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Abstract

In this paper, we propose a pansharpening method based on a convolutional

autoencoder. The convolutional autoencoder is a sort of convolutional neural network

(CNN) and objective to scale down the input dimension and typify image features with

high exactness. First, the autoencoder network is trained to reduce the difference

between the degraded panchromatic image patches and reconstruction output

original panchromatic image patches. The intensity component, which is developed by

adaptive intensity-hue-saturation (AIHS), is then delivered into the trained

convolutional autoencoder network to generate an enhanced intensity component of

the multi-spectral image. The pansharpening is accomplished by improving the

panchromatic image from the enhanced intensity component using a multi-scale

guided filter; then, the semantic detail is injected into the upsampled multi-spectral

image. Real and degraded datasets are utilized for the experiments, which exhibit that

the proposed technique has the ability to preserve the high spatial details and high

spectral characteristics simultaneously. Furthermore, experimental results

demonstrated that the proposed study performs state-of-the-art results in terms of

subjective and objective assessments on remote sensing data.

Keywords: Pansharpening, Convolutional autoencoder, Guided image filtering,

Adaptive intensity-hue-saturation AIHS

1 Introduction

There aremany applications based on remote sensing satellites that require observation of

the alterations of the earth, such as image fusion [1–3] and mapping land cover [4]. Given

that, pansharpening is one of the essential interests of many scientists. It is difficult that

the remote sensing satellites can obtain a panchromatic image (PAN) and a multi-spectral

image (MS) with the qualities of both high spatial resolution and high spectral resolution

at the same time due to data transmission impediment. However, the main objective of

pansharpening is fusing the high spatial resolution PAN image with the corresponding

high spectral resolution MS image to acquire high spatial and spectral resolutions for MS

image [5].

As indicated by [6–8], a wide assortment of image fusion techniques can be classified

into two classes based on the way of extracting a spatial detail from a PAN image: (1) com-

ponent substitution (CS) and (2) multi-resolution analysis (MRA). And some methods do
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not belong to these two categories, such as model-based pansharpening method [9, 10].

Among the conventional component substitution-based methods include intensity-hue-

saturation (IHS) [11], principal component analysis (PCA) [12], Gram-Schimidt [13], and

Brovey transform [14], etc. in which the detail information is extracted by the difference

between the PAN image and linear combination of the upsampled MS image; therefore,

the component substitution-based methods have a spectral distortion in the fused image.

In contrast, the multi-resolution analysis-based methods, such as Smoothing Filter-based

Intensity Modulation (SFIM) [15], generalized Laplacian pyramid (MTF-GLP) [16], and

indusion [17], extract the detail information by the difference between the PAN image and

its low resolution. These methods offer an outstanding spectral resolution, but they suffer

from spatial distortion in the fused image. The edge-preserving filtering techniques have

drawn an important role in pansharpening. Guided image filter [18] is one of the well-

known techniques. Yang et al. [19] introduced multi-scale guided filer based on adaptive

intensity-hue-saturation (MSGF); they used the intensity image as a guidance image to

enhance the PAN image. In our work, the multi-scale guided filter is used to enhance the

semantic detail map by utilizing the enhanced intensity image as a guidance image that is

obtained by CAE.

Recently, the use of deep neural networks has been a hot topic in many fields [20–

25]. Researchers have started investigating this topic for pansharpening. Scarpa et al. [21]

proposed the convolutional neural network-based pansharpening method.

