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ABSTRACT Hyperspectral PRISMA images are new and have not yet been evaluated for their ability to

detect marine plastic litter. The hyperspectral PRISMA images have a fine spectral resolution, however,

their spatial resolution is not high enough to enable the discrimination of small plastic objects in the

ocean. Pansharpening with the panchromatic data enhances their spatial resolution and makes their detection

capabilities a technological challenge. This study exploits, for the first time, the potential of using satellite

hyperspectral data in detecting small-sized marine plastic litter. Controlled experiments with plastic targets

of various sizes constructed from several materials have been conducted. The required pre-processing steps

have been defined and 13 pansharpening methods have been applied and evaluated for their ability to

spectrally discriminate plastics from water. Among them, the PCA-based substitution efficiently separates

plastic spectra from water without producing duplicate edges, or pixelation. Plastic targets with size

equivalent to 8% of the original hyperspectral image pixel coverage are easily detected. The same targets can

also be observed in the panchromatic image, however, they cannot be detected solely by the panchromatic

information as they are confused with other appearances. Exploiting spectra derived from the pan-sharpened

hyperspectral images, an index combining methodology has been developed, which enables the detection of

plastic objects. Although spectra of plastic materials present similarities with water spectra, some spectral

characteristics can be utilized for producing marine plastic litter indexes. Based on these indexes, the index

combining methodology has successfully detected the plastic targets and differentiated them from other

materials.

INDEX TERMS PRISMA satellite data, hyperspectral imaging, pansharpening, marine pollution, plastic

litter detection, indexes, controlled experiments, spectral analysis, image denoising.

I. INTRODUCTION

Oceans receive solid waste from anthropogenic activities [1].

Human heavy reliance on plastic materials is creating

a visible and even pervasive ‘‘plastic footprint’’ in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiangqiang Yuan .

environment. Plastic fragments, lolly sticks, plastic caps/lids,

and string/cord (diameter < 1 cm) are the most frequent

debris and their amount in the oceans and coastal areas, which

is steadily increasing, is now a global major environmental

problem [2]. Accumulation of marine debris poses consider-

able threats to the livelihood of aquatic species and ecosys-

tems, as well as to human beings since microplastics infiltrate
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the diet of marine and flying organisms and eventually our

food chain [3]. Moreover, plastic debris in the oceans is a

vector for both organic pollutants [4] and harmful microal-

gal assemblages [5]. Substantial waste detection, monitoring,

and management challenges are faced with regard to plastic

litter [6]. At the global scale, the 2030 Agenda for Sustainable

Development, adopted by the United Nations in 2015 [7],

calls to conserve and sustainably use the oceans, seas, and

marine resources with the Sustainable Development Goal

No. 14. Among the SDG 14 targets, the 14.1 calls to pre-

vent and significantly reduce marine pollution of all kinds,

in particular from land-based activities, including marine

debris and nutrient pollution. From the European perspective,

the Marine Strategy Framework Directive (MSFD) requires

the EU Member States to ensure that ‘‘properties and quan-

tities of marine litter do not cause harm to the coastal and

marine environment’’ [8].

Despite encouraging results of initial experiments on the

detection of large-sized marine debris, overall, marine debris

monitoring represents a significant technological challenge.

In [9] it was shown that machine learning techniques when

applied on Worldview-3 images of 0.3 to 1.2 m spatial res-

olution, efficiently detect Expanded Polystyrene (EPS) and

Anthropogenic Marine Debris (AMD) mixtures deposited on

three beaches of Chiloé island. However, it was noted that

the inclusion of other ranges of wavelengths may enable the

detection of plastic objects in adverse weather conditions,

as well as the distinction of types of waste in AMD mix-

tures other than EPS. In [10] spectral at-sensor properties

derived from airborne SASI SWIR imagery with pixel size

0.5 m × 1.2 m were employed for the distinction of ocean

plastics from surrounding seawater using the unique absorp-

tion features of polymers. The authors used a reference spec-

tral library of several polymer types to identify the plastic

type of a large-sized ghost net for which spectral information

from 11 SWIR pixels had been previously retrieved. The

study showed the influence of seawater on ocean plastic spec-

tra. Although common absorption features with the library’s

reference spectra and other hydrocarbons around 1215 and

1732 nmwere observed, ocean plastic spectra presented weak

similarities with reference spectra. Furthermore, the authors

highlighted the need to further investigate the size distribution

of observed pieces in relation to the pixel size, although

theoretically, there is potential in detecting particles with a

size equivalent to the simulated 5% pixel coverage.

In [11] the spectral properties of three artificial floating

plastic targets, as well as the surrounding seawater using

Sentinel-1 and Sentinel-2 imagery, were investigated. These

floating targets consisted of 10 m × 10 m PET-11.5 L water

bottles, LDPE plastic bags, and nylon fishing ghost nets.

The authors provided reasonable evidence that both Syn-

thetic Aperture Radar (SAR) and optical imagery have poten-

tial application in detecting floating plastics in the marine

litter; however, they asserted that the identification of the

plastic types and shapes requires multi- to hyper-spectral

imaging. In a follow-up experiment [12], artificial targets

in 6 Sentinel-2 images in combination with UAV optical data

were examined. Spectral unmixing andmatched filtering pro-

cess followed for classifying the pixels containing plastics.

