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Introduction
1. The classical Fourier transformation. The Fourier transform g=Tf of

/ defined by

/oo f(u)e~""du
-oo

will certainly exist if / is of class Lx, that is, if / is locally integrable and such
that |/| is integrable over (— °°, °°). In that case g will be continuous and
bounded, but in general g will not be of class L\.

The function h = Tf defined by
/%  00

h(x) = (Tf)(x) = (27T)-1'2 I    f(u)e""du
J -00

is called the conjugate Fourier transform of/.
The famous inversion theorem for the Fourier transformation says that

if g= Tf   then   f = Tg.
Unfortunately this basic result is true only under rather severe restrictions,
for example if both/and Tf are in Li [3, p. 51 ].

Other well-known rules of restricted validity are the following:

TDf = {ix} Tf, T{ x}f = iDTf,
TE(D)f = {E(ix)} Tf,        T{ E(x) }f = E(iD) Tf,

T(fi*fi) = Tfi-Tfi.
Here D stands for differentiation, E(x) = zZa"Xn denotes an entire function,
and /i*/2 stands for the convolution

(fi*h)(x) = (2X)-1'2 r°°/i(x - u)fi(u)du.
J -o,

The restrictions imposed by the classical theory make it hard to under-
stand how Fourier transforms can be such a successful tool in physics and
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applied mathematics even when used indiscriminately. Thus one early came
to the conclusion that more general theories of Fourier transforms must be
possible, in which the above theorems are valid under more general condi-
tions. Plancherel developed his theory for the class L2 which shows that L2 is
closed under Fourier transformation (compare [21, p. 46]). Bochner defined
his ^-transform for all functions of polynomial growth [3, p. 110]. Schwartz
imbedded the latter functions in his class of tempered distributions, which is
closed under Fourier transformation [16, II, p. 79]. A theory of generalized
functions and their Fourier transforms of comparable scope, but more along
the lines of classical analysis, was developed by the present author [ll; 12].
Using the Schwartz-Sobolev approach of distributions the theory of Fourier
transforms was extended further by Gel'fand and Silov [8] and by Ehren-
preis [7].

2. The present method of generalization. In this paper we develop a very
general theory of Fourier transforms based upon a different set of ideas.
The class of objects for which a Fourier transform will be defined is the class
oi formal series of normalized Hermite functions

cp = zZ c^k.
*=0

Some but not all of these objects are Hermite expansions of functions, and
we therefore call the objects pansions. If <p is the Hermite expansion of a
function/of a suitable class we identify cp with/. Various operations on pan-
sions will be defined, among them the Fourier transformation [T]:

/    cc \       oo

[T]cf> = ( E CkTvt = ) zZ (~i)kCkVk.
\ 4-0 /  k=0

There is no natural definition of convergence for pansions as there is for dis-
tributions. As a matter of fact no concept of convergence is introduced in this
paper and accordingly our theory is more or less algebraic in nature.

The following considerations led to the selection of series of Hermite func-
tions. Let Mo, Mi, • ■ • be any orthonormal set of functions on (— oo, oo)
which is complete with respect to a preferably large class of functions C. We
will take C such that it contains the difference of any two of its elements. A
function / of C is uniquely determined by its expansion

/CO

f(x)uk(x)dx.
-co

For if / and g oi C have the same expansion then f—gEC is orthogonal to
all uk and hence by the completeness of the Uk we conclude that /—g = 0.
There is no need to talk about convergence of the expansion.

To make a definition
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[T] zZ chUk = zZ ^Tuk
meaningful the ordinary Fourier transforms Tuk should exist and be simple
linear combinations of the m's. The simplest theory will be obtained if Tuk
is just a multiple of uk. We are thus led to search for a boundary value prob-
lem

Ry = h,      (B)
such that the differential operator 77 commutes with Fourier transformation,
and such that the Fourier transform of a function satisfying the boundary
condition (B) again satisfies (B). For if X, u is a characteristic pair of such a
boundary value problem (Hu=\u), then so is X, Tu. Hence if the boundary
value problem has essentially only one eigenfunction u to each eigenvalue X
we may conclude that Tu = cu, c a constant.

The simplest differential operator which commutes with Fourier trans-
formation is 77= {x2} — D2, and we are thus led to the boundary value prob-
lem of the linear harmonic oscillator

/oo I y(x) \2dx < oo.
-oo

Accordingly our set of uk's will be the set of normalized Hermite functions

(2.1) vk(x) = (k^i22-ki2AT-i'i(x - D)ke-*2'2, k = 0, 1, • • •

for which

Tvk = ( — i)hvk,        Tvk = ikvk.

3. Contents of the paper. In I we treat the linear harmonic oscillator using
the method of factorization or method of adjoint operators. This method
brings out some of the properties of 77= {x2} —D2 which are basic for the
paper, and it provides the convenient definition (2.1) of the Hermite func-
tions.

In II it is shown that the Hermite functions are complete with respect
to the class A of functions/for which there exists a number a < 1/2 such that
f(x) exp(—ax2) is of class Lx. We study Hermite expansions and expansion
coefficients of functions of class A. The expansions of \x}f, Df, Hf and Tf
are expressed in terms of the expansion coefficients dk oi f. It is important
to notice that every expansion coefficient of these transforms of / involves
only a finite number of dk's.

As an application IV contains a simple proof of the Fourier inversion
theorem in the case where / and Tf are of class Lx.

In V we define a pansion d> as a formal series zZckv* where the vk are the
normalized Hermite functions (2.1). If <p is the expansion of a function / of
class A or a suitable larger class we identify d> with /. The global derivative
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[D]cf>, the global product [x]cf> and [H]cf> are defined for all pansions cp in
accordance with the rules valid for the expansions of the corresponding trans-
forms of functions / of A. We also define [E(D)]cf>, [E(x)]cp and [E(H)]cf>
where E is an element of a class of entire functions appropriate to cp. The
operator [eaD] plays the role of a translation operator: for every function/of
class A and for real a one has [eaD] f= {f(x+a)} (Taylor's formula!). Global
multiplication of two pansions is considered, as well as convolution. (For a
more detailed local study of multiplication and convolution, important for
certain applications, compare the author's paper [12].)

VI deals with Fourier transforms of pansions. If cp = zZc^vk we define

[T]cb = (zZ CkTvk =)zZ (-i)"ckvk,
[T]cp = (zZ CkTvk =)zZ ikCkVk-

If cp is a function/of class Li then [T]cp = Tf. For pansions the Fourier inver-
sion formula will hold without restriction, and likewise such rules as

[T] [D]d> = i[x] [T]4>,        [T] [x]<p = i[D] [T]<p.

Other rules will also be valid under much weaker hypotheses than one has
in the classical theory.

As an application VII contains a very simple derivation of Plancherel's
theory of Fourier transforms for Li. This derivation shows some similarity
with Wiener's treatment based on Hermite expansions [21, p. 46], but it is
considerably shorter.

VIII deals with Fourier transform theory for pansions of polynomial
growth. Using global properties of the solutions of the differential equation
Hy =/ it was shown in III that every function of at most polynomial growth
on (—o°, oo) can be represented in the form H"fo where/o is a sufficiently
differentiable function of class L2. Since [T] and [H] commute [T]H"f0
— [H]"go where go= [T]fa is also of class L2. Defining pansions of polynomial
growth as pansions of the form

<P=[H]"fi n^OJiELi,
we thus obtain a class of pansions closed under Fourier transformation which
contains all functions of at most polynomial growth. The class is also closed
under the operations of global differentiation [D], global multiplication by
[x] and translation [eaD], a real. It is shown that a pansion is of polynomial
growth if and only if it is a finite order global derivative of a function of at most
polynomial growth. Hence the pansions of polynomial growth differ from
Schwartz's tempered distributions only in that the latter have a natural
definition of convergence associated with them [16, II, p. 95]. It is finally
noted that for a function/of polynomial growth [T] f is essentially equal to
the global &th derivative of Bochner's "&-Transformierte" of/ [3, p. 110].