Residual convolutional neural network (RCNN) was utilized to achieve pansharpening

[26]. Huang et al. [27] introduced a pansharpening model using deep neural networks

(DNN), which utilized the relationship between PAN image patches and MS image

patches for training the neural network.More recently, in [28], convolutional autoencoder

(CAE)-based multi-spectral image fusion was introduced in which the low-resolutionMS

images is fed into the trained CAE to generate estimated high-resolution MS images;

then, the fusion process is achieved by injecting the detailed map of each image into

the corresponding estimated high-resolution MS bands. Inspired by this, we propose a

pansharpening technique based on a convolutional autoencoder. First, the convolutional

autoencoder is trained from the degraded PAN image patches to generate the original

PAN image patches; the AIHS component is then tested on the trained network to obtain

enhanced intensity components. Further, the guided filter is employed to enhance the

PAN image using the enhanced intensity component. Finally, the experiments are con-

ducted on both real and degraded datasets. We showed that the fusion process of the

convolutional autoencoder with a guided filter is capable of preserving the high spa-

tial details and high spectral characteristics simultaneously, which is a start-of-the-art

approach on multiple tasks. And our method is also more robust against spectral and

spatial distortions.

1.1 Convolutional autoencoder

Autoencoder belongs to unsupervised learning that considers an input image and

attempts to reconstruct it back. The convolutional autoencoder is a sort of convolu-

tional neural network that reproduces the input image patches at the output. However,

the design of a convolutional autoencoder comprises two fundamental phases, which

are the encoding phase and the decoding phase. The encoding phase represents half

of the network, and it incorporates convolution and max-pooling layers. In contrast,
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the decoding phase for recreating the input image patches from the degraded pieces

comprises deconvolution and upscaling layers [29].

1.1.1 Encoding phase

A convolution among an input volume I = {I1, · · · , ID} with D dimension and every con-

volutional layer is composed of n convolutional filters F(1) =

{

F
(1)
1 , . . . , F

(1)
n

}

which is

considered to producem features.

Om = a

(

I ∗ F
(1)
m + b

(1)
m

)

m = 1, 2, · · · , n (1)

Om represents the feature maps of the input I, bm represents the bias, and a denotes an

activation function.

1.1.2 Decoding phase

The produced m feature maps considered to be used as input to the decoder, to recon-

struct the input image, which is obtained by the consequence of the convolution between

O = {Oi=1}
n with convolutional filters F(2) =

{

F
(2)
1 , . . . , F

(2)
n

}

that estimated as follows:

Ĩ = a

(

O ∗ F
(2)
m + b

(2)
m

)

(2)

Considering that both the output image patches and its input have the same dimension,

therefore, it is conceivable to relate I and Ĩ using a loss function to update the weights

during training, for example, mean square error (MSE).

L(I, Ĩ) =
1

2
‖I − Ĩ‖22 (3)

1.2 Adaptive intensity-hue-saturation

The IHS technique belongs to CS-based methods that introduced [30], and it is just

appropriate for MS images with three bands [11]. Even though the IHS strategy dis-

plays extraordinary spatial quality, it severely experiences spectral distortion. The general

formula for generating an intensity component is as follows:

I =

n
∑

i=1

αiMi′th (4)

where αi denotes the weight coefficients, and n represents the number of spectral bands.

Mi indicates the ith band of the upsampled MS band. Therefore, Rahmani et al. [31]

AIHS was introduced, in which the optimal weights are obtained by solving the following

optimization problem:

α∗
i = argmin

αi

∥

∥

∥

∥

∥

PAN −

n
∑

i=1

αiMi′th

∥

∥

∥

∥

∥

2

(5)

where PAN denotes panchromatic image.

1.3 Guided filter

The guided filter GF was introduced by He et al. [32]. The uses of guided filter have been

widely utilized in image processing fields such as detail enhancement and image fusion.

The guided filter canmaintain a strategic distance from ringing artifacts. TheGF depends

on a local linear model that is using the guided image gui to filter the input image inp.

