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Abstract—Panoramic video and stereoscopic panoramic video
are essential carriers of virtual reality content, so it is very crucial
to establish their quality assessment models for the standardiza-
tion of virtual reality industry. However, it is very challenging
to evaluate the quality of the panoramic video at present. One
reason is that the spatial information of the panoramic video
is warped due to the projection process, and the conventional
video quality assessment (VQA) method is difficult to deal with
this problem. Another reason is that the traditional VQA method
is problematic to capture the complex global time information
in the panoramic video. In response to the above questions, this
paper presents an end-to-end neural network model to evaluate
the quality of panoramic video and stereoscopic panoramic
video. Compared to other panoramic video quality assessment
methods, our proposed method combines spherical convolutional
neural networks (CNN) and non-local neural networks, which
can effectively extract complex spatiotemporal information of
the panoramic video. We evaluate the method in two databases,
VRQ-TJU and VR-VQA48. Experiments show the effectiveness
of different modules in our method, and our method outperforms
state-of-the-art other related methods.

Index Terms—Virtual reality, neural network model, panoram-
ic video, quality assessment, spatiotemporal information.

I. INTRODUCTION

A
S a new means of simulation and interaction, virtual real-

ity (VR) has attracted more and more attention in recent

years [1]. Panoramic video and stereoscopic panoramic video

are essential means of constructing virtual reality. Panoramic

video has an unparalleled sense of realism and immersion,

which can make viewers feel as if they are there. However,

low quality panoramic video can cause intense discomfort and

even cause physical illness [2], [3]. The process of making

panoramic video and stereoscopic panoramic video is complex

[4], including shooting, stitching [5], blending, projection,

encoding, etc. Each process will distort the original video and

affect the quality of the panoramic video [6]. Therefore, to

promote the standardization of panoramic video, it is very

imperative to carry out the related work of virtual reality video

quality assessment (VRVQA).
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Fig. 1: The process of making panoramic video, in which VRVQA’s
work is mainly concentrated between the original video during
viewing and the distorted video during viewing.

In the traditional multimedia quality assessment, the design

process of the algorithm is often to extract features manually,

and then use the machine learning method to perform regres-

sion prediction. The design of the two steps is often designed

differently. In the extraction of features, the commonly used

assistant theories are saliency [7]–[10] and the human visual

system (HVS) [11]–[14]. Support vector regression (SVR) [15]

is usually used in the regression process.

However, the panoramic video is very different from the

ordinary video [16], [17]. The part of the production process

and quality assessment of the panoramic video are shown

in Fig. 1. When making the panoramic video, we first need

to shoot with multiple panoramic cameras, and then merge

the captured videos into a sphere. For ease of transmission

and encoding, the panoramic video is projected from the

sphere onto the plane. The panoramic video is encoded and

decoded and then projected onto the sphere by a plane for

viewing. Therefore, the video data we need to process is often

projected to the plane, but projection will cause the original

shape of regular objects to bend [18], so ordinary image

quality assessment (IQA) and video quality assessment (VQA)

methods are challenging to extract useful features, VRVQA

must perform targeted processing on the projection process of

panoramic video.

To solve the problem of projection, some methods have been

proposed in VRVQA field. Xu et al. [19] proposed two kinds

of objective assessment methods: non-content-based perceptu-

al peak signal to noise ratio (NCP-PSNR) and content-based

perceptual PSNR (CP-PSNR). The difference between the two
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is whether to predict the viewing direction of the person and

calculate the difference, and then perform the weight mapping

of the region for the PSNR operation. Yang et al. [20] used 3D

convolutional neural networks (CNN) to evaluate the quality

of local panoramic video blocks, and then assigned different

weights to combine all video blocks to obtain the overall

quality of the video. Sun et al. [21] proposed weighted-to-

spherically-Uniform PSNR (WS-PSNR), which gives all pixels

different weights in advance and then calculates the PSNR. Yu

et al. [22] projected the pixels on the original panoramic video

plane and the distorted panoramic video plane onto a sphere,

and then performed a large number of uniform sampling on

the spherical surface to calculate the PSNR. They proposed

two indicators, S-PSNR and L-PSNR, which differ in whether

they give higher weight to the equator. Zakharchenko et al.

[23] proposed the Craster parabolic projection PSNR (CPP-

PSNR), which projects all the panoramic video to the sphere

using the CPP method.

Although the above methods have achieved excellent results,

two problems have not been effectively solved. Firstly, feature

extraction in the spatial domain has to be discussed. Most

of the above VRVQA methods are the improvement of tradi-

tional quality assessment methods, lacking feature extraction

methods for panoramic video and advanced techniques such as

deep learning. Secondly, global time domain feature extraction

in the time domain has to be discussed. Global time domain

information refers to the relationship between the pixels of

each frame and all the pixels of other frames, which is different

from finding the local time domain information of current

pixels and some pixels in other frames. Most of the above

VRVQA methods do not consider the effect of the relevant

information of pixels in different frames of the video on the

quality assessment.

