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Abstract We present a novel 3D shape descriptor that uses

a set of panoramic views of a 3D object which describe the

position and orientation of the object’s surface in 3D space.

We obtain a panoramic view of a 3D object by projecting it

to the lateral surface of a cylinder parallel to one of its three

principal axes and centered at the centroid of the object. The

object is projected to three perpendicular cylinders, each one

aligned with one of its principal axes in order to capture the

global shape of the object. For each projection we compute

the corresponding 2D Discrete Fourier Transform as well

as 2D Discrete Wavelet Transform. We further increase the

retrieval performance by employing a local (unsupervised)

relevance feedback technique that shifts the descriptor of

an object closer to its cluster centroid in feature space. The

effectiveness of the proposed 3D object retrieval methodol-

ogy is demonstrated via an extensive consistent evaluation in

standard benchmarks that clearly shows better performance

against state-of-the-art 3D object retrieval methods.
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1 Introduction

Content-based 3D object retrieval is an active research field

that has attracted a significant amount of interest in recent

years. This is due to the increasing availability of 3D objects

through public or proprietary databases, as even novice users

can create 3D models from scratch with user-friendly mod-

eling interfaces such as Teddy (Igarashi et al. 1999), Google

SketchUp (Google SketchUp 2009), ShapeShop (Schmidt

et al. 2005) and others (Olsen et al. 1999). Applications such

as CAD, computer games development, archaeology, bioin-

formatics, etc. are also playing a major role in the prolifer-

ation of 3D objects. A second source of 3D objects is 3D

scanners, which are constantly gaining users as their price

drops.

Already, 3D object search engines have been developed

for commercial or research purposes that offer searching us-

ing 3D object queries or keyword-based queries. The former

approach, which is an instance of content-based retrieval

(CBR) alleviates various limitations that are encountered

in keyword-based retrieval which become prohibitive as the

number of 3D objects increases.

In CBR, each 3D object is represented by a shape-

descriptor which is used to measure the similarity between

two objects. The shape descriptor should capture the dis-

criminative features of a 3D model, have a compact size and

permit fast extraction and comparison time.

In this paper, we propose a novel 3D shape descriptor that

exhibits top performance by using a set of features which

are extracted from a set of panoramic views of a 3D ob-

ject. The proposed descriptor is called PANORAMA which

stands for PANoramic Object Representation for Accurate

Model Attributing. The panoramic views are used to cap-

ture the position of the model’s surface in 3D space as well

as its orientation. We obtain a panoramic view of a 3D object
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by projecting it to the lateral surface of a cylinder aligned

with one of the object’s three principal axes and centered

at the centroid of the object. The object’s principal axes are

determined during the rotation normalization step. The ob-

ject is projected onto three perpendicular cylinders, each one

aligned with one of its principal axes in order to capture the

global shape of the object. For each projection, we com-

pute the corresponding 2D Discrete Fourier Transform as

well as 2D Discrete Wavelet Transform. To further enhance

the retrieval performance, we employ a local relevance feed-

back (LRF) technique (Papadakis et al. 2008b) that shifts the

descriptor of an object closer to its cluster centroid in fea-

ture space. The employed LRF technique is unsupervised

and assumes that the k nearest neighbors of an object be-

long to the same class, without requiring any feedback from

the user. We demonstrate the increased performance of the

PANORAMA descriptor by comparing it to other state-of-

the-art approaches in standard benchmarks and promote the

application of the LRF technique by showing the perfor-

mance gain that is obtained when it is combined with the

PANORAMA descriptor.

The remainder of the paper is organized as follows: In

Sect. 2, we provide an overview of the related work in the

area of content-based 3D object retrieval (Sect. 2.1) and

discuss previous work that incorporates relevance feedback

(Section 2.2). In Sect. 3, we give the detailed description

for the extraction of the proposed 3D shape descriptor and

in Sect. 4, we describe the procedure of the employed LRF

technique. The results of an extensive consistent evaluation

of the proposed methodology are presented in Sect. 5 and

conclusions are drawn in Sect. 6.

2 Related Work

2.1 Shape Ddescriptors

In this section, we provide an overview of the related work

in the area of 3D shape descriptors for generic 3D object re-

trieval. 3D object retrieval methodologies that rely on super-

vision are beyond the scope of this review, since this paper

focuses mainly on enhancing the effectiveness of retrieval

by using discriminative shape features in an unsupervised

context.

Content-based 3D object retrieval methods may be clas-

sified into two main categories according to the spatial di-

mensionality of the information used, namely 2D, 3D and

their combination. In the following sections, we review the

state-of-the-art for each category.

2.1.1 Methods Based on 2D Representations

In this category, shape descriptors are generated from

images-projections which may be contours, silhouettes,

depth buffers or other kinds of 2D representations. Thus,

similarity is measured using 2D shape matching techniques.

Surprisingly, extended state-of-the-art reviews such as Shi-

lane et al. (2004) and Bustos et al. (2005) show that descrip-

tors belonging to this class exhibit better overall retrieval

performance compared to descriptors that belong to the sec-

ond class.

Chen et al. (2003) proposed the Light Field descriptor,

which is comprised of Zernike moments and Fourier coeffi-

cients computed on a set of projections taken from the ver-

tices of a dodecahedron. Vranic (2004) proposed a shape

descriptor where features are extracted from depth buffers

produced by six projections of the object, one for each side

of a cube which encloses the object. In the same work, the

Silhouette-based descriptor is proposed which uses the sil-

houettes produced by the three projections taken from the

Cartesian planes. In Passalis et al. (2006), proposed PTK, a

depth buffer based descriptor which uses parallel projections

to capture the object’s thickness and an alignment scheme

that is based on symmetry. Shih et al. (2007) proposed the

elevation descriptor where six depth buffers (elevations) are

computed from the faces of the 3D object’s bounding box

and each buffer is described by a set of concentric circu-

lar areas that give the sum of pixel values within the corre-

sponding areas. Ohbuchi et al. (2003) proposed the Multiple

Orientation Depth Fourier Transform (MODFT) descriptor

where the model is projected from 42 viewpoints to cover

all possible view aspects. Each depth buffer is then trans-

formed to the r − θ domain and the Fourier transform is

applied. To compare two objects, all possible pairs of coeffi-

cients are compared which inevitably increases comparison

time. Zarpalas et al. (2007) introduced a 3D shape descrip-

tor called the spherical trace transform, which is the gener-

alization of the 2D trace transform. In this method, a variety

of 2D features are computed for a set of planes intersect-

ing the volume of a 3D model. A newly proposed method is

the depth line descriptor proposed by Chaouch and Verroust-

Blondet (2007) where a 3D object is projected to the faces of

its bounding box giving 6 depth buffers. Each depth buffer is

then decomposed into a set of horizontal and vertical depth

lines that are converted to state sequences which describe

the change in depth at neighboring pixels.