In IX we take up Fourier transform theory for pansions of exponential
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growth. In III a rather precise study was made of the global properties of the
solutions of the differential equation (H-\-p)y=f. The results showed that
every function/of at most exponential growth on (— oo, co) (of type m) can
be represented in the form E(H)fQ. Here/0 is an infinitely differentiable func-
tion of class L2, E(z2) =cz2J\(l+z2/pj) is a special entire function of ex-
ponential type (of type m), and the representation holds in the sense that

/ = Hf*,      f* - lim c II (1 + R/pj)U
n->«o      ysn

Since [T] and [£(77)] commute [T]E(H)f0=[E(H)]g9 where go=[T]f0 is
also of class L2. Defining pansions of exponential growth as pansions of the
form

4> = [£(77)]/1; /, G Li
where E(z2) is any even entire function of exponential type, one thus obtains
a class of pansions closed under Fourier transformation which contains all
functions of at most exponential growth. The class is also closed under the
operations [E(D) ] and [E(x) ] where E is any entire function of exponential
type. It is finally shown that a pansion is of exponential growth if and only
if it can be written as an infinite order global derivative of exponential type of a
function of at most exponential growth. The proof depends on explicit solution
of the equation

c6 = [cos aD]f,        a > 0.

If <p = [E(H)]fx, fxGLi, E(z2) of exponential type, then a particular solution
of the above equation is given by

/= nu-iw)*   n = u "l/2Wa'

2 2s       1   r°° 1
g(x) = — ■ • •-  — I     fx(u)E(H) ---.-—-du,

1 25 - 1   2a J-J [cosh{7r(x - u)/2a}]2°+1

H = u2 — d2/du2. For given <f> it is necessary to take a and 5 sufficiently large
to guarantee the existence of g (and hence of /) as a function of at most ex-
ponential growth.

I. The linear harmonic oscillator
11. The boundary value problem. The linear harmonic oscillator in quan-

tum mechanics poses the boundary value problem [20, p. 56]

(11.1) Hy= (x2 - D2)y = ly,        D = d/dx,

| y(x) |2 dx < oo .
-oo
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A function/is said to be of class Ip if it is so smooth that it can be written
as a p times iterated indefinite integral of an integrable function. By the
usual definition [4, p. 42] a solution / of the differential equation (11.1)
must be of class I2. (Since D2f=(x2—l)f the solutions / will actually be of
class Ip for every p.) Hence the second inequality of (11.2) is truly a boundary
condition as x—* + oo.

In the physical problem the expression |y(x)|2 is a probability density:
fl\y(x)\2dx represents the probability to find the particle on the interval
(a, b) when its energy is given by I. The values X of / for which equations
(11.1) and (11.2) possess a solution v for y represent the possible energy levels
of the particle. Physically speaking one therefore expects that all eigenvalues
X will be real and non-negative.

If v is an eigenfunction belonging to the real or complex eigenvalue X we
will call X, v a characteristic pair of the boundary value problem.

Let Lp denote the class of all functions / defined on (— oo, oo) which are
locally integrable and such that |/| p is integrable over (— oo, oo). We will
use the scalar product notation

(/.«)= r f(x)g(x)dx
J —eo

whenever the product fg is of class Li, hence in particular if both/and g are
in Li.

12. Factorization of the operator H. The factorization method, also called
the method of adjoint operators, was first used by Dirac [5, p. 137] for the
problem of the linear oscillator. It was formulated as a method by Schrodinger
[15] and subsequently developed by him, Infeld and other authors [10]. The
present paper gives a rigorous version in the special case (11.1)+(11.2).

Introducing the operators

x+ D = P,        x- D = N

the operator H = x2 — D2 may be "factored" as follows:

H = PN - 1 = NP+ 1.
Thus the differential equation (11.1) may be written in each of the equivalent
forms

(12.1) Hy = ly,       PNy = (I + l)y,       NPy = (I - l)y.

We note also that P and N are formally adjoint in the sense that (Pf)g
-f(Ng) =D(fg).

Let f(x) =f(x, I) be a solution of the differential equation (12.1). Then /
belongs to every class Ip (11), hence PfEIi and

PN(Pf) = P(NPf) = P{(1- 1)/} = (1-2+ l)Pf,
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that is, Pf will be a solution of (12.1) with I replaced by 1 — 2. Similarly Nf will
be a solution of (12.1) with I replaced by 1+2.

For the boundary value problem 11 we need the nonzero solutions of
(12.1) which are of class L2. We shall see in a moment that if/is a solution of
(12.1) of class L2 then Pf and Nf are also in L2. To prove this and further
results we need the following theorem.

12.2. Theorem, (i) If v is in D2 = I2(~\L2 and such that HvGL2 then Pv and
Nv are in Dx = Ixr,L2.

(ii) P and N are adjoint operators in the sense that

(Pf, g) = if, Ng)
for every f and g of lx for which (/, g) and the above scalar products exist.

The proof of 12.2 will be postponed till 14 so as not to interrupt the pres-
ent argument.

Let X, v be a characteristic pair of the boundary value problem 11. Then
jiand Hv=Xv are in D2, hence by 12.2 (i) Pv=w is in Dx. By (12.1) Nw = NPv
= (X — l)v, hence Nw is in Li. Application of 12.2 (ii) shows that

(12.3) (Pv, Pv) = (Pv, w) = (v, Nw) = (X - l)(v, v).

Similarly Nv=z is in Dx while Pz = PNv = (X + l)^ is in L2. Thus

(12.4) (Nv, Nv) = (z, Nv) = (Pz, v) = (X + l)(v, v).

The preceding results imply the following basic theorem.

12.5. Theorem. Let X, v be any characteristic pair of the boundary value
problem 11. Then X is real and ^1 (12.3). 7/X = l then Pv = 0, while ifX>\
then Pvt^O and the pair X — 2, Pv is also a characteristic pair. The pair X+2,
Nv is always a characteristic pair (12.4).

13. The characteristic pairs. Let X, v be any characteristic pair of the
boundary value problem 11. Repeated application of 12.5 shows that either
X = 1 andPy = 0,or X — 2 = 1 and P2v=0, or • • -. That is, X must be of the form
2& + 1 for some non-negative integer k, and

(13.1) Pk+h = 0.

For £=0 equation (13.1) has the solution exp ( —x2/2) (unique up to a
constant factor) which actually is an eigenfunction of 77 belonging to the
eigenvalue 1.

Repeated application of the last line of 12.5, starting with the character-
istic pair 1, exp ( —x2/2), now shows that each of the pairs

(13.2) 2k+\,Nhe-*li1, k = 0,l,---

is a characteristic pair of the boundary value problem.
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We will prove by induction that there is essentially only one eigenfunction
belonging to the eigenvalue 2& + 1. Let Vi and vi be any two eigenfunctions
belonging to 2& + 1 (k^l), and suppose it has been shown already that there
are no two linearly independent eigenfunctions to the eigenvalue 2yfe —1. In
particular Pvi and Pv2 will be linearly dependent, hence there are constants
ci and Ci not both zero such that

P(ciV i + CiVi) = CiPVi + CiPVi = 0.

It follows that CiVi+CiVi = c exp(— x2/2). Unless equal to zero CiVi+CiV2 is an
eigenfunction belonging to 2& + 1^3 while exp(—x2/2) is an eigenfunction
belonging to 1. Thus e = 0 and the result follows.

Hence the set (13.2) is a complete set of characteristic pairs of the problem.
Equation (12.4) enables us to obtain a normalized eigenfunction belonging

to the eigenvalue 2jfe + l in the form

1 1
(13.3)     vk(x) =-(* - D)vk-i(x) = -(* - D)ke~x '2

r2kyii 2*'*(*I)1"t1'«

(normalized Hermite function).
We finally show that the !/* form an orthogonal set. If m>k we have by

12.2 and (13.1)

W, vm) - (vk, amNme-**'2) = (Pmvk, ame~^l2) = 0.

14. Proof of 12.2. (i) Let v be in D2 = I2f\L2 and let HvEL2. Then the
function

Re Hvv = x2\ v(x) |2 - Re { D2v(x) ■ v(x)}

is integrable over (—<*>, oo), hence the expression

ReHvvdx=   I    {x2\v(x)\2+  \ Dv(x) \2}dx
a J a

- [Re {Dv(x)-v(x))]l

has a finite limit as a—>— oo, b—>oo.
We note that there must exist a sequence bn—>°o along which the con-

tinuous function w(x)=Re \Dv(x) -v(x) } approaches zero. For if this were
false there would be numbers 5>0 and 8 such that +w(x)^8 for all x>/3.
And this would contradict the fact that the anti-derivative | v(x) \ 2/2 of
w(x) is integrable over (— », °o). One similarly shows that there exists a
sequence a*,—>— oo along which w(x)—>0.