Based on this, we design a deep neural network for

panoramic video, which can extract the information of the

panoramic video spatial domain and global time domain

effectively. We verify the effectiveness of the proposed method

through a series of experiments. Our main contributions are

below.

1) The proposed network can effectively extract panoramic

video features. Compared with ordinary CNN, spherical

CNN [24] can effectively extract the “deformed” features

in the panoramic video, and has translation invariance,

rotation invariance and scale invariance in panoramic

video processing. Spherical CNN projects the panoramic

image from the plane to the three-dimensional sphere,

and extracts the relevant features on the sphere by con-

volution. Therefore, we use spherical CNN as the basis

for the proposed method. Comparative experiments verify

the effectiveness of spherical CNN in VRVQA.

2) The proposed network can make full use of the global

temporal information of the input data. Non-local neural

networks module [25] makes the feature map in the neural

network contain attention information, so the global time

information of the panoramic video can be extracted

together with the spherical CNN. Besides, the nonlocal

neural network module uses a residual structure, which

can be embedded in the spherical CNN while maintaining

Fig. 2: The projection process of the panoramic video. In the first
half of the figure, the white area represents the pixel, which changes
in varying degrees after projection. The lower half of the figure is an
example of projection.

the same size of input and output, rather than evaluating

the spatial domain and global time domain separately.

Comparative experiments verify the effectiveness of non-

local module in VRVQA.

3) The model we designed can evaluate not only the quality

of the panoramic video, but also the quality of the

stereo panoramic video. The two are only different in the

preprocessing part. Experiments show that our method

can provide the best quality indicator in the field of

VRVQA.

In the following sections, we elaborate on the characteristics

of panoramic video and related works (Section II), analyze our

methods (Section III), evaluate our methods through a large

number of experiments (Section IV), draw conclusions and

discuss the future direction (Section V).

II. BACKGROUND AND MOTIVATION

In this section, the characteristics of the space-time domain

of the panoramic video and the solution ideas are introduced.

Then, the description and progress of the VRVQA related work

are listed separately.

A. Spatial Domain Characteristics of Panoramic Video

The projection part is the essential reason of the difference

between the panoramic video and the ordinary video. To

facilitate panoramic video transmission, the panoramic video

must be projected onto a plane and projected back to the sphere

when viewed.

There are many ways to project panoramic video [26], such

as equirectangular projection (ERP) [27], cylindrical equal-

area projection (EAP) [27], cube map projection (CMP) [28],

rotated sphere projection (RSP) [29], etc. In respective of the

method to use, it will inevitably distort the original pixel

distribution and shape. ERP projection becomes the most

commonly used projection method for panoramic video due

to its simple processing. Similar to the projection process of
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Fig. 3: Warpage deformation comparison. The three red boxes mark
the same decoration in reality.

the world map, ERP stretches each latitude to the length of

the equator. Due to the change of longitude of 2π and the

latitude of π, the plane after the projection of the method tends

to exhibit a 2 : 1 aspect ratio. This method tends to stretch

the two pole portions of the sphere significantly, so that the

warpage deformation of the two pole portions is more severe

after projection. The formula of ERP is as follows:

Plane(x, y) = ((λ− λ0)cosϕ0, ϕ− ϕ0)sphere, (1)

Sphere(λ, ϕ) = (
x

cosϕ0
+ λ0, y + ϕ0)plane, (2)

where λ represents the longitude in the sphere, ϕ represents

the latitude in the sphere, and λ0 and ϕ0 often represent the

latitude and longitude of the equatorial center in the panoramic

video. x and y represent the horizontal and vertical coordinates

in the plane, respectively.

After projection, the original pixel distribution will be

deformed, and the degree of distortion at different positions

will be different. The closer to the two poles, the greater the

distortion. The projection process of the panoramic video is

shown in Fig. 2.

The distortion of pixels caused by projection will change

with the position of the image, so the information distribution

and features of the objects on the panoramic image will be

quite different from the ordinary image. In general VQA

method, the feature extraction operator obviously cannot adapt

to the estimated deformation and extract effective features

[30], and the current VRVQA field lacks the features designed

for panoramic video. In order to solve this problem, a deep

learning method is applied in this paper. Deep learning can

automatically extract the features of panoramic video without

artificial design and participation, and can extract higher-

dimensional semantic information as the depth of the network

increases [31]. Therefore, we design the VRVQA method

based on CNN.

The same decoration in Fig. 3 has different degrees of

warpage deformation at different positions after projection.

This is because the displacement of an object in a spheri-

cal model belongs to three-dimensional rotation rather than

translation. Therefore, the same convolution kernel is difficult

to extract consistent effective features for the same object at

different locations. It can be known that sparse connectivity,

weight sharing, and pooling in CNN do not have transla-

tion invariance, scale invariance and rotation invariance in

panoramic video [24]. For the above reasons, we must modify

the convolution method in CNN, so we choose the spherical

CNN that can effectively extract the features of the panoramic

video.