2.1.2 Methods Based on 3D Representations

In this category, shape descriptors are extracted from 3D

shape representations and the similarity is measured using

appropriate representations in the spatial domain or in the

spectral domain. A set of subcategories can be identified

here, namely, statistical, graph-based and spherical function-

based descriptors.

Statistical descriptors use histograms to capture the dis-

tributions of shape features. They are compact and fast to
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compute but they have very limited discrimination ability

since they fail to capture local details that are characteris-

tic of the object’s shape. In the Shape Histograms descrip-

tor proposed by Ankerst et al. (1999), 3D space is divided

into concentric shells, sectors, or both and for each part, the

model’s shape distribution is computed giving a sum of his-

tograms bins. The shape distributions descriptor proposed

by Osada et al. (2001, 2002) measures a set of shape char-

acteristics for a random set of points belonging to the ob-

ject, using appropriate shape functions, e.g. the D2 function

which measures the distance between two random surface

points. Ohbuchi et al. (2005) proposed enhanced shape func-

tions, namely the (absolute) angle distance histogram for in-

consistently oriented meshes, which are extensions of the

D2 shape distribution. Zaharia and Petreux (2001) presented

the 3D shape spectrum descriptor which is the histogram

that describes the angular representation of the first and sec-

ond principal curvature along the surface of the 3D object. In

Sundar et al. (2003b) make use of 3D shape contexts which

are histograms each one corresponding to a surface point

and capturing the distribution of the relative coordinates of

the remaining surface points.

Graph-based methods use hierarchical structures to rep-

resent 3D objects and the similarity is measured using

graph-matching techniques. These methods are suited to

intra-class search, i.e. searching within very similar objects

at different poses (articulations) but they have limited dis-

crimination ability in generic object retrieval. Hilaga et al.

(2001) introduced the multi-resolution Reeb graph, which

represents a 3D object’s topology and skeletal structure at

various levels of detail. In Zhang et al. (2005) consider the

use of medial surfaces to compute an equivalent directed

acyclic graph of an object. In the work of Sundar et al.

(2003a), the 3D object passes through a thinning process

producing a set of skeletal points, which finally form a di-

rected acyclic graph by applying the minimum spanning tree

algorithm. Cornea et al. (2005) propose the use of curve

skeletons produced by the application of the generalized dis-

tance field to the volume of the 3D object and similarity is

measured using the earth mover’s distance. The P3DS de-

scriptor developed by Kim et al. (2004) uses an attributed

relational graph whose nodes correspond to parts of the ob-

ject that are represented using ellipsoids and the similarity

is computed by employing the earth mover’s distance.

A plurality of methods exists that use spherical functions

to parameterize the shape of a 3D object. These methods

exhibit good discrimination ability in general but most of

them cannot capture shape features uniformly. This happens

when the longitude-latitude parameterization is adopted that

results in non-uniform sampling between the poles of the

spherical function. Vranic (2004) proposed the Ray-based

descriptor which characterizes a 3D object by a spherical

extent function capturing the furthest intersection points of

the model’s surface with rays emanating from the origin.

Spherical harmonics or moments can be used to represent

the spherical extent function. A generalization of the pre-

vious approach (Vranic 2004) uses several spherical extent

functions of different radii. The GEDT descriptor proposed

by Kazhdan et al. (2003) is a volumetric representation of

the Gaussian Euclidean Distance Transform of a 3D ob-

ject, expressed by norms of spherical harmonic frequen-

cies. In Papadakis et al. (2007), the CRSP descriptor was

proposed which uses the Continuous PCA (CPCA) along

with Normals PCA (NPCA) to alleviate the rotation invari-

ance problem and describes a 3D object using a volumetric

spherical-function based representation expressed by spher-

ical harmonics. Yu et al. (2003) used spherical functions to

describe the topology and concavity of the surface of a 3D

object and the amount of effort required to transform it to

its bounding sphere. Generalizing from 2D to 3D, Novotni

and Klein (2003) presented the 3D Zernike descriptor, Daras

et al. (2006) introduced the generalized radon transform, Ri-

card et al. (2005) developed the 3D ART descriptor by gen-

eralizing the 2D angular radial transform and Zaharia and

Preteux (2002) proposed the C3DHTD descriptor by gener-

alizing the 2D Hough Transform.

2.1.3 Hybrid Methods

Besides the previous categories, combinations of different

methods have been considered in order to enhance the over-

all performance, which comprise a third category.

Vranic (2005) developed a hybrid descriptor called DE-

SIRE, that consists of the Silhouette, Ray and Depth buffer

based descriptors, which are combined linearly by fixed

weights. The approach of Bustos et al. (2004) assumes that

the classification of a particular dataset is given, in order to

estimate the expected performance of the individual shape

descriptors for the submitted query and automatically weigh

the contribution of each method. However, in the general

case, the classification of a 3D model dataset is not fixed

since the content of a 3D model dataset is not static. In the

context of partial shape matching, Funkhouser and Shilane

(2006) use the predicted distinction performance of a set of

descriptors based on a preceding training stage and perform

a priority driven search in the space of feature correspon-

dences to determine the best match of features between a

pair of models. The disadvantages of this approach is its

time complexity which is prohibitive for online interaction

as well as the storage requirements for the descriptors of all

the models in the database. Based on the idea of combin-

ing features obtained from 2D and 3D representations, Song

and Golshani (2003) developed a descriptor that described

an object by obtaining a set of orthogonal projections from

different viewpoints and by measuring the curvature of the

object’s surface. Similar in spirit, Papadakis et al. (2008a)
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proposed a hybrid descriptor formed by combining features

extracted from a depth-buffer and spherical-function based

representation, with enhanced translation and rotation in-

variance properties. The advantage of this method over sim-

ilar approaches is the top discriminative power along with

minimum space and time requirements.

