scene. During

this phase, the system identi�es a �nite set of M discrete poses.

Each camera pose transforms to a unique combination of {p,t,z}.

At any given time, the camera will have one of a �nite number of

states, de�ned by:

staten = {p, t, z, background, 0Hn , mobilityMap} (9)

where staten is the camera state for pose n and 0Hn is a running

estimate of the homography matrix that maps the nth pose to

the 0th pose. �is state is di�erent from camera view de�ned in

Equation 6, as camera views are determined based on the virtual

views and prediction zones, while initial states are used to scan the

environment and learn the mobility pa�erns.

10 EVALUATION

In this section we evaluate Panoptes’ performance and other design

choices. While the system can accommodate any application, we

focus on four example applications: (i) continuous car counting,

(ii) periodic no-turn-on-red, (iii) license plate scanning and (iv)

pedestrian counting. We selected these applications based on the

diversity of application frequency, camera pose requirements, and

tra�c environment. We use motion capture e�ciency η from Eqn 8

for quantifying performance. To this end, we seek to answer the

following questions:

• How does the mobility-aware scheduling compare to tra-

ditional scheduling schemes?

• How sensitive is Panoptes to steering and network latency?

• How well does the prediction work?

• What other factors a�ect system performance?

10.1 Mobility Aware Scheduling

We compare the proposed mobility-aware planning with �xed cam-

era capture and scheduling choices from traditional domains. We

carry out this evaluation across all three test environments. It

is evident from Fig 11 that a �xed camera can only cater to one

application. A priority-only scheme works the same way as a �xed-

camera capture, and captures events only for the application with

the highest priority. A time-based, or round robin, scheduling ap-

proach captures less than 40% events in each virtual view, across

all environments. For implementing round robin, each virtual view

was assigned a �xed slot before the camera is steered to the next

task. Note that small changes in the duration of the slot do not

a�ect the overall η.
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Figure 13: Sensitivity to steering delay.

In environments with sparse motion, as seen in Fig 11a, Panoptes

is able to capture most events in each virtual view as simultaneous

events are rare. �e applications are listed in the order of decreasing

priority. �e assigned priorities are a heuristic choice and a�ect only

the η for individual applications. As we move to medium motion

scene in Fig 11b, the Car Counting application is still provided with

the highest number of motion events, but the tradeo� becomes

slightly noticeable in pedestrian counting and LPR. In dense motion

environments, such as the highway we chose, simultaneous events

are very frequent, making control decisions harder. Even in this

case, Panoptes performs be�er than the the other two approaches.

10.2 Sensitivity to Latency

We analyze the e�ect of steering latency and network latency on

Panoptes. Fig 13 shows the change in η with increasing steering

delay. Cameras have varying rotation speeds for pan, tilt and zoom,

which a�ects the motion captured from the scene. For cameras with

low tuning delays, we can e�ciently capture 85% of motion from the

scene. As the steering delay increases, the motion capture e�ciency

drops less than 5% for environments with sparse motion, because

of fewer concurrent motion events. In environments with medium

or dense tra�c, the decline in performance is more noticeable, and

up to 10%.

In Fig 14, we examine the performance of a test video under no

delay, network delay only, and steering and network delay. It is

evident that when the system experiences no steering latency and

network delays, very few events are missed. �ese are simultaneous

events, or those in another view that did not trigger prediction. We

used the app G-NetTrack Pro [36] to collect 4 days of LTE traces

with a �xed Nexus 5 smartphone, to simulate stationary networked

cameras.