We conclude that

/» &n\x2\ v(x)\2 + I Dv(x)\2)dx
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exists and is finite. Since the integrand is non-negative this shows that it is
integrable over (— °o, oo), hence both xv(x) and Dv(x) are in L2. They obvi-
ously are in 7i.

(ii) Let/ and g be in 7i and such that (/, g), (Pf, g) and (/, Ng) exist.
Since (Pf)g-f(Ng) =D(fg) and fgGIx one has for every finite a and o

f  (Pf-g-f-Ng)dx= [f(x)-g(x)]l
J a

The function in square brackets is absolutely integrable over (—00, 00).
Hence there exist sequences am—>— 00, 6n—»oo along which /£ approaches
zero. Thus since the scalar products (Pf, g) and (/, Ng) exist,

(Pf,g) =   lim Pfgdx
m.n—► «   J afn

=   lim     f "f-Ngdx= (f,Ng).

14.1 Remark. Using part (i) of the proof it is easy to show that 77 is self-
adjoint and positive definite on D2. That is,

(77/, g) = (/, Hg)
for all / and g in D2 such that 77/ and Hg are in D2, and

(77/,/) > 0
for all /^0 in Di such that 77/ is in D2.

We will later use the sharper result that (77/, g) = (/, 77g) as soon as f and g
are in Ii and such that (Df, g), (77/ g), (/, Dg) and (/, 77g) exist.

II. Hermite expansions

21. The Hermite functions. (Compare [17, p. 101 ].) By vk we will always
denote the normalized Hermite function (13.3)

1
(21.1) vk(x) = -(x - D)ke~* l2, k = 0, 1, • • • .

It is easily seen that vk is even if k is even and odd if k is odd, and that Vk(x) is
equal to the product of exp(—x2/2) and a polynomial in x of exact degree k.
The latter remark will be used to prove the completeness theorem stated be-
low.

21.2. The class A. A function/ is said to be of class A if there is a real
number a<l/2 such that/(x)-exp(—ax2) is integrable (and absolutely in-
tegrable) over (—00, 00).

21.3. Completeness theorem. The set of the Hermite functions (21.1) is
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complete with respect to the class A. That is, the equations

/CO

f(x)vk(x)dx = 0, k = 0, 1, • • •
-CO

for a function fEA imply thatf=0 (f(x) =0 except perhaps on a set of measure
zero).

In 21.3 the class A may be replaced by a somewhat larger class. However,
the simplest proof of the more general result is based on Fourier transform
theory. At this stage we want to avoid using results about Fourier transforms
and therefore we postpone the more general result till 42.

Proof of 21.3. Let (/, vk) =0, fEA. Then

f   f(x)e~^'2xkdx = 0, k = 0, 1, • • •
J -co

It follows that the function

/CO

xf(x)e~"^dx
-OO

which is analytic for Rez>a for some a<l/2 vanishes at z = l/2 together
with all its derivatives. Thus g(z) =0, that is, the Laplace transform

f°{f(y112) - f(-ylt2)}e-°Hy
J o

is equal to 0 for z>a.
Applying the uniqueness theorem for the Laplace transformation [6,

p. 35] which is equivalent to a simple moment theorem one concludes that
the odd part of / is equal to 0. Similarly the even part is 0, hence/ = 0.

21.4. Corollary. The Hermite functions (21.1) form a complete ortho-
normal set in L2.

For ilfELi then (1 +x2)~ll2f(x)ELi, hence ii fEL2 is orthogonal to all
vk then/=0. For the orthonormality see 13.

22. Formulas involving the Hermite functions. In what follows {/(x)}
will denote the function whose value at x is equal to/(x). As before we will set

[x)+D=P,        {x} - D = N,        [x2}-D2 = H.

By 12 and 13 we have the relations

Pvk = (2kyi2vk-i,

(22.1) Nvk = (2k + 2y2vk+i,

Bvk = (2k + l)vk.
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Thus

(i   y2       (i       iy2Dvk = ( — kj    Vk-x — ( — k + —J    vk+x,

(22 2)
Z1   \1/2        Z1        i\I/2{*{** = ̂ -y k)   »*-i + ^y k + —J   »*+!•

By (22.2) and (21.1)

f-     ... {(2j)\}UW<I     vij(x)dx = -,

(22.3) , ,
ttv,    (-1H(2i)!}1/2»2j(0)   =   -  •Vjyit*

We finally compute the Fourier transform Tvk of vk. Since for functions
fGIxC^Lx such that (x}/and Df are also in ii

r/vy = - iNTf
(compare 1) definition (21.1) shows that

Tvk = TakNk[e-zil2} = (-i)kakNkT{e~*2i2}.

It is easily verified that F{exp(—x2/2)} = (exp(—x2/2)}, hence

(22.4) Tvk = (-i)hvk,        Tvk = ikvk.

23. Hermite expansions of functions of class A. The Hermite expansion
of a function fGA (21.2) is defined as the formal infinite series

OO

(23.1) /~Ian
k=0

where

/OO

f(x)vk(x)dx.
-00

23.3. Example. By (22.3) and since ity+i is odd,

,.x    ^ {(2j)i}»'v«

The Completeness Theorem 21.3 implies

23.4. Uniqueness theorem. If two functions of A have the same Hermite
expansion they are equal (their values are equal almost everywhere).

A stronger uniqueness theorem will be proved in 42.
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Expansion of {x}/. Let / be in A, /~ zZc^k- Then {x}/ is in A. Formally,
by (22.2),

(/ 1     \1/2 / 1 1X1'2       )
{x}f~zZck{x}vk~zZckU—k\      Vk-.i+l— H-)      Vk+lf ,

and by rearrangement (compare [20, p. 59])

°°   (/ 1 1\1/2 / 1     \1/2      )
(23.5) {*}/~ IZ U— k + —)    Ck+i + l— k\    Ck-A vk.

Formula (23.5) is really correct. For by (22.2)

/1    \1/2 (1 1\1/2
({*}/, ^) = (f, {x\ Vk) = [j kj    (/, Vk-f) + (7^ + 7)    (/' ^+1)-

Applying (23.5) twice one obtains

[x2)f~ JZ -\(k + 2y2(k + iy>2ck+2
k—0    2     \

(23.6)
+ 2 U + —\ ck + k"2(k - iyi2ck-i\ vk.

Expansion of Ef. Let E(x) = zZa»xn be an entire function such that

zZ I anXn I   g Ce°x\

and let/(x) exp( — bx2)ELx for some b such that a+b< 1/2. Then the sequence
■ p
zZ anxnf(x)vk(x), p = 0, 1, • ■ •
n=0

is dominated by a function of Li, hence by Lebesgue's convergence theorem
[18, p. 345]
(23.7) (Ef, vk) = (\zZ <»»«"}/, ft) = E °n({x}% vk).

24. Expansion of Df, Tf, Hf.
Expansion of Df. Let/ be of class h (11), and let the derivative Df be

in A. Then/is in A and bounded by a constant multiple of {eax2}, a<l/2.
Hence by integration by parts and by (22.2)

/l    V'2 Z1 1\1/2
(Df, vk) = - (/, Dvk) = - (j kj    (f, Vk-f) + [j k + -J    (f, vk+x).

Thus if /~ zZckvk then

(24.1) Df~ £{(} * + \Jck+x - (j kfck^Vk.
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Expansion of Tf. Let/be in Lx. By Fubini's theorem [14, p. 77] we may
invert the order of integration in the formula below to obtain the expansion
coefficients of the Fourier transform Tf (see also (22.4)):

/OO t*  00vk(x)dx J    f(u)e-™du
-oo J —oo

/OO rt  00f(u)du-(2w)-1i2 J    vk(x)e-ixHx = (-i)k(f, vk).
-00 «7 —00

Hence if f^-jzZckvk then
00

(24.2) r/~22(-i)*c*r*.
i-0

Similarly
00

(24.3) Tf~zZi*ctvk.
k-0

Expansion of Hf. Let/be in 72 and such that D2fGA. Then DfGA,fGA,
and if/~^£;bZ>* then

00

(24.4) Hf~YZ (2£+ l)ckvk.
k-0

For by 14.1 and (22.1)

(Hf,vk) = (f,Hvk) = (2k+l)(f,vk).