2.2 Relevance Feedback in 3D Object Retrieval

In order to enable the machine to retrieve information

through adapting to individual categorization criteria, rel-

evance feedback (RF) was introduced as a means to involve

the user in the retrieval process and guide the retrieval sys-

tem towards the target. Relevance feedback was first used

to improve text retrieval (Rochio 1971), later on success-

fully employed in image retrieval systems and lately in a

few 3D object retrieval systems. It is the information that is

acquired from the user’s interaction with the retrieval sys-

tem about the relevance of a subset of the retrieved results.

Further information on relevance feedback methods can be

found in Ruthven and Lalmas (2003), Crucianu et al. (2004),

Zhou and Huang (2001) and Papadakis et al. (2008b).

Local relevance feedback (LRF), also known as pseudo

or blind relevance feedback, is different from the conven-

tional approach in that the user does not actually provide

any feedback at all. Instead, the required training data are

obtained based only on the unsupervised retrieval result.

The procedure comprises two steps. First, the user submits

a query to the system which uses a set of low-level features

to produce a ranked list of results which is not displayed to

the user. Second, the system reconfigures itself by only us-

ing the top m matches of the list, based on the assumption

that most likely they are relevant to the user’s query.

LRF was first employed in the context of text retrieval,

in order to extend the keywords comprising the query with

related words from the top ranked retrieved documents.

Apart from a few studies that incorporated RF in 3D ob-

ject retrieval (Elad et al. 2001; Bang and Chen 2002; Atmo-

sukarto et al. 2005; Lou et al. 2003; Leifman et al. 2005;

Akbar et al. 2006; Novotni et al. 2005), LRF has only lately

been examined in Papadakis et al. (2008b).

3 Computation of the PANORAMA Descriptor

In this section, we first describe the steps for the compu-

tation of the proposed descriptor (PANORAMA), namely:

(i) pose normalization (Sect. 3.1), (ii) extraction of the

panoramic views (Sect. 3.2) and (iii) feature extraction

(Sect. 3.3). Finally, in Sect. 3.4 we describe a weighing

scheme that is applied to the features and the procedure for

comparing two PANORAMA descriptors.

3.1 Pose Normalization

Prior to the extraction of the PANORAMA descriptor, we

must first normalize the pose of a 3D object, since the trans-

lation, rotation and scale characteristics should not influence

the measure of similarity between objects.

To normalize the translation of a 3D model we compute

its centroid using CPCA (Vranic 2004). In CPCA, the cen-

troid of a 3D mesh model is computed as the average of its

triangle centroids where every triangle is weighed propor-

tionally to its surface area. We translate the model so that its

centroid coincides with the origin and translation invariance

is achieved as the centroids of all 3D models coincide.

To normalize for rotation, we use CPCA and NPCA (Pa-

padakis et al. 2007) in order to align the principal axes of a

3D model with the coordinate axes. First, we align the 3D

model using CPCA to determine its principal axes using the

model’s spatial surface distribution and then we use NPCA

to determine its principal axes using the surface orientation

distribution. Both methods use Principal Component Analy-

sis (PCA) to compute the principal axes of the 3D model.

The difference between the two methods lies in the input

data that are used for the computation of the covariance ma-

trix. In particular, in CPCA the surface area coordinates are

used whereas in NPCA the surface orientation coordinates

are used which are obtained from the triangles’ normal vec-

tors. The detailed description regarding the formulation of

CPCA and NPCA can be found in Vranic (2004) and in our

previous work (Papadakis et al. 2007), respectively.

Thus, we obtain two alternative aligned versions of the

3D model, which are separately used to extract two sets of

features that are integrated into a single feature vector (see

Sect. 3.4).

The PANORAMA shape descriptor is rendered scale in-

variant, by normalizing the corresponding features to the

unit L1 norm. As will be later described in Sects. 3.3.1 and

3.3.2, the features used by the PANORAMA descriptor are

obtained from the 2D Discrete Fourier Transform and 2D

Discrete Wavelet Transform. The corresponding coefficients

are proportional to the object’s scale, therefore by normal-

izing the coefficients to their unit L1 norm we are in fact

normalizing all objects to the same scale.

3.2 Extraction of Panoramic Views

After the normalization of a 3D model’s pose, the next step

is to acquire a set of panoramic views.

To obtain a panoramic view, we project the model to the

lateral surface of a cylinder of radius R and height H = 2R,

centered at the origin with its axis parallel to one of the co-

ordinate axes (see Fig. 1). We set the value of R to 3 ∗ dmean

where dmean is the mean distance of the model’s surface

from its centroid. For each model, the value of dmean is deter-

mined using the diagonal elements of the covariance matrix
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Fig. 1 The cylinder used for acquiring the projection of a 3D model

used in CPCA that give the average distances of the model’s

surface from the coordinate axes. Setting R = 3∗dmean does

not imply that a 3D model will necessarily lie completely

inside the cylinder. However, this approach is better than us-

ing a bounding cylinder, that may contain the model in small

scale in the presence of outlying parts of the model. The em-

pirical value 3 ∗ dmean enables the majority of 3D models to

lie completely inside the cylinder, while having a suitable

scale to produce a descriptive projection.

In the following, we parameterize the lateral surface of

the cylinder using a set of points s(ϕ, y) where ϕ ∈ [0,2π]
is the angle in the xy plane, y ∈ [0,H ] and we sample the

ϕ and y coordinates at rates 2B and B , respectively (we set

B = 64). We sample the ϕ dimension at twice the rate of the

y dimension to account for the difference in length between

the perimeter of the cylinder’s lateral surface and its height.