Typically, the RTT is ≈70 ms with peaks of 200 ms [29]. We

noticed similar values, and used the maximum ping values from the

trace with the highest variation to evaluate our system. It can be

noticed that our system compensates for peak network latency of

up to 250ms . Under the e�ect of steering latency, the overall motion

capture drops to 80% because the camera spends more time now

to switch between views. �is trace was computed for a steering

latency of 0.6 second, as that’s the amount of time needed by the

camera for switching between the furthest candidate views in our

0 500 1000 1500
Time [s]

Steering + LTE

LTE Delay

No Delay

 Captured Event
 Missed Event

Figure 14: E�ect of network and steering latency on a test

video.
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Figure 15: Comparison of Panoptes predictor with Oracle’s

perfect motion prediction. �e events missed by the Oracle

represent those targets not in the camera view to trigger a

prediction.

scenario. �e combined e�ect of steering and network latency

corresponds to system performance of 72%.

10.3 Prediction Performance

We compare the overall motion capture e�ciency using the Panoptes

predictor to perfect motion awareness. Perfect motion awareness,

or Oracle, translates to making accurate predictions for objects in

camera view. It must be noted that if the object is not in the current

camera view, even the Oracle cannot predict its future location.

We compute η using the mobility aware scheduling, but instead of

predicting the future location of an observed object, we probe the

o�ine trace for the future location. Overall, the results in Fig 15

show that even with accurate predictions, some motion events will

be missed due to their concurrency, and steering latency. While the

Panoptes predictor is comparable to Oracle for the higher priority

applications, it loses approximately 10% events for the lower prior-

ity application, and is able to capture only 70% of the LPR events

compared to 80% η achieved by Oracle.

10.4 Scaling to Multiple Virtual Views

We also aim to identify the limit to the number of virtual views a

single steerable camera can reasonably support. Generally speaking,
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Figure 16: Adding more virtual views to the scene.

this number depends on how active the scene is. We added up

to 6 virtual views to the medium motion scenario. We de�ned

virtual views along various directions of motion and assigned equal

probability to all. As seen in Fig 16, with increasing number of

virtual views to support, the motion capture e�ciency reduces

from 100% for a single virtual view to 50% as we go up to 6 virtual

views. We infer that a single steerable camera can support only a

limited number of applications with reasonable motion capture. To

sustain a large number of applications over a wider scene, multiple

steerable cameras may be necessary. Multiple camera coordination

remains an interesting topic for future work.

11 DISCUSSION AND CONCLUSION

We have presented the design, implementation and evaluation of

Panoptes, a view virtualization and mobility-aware scheduling sys-

tem for steerable networked cameras. Unlike previous work, our

system focuses on supporting multiple applications through trans-

parently steering between their corresponding views, while main-

taining the abstraction of a �xed camera view for each application.

Our results show that with motion prediction and mobility-aware

scheduling, we can capture up to 80% more motion events than

with a �xed camera in our test scenes. We derive these results by

conducting experiments for four sample applications across three

di�erent tra�c environments.

As more cameras are equipped with a high resolution 360◦ lens

and compute capability, network and steering delays become in-

signi�cant. In this case mobility-aware scheduling may not apply.

For 360◦ cameras composed of one or more wide angle lens or

cameras, that can be optically zoomed, the proposed scheduling

technique may still be useful. �at being said, motorized cameras

are already a large part of the existing infrastructure, deployed in

millions across countries like China and Great Britain. �ey provide

the much needed optical zoom, thus proving that they have their

own bene�ts, and may not be completely replaced by 360◦ cameras.

While Panoptes does rely on position prediction for moving

objects, we do not re-identify the object a�er steering and any

captured motion is classi�ed as the anticipated motion.

As part of the current implementation, the responsibility to

distinguish between various objects in the view lies with the ap-

plication, and Panoptes is not made aware of the speci�cs of the

application. It can, however, be extended to implement and execute

a recognition algorithm, to distinguish between moving objects.

�is should enable it to schedule an application when correspond-

ing motion is of interest to the application.

We have evaluated the system in day and night conditions, as

well as in light snowy conditions. However, we excluded rainy

scenarios as water droplets on the camera dome obscure the camera

view and cause false tracks due to trickling. Other instances that

are hard to predict by our current implementation are constant

motion such as moving water (a river), and motion that is hard to

predict (opening of a window or door). Changes in illumination

also impact system performance.