The spherical CNN regards the spherical image as a three-

dimensional manifold, expands the spherical surface into

discrete three-dimensional Lie groups [32], and expresses

the relationship of the special orthogonal group SO(3) in

the CNN. In fact, spherical CNN can be understood as the

process of convolution extraction for the input signals of

three-dimensional manifold. As for the spherical CNN, this

paper gives a detailed explanation in Section III, Part B.

Through the above method, the two-dimensional image is

reconstructed into a three-dimensional manifold, that is, the

panoramic image frame is back projected back to the sphere

to solve the problem of pixel deformation, and then the feature

is extracted by spherical CNN. The special orthogonal group

SO(3) is expressed as follows:

SO(3) =
{

R ∈ R
3×3|RRT = I, det(R) = 1

}

, (3)

where R represents a matrix of 3 × 3, and the right side of

the equation indicates that the matrix is orthogonal and the

determinant is 1. In the experiment, R refers to the rotation

matrix, not the learnable filter parameters.

B. Global Time Domain Information Extraction of Panoramic

Video

The extraction of global time domain information has

always been a problem in the field of VQA. As a kind of

video, panoramic video also needs to incorporate time domain

information into the quality evaluation system. The previous

work is divided into two categories according to whether the

spatial domain information and time domain information are

considered comprehensively.

The first is to extract the spatial domain and time domain

information separately, and then comprehensively perform the

quality assessment. Manasa et al. [33] used local optical

flow statistics to measure the video time domain distortion

to design a full reference VQA method. Zhu et al. [34] first

obtained the characteristics of each frame of the video and then

combined these features to learn the weight of the parameters

from the main neural network. Ullah et al. [35] used long

short-term memory (LSTM) to process the extracted spatial

domain features, which can adequately express the information

between the preceding and following frames.

The second is to extend the original 2D method to

3D, and then comprehensively consider the space-time do-

main information of the video. Li et al. [36] extended the

two-dimensional discrete cosine transform (DCT) to three-

dimensional, so that the space-time domain information of

the video was extracted simply and effectively. Similar to the

previous work, Li et al. [37] used the 3D shearlet transform

to extract the spatiotemporal information. Giannopoulos et

al. [38] used 3D CNN to extend the process of convolution

and pooling from 2D to 3D to complete the video quality

assessment.
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Fig. 4: The method proposed in this paper. Each convolution layer has a dimension that indicates the size of the output, and the first number
“4” in the dimension represents the batch size. The orange module describes the SO3 NonlocalBlock, and the dashed line indicates that the
SO3 NonlocalBlock module is not used. “FC” indicates the complete connection layer.

The above work has brought us a lot of inspiration, but

considering the cooperation with spherical CNN, an easy-

to-integrate deep learning method is our best choice. CNN

imitates the human cognitive process from local to macro [39].

The bottom convolution is responsible for local information

and the top convolution is accountable for combining local

information to get global information. However, this idea can

not be applied to all situations. For example, for the quality

assessment of speech video, a convolution kernel covers only

around the human head. To evaluate the quality, we should not

only pay attention to the distortion of the head, but also pay

attention to the background of the human head, the distortion

of the next frame and other related informations [40]. The

same distortion appears worse on the face than on the sky,

and interframe flicker distortion is also worse than continuous

distortion between frames [41]. It is difficult for a single

convolution layer to extract global related informations. Since

the pooling process and information are transmitted layer by

layer, a large amount of information is lost in the complete

extraction of global information by multiple convolutional

layers, so CNN has limitations in extracting global information

[42].

In order to resolve the contradiction between CNN and

global time domain information, non-local neural networks

are integrated into our proposed framework. The non-local

neural network calculates the response of a certain location as

the weighted sum of the features of all positions in the input

feature mapping. When we use non-local neural networks to

process video, the information of each point in the feature

map contains information about other points, and the input

and output shapes of the non-local neural network module are

the same. It is easy to insert into the neural network and can

effectively extract the global temporal information of video

frames.

C. General Idea of VRVQA

The quality assessment of panoramic and stereo panoramic

video is in its infancy, and the related results are less than

other multimedia quality evaluation fields. In order to perform

VRVQA, we first need to rely on the database. Zhang et

al. [43], Xu et al. [19], Zhang et al. [44] and Yang et al.

[20] improved subjective assessment methods according to the

characteristics of the panoramic video itself, and established

a panoramic video database or a stereo panoramic video

database.

Based on this work, there are two main ideas for the objec-

tive quality assessment of the panoramic video. One way is to

assign different weights to different areas of panoramic video

according to the pixel warping deformation or the different

viewing directions of the person [19], [20]. As a representative

method of this idea, WS-PSNR [21] is calculated according

to the following formula:

WMSE =
w−1
∑

i=0

h−1
∑

j=0

(y(i, j)− y′(i, j))2 · w(i, j), (4)

WS − PSNR = 10log(
MAX2

WMSE
), (5)

w(i, j)ERP = cos
(j + 0.5− h/2)π

N
, (6)
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where w is the assigned weight, y(i, j) and y′(i, j) are the 
reference pixel value and the test pixel value, respectively. 
MAX is the maximum pixel value, h and w are the height 
and width of the image. N represents the total number of 
pixels per column.