Themethodology revealed promising results. Plastic litter tar-

gets were successfully identified when the plastic coverage of

the Sentinel-2 images was larger than 25%. In [13] the coastal

waters of Ghana, North-West America, Vietnam, and the east

coast of Scotland were selected as case studies based on per-

sistent or acute incidences of marine plastic litter reported in

the scientific literature, popular press, and social media. The

authors developed the Floating Debris Index (FDI), which

allows detecting materials floating on the ocean surface at

sub-pixel scales in Sentinel-2 images. Then, they applied the

Naïve Bayes algorithm on FDI, NDVI, and atmospherically

corrected Sentinel-2 images to compute the probability of

a detected pixel belonging to each of the following classes:

seaweed; spume; timber; macroplastics; and seawater. The

detected pixels were assigned to the class with the highest

probability. Candidate plastics were successfully classified as

plastics with an accuracy of 86%.

In [14] the authors employed WorldView-2, Advanced

Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), and SAR satellite datasets for monitoring marine

plastic debris events after the great east Japan earthquake

in March 2011, when a remarkable amount of >1.5 million

tons of debris was generated. They employed satellite

imagery to monitor plastic pathways and concluded that

high spatial resolution satellite tracking reveals faster floating

debris motions than expected and invigorated plume evolu-

tion within these regions. The same conclusion was drawn

in [15] where high-resolution multispectral satellite imagery

was used for the efficient monitoring of marine litter dynam-

ics and the detection of its origin. The study also focused

on the detection of the dominant marine plastic pathways.

The authors detected and verified multiple floating plastic

debris incidents using Planet, Sentinel-2, and Landsat-8 data

by systematically assessing the spectral signatures from pure

floating plastics and discriminating them from other floating

features on the sea surface such as sargassum, foam, etc.

Research has indicated that the key requirements needed

by remote sensing techniques for improving the capability to

detect the spectral signature characteristics associated with

plastics, and even theoretically being able to discriminate

between different polymers, are high spatial and spectral

resolutions. So far, due to the technical and physical limita-

tions of satellite sensors, there are critical trade-offs between

the spectral and spatial resolution of satellite imagery. Data

of high spectral resolution are characterized by low spatial

resolution and vice versa. Nevertheless, the plastic crisis

stresses the need to increase the current satellite observing

systems’ potentials for marine plastic pollution detection and

monitoring. Towards optimizing current observing systems’

potentials for marine plastic pollution datasets to detect and

identify plastics in marine litter, in this study, we evaluate

several pansharpeningmethods on the new hyperspectral data

provided by the PRISMA satellite and we propose indexes
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to detect plastic objects efficiently. Medium resolution

(30 m × 30 m) PRISMA hyperspectral images cover a

wide spectral range and have a fine spectral resolution

(bandwidth <= 12 nm). Pansharpening with PRISMA

panchromatic band could increase the hyperspectral data

spatial resolution to 5 m × 5 m and their potentials for

detecting plastic debris in finer scales. The study focuses on

the detection of small-sized plastic targets (≤5 m), which

makes this research even more challenging. Through con-

trolled experiments with various plastic target sizes, it con-

tributes to investigating the undermost size of the observed

targets in relation to the pixel size, as well as the way that the

seawater influences the ocean plastic litter spectra. Finally,

the study highlights the required pre-processing steps and

contributes to evaluating the images provided by the recent

hyperspectral PRISMA mission for marine litter detection.

It is worth noting that not only PRISMA data but also satellite

hyperspectral data are being evaluated for the first time for

their potentials in detecting plastic litter.

II. PANSHARPENING METHODS

Pansharpening of hyperspectral (HS) images is still an open

issue. So far, only a few methods have been presented in

the literature to address it, the majority of which has been

developed in order to fuse panchromatic (PAN) and multi-

spectral (MS) data or MS and HS data acquired on a similar

spectral range. However, with the increasing availability of

HS systems, the pansharpening methods have been extended

to the fusion of HS and PAN images. The arisen difficulty

consists in defining a fusion model that yields good perfor-

mance in the part of the HS spectral range that is not covered

by PAN data, in which the high spatial resolution information

is missing [16]. In the last decades, a variety of pansharpening

techniques have been developed.Most of them can be roughly

classified into five categories: component substitution (CS);

multiresolution analysis (MRA); hybrid; Bayesian; and deep

learning (DL) methods.

In the CS approach, a component of the HS image is

substituted with the PAN image. These methods rely upon

the higher spectral resolution image’s projection into another

space to separate spatial and spectral information. Subse-

quently, the component that contains the spatial information

is substituted with the PAN image and the sharpened data are

projected back to the original space [16]. A well-known CS

method exploits the Principal Component Analysis (PCA).

Other CS methods are the Gram–Schmidt (GS) and the GS

Adaptive (GSA) methods [17]. The GS method begins with

the creation of the low resolution (LR) PAN image by aver-

aging the bands of the HS image. Then, a complete orthog-

onal decomposition (GS transformation) is performed on the

created LR PAN image together with the HS image, where

the former is the first component. Histogram matching is

applied on the original PAN image to match the simulated

one and then the modified PAN image substitutes the first

component of the transformed image. The pan-sharpened

image is procured by inverting the decomposition. In [17] the

GSA method was proposed, which is an enhanced version

of GS. In this method, the simulated PAN image is generated

by the weighted average of the HS bands.