�e proposed scheme is generic in its applicability to other cam-

era platforms, which includes but is not limited to security cameras

at home, surveillance drones, and dashboard cameras. Additionally,

it could be deployed in locations with an existing camera infras-

tructure, such as parking decks, supermarkets, and shopping malls.

For scenarios where motion is less regular, the object position may

still be predictable in a small time frame, and the proposed tech-

nique may still work relatively well. However, not all environments

have predictable entities and our approach works best for more

predictable objects across the scene.

Panoptes shows promise to allow cameras that were originally de-

ployed for a single application to be simultaneously used for other

analytics applications. Overall, we hope that this work demon-

strates the broader uses of existing cameras, and how they can be

enabled by automated camera control.

ACKNOWLEDGMENTS

�e authors thank Jakub Kolodziejski for his invaluable help in

camera setup, even on snowy days. �is material is based in part

upon work supported by a Microso� Research internship and the

National Science Foundation under Grant No CNS-1329939.

REFERENCES
[1] Telegraph 2013. One surveillance camera for every 11 people in Britain.

h�ps://goo.gl/gXFmwN. (2013).
[2] BBC 2006. Britain is Surveillance Society.

h�p://news.bbc.co.uk/2/hi/uk/6108496.stm. (2006).
[3] Nest Cam 2013. Nest Cam. h�ps://goo.gl/I85twa. (2013).
[4] Cash J. Costello, Christopher P. Diehl, Amit Banerjee, and Hesky Fisher. 2004.

Scheduling an Active Camera to Observe People. In Proceedings of the ACM
2Nd International Workshop on Video Surveillance &Amp; Sensor Networks (VSSN
’04). ACM, New York, NY, USA, 39–45. DOI:h�p://dx.doi.org/10.1145/1026799.
1026808

[5] J. C. Neves and H. Proena. 2015. Dynamic camera scheduling for visual surveil-
lance in crowded scenes using Markov random �elds. In Advanced Video and
Signal Based Surveillance (AVSS), 2015 12th IEEE International Conference on.

[6] Adrian Ilie and Greg Welch. 2014. Online Control of Active Camera Networks
for Computer Vision Tasks. ACM Trans. Sen. Netw., Article 25 (2014), 40 pages.
h�p://doi.acm.org/10.1145/2530283

[7] Navin K. Sharma, David E. Irwin, Prashant J. Shenoy, and Michael Zink. 2011.
MultiSense: Fine-grained Multiplexing for Steerable Camera Sensor Networks.
In Proceedings of the Second Annual ACM Conference on Multimedia Systems
(MMSys ’11). ACM, New York, NY, USA, 23–34. DOI:h�p://dx.doi.org/10.1145/
1943552.1943556

[8] A. J. Lipton, H. Fujiyoshi, and R. S. Patil. 1998. Moving target classi�cation and
tracking from real-time video. In IEEE WACV. DOI:h�p://dx.doi.org/10.1109/
ACV.1998.732851

[9] C. Stau�er and W. E. L. Grimson. 1999. Adaptive background mixture models
for real-time tracking. In IEEE CVPR. DOI:h�p://dx.doi.org/10.1109/CVPR.1999.
784637

[10] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. 2010. Anom-
aly detection in crowded scenes. IEEE CVPR (2010). DOI:h�p://dx.doi.org/10.
1109/CVPR.2010.5539872

127127129



IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

[11] Paul Viola, Michael J. Jones, and Daniel Snow. 2005. Detecting Pedestrians Using
Pa�erns of Motion and Appearance. Int. Journal of Computer Vision 2 (2005).
DOI:h�p://dx.doi.org/10.1007/s11263-005-6644-8

[12] Timo Ahonen, Abdenour Hadid, and Ma�i Pietikäinen. 2004. Face recognition
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