Expansion of E(D)f and £(77)/. For sufficiently well-behaved functions/
and sufficiently restricted entire functions £(x) = zZanXn

(24.5) (E(D)f, vk) = ((zZ*»Dn)f, "*) = Z «»(0"/> »*) = E (-!)"<»»(/*> #"»*),
(£(77)/, a) = ((Z a„77»)/, **) = Z a„(7J»/, »)

= Z «»(/, #"%) = Z «-(2* + !)"(/, »*) = £(2* + 1)(/, *).
25. Order of magnitude of expansion coefficients. We will treat several

special classes of functions.
25.1. The case of Li. By the completeness of the set of the vk in 7,2 (21.4) a

function fGLi has expansion coefficients ck such that
00

Z \ck\2 = (/,/) (Parseval).
4=0

The expansion /"".Otflt of/will converge to/in the mean on (— oo, co). Con-
versely the Riesz-Fischer theorem [21, p. 27] asserts that a formal series
zZckvk is the expansion of a function fGLi whenever the series Zlc*l2 con"
verges.
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25.2. Lemma. Let fEA have the expansion zZckvk- Then the expansion coeffi-
cients ctn) of {xn}/ satisfy the inequality

|C*CB)|   ^{(* + re)--.(*+l)}1/2

~n,2( I I       (n\\ I I l\• 2        I    | Ck+n |   +  I J I Ck+n-1 I    +-,-+| Ck-n \  J

£{(* + »)•••(*+ 1)} 1/22"/2 max (| Ck+n | , • • • , | c*_| ).

The proof is obtained from (23.5) by induction with respect to re.
25.3. The case {\x\ +1 }~~nfELi. Let/be of the form indicated here with

re an integer ^0. Then we may write/= {x +i} "fp where foELi. Set f~ T^,ckVk,
fo~zZdkVk. By 25.2

| ck |   g Mn(k + l)"'2 max (\ dk+n \ , ■ ■ • , \ dk-n \ ),       k = 0, 1, • • • .

Hence by 25.1 the series

zZ \ck\2/(k + iy
k=o

converges.
For a related case see 32.3. We note the following corollary.
25.4. The case of L\. Let/ be in Lu f~zZckVk- Then there are constants

M and p, p^-1, such that

| ct |   ^ M(k+ 1)", k = 0, 1, • • • .

For an inequality of this kind with p^l/2 will hold for the expansion coeffi-
cients of the bounded function J%f (25.3). The result now follows by applying
the operator D (24.1).

By a more straightforward argument ck = (/, vf) is bounded by a constant
times the maximum of |^(x)|, — oo <x< oo. Hence by [17, p. 236] the above
inequality for the ck holds with p— —1/12.

25.5. The case of A. For fEA (21.2) one can write/=£/0 where E(x) =eax%
with an a < 1/2 and foELi. One may then use (23.7) to express the coefficients
of/ in terms of those of {x}"/0. Subsequent application of 25.2 and 25.4
should lead to an estimate for the expansion coefficients of /. It turns out,
however, that 25.2 is not sufficiently precise to give a convergent majorant
for the coefficients of/when a exceeds the value 1/4.

However, (/, vk) will be bounded by a constant times the maximum of
| eax2vk(x) |, — oo<x<oo. Applying the estimate given in [17, p. 195] one
obtains

| (/, vk) |   ^ Mm\ k = 0, 1, • • •

where m may be any number greater than (l+2a)1/2/(l — 2a)112.
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Lemma 25.2 is sufficiently precise to deal with the class of functions of
exponential growth. However, the representation obtained for these func-
tions in 35 automatically gives an estimate for their expansion coefficients.

III. Representation of functions of polynomial
AND EXPONENTIAL GROWTH

31. The differential equation (H-\-p)y=f. We will always take p real
and ^0, and start by considering the homogeneous equation

(31.1) (77 + p)y = - y" + (x2 + p)y = 0,        -«><x<oo.

The Liouville transformation [l, p. 109]

t =  f  (u2 + pY'2du,       z(t) = (x2 + p)xliy(x), (x ^ 0)
•7 o

transforms (31.1) into

d2z       (        3x2 - 2p)
-h--\ z = 0.
dt2      I      4(x2 + pyj

The latter equation possesses solutions which together with their first order
derivatives behave as c exp( + /) as t—>oo [l, p. 126, p. 60].

Returning to (31.1) let w(x) be a solution which tends to 0 as x—»oo, and
which is such that w(x0) >0 for some x0. Then w(x) >0 for all x. We first prove
this for x>Xo. Suppose that Xi is the smallest number >Xo such that w(xi) =0.
Then w'(xi) =^0, and since w'(xi) 9^0 (or w would be the zero solution) we have
w'(xi) <0. It follows that there is an interval (xi, x2) on which w(x) <0. Then
by (31.1) w"(x) ^0 on (xi, x2), hence w'(x) ^w'(xi), and thus w continues to
decrease. This contradicts the assumption that w(x)—>0 as x—»«>. Since the
graph of w(x) remains convex as long as w(x) >0 it is impossible for w(x) to
become equal to 0 for x<xo. It follows actually thatw(x)^"» as x—>— oo. One
has w'(x) <0 for all x.

The functions w(x), w(—x) form a pair of linearly independent solutions
of (31.1). The Wronskian —w(x)w'( — x)—w( — x)w'(x) of these two solutions
is constant since there is no y' term in the differential equation [4, p. 83].
The Wronskian is a positive constant. It is no restriction to assume that it
has the value 1.

One has as a first approximation

(31.2) w(x)~c(+)-(x2 + />)-1/4exp j-  f  (u2 + p)l'2du\ ,      x^+oo.

Corresponding estimates for w'(x) may be obtained by formal differentiation
of (31.2).

31.3. Theorem. Let w(x) be the positive solution of (31.1) such that w(x)—>0
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as x—»oo and with the normalization w(0)w'(0) = —1/2. Let fEA (21.2). Then
the differential equation

(31.4) (H + p)y=f (p^O)
possesses exactly one solution fEA. It is given by the formula

/X /%  COf(u)w( — u)du + w( — x)  I     f(u)w(u)du.
-co J X

Proof. By (31.2)
. . (Cx-Pi2-I'2e-X*i2, x->oo,

(31.6) \w(x)\   g \    .    .
1 lc| xl"'2-1'2^'2, x^ -   oo.

Hence the integrals in (31.5) exist. Simple estimates based on (31.6) show that
/as defined in (31.5) is of class A.

Since the Wronskian of w(x) and w(—x) has the value 1 the general solu-
tion of (31.4) is of the form [4, p. 87]

f(x) + cxw(x) + c2w( — x)

which is of class A only if Ci=C2 = 0.
32. Functions of polynomial growth. A function/defined on (— oo, oo) is

said to be of (at most) polynomial growth if it is locally integrable and if there
exist constants M, m such that

(32.1) |/(x)|   ^ M(x2 + l)m, -oo<x<oo.

32.2. Lemma. Let f be of polynomial growth and let M, m be such that (32.1)
holds. Let f be the unique function of class A such that (H+p)f=f(p^O; 31.3).
Then there is a constant N depending only on M, m and p such that

| f(x) |    ^  AT(X2 +  I)""1, -   oo   < x <    oo .

Proof. The function / is given by (31.5) where w satisfies the inequalities
(31.6). The first term on the right hand side of (31.5) is bounded by

ClX-pn-U2e-x!llf   C     \f(u)\w(-U)du   +    f    Uim+Pll-3lldeu'll\

g C2x-p/2-1/2e-*2/2-x2m+*/2-3/V2/2, x > 1,

C3 |  X |p/2-WV2/2   f      |  U [2m-p/2-3/2 |  ^-u2/2 |
J -co

^   Ci\  »|p/2-1/V2/2.   |  x\im-Pll-3lle-x*Ht X   <   ~   1.

A similar pair of estimates for the second term on the right hand side of
(31.5) completes the proof.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1959] PANSIONS AND THE THEORY OF FOURIER TRANSFORMS 69

32.3. Theorem. Let f be a function of polynomial growth and let M, m be
such that (32.1) holds. Then f may be written in the form

f = H»f0
for any integer w^O and >m-\-\/2 and a corresponding function foGLi. The
Hermite expansion Z^* °ff *s suc^ that for any n as above there is a constant
R such that

|«k|   £ R(2k)", k = 1,2, • • •.

Proof. Repeated application of 32.2 with £=0 proves the representation
f=Hnfo. By 25.1 the expansion coefficients dk of the function foGL2 are
bounded, while by (24.4) the expansion coefficients of / are of the form
ck = (2k + l)ndk.