In the MRA approach spatial details extracted from the

PAN image through a multiresolution analysis are injected

into the upsampled HS bands. The concept of this pansharp-

ening category can be described with the formula below (1):

F = H̃S + G ⊗ (P − PLP) (1)

where F is the pan-sharpened result, H̃S is the interpolated

HS image, G are the gain coefficients, P is the PAN image,

PLP is the low-pass version of P, and the symbol ⊗ denotes

element-wise multiplication.

The steps of this approach are: 1) interpolating the

HS image to the scale of the P image; 2) calculating a

low-pass version of PAN; 3) computing the gain coefficients,

and 4) injecting the extracted details into the interpolated

HS image. The gain coefficients are most commonly either

a matrix with all cells equal to 1 (additive injection scheme)

or are calculated by (2):

G = H̃S ⊘ PLP (2)

where the symbol ⊘ denotes element-wise division.

This is the high pass modulation (HPM) or multiplicative

injection scheme, where the local intensity contrast of the

PAN image is injected into the fused image. A well-known

method of this category is the Smoothing Filter-based Inten-

sity Modulation (SFIM) algorithm [18], where the low pass

version of the PAN image is calculated by the application

of a single linear time-invariant low pass filter to the PAN

image and the injection scheme is the HPM. Other MRA

methods are based on the pyramidal decomposition, where

the low-pass filtering of the PAN image is done in more than

one step [19]. A Gaussian filter is applied in each level and

the differences between consecutive levels define the Lapla-

cian pyramid. The Gaussian filter is used because it is most

suitable to match the sensor’s Modulation Transfer Function

(MTF), which allows extracting details from the PAN image

that are not visible in the HS image due to its spatial res-

olution. Then, either the additive or multiplicative injection

scheme could be used, resulting in the MTF-Generalized

Laplacian Pyramid (MTF-GLP) or the MTF-GLP High Pass

Modulation (MTF-GLP-HPM) method, respectively. Local

mean matching (LMM) and local mean and variance match-

ing (LMVM) filters [20] also belong to theMRA pansharpen-

ing approach. They are designed to minimize the difference

between the fused image and the low-resolution HS bands,

so they preserve most of the HS image’s spectral information.

The hybrid approach uses concepts from the CS and

MRA-based methods. Since CS methods are known for

preserving the spatial information but generating spectral

distortion, whereasMRAmethods preserve the spectral infor-

mation but may have some spatial blur, hybrid methods

have been created to find a balance between spectral and

spatial preservation. Such a method is the Guided Filter

PCA (GFPCA) [21]. In this method, PCA is applied to the
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HS image to decorrelate the bands and separate the noise from

the signal. Instead of substituting the first component with

the PAN image, the first k PCA bands with the most infor-

mation are upsampled by applying a guided filter technique.

The rest of the PCA bands are simply interpolated by cubic

interpolation. Then, the inverse PCA is performed to obtain

the pan-sharpened image.

The Bayesian approach utilizes knowledge modeling

through an appropriate distribution to solve the probabilistic

framework that results in the pan-sharpened HS image. The

main idea of the Bayesian methods is to see the PAN image

as the spatial degradation of the result we want to restore

and the HS image as its spectral degradation. A good mod-

eling knowledge of those degradations is needed to reverse

them to restore the fused image. The Naïve Gaussian prior

method (BayesNaive) [22] utilizes the Markov chain Monte

Carlo (MCMC) method to infer the pan-sharpened image

from its posterior distribution. The HySure [23] method

can also be classified into this category as it proposes a

form of vector total variation (VTV) for the regularizer, and

the pan-sharpened image is the solution of an optimization

problem.

Recent research in pansharpening involves deep learning

approaches based on convolutional neural networks (CNNs).

In this study, three CNNs have been applied. The first two

followed a supervised approach and were trained using the

Keras library [24] (backend: Tensorflow [25]). The third

followed an unsupervised approach and was trained using the

Pytorch [26] library.

The first DL method (PNN) was based on a three-layer

architecture proposed in [27] for the pansharpening of very

high resolution (VHR) multispectral satellite images. The

first convolutional layer computes 64 feature maps using a

9 px × 9 px receptive field (patch size) and the second com-

putes 32 featuremapswith a 5 px× 5 px kernel size. Rectified

Linear Unit (ReLU) was used as an activation function in

the hidden layers while the identity function was used in the

output layer with a 5 px × 5 px kernel size. The backprop-

agation process was implemented according to the Adaptive

moment estimation (Adam) method [28]. The spatial reso-

lution of the input and output of the network was defined

according to Wald’s protocol. In more detail, for the study

needs the network was trained on an input that resulted from

concatenating: i) the panchromatic (PAN) image (original

spatial resolution: 5 m) downsampled to the spatial resolution

of the HS image, which for PRISMA corresponds to 30 m;

and ii) the HS image downsampled by the same ratio, i.e.

1/6 to 180 m and then upsampled to its original size. The

original HS image was fed to the network as an output. Thus,

the trained CNN is expected to approximate the function

that upscales a PRISMA HS image by the ratio mentioned

above. During the inference stage, the pan-sharpened image

(spatial resolution: 5 m) was created by feeding the network

with an input that results from concatenating: i) the original

PAN image; and ii) the original HS image upsampled to the

size of the original PAN. The training was performed on a

PRISMA image acquired on 18/09/2020 (size: 1000 px ×

1000 px) on ∼60000 patches (size: 9 px × 9 px) and lasted

for ∼6 hours (160 epochs, batch size:128). For the pan-

sharpening of any other PRISMA image, a fine-tuning pro-

cess is required. In this study, the fine-tuning process lasted

for ∼1 hour. Fine-tuning was considered necessary since the

radiance values differ between different acquisition dates. It is

noted that this CNN, besides being trained on the original

bands, was also trained on values produced after clipping

1% of the histogram values for each band (left and right) to

prevent lower performance due to sparse extreme values.