The other way is to re-project the planar panoramic video 
onto the sphere and then improve the accuracy of the quality 
assessment by changing the projection format or sampling 
method [22]. As a classic method under this idea, CPP-PSNR 
[23] converts the video projection format into the Craster 
parabolic projection format to reduce the degree of pixel 
distortion. The formula for the CPP projection transformation 
is as follows:

Plane(x, y) = (Rλ(2cos
2π

3
− 1), πRsin

ϕ

3
)sphere, (7)

Sphere(λ, ϕ) = (
x

2cos 2ϕ
3 − 1

,
3

R
arcsin

y

π
)plane, (8)

where ϕ and λ are the elevation and azimuth of the spherical

coordinates, and R is the spherical radius.

The above ideas have great inspiration for our work. The

method proposed in this paper mainly belongs to the second

idea.

III. PROPOSED METHOD

In this section, our method is described and deduced in

detail. Fig. 4 describes the primary process of our method. It

should be emphasized that the method proposed in this paper

can not only evaluate the quality of the stereo panoramic video,

but also evaluate the quality of the ordinary panoramic video.

A. Preprocessing

Since the amount of video tends to be large, it is difficult

to directly use the entire video as input to a deep learning

network. The differential grayscale image can better repre-

sent stereoscopic image information based on reducing the

amount of data [45], so we perform similar pretreatments. We

grayscale and subtract the left and right views of the video

according to the following formulas:

xi = |V i
left − V i

right|, (9)

where x is the output of the pre-processing, Vleft and Vright

represent the left and right views of the stereoscopic panoramic

video frame, and i is the pixel position index.

After the above processing, the original grayscale difference

map size is 2560×1280. To adapt to the input of the spherical

CNN network and reduce the parameters that need to be cal-

culated, the original grayscale difference map is downsampled

to 1280×1280, and the preprocessing of spatial domain is

completed.

For the preprocessing of time-domain, uniformly-spaced

sampling is used. Adjacent video frames contain too much

redundant information because it is difficult for the naked

eye to observe the changes among them. Refer to other video

Fig. 5: The preprocessing of stereo panoramic video.

research areas [46] [47], we randomly select one frame as the

starting frame of the training sample video, and then extract

one frame for every 8 frames. A total of 3 frames are extracted

to form a video block, which is used as the input of the

network. It should be noted here that due to the large amount

of video data, it is difficult to read multiple consecutive frames

as input during network training. The specific process is shown

in Fig. 5.

Based on the above preprocessing, a video block can be ex-

tracted every 24 frames. When processing a normal panoramic

video, the input of the network becomes a grayscale image of

the same size instead of a grayscale difference map, and the

processing of the video block is the same.

B. Spherical CNN

In ordinary CNN, the output of the convolution operation is

equivalent to the inner product of the input feature map and

the convolution kernel, which is equivalent to the correlation

operations in mathematics. Similar to ordinary CNN, the

convolution output in spherical CNN is equivalent to the inner

product of the feature map and the rotating convolution kernel,

where the feature map of the spherical CNN is treated as a

signal on the special orthogonal group SO(3). The convolution

process of a rotating group in a spherical CNN can be

expressed as follows:

[ϕ ∗ f ](R) =< LRϕ, f >=

∫

SO(3)

n
∑

i=1

ϕi(R
−1Q)fi(Q)dQ,

(10)

where f and ϕ are signals on the special rotation group

SO(3) → Rn. LRϕ is a rotation operator defined as

[LRf ](Q) = f(R−1Q) on the special rotation group SO(3).

dQ is a measure of the integral and can be expressed as

dαsin(β)dβdγ/(8π2), α, β, γ are parameters in the ZYZ

Euler parameterization.

In fact, the calculation of the rotated feature map is equiv-

alent to the inner product between the input feature map and

the rotated filter.

Similar to the convolution process of a signal on SO(3), the

convolution process on the surface of the sphere is called S2.

The signal convolution can be defined as:
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[ϕ ∗ f ](R) =< LRϕ, f >=

∫

S2

n
∑

i=1

ϕi(R
−1x)fi(x)dx. (11)

Spherical CNN uses the generalized fourier transform

(GFT) to reduce the complexity of SO(3) convolution. The

formulas of transform and inverse transform are expressed as

follows:

f̂ l =

∫

X

f(x) ¯U l(x)dx, (12)

f(R) =
b

∑

l=0

(2l + 1)
l

∑

m=−l

l
∑

n=−l

ˆf l
mnD

l
mn(R), (13)

where X refers to all manifold signals input, such as s2 or

SO3. If we input SO3, it can be understood as all spaces in

three directions (α, β, γ). U l denotes a corresponding basis

function. Function f is X → R, b is the bandwidth, and D is

the Wigner D-functions.