Although the perimeter of the cylinder’s lateral surface is

π ≃ 3 times its height, we set the sampling rates at 2B

and B , respectively, since it was experimentally found as the

best trade-off between effectiveness and efficiency. Thus we

obtain the set of points s(ϕu, yv) where ϕu = u ∗ 2π/(2B),

yv = v ∗ H/B , u ∈ [0,2B − 1] and v ∈ [0,B − 1]. These

points are shown in Fig. 2.

The next step is to determine the value at each point

s(ϕu, yv). The computation is carried out iteratively for v =
0,1, . . . ,B − 1, each time considering the set of coplanar

s(ϕu, yv) points i.e. a cross section of the cylinder at height

yv and for each cross section we cast rays from its center cv

in the ϕu directions. In Fig. 3, we show the points s(ϕu, yv)

of the top-most cross section (v = B − 1) of the projection

cylinder along with the corresponding rays emanating from

the center of the cross section.

The cylindrical projections are used to capture two char-

acteristics of a 3D model’s surface; (i) the position of the

model’s surface in 3D space and (ii) the orientation of the

model’s surface. To capture these characteristics we use two

kinds of cylindrical projections s1(ϕu, yv) and s2(ϕu, yv).

Fig. 2 The discretization of the lateral surface of the projection cylin-

der (points in orange) to the set of points s(ϕu, yv)

Fig. 3 The top-most cross section of the cylinder along with the cor-

responding rays emanating from the center of the cross section cB−1

By default, the initial value of a point sk(ϕu, yv), k ∈ {1,2}
is set to zero.

To capture the position of the model’s surface, for each

cross section at height yv we compute the distances from cv

of the intersections of the model’s surface with the rays at

each direction ϕu.

Let pos(ϕu, yv) denote the distance of the furthest from

cv point of intersection between the ray emanating from cv

in the ϕu direction and the model’s surface, then:

s1(ϕu, yv) = pos(ϕu, yv) (1)

Thus the value of a point s1(ϕu, yv) lies in the range [0,R],
where R denotes the radius of the cylinder.

A cylindrical projection can be viewed as a 2D gray-scale

image where pixels correspond to the sk(ϕu, yv) intersection

points in a manner reminiscent of cylindrical texture map-

ping (see Theoharis et al. 2008) and their values are mapped

to the [0,1] space. In Fig. 4(a), we show an example 3D

model along with a projection cylinder aligned with the z-

axis. In Fig. 4(b) the unfolded visual representation of its

corresponding cylindrical projection s1(ϕu, yv) is given.
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Fig. 4 (a) Pose normalized 3D model, (b) the unfolded cylindrical

projection of the 3D model capturing the position of the surface (c) the

unfolded cylindrical projection of the 3D model capturing the orienta-

tion of the surface

To capture the orientation of the model’s surface, for each

cross section at height yv we compute the intersections of

the model’s surface with the rays at each direction ϕu and

measure the angle between a ray and the normal vector of

the triangle that is intersected. To determine the value of a

point s2(ϕu, yv) we use the cosine of the angle between the

ray and the normal vector of the furthest from cv intersected

triangle of the model’s surface.

Let ang(ϕu, yv) denote the aforementioned angle then the

values of the s2(ϕu, yv) points are given by:

s2(ϕu, yv) = | cos(ang(ϕu, yv))|n (2)

In Fig. 4(c) the unfolded visual representation of the

cylindrical projection s2(ϕu, yv) is given for the model

shown in Fig. 4(a).

We take the nth power of | cos(ang(ϕu, yv))|, where

n ≥ 2, since this setting enhances the contrast of the pro-

Fig. 5 (a) A 3D model of a cup and (b)–(d) the corresponding cylin-

drical projections s1,t (ϕu, yv) using three cylinders each one aligned

with the z, y and x coordinate axis, respectively

duced cylindrical projection which was experimentally

found to be more discriminative. Setting n to a value in the

range [4,6] gives the best results. Also, taking the absolute

value of the cosine is necessary to deal with inconsistently

oriented triangles along the object’s surface. We do not en-

hance the contrast of the s1(ϕu, yv) projection since it was

found to produce less discriminative features.

Although the cylindrical projection captures a large part

of the shape of a model, a single cylindrical projection may

not be able to capture concave parts. In Fig. 5 we show a

typical example of this. Figure 5(a) shows the 3D model of a

cup and Fig. 5(b) shows the produced cylindrical projection

when using a projection cylinder that is aligned with the z-

axis. As can be observed, this projection cannot capture the

interior part of the cup.

To alleviate this problem, we compute cylindrical pro-

jections from differently oriented cylinders, i.e. cylinders

that are aligned with all coordinate axes in order to ob-

tain a more informative 3D model representation. Thus, we

project a 3D model to the lateral surfaces of three cylin-

ders, each one aligned with a different coordinate axis as

shown in Fig. 5(b)–(d), which produces three sets of points

sk,t (ϕu, yv) for k ∈ {1,2}, where t ∈ {x, y, z} denotes the

axis that the cylinder is aligned with. For the cylindrical pro-

jections that are aligned with the x and y axes, the ϕu vari-

able is measured at the yz and zx planes respectively while

all other notations remain the same.
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3.3 Feature Representation of Panoramic Views

In this section, we detail the procedure for the generation of

a set of features that describe a panoramic view. Toward this

goal, we use the 2D Discrete Fourier Transform (Sect. 3.3.1)

and 2D Discrete Wavelet Transform (Sect. 3.3.2).

3.3.1 2D Discrete Fourier Transform

For each cylindrical projection sk,t (ϕu, yv) (k ∈ {1,2} and

t ∈ {x, y, z}), we compute the corresponding 2D Discrete

Fourier Transform (DFT), which is given by:

Fk,t (m,n) =
2B−1
∑

u=0

B−1
∑

v=0

sk,t (ϕu, yv) · e−2jπ( mu
2B

+ nv
B

) (3)

where m ∈ [0,2B − 1] and n ∈ [0,B − 1].
Since sk,t (ϕu, yv) is a real-valued function, the Hermitian

symmetry property holds for the Fourier coefficients, i.e.