Therefore, the output imageOut can conserve the essential data of the inp and obtain the
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variation trend of gui at the same time [19]. Mathematically, the guided filter is employed

to find a pair of scalar values ai and bi that solves the following problem [33]:

argmin
ai,bi

1

n

∥

∥inpi −
(

aiguii + bi

)
∥

∥

2

2
+ ζ |ai|

2
2 (6)

Here, n denotes to the number of pixels in a squared windowwwith size (2r+1)×(2r+ 1),

and ζ is a small regularization constant that prevents large ai.

ai =

1
n

(

inpi − ¯inpi
)T (

guii −
¯guii

)

1
n

(

guii −
¯guii

)T (

guii −
¯guii

)

+ ζ
(7)

=
cov

(

inpi − ¯inpi, guii − ¯guii
)

var
(

guii −
¯guii

)

+ ζ
(8)

bi = ¯inpi − ai
¯guii (9)

Here, ¯inpi and ¯guii represent the input imagemean and the guidance imagemean, respec-

tively. Thus, after computing ai; bi for all windows in the image, the filtering output is

computed as follows:

Outi = āiinpi + b̄i (10)

The following equation represented the guided filter operation in this paper:

Out = GF(gui, inp) (11)

2 Methodology

In this paper, we propose a pansharpening technique based on a convolutional autoen-

coder and CS-based method. First, we highlight the steps for building our technology

are:

• Utilize the convolutional autoencoder to enhance to enhance the intensity

component which is obtained by AIHS fromMS and PAN images. And the spatial

resolution enhancement of the degraded PAN image is used the to train the model.

• Generate the intensity component of the MS image by utilizing AIHS-based method,

which is then fed to trained convolutional autoencoder considering this as a testing

step.

• Utilize the estimated intensity component to enhance the PAN image by using the

guided filter.

• The fusion step represents the last phase of the proposed technique. However, it will

be explained in detail later.

Figure 1 illustrates the schematic of the proposed method.

2.1 Enhancing the spatial detail

To enhance the spatial detail of the intensity component, we utilize the convolutional

autoencoder network in which the relationship between PAN image patches and its

degraded form is learned. Note that the degraded PAN image is generated using bi-cubic

interpolation. The convolutional autoencoder is used to minimize the difference between

input image patches and reconstruction output original image patches. Figure 2 illustrates

the applied structure of the convolutional autoencoder.
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Fig. 1 The proposed methodology schematic. D represents the detailed map, and g represents the injection

gain

According to [28], the same description of the training network would apply here: the

PAN image and its spatially degraded image are partitioned into 8×8 patches with 5 over-

lapping pixels that include 500,000 patch pairs, 30 epochs for training, considering that

the relationship between PAN image patches and its degraded image patches is learned

Fig. 2 The structure of the convolutional autoencoder used
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by the training network. The following equation illustrates the output patches of the

convolutional autoencoder network at each iteration:

{

P̃i

}n

i=1
= Dec

(

Enc
(

{

P
L
i

}n

i=1

))

(12)

where
{

P̃i

}n

i=1
,
{

P
L
i

}n

i=1
represent the output and input patches, respectively. Enc and

Dec indicated the encoding and decoding processes, respectively. The encoding process

involves several layers starting with (1) the input image patch 8×8; (2) the Conv2D layer

that indicates a 2D convolutional layer with 16 filters 3×3 kernel size, activation “ReLU”

and padding “same”; the “ReLU” activation is used due to its simplicity and computation

efficiency compared to other activation functions [34]. (3) MAX-Pooling layer that indi-

cates a 2D max-pooling 2×2 region with padding “same”; (4) Conv2D layer with 8 filters

3×3 kernel size, activation “ReLU” and padding “same”; (5) Max-Pooling 2×2 region with

padding “same”; and (6) Conv2D layer with 8 filters 3×3 kernel size, activation “ReLU”

and padding “same”. The CAEs are fully convolutional networks; thus, the decoding pro-

cess is including a convolution. The decoding process involves several layers starting with

(1) the Conv2D layer that indicates a 2D convolutional layer with 8 filters 3×3 kernel

size, activation “ReLU” and padding ‘same’; (2) the UpSampling layer that indicates a 2D

UpSampling 2×2 region; (3) the Conv2D layer with 8 filters 3×3 kernel size, activation