C. Non-local Neural Networks

In order to extract the global time domain information of the

video and process the video long-range dependencies, the non-

local neural network is embedded in the designed network. The

mathematical formula for non-local operations is as follows:

yi =
1

C(x)

∑

∀j

f(xi, xj)g(xj), (14)

where i is one of the locations of the input feature map.

In general, this position can be a time point, a space point,

and a space-time point. j is the index of all other possible

locations, and x is the input signal, which is usually a feature

map. y is the same output feature map as the x scale, f is

the pairing function that calculates the correlation between

the i-th position and all other positions, g is a unary input

function for the purpose of information transformation, C(x)
is the normalization function that keeps the overall information

unchanged during the conversion process.

The above functions have many manifestations. We choose

to use softmax as the f function. Since softmax contains

normalization process, the calculation of C is omitted, and

convolution operation is used for g. 1×1 convolution operation

is equivalent to matrix multiplication [25], the convolution

operation is expressed as w·x, w refers to the parameters of the

convolution kernel update, T represents matrix transposition,

then the expression of formula (14) in this paper can be

converted into:

yi = softmax(xT · wT
conv1 · wconv2 · x)(x

T · wT
conv3), (15)

In order to ensure uniform size of input and output in

network and more convenient configuration in the network,

the design of the residual module is utilized, as shown in the

formula:

zi = Wzyi + xi, (16)

Fig. 6: Non-local neural networks example. C represents the number
of channels, T represents the number of frames, and H and W

represent the height and width of the feature map.

where y is the non-local operation operator and x is the input.

Taking ordinary CNN as an example, the non-local operation

can be as shown in the Fig. 6.

In Fig. 6, the input first passes through a convolution kernel

of size 1×1×1, whose main purpose is to reduce the dimen-

sion, thereby reducing the computational complexity of the

non-local block. It is worth noting that this module contains

the idea of attention mechanism. The softmax operation is

equivalent to finding the normalized correlation between other

pixels and the current pixel, and then multiplying the matrix

after conv3, which applies an attention mechanism to each

pixel of the input. Finally, conv4 restores the feature map to

its original size and adds it to the input.

D. Network Design and Training

The epoch is set to 200. An epoch refers to the process

of all data being sent to the network to perform a forward

calculation and back propagation. Since an epoch is often too

large and the computer can not load, we divide it into several

smaller batches. Batch Size is set to 4 because the input video

size is large and limited by hardware memory. The learning

rate is set to 1e-3. The number of channels in each layer is

set to 4, 8, 16 and 1, and the bandwidth b is 640, 128, 32 and

8, respectively. It should be explained that the bandwidth here

should be half of the input sizes H and W .

ReLU is used as an activation function in this paper. The

formula is as follows:

ReLU(x) = max(0, x), (17)

where x refers to the input of the activation function layer.

This paper chooses to use Adam [48] as the optimizer. The

formula is as follows:

Vdp = [β1Vdp−1 + (1− β1)dp]/(1− βt
1), (18)

Sdp = [β2Vdp−1 + (1− β2)dp
2]/(1− βt

2), (19)
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(a)

(b)

(c)

(d)

Fig. 7: (a) A sample of VRQ-TJU, which is a stereo panoramic video,
MOS=1.8. (b) A sample of VRQ-TJU, which is a stereo panoramic
video, MOS=4.3. (c) A sample of VR-VQA48, which is a panoramic
video. MOS=38.4. (d) A sample of VR-VQA48, which is a panoramic
video. MOS=62.0.

p = p− α
Vdp

√

Sdp + ε
, (20)

where Vdp and Sdp are gradient first-order moment estimation

and second-order moment estimation with deviation correc-

tion, respectively. α and β are attenuation factors, dp is the

gradient of the parameters, and ε is the offset that prevents

the denominator from being zero. In the experiment, (β1, β2)
is (0.9, 0.99), ε is 1e-8, and α is 1e-3.

For the loss function, we choose to use the mean square

error (MSE) and L2 regularization. The formula is shown

below:

L =
1

N

N
∑

i=1

(yi − ŷi)
2 +

1

2
λ||ω||22, (21)

where L is the global loss, N is the number of all samples, it is

equal to batch size in neural network. y is the label, which is

the subjective assessment score of the video. ŷ is the predicted

value, which is the objective assessment score of the video. λ
is the regularization coefficient. In this paper, the regularization

coefficient is equal to 0.01. w is the parameter of all layers

that the network needs to update. Since the number of network

layers is not large, in addition to the L2 regularization, we do

not need other means to prevent over-fitting to achieve good

experimental results.

In the network training phase, we use 80% of the video

dataset as the training set, 20% of the video dataset as the test

set, and use random sampling when segmenting data sets. In

order to ensure the validity of the data, each time we repeat

the experiment, we randomly divide the training set and test

set again, and take the middle finger as the final result after

repeating 50 experiments. When reading the training data, we

randomly sample the three eligible frames in the video as input

video blocks. The specific requirements are explained in the

preprocessing section. Finally, we average the objective scores

of 24 video blocks as the overall score of panoramic video.