Fk,t (u, v) = F ∗
k,t (2B − u,B − v), where F ∗ denotes the

complex conjugate. Hence, the size of the non-redundant in-

formation is a set of (B + 1) ∗ (B
2

+ 1) Fourier coefficients

for each projection. Next, we store the absolute values of the

real and imaginary part of each coefficient and normalize the

coefficients to the unit L1 norm, which ensures scaling in-

variance as explained in Sect. 3.1.

In practice, most of the energy of the Fourier coefficients

is concentrated on the four corners of the image of the trans-

form, as can be seen in Fig. 6(a). Therefore, we only keep a

subset of the full set of Fourier coefficients, i.e. those con-

taining most of the energy. This can be straightforwardly

Fig. 6 (a) A typical 2D Fourier transform of a cylindrical projection;

(b) The Fourier coefficients that lie inside the area of the ellipsoid are

discarded to reduce dimensionality

done by considering an ellipse positioned at the center of

the Fourier image and discarding all the coefficients that lie

on the interior of the ellipse, as shown in Fig. 6(b). The ratio

of the width to the height of the ellipse is equal to the ratio

of the width to the height of the Fourier image and the size

of the ellipse is set so that the low energy coefficients that

are discarded correspond to approximately 35% of the total

number of coefficients per projection.

After the completion of all previous operations, the re-

sulting coefficients are denoted by F̃k,t . Thus, the final fea-

ture set sF of Fourier coefficients for a particular aligned

version of a 3D object is denoted by:

sF = (F̃1,x, F̃2,x, F̃1,y, F̃2,y, F̃1,z, F̃2,z) (4)

3.3.2 2D Discrete Wavelet Transform

For each cylindrical projection sk,t (ϕu, yv) (k ∈ {1,2} and

t ∈ {x, y, z}), we compute the corresponding 2D Discrete

Wavelet Transform (DWT), which is given by:

W
ϕ
k,t (j0,m,n)

= 1√
2B · B

·
2B−1
∑

u=0

B−1
∑

v=0

sk,t (ϕu, yv) · ϕj0,m,n(u, v), (5)

W
ψ
k,t (j,m,n)

= 1√
2B · B

·
2B−1
∑

u=0

B−1
∑

v=0

sk,t (ϕu, yv) · ψj,m,n(u, v) (6)

where m ∈ [0,2B − 1], n ∈ [0,B − 1], j ≥ j0 denotes the

scale of the multi-level DWT, j0 is the starting scale and

ϕj0,m,n(u, v), ψj,m,n(u, v) denotes the scaling and wavelet

function, respectively. The W
ϕ
k,t (j0,m,n) approximation-

scaling coefficients correspond to the low-pass subband of

the transform at the starting scale j0. The W
ψ

k,t (j,m,n)

detail-wavelet coefficients correspond to the vertical, hori-

zontal and diagonal subbands. We take the absolute values

of the coefficients and normalize to their L1 norm, which

are now denoted as W̃
ϕ
k,t (j0,m,n) and W̃

ψ
k,t (j,m,n).

In Fig. 7, we show the image of a 2-level wavelet transfor-

mation of a cylindrical projection. The transform is shown

in negative colors to better point out the detail coefficients.

In our implementation, we computed the DWT of each

cylindrical projection up to the last level. In particular, since

the dimensions of a cylindrical projection are (2B) · (B),

the total number of levels of the DWT are log2 B and thus

j = 0,1, . . . log2 B − 1.

To compute the DWT we have used the Haar and Coiflet

(C6) filters (basis functions), as they attained the best over-

all performance. Therefore, two distinctive DWTs are com-

puted, the first using the Haar and the second using the

Coiflet basis functions.
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Fig. 7 2-level wavelet transformation of a cylindrical projection of an

airplane (the image is shown in negative colors)

Instead of using directly the coefficients of the DWT as

shape features, we compute a set of standard statistic image

features that are listed below:

i. Mean

μ = 1

nxny

nx
∑

x=1

ny
∑

y=1

I (x, y) (7)

ii. Standard deviation

σ =

√

√

√

√

1

nxny

nx
∑

x=1

ny
∑

y=1

(I (x, y) − μ)2 (8)

iii. Skewness

β =
1

nxny

∑nx

x=1

∑ny

y=1(I (x, y) − μ)3

σ 3
(9)

where nx , ny are the dimensions of an image I (x, y).

In our case, the above features are computed for each sub-

image of the DWT, i.e. for each subband in every level of the

DWT. Therefore, I (x, y) is replaced by the W̃
ϕ
k,t (j0,m,n)

and W̃
ψ

k,t (j,m,n) coefficients accordingly. Since we have

log2 B levels in the DWT, the total number of subbands per

cylindrical projection is (3 ∗ log2 B + 1). Hence, since we

use two wavelet basis functions and three statistic image fea-

tures, we obtain a total of 2 ∗ 3 ∗ (3 ∗ log2 B + 1) features

per cylindrical projection which are denoted as Ṽk,t and the

final feature set sW for a particular aligned version of a 3D

object is denoted as:

sW = (Ṽ1,x, Ṽ2,x, Ṽ1,y, Ṽ2,y, Ṽ1,z, Ṽ2,z) (10)

3.4 Features Weighing and Matching

The features that were generated for each panoramic view

are weighed by a factor wt , according to the orientation

of the cylinder (x, y or z) that was used to acquire the

cylindrical projection. We apply this weighing based on

the observation that not all cylindrical projections capture

Fig. 8 (a) A 3D model of a car and (b)–(d) the corresponding cylindri-

cal projections s1,t (ϕu, yv) and s2,t (ϕu, yv) for t = z, t = y and t = x,

respectively

the same amount of information about the model’s shape.