The second DL method (CAE) was based on the architec-

ture proposed in [29] for the pansharpening of VHR mul-

tispectral satellite images. The architecture is composed of

an encoder and a symmetric decoder. The encoder consists

of three convolutional layers and two pooling layers. The

decoder consists of three convolutional layers and two upsam-

pling layers. To enhance performance, for the purpose of

the pansharpening of the PRISMA images, skip connections

were added between the encoding and the decoding part. Rec-

tified Linear Unit (ReLU) was used as an activation function

in the hidden layers while the identity functionwas used in the

output layer. The backpropagation process was implemented

according to the Adam method. The spatial resolution of

the input and output of the network was defined according

to Wald’s protocol. For the current study, the network was

trained on an input that resulted from downsampling the PAN

image from 5 m to 30 m (ratio: 1/6) and then upsampling it to

its original size (6000 px× 6000 px). The original PAN image

was fed to the network as an output. During the inference

stage, the pan-sharpened image (spatial resolution: 5 m) was

created by feeding the network with the upsampled HS bands

to the size of the original PAN. The HS bands were fed

to the network one by one. The training was performed on

the PAN band of a PRISMA image acquired on 18/09/2020

on ∼1.5 million patches (size: 8 px × 8 px) and lasted

for ∼5 hours (150 epochs, batch size: 128).

For the third DL method, the guided deep decoder (GDD)

proposed in [30] was applied. GDD is composed of an

encoder-decoder network with skip connections and a deep

decoder network. The encoder-decoder network is similar to

the architecture of U-net [31] and produces the features of a

guidance image at multiple scales. The network introduces an

upsampling refinement unit (URU) and a feature refinement

unit (FRU) to promote similar spatial locality and semantic

alignment with the features of the guidance image. The pro-

posed loss function is presented below (3):

L = µ
∥∥X̃S − Ỹ

∥∥2
F

+
∣∣D∇X̃ −∇G̃

∣∣ (3)

where X̃ is the output pan-sharpened image, Ỹ is the HS

input image, G̃ is the PAN input image expanded to the same

number of bands of X̃, ∇X̃ is the image gradient of X̃, ∇G̃

is the image gradient of G̃, X̃S is the spatially downsampled

X̃, D is the diagonal matrix to weight each channel of ∇X̃

so that the magnitude of X̃ is scaled to that of ∇G̃, µ is a
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scalar controlling the balance between the two terms, ‖·‖F is

the Frobenius norm, and | · | is the l1 norm.

This network was tested on a PRISMA image acquired

on 18/09/2020. A segment of the PAN band with size

210 px × 200 px represented the guidance image. The input

HS segment corresponding to the same region (35 px× 33 px)

was fed to the model in seven separate groups because of

memory limitation, resulting in seven separate trainings. Each

training lasted for ∼20 min (6000 iterations). The final pan-

sharpened image was created by concatenating the partial

output images. It has to be noted that the acronyms used for

the three DL approaches were acquired from the respective

studies.

III. FIELD CAMPAIGNS: DATA ACQUISITION AND

PROCESSING

The controlled experiments took place in the area of

Tsamakia beach, in the coastal region of Lesvos island,

Greece. The selected area offers plenty of unobstructed space

guarantying the construction, deployment, and storing of

targets during the experiments, and it does not hinder any

touristic or commercial activities. Additionally, Tsamakia

beachwaters are sufficiently deep and the seabed offers a dark

substrate that efficiently simulates deep waters.

For the experiment needs, 12 floating plastic targets were

constructed in total. Their size was selected according to

the spatial resolution of PRISMA which is expected to be

achieved by pansharpening techniques, i.e. 5.1 m × 5.1 m

(similar to the resolution of PRISMA fused data), 2.4 m ×

2.4 m (nearly half of the resolution of PRISMA fused data),

and 0.6 m × 0.6 m (about 1/8 of the resolution of PRISMA

fused data). For each one of these three different sizes of

targets, four types/compositions of plastic materials with var-

ious colors were set up (Fig. 1): 1) High-density polyethylene

(HDPE) (tarps in white, yellow and green color); 2) Polyethy-

lene Terephthalate (PET) (transparent water bottles and green

oil bottles); 3) Polystyrene (PS) (sheets for building insulation

in cyan color); and 4) all the above materials in equal surface

extent. HDPE as well as LDPE (low-density polyethylene)

and PP (polypropylene) are used to make common household

items such as milk jugs, plastic bags, and drinking straws.

Thesematerials have less density than seawater, causing them

to float on the sea surface. PET, PVC (polyvinyl chloride),

and PS are denser than seawater. They are usually observed

on beaches and will most likely float on coastal seawater or

close to ships before sinking and litter the seabed.

The analysis was performed on two clear sky PRISMA

images collected on 18th September 2020 and

22nd October 2020. On the dates that the satellite passed

over the test area, offshore deployment of the targets was

carried out. A series of steel and cement anchors were used

for the offshore deployment of the targets. The anchors

were set above dark patches of the seafloor to minimize the

reflectance contribution of a bright seafloor. The targets were

deployed at a distance of 30 m from each other, to minimize

the possibility that more than one target would be captured

FIGURE 1. The targets. (a) Focus set on HDPE. (b) Focus set on PS.
(c) Focus set on PET.

in the same PRISMA pixel. They were set at varying sea

depths due to area restrictions. Larger targets were set deeper

(∼12 m depth) than smaller targets (∼2 m depth) (Fig. 2).