IV. EXPERIMENTS AND RESULTS

A. Datasets

Experiments are performed on VRQ-TJU1 [20] database and

VR-VQA48 [19] database to verify the effectiveness of the

proposed method.

The VRQ-TJU database contains a total of 377 stereoscopic

panoramic videos, including 13 original video sources. These

videos are distorted by H.264 and JPEG2000. Each distortion

type is divided into five levels, and each distortion type has

182 videos. Besides, the database contains symmetric distor-

tion and asymmetric distortion, 104 of which are symmetric

distortions and 260 are asymmetric distortions. Mean opinion

score (MOS) is in the range [1,5], the higher the score, the

better the video quality.

The VR-VQA48 database contains a total of 48 panoramic

videos, including 12 original video sources. These videos are

distorted by H.265 distortion, and the degree of distortion is

divided into three levels. The MOS value is in the range of

[0, 100], and the higher the score, the better the video quality.

1https://pan.baidu.com/s/1QDEnDARDBXDTHRcdWyPkhA
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Fig. 8: The relationship between the epoch and PLCC in the experi-
ments of the two test sets. PLCC is obtained by the method proposed
in this paper. (a) VRQ-TJU database. (b) VR-VQA48 database.

(a) (b)

Fig. 9: Results of statistical significance comparison between SROCC
values from the algorithms. “1” represents the algorithm (row)
better than the algorithm (column), “-1” represents the algorithm
(row) worse than the algorithm (column), “0” represents similar
performance.

In the VR-VQA48 database, the MOS value is often between

30 and 60.

In order to more intuitively display the video of two MOS

values in two databases, we show some video frames in Fig.

7.

B. Experimental Setups

For the VRQ-TJU dataset, 302 videos are used for training

and 75 videos are used for testing. For the VR-VQA48 data

set, 38 videos are used for training and 10 videos are used

for testing. It should be emphasized that the number of videos

here is not the amount of data actually needed by the network,

because 24 video blocks are proposed in each video. The

comprehensive performance of the two databases can verify

that the method can evaluate the quality of the panoramic video

as well as the quality of the stereoscopic panoramic video.

Since the data types in the two databases do not intersect with

the distortion type, the two databases cannot perform cross-

database experiments. Other panoramic video databases are

not open source, so this paper does not involve cross-database

experiments.

In the evaluation, Pearson linear correlation coefficient

(PLCC) and Spearman rank order correlation coefficient (S-

Fig. 10: Impact of different modules on results. Blue represents the
PLCC index of VRQ-TJU database, grey represents the SROCC index
of VRQ-TJU database, orange represents the PLCC index of VR-
VQA48 database, and yellow represents the SROCC index of VR-
VQA48 database. Different methods are located in abscissa.

TABLE I: Performance comparison with VRVQA methods on

each database. The best performed metric is highlighted in

bold type.

VRQ-TJU VR-VQA48

Metrics PLCC SROCC PLCC SROCC

PSNR 0.795 0.797 0.541 0.512

SSIM [49] 0.806 0.828 0.562 0.547

WS-PSNR [21] 0.831 0.829 0.613 0.558

CPP-PSNR [23] 0.842 0.836 0.632 0.575

L-PSNR [22] 0.850 0.845 0.684 0.618

S-PSNR [22] 0.863 0.858 0.707 0.637

Proposed 0.939 0.924 0.891 0.877

ROCC) are used to predicting the accuracy. The closer the two

values are to 1, the closer the objective score of the prediction

is to the subjective score.

The proposed method is first tested in two databases and

then compared with other classical methods. In order to verify

the superiority of the spherical CNN module relative to the

ordinary CNN and the effectiveness of the non-local module,

relevant comparative experiments are also designed. To ensure

the reliability of the experimental method and the validity of

the experimental data, we repeat iterations 50 times for each

analysis. In a similar experimental step, the final result tends

to take the average or median of the 50 outcomes. However,

the average is often affected by the outliers in the 50 data.

A substantial deviation will usually give the mean has a big

impact, so this paper uses the median as the final result.

C. Performance Evaluation

This section compares the proposed method with other

classical VRVQA methods in two databases to prove the

effectiveness of the proposed method. Our experimental en-

vironment is based on Intel(R) Xeon(R) CPU E5-2620 v4 and
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TABLE III: Comparison of different modules applied in our 
proposed method. The best performed metric is highlighted in 
bold type.

VRQ-TJU VR-VQA48

Metrics PLCC SROCC PLCC SROCC

CNN 0.849 0.827 0.834 0.812

CNN+Nol 0.886 0.868 0.858 0.844

S2CNN 0.921 0.909 0.871 0.865

S2CNN+Nol 0.939 0.924 0.891 0.877

NVIDIA GTX TITAN Xp GPU. The method we proposed is

based on the PyTorch deep learning framework.