“ReLU” and padding “same”; (4) UpSampling 2×2 region; (5) the Conv2D layer with 16

filters 3×3 kernel size, activation “ReLU” and padding “same”; and (6) the Conv2D layer

with 1 filter 3×3 kernel size, activation “linear” and padding “same”. Thus, Adadelta opti-

mization is used throughout training, and the MSE between the reconstructed output

patches and the target patches
{

P
H
i

}n

i=1
is used for updating the weights as follows:

L

(

{

P̃i

}n

i=1
,
{

P
H
i

}n

i=1

)

=
1

2

n
∑

i=1

∥

∥P̃i − P
H
i

∥

∥

2

2
(13)

After updating the weights, the back-propagation algorithm is utilized for training the

convolutional autoencoder network. In the stage of testing, because of similar character-

istics between the PAN and the corresponding intensity component of the MS image, the

trained network is relied upon to improve the intensity component of MS image; firstly,

the intensity component I which is generated by Eq. (5) is partitioned {Ii}
n
i=1 and is then

fed to the trained network for generating an estimated intensity component
{

EIi

}n

i=1
. Thus,

the
{

EIi

}n

i=1
is being tiled.

2.2 Fusion process

The estimated intensity component EI is employed to enhance the PAN image by using

the two-scale guided filter. Firstly, the EI is being used as the guidance image and the PAN

image as the input image.

O1 = GF(EI ,PAN) (14)

The difference between the approximation image O1 and the input image EI is repre-

sented by the spatial detail D1. Hence, D1 will blend with low-frequency component and

may cause serious spectral distortion [35]; therefore,D1 is then utilized as the input image

for the second scale of guided filter O2.

D1 = PAN − O1 (15)
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Fig. 3 The influence of the parameters r and ζ on the fusing result concerning CC and UIQI indexes. Higher

CC and UIQI indicate the better-fused effect

O2 = GF(EI ,O1) (16)

The difference between O1 and O2 is represented by the spatial detail D2.

D2 = O1 − O2 (17)

The total semantic mapDTotal is injected into the upsampledMS image through injection

gains gi which are adjusted by (19).

DTotal = D1 + D2 (18)

gi =
cov (MSi,EI)

var(EI)
(19)

Fig. 4 The influence of the parameters r and ζ on the fusing result concerning RMSE and RASE indexes.

Lower RMSE and RASE indicate the better-fused effect
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Fig. 5 The influence of the parameters r and ζ on the fusing result concerning SAM and ERGAS indexes.

Lower SAM and ERGAS indicate the better-fused effect

The high-resolution multi-spectral (HRMS) fused image is conducted by the following

equation:

HRMS = MSi + giDTotal (20)

3 Results and discussion

In this section, several experiments were performed on different datasets to evaluate the

performance of the model based on some quality metrics. Here, 8×8 patches with 5 over-

lapping pixels of the degraded PAN and the original PAN images that include 500,000

patch pairs were utilized for training the network. In total, six datasets have been selected

for implementation purposes. Three degraded datasets (full reference), which means

the reference image is available, and three real datasets (no reference image), namely

QuickBird and GeoEye.

Therefore, we compared our technique with several conventional efficient pansharpen-

ing methods, such as IHS [11], PCA [12], BDSD [36], PRACS [37], and AIHS [31], and

several state-of-the-art methods such as SFIM [15], MTF-GLP [16], Indusion [17], MSGF

Table 1 Descriptions of the experimental datasets

Datasets Size Spatial resolution Region and date

Degraded QuickBird Figs. 6 and 7 PAN, 256×256 0.7 m/2.8 m Sundarbans, India on

MS, 64×64 21 November 2002

Degraded GeoEye Fig. 8 PAN, 256×256 0.5 m/2 m Hobart, Australia on

MS, 64×64 24 February 2009

Real QuickBird Fig. 9 PAN, 1024×1024 0.7 m/2.8 m Xi’an, China on

MS, 256×256 30 September 2008

Real QuickBird Fig. 10 PAN, 1024×1024 0.7 m/2.8 m Sundarbans, India on

MS, 256×256 21 November 2002

Real GeoEye Fig. 11 PAN, 1024×1024 0.5 m/2 m Hobart, Australia on

MS, 256×256 24 February 2009
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Fig. 6 Fusion results of the full reference QickBird-1 dataset. a Reference image (256×256). b Degraded MS

image (64×64). c PAN image (256×256). d IHS method. e AIHS method. f PCA method. g BDSD method. h