GPS instruments were attached to four of the targets used.

In addition, on the experiments’ dates, close-range RGB

images were acquired using the on-board camera of a DJI

Phantom 4 Pro V2.0 UAV. These images were orthorectified

(Fig. 2) using the Agisoft Metashape software [32]. The

spatial resolution of the orthophotos was around 2.5 cm

depending on the flight height. In this resolution all the targets

are well distinguished. However, the four 0.6 m × 0.6 m

targets are not distinguishable at the scale of Fig. 2.

FIGURE 2. Orthophoto image of the targets offshore. (a) Date:
18/09/2020. (b) Date: 22/10/2020.

PRISMA hyperspectral (HS) imagery includes 234 bands

(400-2500 nm) at a spatial resolution of 30 m. Addition-

ally, PRISMA Panchromatic (PAN) imagery (400-700 nm)

is provided at a spatial resolution of 5 m. The PAN data

is co-registered with the HS data to permit the testing of

image fusion techniques. For the study needs, both level 1

(L1) and level 2d (L2D) PRISMA products were analyzed.

Because atmospheric correction over water areas affects

image radiometry, pansharpening was decided to be carried

out using the L1 products. Regarding pre-processing, it was

decided to avoid applying an atmospheric correction to the

HS image to mitigate errors that could arise from any cor-

rection scheme. The available L1 products presented a slight
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FIGURE 3. Zoomed in water PAN image. (a) Before the noise reduction. (b) High-pass Gaussian result. (c) After the noise reduction.

misalignment between the HS and the PAN image; thus, fine

co-registration between the two datasets was initially carried

out. Finally, in the PAN images, a linear periodic noise was

observed in water areas where the radiance values measured

by the sensor are considerably low compared to land areas.

Elimination of such noise is usually accomplished by

Fourier filtering where the image is decomposed into fre-

quency waves by a 2D Fourier transformation and then filter-

ing of specific frequencies (discrete spikes) takes place on the

frequency domain of the magnitude. However, in PRISMA

images, such spikes were not observed for two reasons: 1) the

linear noise presented in the image contains both high- and

low-intensity values; and 2) the lines are not continuous and

present various spacing among them. Moreover, the spatial

frequency of the linear pattern is not constant. Thus, a new

method was developed. Firstly, a high- pass Gaussian filter

was applied on the PAN image, which amplifies the noise

and produces an image with gray pixels (zero value) for

the non-noisy pixels of the original PAN image (Fig. 3)

and with bright or dark pixels for the noisy pixels. This

process highlights pixels that present different values from

their neighbors, including pixels that present plastic targets.

Then, the linear noise’s inclination and the number of the

highlighted pixels that lay on lines having such an inclination

are calculated.

If the number of the highlighted pixels exceeds a threshold

for each line, then the algorithm assigns the mean value

of water pixels to the highlighted pixels. This method does

not eliminate the linear noise with 100% accuracy; however,

the low number of bright residuals slightly affects the plastic

detection process. Although around 10% of the noisy pixels

remain, their intensity values are closer to those of the water

pixels.

A variety of pansharpening methods were then applied to

the PRISMA data to procure an HS image with better spa-

tial resolution. These methods were briefly described in the

previous section. Before pansharpening, bands with low

signal-to-noise-ratio were excluded from the data resulting in

an HS image with 175 bands. The bands that were removed

were in the intervals 1350-1470 nm and 1800-1950 nm.

In these spectral regions, water vapor absorbs much of the

incident solar radiation.

IV. PANSHARPENING RESULTS AND EVALUATION

Pansharpeningmethods were initially evaluated for their abil-

ity to discriminate the plastic targets from water. In Fig. 4, 5,

the spectral signatures of the plastic targets and various water

samples (the same for every image) are shown for the orig-

inal HS image and each pan-sharpened result in blue color.

The various plastic materials are shown in different colors

although their identification is not of interest at this point.

Water vapor absorption at (720, 820, 940, and 1120) nm

and molecular oxygen absorption at 760–770 nm are easily

observed in all the signatures. The plastic targets and random

spectral signatures of water pixels show that target and water

spectra have a similar shape but the spectra of the targets

present higher radiance values, except for a few water spectra

corresponding to water pixels near the shore. In Table 1 sim-

ilarity measurements (spectral angle distance (SAD) and the

correlation coefficient (CC)) between water and plastic target

spectra are shown. The min, max, and, mean values of SAD

and CC measurements between plastic spectral signatures

and water spectral signatures are indicated for the original

image and the pan-sharpened results. It is observed that:

1) in the original image, water and plastic signatures are sig-

nificantly correlated; and 2) in all the pansharpeningmethods,

signatures present low SAD values and high CC values. The

latter demonstrates the spectra similarity between water and

plastics. Pansharpening methods which exhibit the highest

mean SADvalues and the lowestmeanCCvalues are themost

appropriate for marine plastic discrimination.