33. Functions of exponential growth. A function/ defined on (— oo, oo)
is said to be of (at most) exponential growth if it is locally integrable and if
there are constants C, c such that

(33.1) |/(x)|   ^ Cy'"', - oo < x < oo.

We define the type of the function / of exponential growth as the number m
given by

log | /(*)|
(33.2) m = max (ft, 0),       p. = lim sup —j—j-•

|X[ —» oo |   £ |

It will be necessary for us to construct a majorant of |/(x)| with certain
special properties.

33.3. Theorem. Let f be of exponential type m. There exists a majorant of
|/(x)| of the form
(33.4) E0(x2)    where    E0(z) = c II (1 + z/Pi),

i
the pj are real, >0 and such that the infinite series zZ^/Pi converges, while
Eo(x2) is of the same exponential type m as f.

Proof. It is no restriction to assume that |/(x)| <1 for |x| <1. Set

i°g !/(*)!
SUP    -j—i-= Mn, n = 1, 2, • • • ,

l*l^n-l I  X\

and define
w„ = max (fin, m + 1/w).

Since p.n i a one concludes that m„lm as n—>oo. The function 2 cosh mnx
will be a strict majorant of |/(x)| for |x| ^« — 1. We denote the infinite
product for 2 cosh mnx by wn.
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Let 7Tn be the partial product of 7ti of lowest order ^ 1 which strictly
majorizes |/(x)| on ( — 1, 1). Let vx denote the number of factors of im, and
let ir* denote the product obtained from ir2 by omitting the first vi factors.
Since the factors of ir2 are smaller than those of tti but greater than 1 one has
for all x

| f(x) |   g xirn-2* g tti.

Now let 7T22 be the partial product of irnir* of lowest order ^2 which
strictly majorizes |/(x)| on ( — 2, 2). Let v2 denote the number of factors of
1T22, and let 7r3* denote the product obtained from 7r3 by omitting the first v2
factors. Note that v{2ivi. Then for all x

i i *
| f(x) \     g   7T227T3  g  TX.

Continue in this manner and define -E0(x2) =lim 7r„„(x). The limit exists
since 7r„„ is increasing (PnsSJV-i) while 7r„„^7Ti. Since 7Tnn majorizes |/(x)| on
(—re, re) the limit will majorize |/(x) | on (— oo , oo). Noting that 7r*+i consists
of TTn+i minus its first v„ factors and hence —>1 as re—-> oo we find that -E0(x2)
= lim TTnn(x)ir*+i(x). The sequence ir„„7r*+i is decreasing. It follows that the
type of Eo(x2) is no larger than the type of 7rnn7r*+i. But 7r„„ is a polynomial,
hence the latter function has the same type as 7r*+i, that is, its type is mn+i.
Thus £o(x2) has type %.m. Since £o(x2) majorizes |/(x)| its type can not be
less than m.

We note that pj is at least equal to the square of the absolute value of the
jth zero of cosh miz on the positive imaginary axis:

(33.5) \pj\   5; (j - 1/2)V/ml, j = 1, 2, • • • .
33.6. Lemma. The majorant E0(x2) in 33.3 may be chosen such that all the

pj are larger than the number

(33.7) «=    l.u.b.     {(Et^Y+Et^t }•
-»<!<<«     (\    ,•     X2 + pj/ j     X2 + pj)

Proof. By (33.5) the quantity a is finite for the original majorant con-
structed in the proof of 33.3. It is as a matter of fact no larger than

i     2 ^-v 2 2    2^ 2
l.u.b. -Cwitanh2 mxx + 2-, 1mx/(j— 1/2) ir> = 2nti.

Now replace all original p, which are ga by a+1, increasing c in (33.4)
if necessary to ensure that the new E0(x2) is still a majorant of |/(x)|. The
new value of a will be no larger than the old one.

34. Once more the equation (H+p)y=f. In this section we will prove a
number of lemmas which will be used in the proof of the representation
theorem for functions of exponential growth (35). The first lemma is basic.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1959] PANSIONS AND THE THEORY OF FOURIER TRANSFORMS 71

34.1. Lemma. Let f be of class A (21.2) and such that

\f(x) |   g g(x) — (x2 + p)h(x), — oo < X < co,

where p>0, h(x)>0, &G72f\4  (11), while for some a<p one has   \h"(x)\
^ah(x), — oo <x < oo. Then the unique function f of class A such that (H-\-p)f
=/ (31.3) satisfies the inequality

i -     i l
[ f(x) I   g-h(x), — oo  < X < 00 .

1 — a/p

Proof. By (31.5) and the positivity of w the solution/is majorized by the
solution g in A of the equation (H-\-p)g = g. Using the fact that (x2-\-p)w(x)
= w"(x) one obtains from (31.5) that

/X /» OOh(u)w"( — u)du + w( — x) f    h(u)w"(u)du.
-00 "   X

Integration by parts transforms the right hand side to

/X J% X

h"(u)w( — u)du -\- w( — x)  I    h"(u)w(u)du.
-00 ''I

Here we have used the facts that the Wronskian —w(x)w'(—x) —w(—x)w'(x)
has the value 1 and that w(x) as well as w'(x) are so small at + °o that the
contributions of the integrated terms at + co vanish (compare (31.2); since
h" GA the functions h and h' are dominated by expressions of the form
Cexp(ox2) with »<l/2).

We finally use the inequality for | h" \ to replace h" in the last two integrals
by the majorant (a/p)g. Thus

g(x) ^ h(x) + (a/p)g(x)

and the result follows.

34.2. Lemma. Let f be locally integrable and let \f(x) \ be majorized by
£o(x2) where Eo(z) =c\\j (l-\-z/pj) is an infinite product with the properties
of 33.3 and 33.6. Let g0 =/ and let g„ denote the unique function in A such that

(1  +  H/pn)gn   =   gn-1, »  =   1,  2,   ■   •   •   .

Then

I gn(x) i ^ c n _    n a + *v*y)
j'Sn   1 a/Pi i>n

(34.3)
gill ;-—} £°(*2)>        -»<x<oo,« = 0,1, •••.

(.j    1 - «//>,-;
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Proof. (34.3) is true for w = 0. Suppose it has been proved already with n
replaced by n — 1 where n — 1 ̂ 0. That is,

| pngn-l(x) |     g   (X2 + pn)hn(x)

where

*»(*) = cn n a + x2/p3), cn = c n -—— •
J>n ys»-i 1 — «//>/

One has
h! 2x
h j>n   x2 + pj

hence by (33.7)

h"\      I / h'\2      _  2pt - 2x2
—   =   (— I +2^ ~;-'   = a,        — oo < # < co.

Application of 34.1 with p=pn, h = hn, f = pngn-x therefore shows that the
solution gn in A of (H+pn)gn= pngn-x satisfies (34.3).

34.3. Lemma. Letf, £o and gn be as in 34.2. The sequence of functions {gn}
is uniformly convergent on every finite interval. The limit function g is bounded
on (— oo, co). It is infinitely differentiable, Hrgn—>HTg uniformly on every finite
interval and H'g is of class A for every integer r ^0.

Proof. For n ^ 1 (34.2)

(34.5) Hgn  =   Pn(gn-X  ~  gn)■

Thus HgnGA and by the definition of gn one may describe 77g„ as the unique
function of A such that

(1 + H/pn)Hgn =  Hgn-X, » =  2, 3,  •  •  • .

We may now apply 34.2 with / replaced by Hgx. Since Hgx=px(go—gi) is
majorized by 2pi£0(x2)/(l —a/pi) (34.3) one concludes from 34.2 that all
functions 77g„ are majorized by

0(x) = 2^£0(x2) FJ V(l " a/p,).
i

Hence by (34.5)

| gn(x)   —  gn-x(x) |     g   i~l(x)/p„, —   »   <*<<»,»=   1, 2,  •••.

We conclude that the sequence gn=go + (gi—go)+ • • • +(gn—gn-i),
n — l, 2, • ■ • is uniformly convergent on every finite interval. By (34.3) the
limit function g will be bounded by the constant cY[j 1/(1 —a/pf).

By a similar argument the sequence {77gn} is uniformly convergent on
every finite interval. Since {x2}g„—>{x2}g it follows that the sequence D2gn is
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uniformly convergent on every finite interval. Calling the limit function g*
one concludes that gn-^>Jfg*, hence g=JJg* is of class I2 (11). Furthermore
D2g=g* and Hgn-^{x2\g—g* =Hg. Since the Hgn are majorized by a fixed
function of class A the limit Hg is in A. One next proves that H2gn—*H2g and
that H2gEA, etc.