PRACS method. i SFIM method. j Indusion method. kMTF-GLP method. l CAE method.mMSGF method. n

PNN method. o Proposed method

[19], CAE [28], and PNN [38]. Moreover, seven image quality indexes are broadly utilized,

to assess the quality of the fused image, which are:

1 Correlation coefficient (CC) [39]

2 Universal Image Quality Index (UIQI) [40]

3 Quaternion Theory-based Quality Index (Q4) [40]

4 Root mean square error (RMSE) [41]

5 Relative average spectral error (RASE) [42]

6 Spectral Angle Mapper (SAM) [43]

7 Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) [44]

To assess the quality of the fused images concerning real datasets, Ds, Dλ, and QNR [45]

were employed. The ideal value of each quality index is shown in parentheses in the tables.
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Fig. 7 Fusion results of the full reference QickBird-2 dataset. a Reference image (256×256). b Degraded MS

image (64×64). c PAN image (256×256). d IHS method. e AIHS method. f PCA method. g BDSD method. h

PRACS method. i SFIM method. j Indusion method. kMTF-GLP method. l CAE method.mMSGF method. n

PNN method. o Proposed method

3.1 Parameter investigation

Here, we study the influence of parameter setting in the guided filter on the fusion sim-

ulation of degraded QuickBird-1 dataset, namely, window size r and the regularization

parameter ζ . Figures 3, 4, and 5 illustrate the influence of these parameters, where the hor-

izontal axis is the regularization parameter ζ concerning three cases of window size r and

the vertical axis is quality index results. Therefore, as can be seen, the best performance

results originated from setting the parameters r and ζ at 8 and 0.82, respectively.

3.2 Fusion results of degraded datasets (full reference)

In this section, the simulations were carried out on degraded datasets that have the refer-

ence image to evaluate our proposedmethod according toWald’s protocol [46]. Regarding

the degraded datasets (QuickBird, GeoEye), the sizes of theMS image and the PAN image
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Table 2 Numerical results of the full reference QuickBird-1 dataset

Method CC(1) UIQI(1) RMES(0) RASE(0) SAM(0) ERGAS(0) Q4(1)

IHS 0.91446 0.93471 18.509 12.673 3.837 3.2713 0.8211

AIHS 0.93518 0.95778 15.045 10.301 3.7497 2.7063 0.88383

PCA 0.93743 0.94871 16.408 11.234 3.6063 2.9025 0.84805

BDSD 0.92229 0.95204 16.435 11.253 3.7728 2.9444 0.86477

PRACS 0.93038 0.95991 14.992 10.265 3.8317 2.7466 0.86389

SFIM 0.89958 0.92403 20.297 13.897 3.6792 3.5142 0.81325

Indusion 0.91806 0.93911 17.967 12.302 3.5524 3.1483 0.81981

MTF-GLP 0.91144 0.93984 18.306 12.534 3.6399 3.2217 0.84308

CAE 0.94467 0.95735 23.955 16.402 3.3501 4.1479 0.8968

MSGF 0.9264 0.93907 18.165 12.437 3.3836 3.1604 0.88853

PNN 0.89955 0.92229 21.857 14.965 4.8681 3.7866 0.8183

Proposed 0.94563 0.96355 14.096 9.6514 3.3264 2.5357 0.88685

are 64×64 and 256×256, respectively. The descriptions of the experimental datasets are

shown in Table 1.

3.2.1 Experiments on degraded QuickBird datasets

In this section, two pairs of QuickBird satellite datasets were examined; Fig. 6 illustrates

the fusion results of the degraded QuickBird-1 dataset. For better comparison, the red

square area is enlarged and then displayed at the bottom left of the fusion image. As can

be observed, Fig. 6d–j methods have more inferior pansharpening results than CAE and

proposed methods.