First, we validate the proposed method in the VRQ-TJU

database and the VR-VQA48 database. In the VRQ-TJU

database, the PLCC value and SROCC value of the proposed

method are 0.939 and 0.924 respectively. In the VR-VQA48

database, the PLCC value and SROCC value of the proposed

method are 0.891 and 0.877 respectively. Fig. 8 shows the

variation of PLCC with the increase of epoch in the test set

of the two databases.

In order to compare the proposed method with other

VRVQA methods, we choose PSNR, SSIM [49], WS-PSNR,

L-PSNR, S-PSNR, and CPP-PSNR to perform experiments in

two databases. PSNR and SSIM are used as the most classic

algorithms in IQA and VQA to compare with other VRVQA

methods. The remaining comparison algorithms are commonly

used in the field of VRVQA. The results of the experiment

are shown in Table I. Among them, L-PSNR, S-PSNR and

CPP-PSNR are implemented in C++, and other comparison

methods are implemented in MATLAB. In Table I, we show

the most advanced indicators in bold type. As can be seen from

the table, our method achieves good results in both databases.

In the VRQ-TJU database, our PLCC and SROCC lead 0.076

and 0.066 respectively. In the VR-VQA48 database, our PLCC

and SROCC lead 0.184 and 0.24 respectively. Experiments

show that our method can achieve good results in stereo

panoramic video quality assessment and panoramic video

quality assessment. Combining the performance of Fig. 8 and

Table I, it can be found that the convergence index during

training is basically consistent with the test set, indicating that

the model has not been overfitted. Through experiments, the

average time to train a video block in this method is 25.17

seconds, and the average time to test a video block is 0.072

seconds. Our model get the best performance with the right

amount of complexity. The detailed comparison is shown in

Table II.

The statistical significance of the predictions is determined

by comparing the SROCC values of each VRVQA method. We

assume that the predicted score follows a normal distribution,

and the F-test is used to express whether the proposed method

is superior to other methods. Assuming a significance level of

0.05, we calculate the result for each method using the 50

SROCC values. The value ”1” indicates that the algorithm

(row) is better than the algorithm (column). The value of ”0”

indicates statistical equivalence between rows and columns,

and the value of ”-1” indicates that the algorithm (row) is not

as good as the algorithm (column). The results of the F-test

are shown in Fig. 9. Overall, our method results are all “1”,

indicating that our model is superior to other models.

D. Module Comparison Evaluation

In this part, we verify the contribution of spherical CNN

and non-local modules to the proposed method, and confirm

the superiority of this method in the spatial domain and time

domain assessment. To make the results more reliable, we con-

duct four experiments in two databases, using spherical CNN+

non-local modules, spherical CNN, ordinary CNN+ non-local

modules, and ordinary CNN. For the sake of convenience,

we write ordinary CNN as CNN, spherical CNN as S2CNN,

and non-local module as Nol. In order not to add addition-

al variables, we simply replace the corresponding structure

without changing the overall settings of the hyperparameters

and the network. When we want to compare spherical CNN

with ordinary CNN, we only replace the corresponding layer.

When we want to compare the effects of non-native modules,

we only add or not add non-local modules to the network. The

results of the experiment are shown in Table III, and we show

the best data in bold type. In order to more intuitively show

the contribution of different modules, we represent the data in

the table as the form of Fig. 10.

Experiments show that both spherical CNN and non-local

neural networks have significant contributions to the methods

proposed in this paper, especially spherical CNN can signifi-

cantly improve PLCC and SROCC. In order to fully demon-

strate the correlation between objective data and subjective

data obtained by different methods, we show some scatter plots

in Fig. 11.

E. Distortion Type Evaluation

VRQ-TJU contains relatively many types of distortion. In

order to better evaluate the performance of our method in

different distortion types, we divide the two databases into five

parts according to the distortion type, which are symmetric

distortion database, asymmetric distortion database, H.264

distortion database, JPEG2000 distortion database, H.265 dis-

tortion database (ie VR-VQA48). Experiments are carried out

in these five databases. The first four databases used the model

trained by VRQ-TJU, and the last database used the model

trained by VR-VQA48. The experimental data is shown in

Table IV, and we show the most advanced indicators in bold

type.

Experiments show that the proposed method can deliv-

er good performance in different distortion types, and the

symmetric distortion database has better results than other

databases. In order to more intuitively observe the relationship

between subjective scores and objective scores, we show some

scatter plots of two scores in different distortion databases in

Fig. 12.
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TABLE II: Single frame consumption time of different VRVQA methods.