Based on Table 1 and Fig. 4, 5, it is concluded that the

component substitution methods such as PCA, GS, and GSA

yield the best results. Plastic spectra present quite higher

radiance values than water, while similarity values between

water and plastic targets are the smallest. Three MRA meth-

ods, the Smoothing Filter-based IntensityModulation (SFIM)

method, the MTF-GLP and the MTF-GLP-HPM also present
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FIGURE 4. Spectral signatures of water and plastic targets. (a) Original HS image (30 m spatial resolution). (b) PCA. (c) GS. (d) GSA. (e) SFIM.
(f) MTF-GLP. (g) MTF-GLP-HPM. (h) GFPCA.
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TABLE 1. Similarity measurements between water pixels and plastic target spectra.

satisfactory results, whereas Hybrid and Bayesian methods

did not achieve to sufficiently discriminate plastic target spec-

tra from water spectra. The spectra derived by the Bayesian

methods have different shapes compared to the respective

original spectra, generating significant spectral distortions.

As far as the deep learning methods are concerned, only the

PNN trained on values produced after histogram clipping

showed good separation of the random water spectra from

the target spectra.

In terms of spatial distortions, only PCA and GS methods

produce clear edge results. The results of MRA and hybrid

methods seem blurry and duplicate edges are observed along

the shoreline and port piers. These drawbacks are caused

by the high pass detail injection and may be emphasized by

misregistration between HS and PAN data. Bayesianmethods

produce blurry results with a noise pattern and DL methods

present pixelated/blurry outputs. The less satisfactory results,

provided by the DL methods, can be explained mostly by the

large difference between the spatial resolutions of the PAN

and the HS bands as, objects depicted in 5m spatial resolution

images present much more spatial information (e.g. visible

edges) in comparison to what is depicted on a 30 m resolution

image. Thus, the problem is much more challenging than e.g.

recreating 0.5 m spatial resolution from 2 m, which is the

usual case in the majority of the DL pansharpening studies

encountered in the scientific literature. Other reasons are

the unavailability of HS ground-truth data with 5 m spatial

resolution during training and the fact that there is no spectral

overlap between the panchromatic band and the NIR-SWIR

bands. Fig. 6 shows the outputs for four pansharpening

methods (PCA, SFIM, BayesNaive, PNN – histogram clip-

ping) for the image acquired on 18/9/2020.

Since PCA is the simplest method, it could be selected as

the most efficient method for our study. In Fig. 7, the PCA

results of the image acquired on 18/9/2020 are shown along

with the panchromatic band. The targets are highlighted in

color. It is observed that all the medium and large-sized

targets except for those containing PET material, are easily

discriminated in the pan-sharpened image.

V. PLASTIC LITTER INDEXES

Marine litter indexes are simple mathematical formulas that

rely on discriminative features for detecting marine plastics.

Indexes found in the literature, such as the hydrocarbon

index [33], the Sentinel-2-based index [34], and the Float-

ing Debris Index (FDI) [13] were tested on the PCA-based

pan-sharpened image. Especially, the hydrocarbon index was

tested for 19 different band combinations. From all the afore-

mentioned indexes, only the combination of (866, 951, and

1240 nm) bands in the hydrocarbon index yielded satisfactory

results. However, even in this case, spectral signatures of

mixed and PET targets were confused with those of water

near the shore. Moderate performance of the existing indexes

is due to the fact that absorption features of plastic material

are smoothed in PRISMA imagery. The water abundance

within the pixel coverage of the HS image as well as the

contribution of the neighbor pixels into the radiance regis-

tered at the sensor, smooths the discriminative features of the

plastic material while they enhance water spectra features.

Plastic spectra extracted from the pan-sharpened HS image
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FIGURE 5. Spectral signatures of water and plastic targets. (a) LMM. (b) LMVM. (c) BayesNaive. (d) HySure. (e) PNN. (f) PNN-histogram clipping.
(g) CAE. (h) GDD.
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FIGURE 6. Pansharpening results for the PRISMA image acquired on 18/9/2020 (zoomed out and zoomed in view) (670 nm). (a, e) PCA. (b, e) SFIM.
(c, g) BayesNaive. (d, h) PNN – histogram clipping.

FIGURE 7. Pansharpening of the PRISMA image acquired on 18/9/2020.
(a) Original HS image (670nm). (b) Panchromatic image.
(c) Pan-sharpened PCA image (670nm). (d) Pan-sharpened PCA image
(670nm) with plastic target marks.

present significant similarities to water spectra with crests

and troughs in the same wavelengths. However, for plastics,

crests present higher radiance values than for water due to the

injection of the panchromatic image in the 30 m resolution

HS image.

Thus, in this study, the proposed indexes for

discriminating plastic targets from water are based on radi-

ance differences between spectrum crests and troughs in the

VNIR region, since water absorption in the SWIR bands

significantly affects the spectra of the plastic objects in the

sea. It was observed that three such differences efficiently

discriminate differences in the same wavelengths but not of

the samemagnitude. A set of three indexes has been proposed

that poses three different criteria to assign high probabilities

to pixels that present plastic material. The first index was

proposed after the observation of a diagram (Fig. 8) created

by the formula written below (4):

Index1 = R2i − Rj (4)

where Ri ∈ [749.8, 781, 866, 988.4, 1088.6] nm: bands

where high peaks are observed in the plastic spectra, and

Rj ∈ [951 nm]: the band where the most significant trough

is observed.

At 1120.5 nm very low radiance values are also observed

but this band was not selected because it is signifi-

cantly affected by atmospheric water vapor absorption.