Figure 6i–j suffer from spatial distortion. Figure 6m suffers from spatial and spectral dis-

tortions. The fusion result of the PNNmethod is depicted in Fig. 6n, which produces some

unnatural color compared with the reference image. Furthermore, Fig. 6l CAE and pro-

posed method Fig. 6o look most similar to the reference image Fig. 6a, but the proposed

method performs better in terms of spectral and spatial fidelity. Similar observations can

be made regarding the experimental results from the QuickBird-2 dataset. Figure 7 dis-

plays the fusion results of the degradedQuickBird-2 dataset. For better visual comparison,

the red rectangle area is enlarged and then displayed at the bottom of the selected area;

thus, the proposed and CAE methods have performed better visual effects.

Table 3 Numerical results of the full reference QuickBird-2 dataset

Method CC(1) UIQI(1) RMES(0) RASE(0) SAM(0) ERGAS(0) Q4(1)

IHS 0.94819 0.95489 16.013 10.565 2.9752 2.6898 0.85877

AIHS 0.96171 0.96337 13.465 9.8843 2.8699 2.2927 0.8984

PCA 0.95507 0.95906 15.256 10.066 2.9418 2.557 0.84805

BDSD 0.9425 0.9547 16.41 10.828 3.0727 2.7548 0.85536

PRACS 0.96067 0.97082 13.29 8.7685 3.0473 2.2505 0.89358

SFIM 0.92309 0.9339 19.612 12.94 3.0571 3.2638 0.82182

Indusion 0.93623 0.94457 17.754 11.714 2.9083 2.9657 0.82554

MTF-GLP 0.93661 0.94967 17.309 11.42 2.9938 2.9018 0.85643

CAE 0.96082 0.96583 18.999 12.535 2.871 3.1639 0.8957

MSGF 0.9372 0.94047 18.635 12.295 2.9182 3.1012 0.90274

PNN 0.92756 0.93768 19.765 13.041 3.8949 3.2934 0.84088

Proposed 0.96366 0.97157 13.286 8.7657 2.7686 2.2271 0.90617
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Fig. 8 Fusion results of the full reference GeoEye-1 dataset. a Reference image (256×256). b Degraded MS

image (64×64). c PAN image (256×256). d IHS method. e AIHS method. f PCA method. g BDSD method. h

PRACS method. i SFIM method. j Indusion method. kMTF-GLP method. l CAE method.mMSGF method. n

PNN method. o Proposed method

Table 4 Numerical results of the full reference GeoEye-1 dataset

Method CC(1) UIQI(1) RMES(0) RASE(0) SAM(0) ERGAS(0) Q4(1)

IHS 0.94344 0.94327 19.622 18.015 5.6283 4.6538 0.8837

AIHS 0.95117 0.95566 17.432 16.004 5.2561 4.0669 0.90041

PCA 0.71449 0.80704 36.19 33.227 14.476 8.9614 0.68996

BDSD 0.95674 0.96131 17.53 16.095 6.2016 4.0897 0.91719

PRACS 0.94091 0.9545 17.857 16.395 4.6631 4.2619 0.89865

SFIM 0.7315 0.6906 57.368 52.671 6.0017 14.559 0.89337

Indusion 0.94438 0.94489 20.182 18.529 5.8298 4.4905 0.88997

MTF-GLP 0.95403 0.95517 18.87 17.325 6.6894 4.248 0.90944

CAE 0.95082 0.94401 26.323 24.168 5.389 5.9969 0.8993

MSGF 0.9575 0.9571 16.217 14.791 4.6017 3.7496 0.92439

PNN 0.93825 0.91003 27.623 25.361 9.9312 5.6757 0.86618

Proposed 0.95794 0.96376 16.103 14.784 4.8976 3.7145 0.91728
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Fig. 9 Fusion results of the real QuickBird-1 dataset. a Upsampled MS image (1024×1024). b PAN image