35. Representation of functions of exponential growth.

35.1. Theorem. Let f be a function of exponential growth, and let m be the
type off. Let £o(x2) be a majorant of \f(x) \ of type m such that £0 is an infinite
product with the properties stated in 33.3 and 33.6. Then there is an infinitely
differentiable function foEL2 such that

f=H-Eo(H)fo
in the sense that

/=#/*,      f* = lim /„,       /„ = c JI (1 + B/Pj)fo.
n—*=o j$n

The Hermite expansion zZckVk of f is such that for every number b>m there is a
constant M such that

\ck\   ^ Mexp {b(2kyi2}, k = 0, 1, • • •.

Proof. Let go=f and let g, be the unique function of A such that
(l+H/pT)gr=gr-i, r = l, 2, • • • . By 34.2 the gT are majorized by a fixed
constant multiple of E0(x2), and by 34.4 they converge to a bounded in-
finitely differentiable function g as r—> oo. Moreover H"gr-^Hng as r—> oo and
H»gEA,n = l,2,

We define /0 as the unique function of A such that

(35.2) cHfo = g.
Since g is bounded/o will be bounded and in Li (32.2). Moreover/0 will be
infinitely   differentiable   because   g   is:   D2fo= {x2}f0 — g/c.   By   the   above
H«foEA,n=0, 1, • • •.

We next define

(35.3) U = cII (1 + H/pf)fo, n = 1, 2, • • ■ .

Clearly fnEA.
In order to prove the convergence of the/„ we write

Hfn =   lim gnr, gnr =   H(l + B/p^gr (r ^  re).
r-"» jsn

Since grEhr (11) we have gnrEIir-in. Because H"gr is a linear combination
of gr, • ■ ■ , gr-n we have g„rEA. It therefore follows from the definition of the
gr that for fixed re the functions gnr may be described as the unique functions
of A such that
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(1 + H/pr)gnT = £„,_!,    r > n;    gnn = go = f-

Application of 34.2 shows that the functions |gnr(x)| are majorized by
{IIy>n 1/(1 — a/pj) }E0(x2), r = n, w + 1, • • • . Letting r—> oo it follows that

(35.4) | 77/„(x) |  g { II 1/(1 - «/>/)} £o(x2), » = 1, 2, • ■ • .
V i>n J

By (35.3)
fn  - fn-l  =   Hfn-l/pn, »  =   1, 2,   •   •   •   .

Hence by (35.4) and the convergence of zZ^/P* the- sequence/n=/i + (fi —fx)
+ • • • +(/„— /n-i) is uniformly convergent on every finite interval. More-
over since/i is bounded (35.4) implies that

(35.5) \fn(x) |   =g  \fx(x) |   + Z I Rfii*) I /Pi+i = C£0(x2),    n = 1, 2, • • • .
iii

It follows that the limit function/* of the/„ is of class A.
We will next show that/=77/*. Let /have the Hermite expansion zZc*vk-

Then by (24.4) and the definition of gT

(gr,Vk) =ck/ IIU+ (2*+!)/>/}•

Now the gr are all majorized by the same multiple of £0(x2). Hence by
dominated convergence

(g, v„) = lim (gr, v„) = Ck / II {1 + (2* + l)/>/} = ckc/Eo(2k + 1).
r—*« /        j

Thus /0~ Z^* where by (35.2) and (24.4)

(35.6) dk =-
(2k + 1)£0(2£ + 1)

It next follows from (35.3) that

(fn, vk) = ck/(2k + 1) TJ {1 + (2* + l)/#y},
i>n

and hence by dominated convergence (35.5) that

(/*, vk) = lim (/„, Vk) = ck/(2k + 1).
n—>oo

However, these numbers are also the expansion coefficients of the function
f oi A such that 77/=/ (24.4). Since both /* and / are in A we conclude that
/*=/ (23.4) and hence/= 77/*.

We finally estimate the expansion coefficients ck of / Since foGLi its
expansion coefficients dk are bounded. Thus by (35.6)
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| G, |   ^ K(2k+ l)Eo(2k+ 1)

(K a constant), and the desired estimate follows because E0(x2) is of exponen-
tial type m.

IV. Fourier transform theory for Li
41. The inversion formula. For fELi the Fourier transform g=Tf is

defined by

(41.1) g(x) = (Tf)(x) = O)-1'2 f   f(u)e~^du,
J -CO

and the conjugate Fourier transform h = Tf by

/CO

f(u)eix*du.
-CO

In general g will not belong to Li. However, g will be a bounded continu-
ous function. As a matter of fact, by the Riemann-Lebesgue lemma g(x)—»0
as x—>+ oo  [19, p. ll].

For real/ the conjugate Fourier transform h is the complex conjugate of
the Fourier transform g. For even / one has h = g.

41.3. Inversion theorem. Let fELi, and let g = Tf also be in L\. Then
Tg=f. (Compare [3, p. bi].)

Proof. Let/have the Hermite expansion zZckvk- Then by (24.2)

g = Tf~zZ (-i)kckvk,

and by (24.3)

Tg~ zZ ik( — i)kckVk = zZ Wk.

Thus/and Tg have the same Hermite expansion. Since both functions are of
class A they are identical (23.4).

41.4. Transform of convolution. Let fi, f2ELi. Then the convolution

fCOfi(u)fi(x - u)du

is in Li, and

Tf= Tfi-Tfi.
That the convolution is in Li follows from Fubini's theorem, and the same

theorem justifies the inversion of the order of integration which proves the
formula for Tf (compare [19, p. 59]).

42. Application to uniqueness theorems. Using the inversion formula
41.3 we will strengthen the Uniqueness Theorem 23.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



76 JACOB KOREVAAR [April

42.1. The class B. A function / is said to be of class B if there is a real
6>0 such that/(x)-exp(— x2/2+o|x|) is integrable (and absolutely integra-
ble) over (—00, co).

42.2. Uniqueness theorem. If two functions of B have the same Hermite
expansion they are equal.

Proof. Suppose that fG B has the Hermite expansion 0. Then

/OO

f(x)e~x'i2xkdx = 0, k = 0, 1, • • •
-00

hence the function

(42.3) g(z) =  f   f(x)e-xl'2e~Uxdx
J -oo

which is analytic in some strip [ Im z\ <b vanishes at z=0 together with all
its derivatives. Thus g(z) =0, that is, the Fourier transform of the function
f(x) exp (—x2/2) of Li is equal to 0. By 41.3 one concludes that/=0.

In the above proof the analyticity in the strip | Im z\ <b may be replaced
by quasi-analyticity on the real line.

42.4. Classes Q. Let \Ak} be a nondecreasing sequence such that Zl/-^*
diverges. A locally integrable function /is said to be of class C?!-^*} if

I f(x) I e      I x I dx g Ak, k = 0, 1, • • • .
-00

42.5. Uniqueness theorem. If two functions of ${.4*} have the same
Hermite expansion they are equal.

Proof. The function g(z) defined in (42.3) will be quasi-analytic on
(-co, co):

\g    (z) I   g Ak, - eo  < z < °o, k = 0, I, • ■ ■ .

By hypothesis g(i)(0) =0, k=0, 1, • • • . Thus since Zl/^* diverges, Carle-
man's theorem [13, p. 14] implies that g(z) =0. Application of 41.3 completes
the proof.

V. Pansions
51. Definitions. A pansion <j> is a formal series

00

Z Wk
k=0

where the vk are the normalized Hermite functions (21.1). The coefficients ck are
real or complex numbers.

We define
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(cb, Vk) = Ck

and will often write c/>~zZckvk instead oi cp— zZckvk-
Two pansions are said to be equal if they have the same coefficients ck.
The scalar multiple acp and the sum cp+ip of two pansions are defined by

the corresponding operations on the coefficients.
If the pansion cp is the expansion of a function f of class A (21.2) or of the

larger class B (42.1) we identify <f> with f. Instead of B one could also use a
fixed class Q as defined in 42.4.

52. Global differentiation [D]. Let cp be the pansion zZckvk- We define the
global derivative [D ]cp to be the pansion

00

(52.1) [D]<p ~ (zZ ckDvk ~) zZ {(*/2 + l/2)1/2c*+i - (k/2yi2ck-i)vk.
k-0

If cf, is a function f of class Ii whose derivative Df is of class A or B then [D]cp
= Df (24).