Fig. 8 presents the values of the first index, which has been

calculated from the radiance spectra of the 18/09/2020 PCA

pan-sharpened PRISMA image, using a different Ri band

every time. Numbers 1-5 correspond to the preceding Ri band

sequence, respectively. In order to achieve a comparable Y

scale on the graph (Fig. 8), combinations 1, 2, and 3 were

divided by 1000 and combinations 4 and 5 by 400. Based on

the Euclidean distances between the most neighboring water

and plastic spectra, the second combination, Ri = 781 nm

and Rj = 951 nm, was selected as the most suitable because

for this combination the two neighbor signatures exhibit the

maximum distance. This index exploits discrimination char-

acteristics of plastic spectra in the NIR.

To improve the correct detection of floating plasticmaterial

through indexes, incorrectly detected non-plastic pixels that

remained after applying index1, were sampled from the PCA

pan-sharpened image of 18/09/2020 PRISMA acquisition,

and their radiance signatures were observed (Fig. 9).
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FIGURE 8. Combinations of the 1st proposed index for the PCA
pan-sharpened image of the PRISMA data collected on 18/09/2020.

FIGURE 9. Radiance signatures of the plastic targets and the sampled
bright water pixels not detected by the proposed 1st index. The spectra
were extracted from the PCA pan-sharpened image of the PRISMA data
collected on 18/09/2020.

The sampled spectra were divided into three groups

according to the magnitude level of their radiance.

Group 3 showed the highest radiance values, followed by

groups 2 and 1. From the observation of the radiance signa-

tures, it can be seen that the spectra from all three groups are

mixed with the spectra of the targets. The same conclusion is

derived when implementing the proposed index1 (Fig. 10).

However, a possible separation was noticed in the visible

part of the spectrum, which led to developing the second and

third proposed indexes. The formula of the second proposed

index is (5):

Index2 = R2i − R2j (5)

The second proposed index was implemented for the 10 com-

binations of bands that are presented in Table 2. For compara-

ble Y scaling on the graph of Fig. 11, combinations 1-7 were

divided by 10 000 and combinations 8-10 by 7000. In this

graph, it can be observed that combination number 7 (bands:

596 nm and 719 nm) manages to separate the third group of

the sampled bright water pixels from all the targets.

FIGURE 10. Implementation of the 1st proposed index on the radiance
signatures of sampled bright water pixels that were not detected by this
index. The spectra were extracted from the PCA pan-sharpened image of
the PRISMA data collected on 18/09/2020.

FIGURE 11. Combinations of the 2nd proposed index for the PCA
pan-sharpened image of the PRISMA data collected on 18/09/2020.
Separation of the third group of bright water sampled pixels in
combination number 7.

TABLE 2. Combinations of bands that were tested for the 2nd proposed
index.

The formula of the third proposed index is presented

below (6):

Index3 = Ri − Rj (6)

Similarly to index2, the third proposed index was imple-

mented for the 10 combinations of bands that are presented

in Table 2. From the respective diagrams which are illustrated

in Fig. 12, it can be observed that combination number 4

(bands: 492 nm and 719 nm) manages to separate group 1 and

group 2 of the sampled bright water pixels from all the targets.

Finally, a combination of the previouslymentioned indexes

has been tested. The three indexes are applied independently

on the pan-sharpened image after masking out the land

VOLUME 9, 2021 61965



M. Kremezi et al.: Pansharpening PRISMA Data for Marine Plastic Litter Detection Using Plastic Indexes

FIGURE 12. Combinations of the 3rd proposed index for the PCA pan-sharpened image of the PRISMA data collected on 18/09/2020. (a) Separation
of 1st group of bright water sampled pixels in combination number 4. Separation of 2nd group of bright water sampled pixels in combination
number 4.

FIGURE 13. (a-c) Sequential application of the 3 indexes on the PCA pan-sharpened image of the PRISMA data collected on 18/09/2020 (land is
removed). (d-f) Detail of a-c images over the area of the plastic targets. (g-i) Detail of a-c images over the area of the plastic targets with
highlighted targets. (j) Google Earth image. (k) Orthophoto of the targets.

region. Then the final output is produced as the intersection of

the individual results. Thus, the order of the implementation

of the indexes is irrelevant. In each index output, a thresh-

old is set, enabling the creation of a simplified detection

and quantification algorithm. Indicative threshold values are:

1) for the first two index images: [mean value of the image]

+ 2.20 × [standard deviation of the image] and 2) for the

third index image: [mean value of the image] − 0.60 × [stan-

dard deviation of the image]. The results after implement-

ing the indexes on the PCA pan-sharpened images derived
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FIGURE 14. Zoomed out and zoomed in view of the area of the experiment of the PRISMA data collected on 18/09/2020. (a, e) Panchromatic
image. (b, f) Total suspended matter (TSM) map. (c, g) Chl-a concentration map. (d, h) The intersection of the proposed indexes. Plastic targets
are highlighted with colors in images e-h. For the PAN, TSM, and Chl-a images, green color defines the values found in the range of the target
values. The land has been masked out.