(1024×1024). c IHS method. d AIHS method. e PCA method. f BDSD method. g PRACS method. h SFIM

method. i Indusion method. jMTF-GLP method. k CAE method. lMSGF method.m PNN method. n

Proposed method

In terms of objective evaluation, the numerical indexes of fused images for Figs. 6 and

7 are computed and reported in Tables 2 and 3, respectively. From both tables, it is clear

that our method can contribute to the best values in terms of quality indexes.
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Fig. 10 Fusion results of the real QuickBird-2 dataset. a Upsampled MS image (1024×1024). b PAN image

(1024×1024). c IHS method. d AIHS method. e PCA method. f BDSD method. g PRACS method. h SFIM

method. i Indusion method. jMTF-GLP method. k CAE method. lMSGF method.m PNN method. n

Proposed method
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Table 5 Numerical results of the real QuickBird-1 dataset

Method Ds(0) Dλ(0) QNR(1)

Proposed 0.1289 0.0008 0.9699

PNN 0.1957 0.2305 0.8976

MSGF 0.151 0.019 0.9603

CAE 0.16027 0.001 0.9620

MTF-GLP 0.15097 0.068214 0.94468

Indusion 0.13001 0.042951 0.95876

SFIM 0.13109 0.052531 0.95375

PRACS 0.1834 0.0382 0.9469

BDSD 0.1998 0.1235 0.92189

IHS 0.24386 0.06756 0.91959

AIHS 0.22026 0.043312 0.93374

PCA 0.24261 0.05516 0.92611

3.2.2 Experiment on degraded GeoEye dataset

Figure 8 displays the fusion results of the degraded GeoEye-1 dataset. The red square area

is enlarged and then displayed at the bottom left of the fusion image. As shown in Fig. 8f,

PCA produced seedy color in the fused image, and Fig. 8f–h suffer from the spectral dis-

tortion. Here, it can be seen that the SFIM, Indusion, and MTF-GLP methods perform

well, as shown in Fig. 8i–k. We can also observe from Fig. 8l that the result of the CAE

method has a color problem at the vegetation area compared with the reference image.

The colors of the fusion image for MSGF and PNN methods have remarkable distor-

tion, as shown in Fig. 8m, n. Overall, the proposed method created the fused image, with

appropriate spectral and spatial resolution, as shown in Fig. 8o compared with others.

The numerical indexes of fused images for Fig. 8 are computed and reported in Table 4.

From the table, it is clear that our method can contribute to the best values in the most

quality indexes.

3.3 Fusion results of real datasets (no reference)

Regarding real datasets, two kinds of real datasets (QuickBird, GeoEye) were imple-

mented, and the sizes of the MS image and the PAN image are 256×256 and 1024×1024,

respectively.

Table 6 Numerical results of the real QuickBird-2 dataset

Method Ds(0) Dλ(0) QNR(1)

Proposed 0.13935 0.081319 0.96598

PNN 0.181486 0.095215 0.96407

MSGF 0.082709 0.102 0.96379

CAE 0.19834 0.093565 0.94344

MTF-GLP 0.13929 0.092786 0.93708

Indusion 0.030669 0.087048 0.96348

SFIM 0.066346 0.14364 0.93699

PRACS 0.124 0.09274 0.9646

BDSD 0.3088 0.0974 0.9593

IHS 0.2534 0.10823 0.91008

AIHS 0.16242 0.095591 0.93691

PCA 0.28645 0.13137 0.90127
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Fig. 11 Fusion results of the real GeoEye-1 dataset. a Upsampled MS image (1024×1024). b PAN image

(1024×1024). c IHS method. d AIHS method. e PCA method. f BDSD method. g PRACS method. h SFIM

method. i Indusion method. jMTF-GLP method. k CAE method. lMSGF method.m PNN method. n

Proposed method
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3.3.1 Experiments on real QuickBird datasets

Two pairs of real QuickBird satellite datasets were examined; for better visual comparison,

the red square area is enlarged and then displayed at the bottom left of the fusion image.