Using (22.2) one easily verifies that

(52.2) ([D]cb, Vk) = - (<p, Dvk).

Now let/£.B. By (52.2) the coefficients of the global wth derivative [£>]"/
are given by

(52.3) ([D]»f,Vk) = (-l)"(f,D"vk).

Dirac's 5. The 8 "function" [5, p. 58] may be defined as the global deriva-
tive of the unit step function [/given by t7(x) =0, x jSO, U(x) = 1, x>0. Thus

(8,vk) = ([D]U,vk) = - (U, Dvk)

/I 00

[Dvk(x))dx = vh(0),
0

hence by (22.3)
»   (-l);{(27)!}1/2

(52.4) S = [D]U ~ zZ ^      ,.,f"     Vij.

52.5. Theorem. Every pansion is the global derivative of another pansion.
The antiderivative is determined up to a constant function: [D]cp = 0 if and only
if' 0 = {c}, a constant function.

Proof. To obtain an antiderivative zZckvk of a given pansion zZ^k one
has to solve the equations

(k/2 + i/2y'2ck+i - (k/2y'2ck-i = dk>        k = 0,1, • • •

(52.1). It is clear that c0 can be chosen arbitrarily and that all other ck can
be expressed in terms of c0 and the a"s.
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One has [7) ] {e} =D\c} =0. Now suppose that [D ]d> = 0 where c^^ zZc^>k-
Solving the above equations with dk = 0, k=0, 1, ■ • • one obtains Ci=c3
= c6= • • • =0,

/2J-1V'2 {(2i)!}1'2
c2j — I-— I   c2j-2 — • • •-Co.V    2j    ) 2>jl

Thus by 23.3 the pansion <f> is the expansion of the constant function
{2_1/27r_1/4Co}, that is, d> is equal to that function.

52.6. Corollary. If two functions f and g of class B (42.1) have equal
global derivatives of order n then f and g differ at most by a polynomial of degree
n-l.

For h=f-g satisfies [D]nh = 0. Hence by 52.5 [D]n~lh= \c}, or

[D]n~l(h - {cx"~l/(n - 1)!}) = 0.

Continuing one finds that h is equal to a polynomial of degree g»-1.
It follows from 52.6 that the Dirac 5 can not be equal to a function / (of

class 73). For this would imply that U(x) =/o/+c almost everywhere, hence
U(x) would differ from c by less than e = 1/2 for almost all x on some interval
(-7,7)-

53. Global multiplication by {x}. Let <j> be the pansion Zc*^*- We define
the global product [x]d> to be the pansion

00

(53.1) [*]0~ (Zc*{*K~) Z {(*/2+ l/2yi*ck+x+ (k/2yihk-i}vk.
k-0

If d> is a function f of class B then [x]<p= {x}f (23.5). Using (22.2) one easily
verifies that

(53.2) ([*]*, vk) = (<!>, {x}vk).

53.3. Product rule. One has

[D][x]<b = c6+ [x][7)]c6.

For by (52.2) and (53.2)

([/?][*]*, vk) = - ([x]cp, Dvk) = - (c6, [x}Dvk)

= - (tp, D{x}vk) + (c6, vk) = ([x][£>]<£, vk) + (cp, vk).

53.4. Corollary. If d> is the global nth derivative of a function fGB the
same is true about [x]c6.

For if 0= [D]nf,fGB, then by the product rule 53.3

[x][D]»f= [/>]«({*}/-n J*/)•
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53.5. Theorem. Every pansion can be written as [x] times another pansion.
The latter pansion is determined up to a constant multiple of the o pansion:
[x]c/> = 0 if and only if cp is a constant multiple of 5.

Proof. To write a given pansion zZdkvk as the product of [x] and a pan-
sion zZckvk one has to solve the equations

(k/2 + l/2yi2ck+i + (k/2y'2ck-i = dk, k = 0, 1, • • •

(53.1). It is clear that Co can be chosen arbitrarily and that all other ck can
be expressed in terms of c0 and the d's.

A pansion c/><~zZ°kvk satisfies [x]</>=0 if and only if the ck satisfy the
above equations with 0^=0, k=0, 1, • • • . That is, Ci=c3 = c5 = ■ ■ • =0, and

/2j ~ V2 .    <w{(2j)l}'"
C2j =  - ( -—— )    Ctj-i =  • • ■ = (-1)' ——- Co.\    2j    J 2'3\

Thus by (52.4) cf,=w1i4c05.
54. [H] and other global operators. Let cp be the pansion zZckvk- Then

we define

(54.1) [H]cp ~ (zZ ckHvk ~\ zZ (2k + l)ckvk.
\ ' *=o

Note that [H] = [x]2- [D]2. If cp is a function/of class I2 such that D2/is of
class A or B then [H]<p = Hf (24.4).

Let E(x) = zZanxn be an entire function. Then we define (compare (24.6))

(54.2) [E(H)]cb ~ ( zZ ckE(E)vk rJS zZ E(2k + l)ckvk.
\ /    k—0

We define [E(x)]cp and [E(D)]cp by the equations (compare (23.7) and
(24.5))

(54.3) ([£(*)]*, ft) = E *.([*]"*, ft), * = 0, 1, • • •
(54.4) ([E(D)]cb, vk) = zZ an([D]"cb, vk), k = 0, 1, • • •

whenever the series on the right hand side are absolutely convergent. The follow-
ing lemma gives some information about the applicability of definitions
(54.3) and (54.4).

54.5. Lemma. Let E(x) be an entire function of growth border 2, type 0. In
other words, E(x) = zZanXn where the an satisfy an inequality

I o»|   £ A-feXn!)-1'2*", n = 0, 1, • • •

for every e>0 [2, p. 11 ]. Then definitions (54.3) and (54.4) are applicable to
every pansion cp~zZckVk such that for some m>0
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(54.6) |fe|   £ Mm"> * -0, 1, • • •.

TTse coefficients of [E(x) ]d> and [£(7?) ]d> will satisfy a set of inequalities of the
form (54.6) with a larger m.

When d> is a function / of class A then [£(x) ]d> — {E(x) }f.
Proof. Because of the similarity of the formulas for [x]nd> and [7?]"c/> it

will be sufficient to prove (54.3). We may apply the proof of Lemma 25.2 to
obtain the estimate

I ([x]"<p, vk) |
£{(* +  »)■••(*+   1)} 1'22-»/2( |  Ck+n |     +   Cn.l |  Ck+n-1 |     +•••+!  Ck-n \  )

^ Mx2(-k+nii2(niyi22-"i2mk(m + l/m)n, n, k = 0, 1, • • • .

Hence by the given inequality for the an the series in (54.3) will certainly
converge if (m + l/m)e<l. The sums of the series are bounded by Mi(2ll2m)k,
k=0, 1, • • • . It is likely that a more precise lemma than 25.2 would show
that 2ll2m may be replaced by any number u>m in this final estimate.

54.7. Corollary. Let Ex, Ei be entire functions of growth = order 2, type 0,
and let the coefficients of d>~ zZci^k satisfy (54.6). Then

[Ex(D)][Ei(D)]cp = [Ex(D)E2(D)]<t>,
[£i(x)][£2(x)]c6 = [Ex(x)E2(x)]tp.

The crucial step in the proof is to show that [D][E(D)]<p= [DE(D)]d>.
Set [E(D) }<p=ip. Writing for Dvk the linear combination of vk+x and vk-x it is
equal to one, has by (54.4)

([D]P, vk) = - W, Dvk) = - Z «n([7?R Dvk) = Z an([D]»+lcb, vk).

55. The translation operator [eaD]. By 54.5 the operator [eaZ>] may be
applied to any pansion c/>~ Z^* whose coefficients satisfy an inequality
(54.6). In particular [eaD] may be applied to any function /of class A (25.5).
By (54.4) and (52.3)

(WD]f, Vk) = Z a"([D]"f, vk)/n\
= Z i~a)n(f, D*vk)/n\ = (f, Z (-<0"7>V»!)
= (/, {vk(x -a)}).

The third step may be justified by dominated convergence. As a matter of
fact

D*vk(x)       I 1   r vk(z)
-=   — I -dz

n\ \2v J|M|-|*i|   (2 - x)"+1

g   \2a\~"     max      | vk(z) \   = C | 2a |"n( | x |  + 1)* exp (| 2ax | - x2/2),
l«-*l =l2ol
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and hence the order of summation and integration may be inverted.
Now let a be real for a moment. Then

(f, {vk(x - a)}) = ({f(x+a)},vk).