Methods PSNR SSIM [49] WS-PSNR [21] CPP-PSNR [23] L-PSNR [22] S-PSNR [22] Proposed

Time(second) 0.002 0.071 0.002 0.858 0.116 0.114 0.072

MOS
1 2 3 4 5

Ob
jec

tiv
e 

sc
or

e

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a)

MOS
1 2 3 4 5

Ob
jec

tiv
e 

sc
or

e

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

MOS
1 2 3 4 5

Ob
jec

tiv
e s

co
re

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c)

MOS
1 2 3 4 5

O
bj

ec
tiv

e 
sc

or
e

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(d)

MOS
35 40 45 50 55 60

O
bj

ec
tiv

e 
sc

or
e

30

35

40

45

50

55

60

65

(e)

MOS
35 40 45 50 55 60

Ob
jec

tiv
e 

sc
or

e

30

35

40

45

50

55

60

65

(f)

MOS
35 40 45 50 55 60

Ob
jec

tiv
e 

sc
or

e

30

35

40

45

50

55

60

65

(g)

MOS
35 40 45 50 55 60

Ob
jec

tiv
e 

sc
or

e

30

35

40

45

50

55

60

65

(h)

Fig. 11: The relationship between MOS and objective score based on the proposed method. (a) Using CNN in VRQ-TJU. (b) Using CNN+Nol
in VRQ-TJU. (c) Using S2CNN in VRQ-TJU. (d) Using S2CNN+Nol in VRQ-TJU. (e) Using CNN on VR-VQA48. (f) Using CNN+Nolon
VR-VQA48. (g) Using S2CNN on VR-VQA48. (h) Using S2CNN+Nol on VR-VQA48.
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Fig. 12: The relationship between MOS and objective score based on the proposed method. (a) Symmetric distortion database. (b) Asymmetric
distortion database. (c) H.264 distortion database. (d) JPEG2000 distortion database. (e) H.265 distortion database (VR-VQA48 database).
(f)VRQ-TJU database.

F. Prospective Applications

(1) Optimization of codec

As we all know, panoramic video has the characteristics

of high resolution and large amount of data, which brings

considerable challenges to video coding and decoding

[50]. How to measure the performance loss of codec is
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TABLE IV: The performance of the proposed method and the traditional VRVQA method in database classified according to

distortion type. The best performed metric is highlighted in bold type.

Symmetric distortion Asymmetric distortion H.264 distortion JPEG2000 distortion H.265 distortion

Metrics PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

PSNR 0.845 0.857 0.772 0.767 0.781 0.775 0.724 0.715 0.541 0.512

SSIM [49] 0.866 0.883 0.764 0.805 0.746 0.763 0.726 0.802 0.562 0.547

WS-PSNR [21] 0.852 0.848 0.811 0.807 0.825 0.821 0.794 0.792 0.613 0.558

CPP-PSNR [23] 0.868 0.836 0.832 0.804 0.837 0.808 0.798 0.772 0.632 0.575

L-PSNR [22] 0.875 0.859 0.823 0.799 0.819 0.784 0.791 0.776 0.684 0.618

S-PSNR [22] 0.882 0.861 0.826 0.805 0.833 0.814 0.812 0.791 0.707 0.637

CNN 0.854 0.831 0.846 0.823 0.851 0.827 0.845 0.822 0.834 0.812

CNN+Nol 0.898 0.874 0.881 0.858 0.880 0.857 0.874 0.850 0.858 0.844

S2CNN 0.928 0.914 0.917 0.907 0.918 0.908 0.915 0.904 0.871 0.865

S2CNN+Nol 0.946 0.931 0.930 0.916 0.937 0.922 0.929 0.915 0.891 0.877

helpful to optimize the rate distortion and other related

works. Therefore, in the ERP format of panoramic video

coding and decoding, the method proposed in this paper is

used to observe the loss of video quality, so as to provide

guidance for codec.

(2) Quality enhancement

At present, some people have begun to study how to

enhance the quality of virtual view to give viewers a better

visual experience. For example, Rahaman et al. [51], [52]

used Gaussian mixture modeling (GMM) to significantly

enhance the quality of virtual views. However, in their

final evaluation stage, they often do not use advanced

quality evaluation methods to verify the effectiveness of

the proposed methods. The method proposed in this paper

can assist the verification work in the field of quality

enhancement, so as to improve the accuracy of the quality

enhancement method.

(3) Standardization of hardware

At present, the quality of virtual reality display helmets

varies in the market, and non-standard hardware devices

will greatly affect the user experience. The quality as-

sessment method proposed in this paper can be used

to accurately quantify the performance of hardware in

video viewing, so as to unify the hardware manufacturing

standards.

V. CONCLUSION

In this paper, we propose a method based on deep learning,

which can evaluate the quality of panoramic video and stereo

panoramic video end-to-end. This paper starts from the two

aspects of spatial domain assessment and global time domain

assessment, and studies the characteristics of panoramic video.

A lot of experiments have been carried out to verify the

effectiveness of the proposed method. The results show that the

spherical CNN is more suitable for the extraction of panoramic

video features than CNN, and the non-local neural networks

module can effectively extract the global time domain infor-

mation.

Although the proposed method has good results, the non-

local neural networks module occupies a large number of

computing resources and storage space. Due to the large

amount of data in the panoramic video and the complexity

of network calculations, it is difficult to use some techniques

that require parameter calculation, such as the GN layer [53].

In the future work, we hope to design a more elegant time

domain assessment strategy to minimize complex parameter

operations based on the network performance. Cross-database

experiments will also be added in the next step to verify the

generalization ability of the algorithm.
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