The t-projection cylinder that is parallel to the t coordi-

nate axis corresponds to one of the principal axes of the 3D

model that were determined in the rotation normalization

step. The amount of information that is captured by the t-

cylindrical projection is directly related to the principal axes

of the model’s surface that are encoded, as is demonstrated

in Fig. 8 for an example 3D model of a race car. In this

example, the first, second and third principal axis of the ob-

ject’s surface is aligned with the x, y and z axis, respectively,

therefore the most informative cylindrical projection cor-

responds to the x-projection cylinder (Fig. 8(d)), followed

by the y-projection cylinder (Fig. 8(c)) and the least infor-

mative z-projection cylinder (Fig. 8(b)). We set the factors

wt to fixed values that were determined experimentally as

wx = 0.51, wy = 0.31 and wz = 0.18.

To compute the distance between the same aligned ver-

sion (CPCA or NPCA) of two 3D objects, we compute the

distances between the corresponding sets of features. We de-

note the features set of a particular aligned version of an ob-

ject by:

pl = (sF,l, sW,l), l ∈ {cpca,npca} (11)
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and the full PANORAMA descriptor of 3D object by:

P = (pcpca,pnpca) (12)

Considering the features sets pl , ṕl of two 3D objects of

the same aligned version l, the distance is computed by:

dl(pl, ṕl) = L1(sF,l, śF,l) + Dcan(sW,l, śW,l) (13)

where L1(, ), Dcan(, ) denotes the Manhattan and the Can-

berra distance (Kokare et al. 2003), respectively, each one

normalized to the [0,1] space.

The overall similarity between two 3D objects is mea-

sured by computing the distance between the sets of features

of the same aligned version and the comparison that gives

the minimum distance between the two alignments, sets the

final score. Thus the overall distance D(P, Ṕ) between two

PANORAMA descriptors P and Ṕ is given by:

D(P, Ṕ) = min
l

dl(pl, ṕl) (14)

4 Local Relevance Feedback (LRF) Technique

In this section, we outline the major points of the employed

LRF method whose detailed description can be found in Pa-

padakis et al. (2008b). The method comprises two stages,

the on-line and the off-line stage.

During the off-line stage, the descriptor of each stored

object is updated using its k nearest neighbors in feature

space. These are assumed to belong to the same class and

the updated descriptor is the average of the original descrip-

tor and a weighed centroid of the k nearest neighbors.

During the on-line stage, a user submits a query to the

system which finds within the updated feature space its k

nearest neighbors and updates its descriptor according to

rule that was applied during the off-line stage. The updated

descriptor of the query is then used to measure its similarity

against every object of the database and display the results.

The relevance assumption for the k nearest neighbors is

not always valid as irrelevant objects that may belong to

the k nearest neighbors will be mistaken as relevant. This

is known as query drift and implies the scenario where the

retrieval system is misled by the irrelevant data and drawn

away from the user’s target. However, if the features that are

used to compare two objects are discriminative enough to

cluster most objects that belong to the same class, then the

relevance assumption will be valid in the majority of cases

and the average performance will be better.

In Papadakis et al. (2008b) it was shown that LRF in-

creased the performance of the CRSP descriptor (Papadakis

et al. 2007). The PANORAMA descriptor is far more dis-

criminative therefore reducing the negative effect of the

query drift phenomenon and rendering LRF more applica-

ble.

The number k of nearest neighbors that are considered

as relevant to a query is determined by the expected recall

of the employed shape features near the neighborhood of a

query. In this case, setting k = 4 gave the best results which

amounts to approximately 12% of the objects of a class on

average, for the datasets used in Sect. 5.

5 Results

We next present the results of an extensive evaluation of the

proposed PANORAMA descriptor and LRF technique. We

tested performance using the following standard 3D model

datasets:

(i) The classified dataset of CCCC (Vranic 2004).

(ii) The dataset of the National Institute of Standards and

Technology (NIST, Fang et al. 2008).

(iii) The dataset of the Watertight Models track of SHape

REtrieval Contest 2007 (WM-SHREC) (Veltkamp and

ter Haar 2007).

(iv) The MPEG-7 dataset (http://www.chiariglione.org/

mpeg/).

(v) The test dataset of the Princeton Shape Benchmark

(PSB) (Shilane et al. 2004).

(vi) The dataset of the Engineering Shape Benchmark

(ESB) (Jayanti et al. 2006).

Table 1 gives the characteristics of these datasets.

To evaluate the performance we use precision-recall dia-

grams. Recall is the ratio of relevant to the query retrieved

models to the total number of relevant models while preci-

sion is the ratio of relevant to the query retrieved models to

the number of retrieved models. The evaluations were per-

formed by using each model of a dataset as a query on the re-

maining set of models and computing the average precision-

recall performance overall models.

5.1 Robustness

In this section we test the robustness of the PANORAMA

descriptor under the presence of noise. We have experi-

mented with various degrees of Gaussian noise added along

Table 1 Characteristics of the evaluation datasets

Dataset #models #classes Type

CCCC 472 55 generic

NIST 800 40 generic

WM-SHREC 400 20 generic

MPEG-7 1300 135 generic

PSB 907 92 generic

ESB 866 48 CAD

http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/
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Fig. 9 (a) Example 3D objects and (b)–(d) the effect of different de-

grees of additive Gaussian noise on their surface

Table 2 Effect of noise in the determination of principal axes for

the CPCA and NPCA rotation normalization methods within the PSB

dataset

Alignment method σ = 0.01 σ = 0.03 σ = 0.05

CPCA 6◦ 6.6◦ 7.4◦

NPCA 10.4◦ 14◦ 16.8◦

the surface of each 3D object as shown in Fig. 9. Apparently,

adding Gaussian noise with σ > 0.01 has a destructive ef-

fect on the object’s surface and most of the geometric details

are lost. We believe that noisy 3D objects such as the ones

shown in Fig. 9(c)–(d) are rarely encountered and practically

useless, thus we are more interested in the robustness of the

PANORAMA descriptor with respect to levels of noise that

compare to the examples shown in Fig. 9(b).

Since the PANORAMA descriptor is based on normal-

izing the rotation of a 3D object, we measured the effect

of noise in the determination of the object’s principal axes

for CPCA and NPCA. The results of this experiment are

given in Table 2 where we show the average angular per-

turbation of the object’s principal axes after the addition of

noise within the PSB dataset.