FIGURE 15. (a-c) Sequential application of the 3 indexes on the PCA pan-sharpened image of the PRISMA data collected on 22/10/2020 (land is
removed). (d-f) Detail of a-c images over the area of the plastic targets. (g-i) Detail of a-c images over the area of the plastic targets with
highlighted targets. (j) Google Earth image. (k) Orthophoto of the targets.
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FIGURE 16. Zoomed out and zoomed in view of the area of the experiment of the PRISMA data collected on 22/09/2020. (a, e) Panchromatic
image. (b, f) Total suspended matter (TSM) map. (c, g) Chl-a concentration map. (d, h) The intersection of the proposed indexes. Plastic targets
are highlighted with colors in images e-h. For the PAN, TSM and Chl-a images, green color defines the values found in the range of the target
values. The land has been masked out.

from the PRISMA acquisitions of dates: 18/09/2020 and

22/10/2020 are depicted in Fig. 13 and Fig. 15 respectively.

The white color shows the pixels with a high probability

of being plastic material (Figs. 13 (d-f), 15 (d-f)). In Figs.

13 (g-i), 15 (g-i) the plastic targets are shown with colors.

In the image of the intersection of the three indexes it is

observed that incorrectly detected bright non-plastic pixels

are very limited and most of them situated less than 30 m

from the coastline, where seabed contributions are very high.

It should be noted that only a few remaining bright non-plastic

pixels are presented at the deeper water areas. These are

mainly related to remaining noise after the filtering of the

PAN image. In Figs. 14, 16 the panchromatic PRISMA image

(Figs. 14 (a, e), 16 (a, e)), the total suspended matter (TSM)

index [35] (Figs. 14 (b, f), 16 (b, f)), and the OC4Me Chl-a

concentration index [36] (Figs. 14 (c, g), 16 (c, g)), are

defined according to the range of the target values. It can be

seen that the plastic targets cannot be detected solely by the

panchromatic PRISMA image as they are confusedwith other

materials in the seabed or on the sea surface. It is also shown

that even though the target pixels show high concentrations of

suspended matter and chlorophyll, using the intersection of

the proposed indexes (Figs. 14 (d, h), 16 (d, h)), the detection

of the plastic targets is quite accurate with only a few pixels

(most of them very close to the coast) being erroneously

indicated as plastic materials.

VI. CONCLUSION

In this study, evaluation of PRISMA imagery potentials for

marine plastic litter detection has been carried out for the

first time. To our knowledge, it is also the first attempt to

investigate this problem via satellite hyperspectral imagery.

The study focuses on the detection of small-sized targets

(≤5 m) which is even more challenging. To this end,

the required pre-processing steps, such as fine co-registration

of PAN and HS images and elimination of the observed

noise in the PAN image have been defined. A new algorithm

has been developed to eliminate the periodic noise which is

observed on the PRISMA PAN images. Several pansharpen-

ing approaches and methods have been applied and evalu-

ated for their ability to spectrally discriminate plastics from

water as well as for their spatial distortions. Among them,

the component substitution methods yielded the best results.

Especially, the simple PCA-based substitution efficiently

separates plastic spectra from water without producing

blurry and duplicate edges or pixelation in the produced

image. In the pan-sharpened image, plastic targets with size

5.1 m × 5.1 m and 2.4 × 2.4 m are easily detected, while

targets with size 0.6 m × 0.6 m cannot be detected. The size

of the observed pieces is equivalent to the 8% pixel coverage

of the original HS image. However, it would be interesting

to conduct further experiments to see which is the minimum

size of the target (or minimum coverage of the PRISMA

HS pixel) to allow to acquire distinguishable plastic spectral

features. As a start, the spectrum from a pure plastic pixel

(e.g. greenhouse) could be considered. This minimum would

be important in the context of discrimination versus other

non-plastic floating materials.

Among plastic materials, transparent and green PET poly-

mer is the most difficult to be detected. Discriminating trans-

parent and green PET polymer is even challenging for targets

with 5.1 m × 5.1 m size. In contrast, HDPE and PS polymers

as well as the mixed composition of the three materials can be

easily detected. Spectra of all plastic materials derived by the
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pan-sharpened images present similarities with water spectra.

The water abundance within the pixel coverage of the HS

image and the contribution of the neighbor pixels into the

radiance registered at the sensor, smooth the discriminative

features of the plastic material, particularly in the SWIR

region where water absorption is very high. Pansharpening

injects spatial information from the PAN image in the HS

image; however, it cannot enhance the absorption features of

the plastic materials. The influence of seawater on ocean plas-

tic spectra is preserved and consequently features observed in

the laboratory and airborne-based spectra [37] are not appar-

ent in the derived spectral signatures. However, some spectral

characteristics observed in the VNIR region can be exploited

for producing marine plastic indexes. These characteristics

rely on the magnitude of the radiance differences between

crests and troughs along the VNIR region of the spectra that

plastic materials present.

The observed spectral characteristics led to the develop-

ment of three indexes that can adequately detect plastic mate-

rial with a few false alarm signals on PRISMA pan-sharpened

data. VNIR bands with central wavelengths at (492, 596, 719,

781, and 951) nm are used for the calculation of these indexes.

The indexes set three different criteria in order to assign high

probabilities to pixels that present plastic material. Amethod-

ology that is based on the combination of the three developed

indexes led to very interesting results for the detection of

plastics on seawater. The targets were identified as suspended

matter and chlorophyll-a by the TSM and OC4Me indexes,

however, the proposed plastic indexes and the index combin-

ing methodology successfully recognized them from the non-

plastic materials. The next step is to compare the results with

other non-plastic floating materials (e.g. floating vegetation

and foam), in view to demonstrate that PRISMA could be

used as a stand-alone satellite to detect the likelihood of

plastic presence. Targets of vegetation might also be used

in future experiments to examine if they are distinguishable

from plastic targets.
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