Figure 9 displays the fusion results of real QuickBird-1 dataset.

The fusion results of all methods improved, but the CS-basedmethod and CAEmethod

suffer from spectral distortion, as shown in Fig. 9c, e, and k. The BDSD fusionmethod has

remarkable distortions. For SFIM, Indusion, and MTF-GLP methods, they can achieve

relatively better results regarding spectral resolution than others, as shown in Fig. 9h–j.

The MSGF method suffers from spatial distortion, as shown in Fig. 9l, and the colors of

the fusion image for the PNN method have remarkable distortions. However, the fusion

result of the proposed method can perform better than others, as shown in Fig. 9o. Sim-

ilarly, the observations can be done regarding the experimental results from the real

QuickBird-2 dataset. Figure 10 displays the fusion results of the real QuickBird-2 dataset.

The CS-based methods suffer from spectral distortion, as shown in Fig. 10c, e. The BDSD

fusion method has remarkable distortions as shown in Fig. 10e. The CAE method can

achieve well concerning the spatial aspect but still has a lighter color in the vegetation

area compared with the upsampled MS image, as shown in Fig. 10k.

The fusion results of SFIM, Indusion, MTF-GLP, MSGF, PNN, and proposed methods

improved in both aspects of spectral and spatial.

The numerical measurements of real data fused images for Figs. 9 and 10 are computed

and listed in Tables 5 and 6, respectively.

Table 5 illustrates the proposedmethod performed the best value in terms ofDλ andDs.

Thus, our method showed the best value in terms of Dλ and QNR, as reported in Table 6.

3.3.2 Experiment on real GeoEye dataset

Figure 11 displays the fusion results of the real GeoEye-1 dataset. The selected red square

area is enlarged and then displayed at the bottom right of the fusion image for better

visual comparison. As shown in Fig. 11c–e, these methods can perform well regarding

spatial aspect but suffer from spectral distortion, and Fig. 11f–i and l, suffer from notable

spectral and spatial distortion. Here, it can be seen that theMTF-GLP, CAE, and proposed

methods perform well, as shown in Fig. 11j, k, and o.

Overall, the proposed method created the fused image, with appropriate spectral and

spatial resolution.

Table 7 Numerical results of the real GeoEye-1 dataset

Method Ds (0) Dλ (0) QNR(1)

Proposed 0.1083 0.0806 0.95706

PNN 0.094048 0.060553 0.95616

MSGF 0.1102 0.095 0.95434

CAE 0.13473 0.14395 0.93975

MTF-GLP 0.12752 0.13915 0.92936

Indusion 0.050782 0.11372 0.9568

SFIM 0.13797 0.20061 0.91727

PRACS 0.0464 0.0936 0.9566

BDSD 0.1242 0.1269 0.9446

IHS 0.1593 0.1277 0.92838

AIHS 0.123 0.123 0.9452

PCA 0.1869 0.1555 0.92199
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The numerical indexes of fused images for Fig. 11 are computed and reported in Table 7.

From Table 7, the PNN method can perform the best value in terms of Dλ, followed by

our method. Overall, our method can still contribute to the best values concerning quality

indexes.

4 Conclusion

In this paper, we have proposed a pansharpening technique based on a convolutional

autoencoder with AIHS and a multi-scale guided filter. The proposed method first

trained the convolutional autoencoder to learn the relationship between the panchro-

matic image and its degraded version. The trained network is used to enhance the

intensity component. Furthermore, the multi-scale guided filter is used to enhance the

original panchromatic image. Several experiments were conducted, and the article has

put in place the results of the experiment. The outcomes of this research are, first, in

terms of visual aspect, the proposed method includes more of the spectral detail of the

MS image and spatial detail of the panchromatic image than existing fusionmethods. Sec-

ond, the quality indexes of our method show significant enhancements compared with

comparative methods. Overall, the model developed in this research was able to pre-

serve appropriate spatial and spectral aspects of fusion image compared with comparative

methods in both aspects, subjective and objective evaluations.
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