It is easy to understand that a certain change in the co-

ordinates of the vertices that comprise a polygon has a

greater relative impact on the orientation of the polygon’s

normal vector. This can be demonstrated in Fig. 10 where

we show the depth buffers that are obtained after adding the

same amounts of Gaussian noise for the bunny 3D object of

Fig. 9(a). Apparently, the effect of noise is more clearly no-

ticed in Fig. 9 in contrast to Fig. 10 where only the depth

is used. Thus, the fact that the NPCA alignment method is

affected by noise to a greater degree than CPCA is a rea-

sonable result. Hence, we can say that CPCA is more robust

than NPCA with respect to noise.

Nevertheless, a perturbation of the object’s principal axes

after the addition of noise does not necessarily mean that the

Fig. 10 Demonstration of the effect of different amounts of additive

Gaussian noise on a depth buffer

Fig. 11 Demonstration of the effect of different amounts of additive

Gaussian noise on the retrieval performance of the PANORAMA de-

scriptor

alignment of 3D objects is worse and leads to reduced per-

formance in 3D object retrieval. For example, if the principal

axes of 3D objects are perturbed toward the same directions

for objects of the same class, then we expect to attain similar

retrieval performance.

In the sequel, we evaluate the performance of the

PANORAMA descriptor before and after the addition of dif-

ferent levels of Gaussian noise along the surface of 3D ob-

jects as was performed previously. However, we should note

that the performance of the descriptor is not only affected

by the perturbed principal axes but also by the alternated

surfaces of 3D objects after the addition of noise which re-

sults in different cylindrical projections as well as features.

In Fig. 11, we demonstrate the performance in terms of pre-
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cision and recall within the PSB dataset. This experiment

demonstrates that the PANORAMA descriptor is very ro-

bust with respect to reasonable levels of noise, as in the

case where σ = 0.01. In this case, we can see that the per-

formance of PANORAMA is totally unaffected while for

greater levels of noise (σ = 0.03 and σ = 0.05) the per-

formance decreases gracefully compared to the destructive

effect of noise that is demonstrated in Fig. 9.

5.2 Justification of PANORAMA settings

In this section we demonstrate the increase in retrieval

performance that is achieved due to specific settings of

the PANORAMA descriptor. In particular, in Fig. 12(a)

we compare the performance when using s1,t (ϕu, yv),

s2,t (ϕu, yv) or both and in Fig. 12(b) we evaluate the per-

formance between using a single and using three perpen-

dicular cylinders aligned with the coordinate axes. The re-

sults clearly show that a significant increase in discrimina-

tive power is attained when capturing both the surface po-

sition and orientation as well as using three perpendicular

cylinders instead of one.

5.3 Comparative Evaluation

We next compare the PANORAMA descriptor against the

following state-of-the-art methods:

– The 2D/3D Hybrid descriptor developed by Papadakis

et al. (2008a).

– The DESIRE descriptor developed by Vranic (2005).

– The Light Field descriptor (LF) developed by Chen et al.

(2003).

– The spherical harmonic representation of the Gaussian

Euclidean Distance Transform descriptor (SH-GEDT)

developed by Kazhdan et al. (2003).

In Fig. 13, we give the precision-recall diagrams compar-

ing the proposed PANORAMA descriptor against the other

descriptors and show the increase in performance when LRF

is employed. It is evident that the PANORAMA descriptor

attains a better overall performance compared to the other

methods. Interestingly, although the LF descriptor uses a

plurality of 2D images (100 orthogonal projections) it is out-

performed by the PANORAMA descriptor which uses a to-

tal of 12 cylindrical projections that are acquired from just

three perpendicular cylinders. In addition, the PANORAMA

descriptor is more discriminative than the 2D/3D Hybrid de-

scriptor which uses a total of 12 orthogonal projections com-

bined with 48 spherical functions. This strongly suggests

that the cylindrical projection is a more effective representa-

tion for the purpose of 3D object retrieval compared to the

conventional orthogonal projection and spherical function

based representation. This is also confirmed by comparing

Fig. 12 Performance evaluation of the PANORAMA descriptor

when using: (a) s1,t (ϕu, yv) (PANORAMA → Pos), s2,t (ϕu, yv)

(PANORAMA → Ori) or both (PANORAMA); (b) a single cylinder

aligned with the z coordinate axis (PANORAMA → z-projection) and

a set of three perpendicular cylinders aligned with the object’s principal

axes (PANORAMA)

PANORAMA with the DESIRE descriptor that also uses 12

orthogonal projections (6 depth buffers and 6 silhouettes) as

well as features extracted using a spherical function.

In addition, it is evident that LRF adds a major gain in

the overall performance, particularly on the CCCC, NIST,

WM-SHREC and PSB datasets. This indicates that the query

drift phenomenon that comes with LRF is compensated

for the increased precision of the PANORAMA descriptor

within the top retrieved results. These results are coherent

to those that were obtained using the CRSP descriptor in
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Fig. 13 Precision-recall plots comparing the proposed PANORAMA descriptor against the 2D/3D Hybrid, DESIRE, LF and SH-GEDT descriptor

in various 3D model datasets. The comparison includes the combination of the PANORAMA descriptor with local relevance feedback (LRF)
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Papadakis et al. (2008b) and show that the employed LRF

technique is general purpose and can be applied to any re-

trieval method as long as precision is high near the neigh-

borhood of the query. It is also worth noticing that the LRF

technique increases precision mainly at higher values of re-

call, as can be seen in Fig. 13. This implies that a user no-

tices the increase in performance as he browses through the

list of results until most or all models appear that belong to

the query’s class. It also implies that employing LRF more

than once before showing the results to the user will not add

any further gain in the retrieval performance. This is because

the employed LRF technique uses the k nearest neighbors of

a 3D model to update its descriptor but since precision is not

increased at the early stages of recall, the k nearest neigh-

bors of the model after employing LRF will mostly be the

same as before employing LRF.

To further quantify the performance of the compared

methods, we next employ the following measures:

– Nearest Neighbor (NN): The percentage of queries where

the closest match belongs to the query’s class.

– First Tier (FT): The recall for the (C − 1) closest matches

were C is the cardinality of the query’s class.

– Second Tier (ST): The recall for the 2(C − 1) closest

matches were C is the cardinality of the query’s class.

These measures range from 0%–100% and higher values in-

dicate better performance. In Table 3, we give the scores of

each method for each measure for all datasets.

Apparently, the PANORAMA descriptor consistently

outperforms all compared methods with respect to these

measures as well. We can also observe that the nearest

neighbor score is not particularly affected by the applica-

tion of LRF, compared to the first and second tier measures

whose values are significantly increased after employing

LRF. This confirms our earlier conclusion that LRF does

not change the precision at the early stages of recall and

therefore it does not add any further gain in performance if

it is applied multiple times.

As described in Sect. 3.3, the PANORAMA descriptor

uses two kinds of features, namely those coming from the

2D DFT (sF ) and the 2D DWT (sW ). Comparing the re-

trieval performance between the two kinds, the sF compo-

nent was found to be more effective in most datasets than

the sW part. In fact, the sW part had a slight advantage

in retrieval performance within the WM-SHREC and ESB

datasets. Overall however, the sF part is about 3% better

in terms of average precision, which can be justified by the

fact that sF has greater dimensionality than the sW part. In

particular, the dimensionality of sF is 2 ∗ (B + 1) ∗ (B
2

+ 1)

while for the sW component it is only 2∗3∗ (3∗ log2 B +1).

Since we set the bandwidth to B = 64, this amounts to a di-

mension of 4160 and 114, respectively. This implies, that

we can attain comparable retrieval performance using just

the sW part of the full descriptor.

Table 3 Quantitative measures scores for the proposed PANORAMA,

2D/3D Hybrid, DESIRE, LF and SH-GEDT methods for the CCCC,

NIST, WM-SHREC, MPEG-7, PSB and ESB datasets

Method NN (%) FT (%) ST (%)

CCCC

PANORAMA + LRF 87.4 70.3 86.6

PANORAMA 87.9 66.3 81.2

2D/3D Hybrid 87.4 60.2 75.8

DESIRE 82.8 55.6 70.0

LF 79.8 50.2 63.1

SH-GEDT 75.7 45.9 59.9

NIST

PANORAMA + LRF 90.4 71.5 84.1

PANORAMA 90.6 63.4 77.5

2D/3D Hybrid 88.1 55.6 72.1

DESIRE 83.7 50.9 64.9

LF 84.1 43.9 56.0

SH-GEDT 76.5 40.5 53.7

WM-SHREC

PANORAMA + LRF 95.7 74.3 83.9

PANORAMA 95.7 67.3 78.4

2D/3D Hybrid 95.5 64.2 77.3

DESIRE 91.7 53.5 67.3

LF 92.3 52.6 66.2

SH-GEDT 87.0 44.7 58.5

MPEG-7

PANORAMA + LRF 87.2 65.5 75.9

PANORAMA 87.2 61.8 73.1

2D/3D Hybrid 86.1 59.6 70.7

DESIRE 86.4 57.7 67.7

LF 80.2 51.7 61.9

SH-GEDT 83.7 50.3 59.4

PSB

PANORAMA + LRF 75.2 53.1 65.9

PANORAMA 75.3 47.9 60.3

2D/3D Hybrid 74.2 47.3 60.6

DESIRE 65.8 40.4 51.3

LF 65.7 38.0 48.7

SH-GEDT 55.3 31.0 41.4

ESB

PANORAMA + LRF 87.0 49.9 65.8

PANORAMA 86.5 49.4 64.1

2D/3D Hybrid 82.9 46.5 60.5

DESIRE 82.3 41.7 55.0

LF 82.0 40.4 53.9

SH-GEDT 80.3 40.1 53.6
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Fig. 14 Examples of queries

within the PSB dataset and the

corresponding top 5 retrieved

models using the PANORAMA

descriptor. The retrieved objects

are ranked from left to right in

decreasing order of similarity

This is a significant advantage of the proposed method as it

can be rendered much more efficient by reducing its storage

requirements and time complexity, with negligible cost in

discriminative power.

Altogether, the PANORAMA descriptor is very efficient

in computation and comparison time. On a standard contem-

porary machine, it takes less than one second to extract and

pairwise comparison time is approximately 0.23 ms which

enables real-time retrieval from large repositories. These are

the average values over the total set of models from the

datasets used in our evaluation.

In Fig. 14, we provide a few examples of queries and the

corresponding top 5 retrieved models from the PSB dataset

using the proposed PANORAMA descriptor.

6 Conclusions

In this paper, we presented a novel 3D shape descriptor

called PANORAMA, that allows effective content-based

3D model retrieval exhibiting superior performance, com-

pared to other state-of-the-art approaches. PANORAMA is

based on a novel 3D shape representation that uses a set

of panoramic views of the 3D model which are obtained

by projecting the model to the lateral surfaces of a set of

cylinders that are aligned with the model’s principal axes.

A panoramic view is particularly descriptive of an object’s

shape as it captures a large portion of the object that would

otherwise require multiple orthogonal projections from dif-

ferent viewpoints. It is also beneficial compared to spherical

function-based representations as the underlying sampling

is uniform in the Euclidean space.

The 2-dimensional parameterization of a cylindrical pro-

jection allows the application of a variety of 2D features

used for 2D shape-matching to be directly applied in the

context of 3D shape matching. In this paper we have used

the 2D Discrete Fourier Transform together with the 2D Dis-

crete Wavelet Transform and their combination enables very

effective and efficient 3D object retrieval. Using only the

wavelet features part of the descriptor, we can greatly in-

crease efficiency in terms of storage requirements and time

complexity, with negligible cost in discriminative power.

Moreover, we have used the PANORAMA descriptor

to examine the application of local relevance feedback in

the context of content-based 3D object retrieval, using the

method that was proposed in Papadakis et al. (2008b). The

results of the evaluation showed that this method can add

a considerable gain in the overall retrieval performance and

can be readily applied to other retrieval methods that exhibit

high precision near the neighborhood of the query.
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