Thus we have the following result to justify the name translation operator.

55.1. Theorem. Letf be a function of class A and let a be real. Then

kD]/= {/(* + <*)}
(Taylor's formula!).

Another translation rule is as follows.

55.2. Rule. Let E(x) be an entire function of growth ^ order 2, type 0, and
let the coefficients of cp satisfy a set of inequalities (54.6). Then for real or complex a

[e*D][E(x)]4, = [E(x + a)][e*D]cb.

Proof. The proof follows from the product rule 53.3 in the case E(x) =x.
Now let E(x) = zZbnX", [E(x)]cp=\p. The general case follows from the iden-
tity

([D]*+, vk) = (-1)*(*, D"vk) = (-l)»zZ bn([x]"<p, D*vk)
= E K([D]p[x]"cb, vk)

where Dpvk denotes the linear combination of the Vj it is equal to.
Multiplying by ap/p\ and summing over p one obtains

([e*D]+, ft) = £ bn([x + a]"[^]d,, vk).
n

55.3. Rule. Whenever the coefficients of cf, satisfy (54.6) one has by 54.7
[e>D] [ehD]d, = [e<s+i,)c]0.

55.4. Corollary. // [eaD]cp=0 then 0 = 0.

55.5. Corollary. One has [x — a]cf> = 0 if and only if

<p = cSa = c[eaD]b.

Proof. One has by 55.2

[x - a]4> = [x - a] [e~aD] [eoD]</> = [e~aD] [x] [e-"D]d>,

hence the left hand side is equal to 0 if and only if [x] [eaD]cf> = 0. The result
now follows from 53.5.

The preceding results have important counterparts obtained by inter-
changing x and D. For example,

(55.6) [H[E(D)]d> = [E(D - a)][e"x]cb,

while [D — a]cf>=0 ii and only if cf, = c{eax\.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



82 JACOB KOREVAAR [April

56. Global multiplication. We will begin by considering the expression

(56.1) (vrv„ vk) = arsk-

Permutation of r, s and k does not change arsk. We need the following esti-
mate.

56.2. Lemma. For every e>0 there is a constant C(s, k, e) such that

| arsk I   ^ C(s, k, C-X3-1'2 + «)', r = 0, 1, • • • .

Proof. Using the generating function of the Hermite polynomials [17,
p. 102] to obtain an integral representation for vr(x) one may write

arsk = yx(s,k)(r\y'22-*l2 f   Hs(x)Hk(x) exp (-3x2/2)dx f     w'^1
J -oo «7|w|=l

•exp (2xw — w2)dw

= yi(s, k)(riyi22-'i2 f      w-^1 exp (-w2/3)dw f   ps+k(x - 2w/3)
•7|to|=1 •'-oo

•exp {-3/2(x - 2w/3)2}dx.

Here Hk denotes the Hermite polynomial of degree k, and ps+k is a polynomial
of degree s-\-k with coefficients which depend on 5 and k and are polynomials
in w of degree ^s-\-k. Thus the last integral over (— oo, oo) is equal to a poly-
nomial in w of degree ^s-\-k with coefficients depending only on 5 and k. It
follows that aTsk is equal to a finite sum of terms of the form

Cj(s, k)(r\y'2 2-"23->yji

where j runs from (r—s — k)/2 to r/2. This proves the result.
56.3. Global product d>Vk- Let cp~zZcrvr where the c's satisfy an inequality

(54.6) with m <31/2. Then we define the pansion <pVk by

(<pvk, v,) = Z cr(vrvk, vs) = Z cra„k, s = 0, 1, • • ■ .
r r

We have to prove that the new definition is consistent with the usual
definition if 0 is a function/ Suppose that/(x) exp (— ax2) =/i(x) is in Li
where a<l/4. Then by 25.5 the expansion coefficients cr of/ satisfy an in-
equality (54.6) with m<3112. We have to show that in this case Zcr«r»t
— (fak, vs). One has by 56.2

| f(x)arskVr(x) |   ;g  | fi(x) | C1(3-1'2 + e)' max | e**\(x) \

g C21 /i(x) | (3-1'2 + c-)'m', r= 0, 1, • • •

where m <31/2 (25.5). It follows that the series zZrfar.kVr is dominatedly con-
vergent on (—oo, °o), hence
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I (    E f<Xr,kVr f dx =   ZZ CrCCrsk-

To evaluate the integral we remark that the series £r a„kVr is dominatedly
convergent. Hence the expansion coefficients of its sum which is of class A
are the numbers arsk, r=0, 1, ■ ■ ■ . But these are the expansion coefficients
of vsvk. One concludes that E>- <XrskVr = v,Vk and thus the above integral has the
value (fvk, vs):

56.4. Lemma. Let f be a function such that for some a<l/4 the product
f(x) exp (— ax2) is in L\. Let /~ zZcr°r. Then

E cTaTak = (/ft, ft).
r

56.5. Global product cp\p. We defined [x]\p such that ([x]}p,vk)=(\p, \x}vk)
where {x}y* stands for the linear combination of the vs it is equal to. For
0<~ zZcrvr, *p~ zZdnV, we similarly define the pansion cp\p by

(<P"P, ft)   =   WS <?ft)   =  VP, ZZ (   E CrarskjV,)

= zZ d,zZ crarsk, k = 0, 1, • • •
8 r

whenever the latter series converge.
One has in particular l\p=\p. However, xp-1 does not have to exist. The

above multiplication is not commutative, nor associative. When cf, is an entire
function E of growth ^ order 2, type 0 the above definition agrees with (54.3).

57. Convolution. We first consider the expression

(57.1) (vr * ft, ft)   = 8r.k-

57.2. Lemma. One has

Brsk = ik(-i)r+>arSk = (-1) <*+*-» l2arsk.

Proof. By 41.4 and (22.4)

T(vr*vs) = TV 7ft = ( — i)r+'vrvs,

hence by 41.3

Vr * ft  =   T( — i)r+gVrV,.

Thus by 22.4

Brsk = ;*(-*)r+*(ftft, ft) = (-l)^+'-k)l2arsk

since arstr^0 only if r+s and k have the same parity.
57.3. Convolution <f>*vk. Let 0~Ecrft where the c's satisfy an inequality

(54.6) with m<3U2. Then we define the pansion cp*Vk by
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(tj) * Vk, Vs)   =   Z Cr(Vr * Vk, V.)   =   Z Cr8rks, S  =   0,  1,   •   •   •  .
r r

This definition agrees with the usual definition 41.4 if <p is a function/:

57.4. Lemma. Let f be a function such that for some a<l/4 the product
f(x) exp (—ax2) is in Li. Let f~ Ecrz>r. Then

Z CrBrks   =   (/*»*, Vs).
r

Proof. The condition a<l/4 guarantees that f*vk will be a function of
class A. For f*vk = F*Dvk where £(x)=/o/is bounded by & exp (ax2). Since
Dvk(x) is bounded by d exp ( —6x2) where 6 = 1/2—e one has

/oo exp \a(x — u)2 — bu2}du
-co

= d exp { abx2/(b -a)}.

Now let 7?z»t be the function defined by (Rvk)(x) =vk(— x). Then a simple
calculation shows that

(/* vk, vs) = (/, Rvk * vi).

The method of the proof preceding 56.4 shows that the series zZrfftrkSvr is
dominatedly convergent on (— co, co), and that its sum isf(Rvk*v8). Integra-
tion over (— oo, co) completes the proof.

57.5. Convolution <p*xp. For the ordinary convolution 41.4 one has (f*g, vk)
= (g, Rf*vk) where (Rf)(x) =/(—x). Let 4>~zZcrvr, 4"^zZdsVs. We define Rd>

as y,cr7foy = y,( — l)rcrvr and then define the pansion 4>*xp by

(<P * \b, Vk)   =   GA, 7?c5 * Vk)   =   U,   Z ( Z  (-l)rCr8rkJ\ VS\

=   Z &» Z CrBrsk, k   =   0,   1,   •   •   •
• r

whenever the latter series converge.
We note the following particular cases:

(57.6) (2iryi2b*xP = ^,

(57.7) (2t)1i2[D]& * j = [D\p.

Proof. By (52.4) and 23.3 the expansion coefficients of S and {1} are
related as follows:

(2Tryi2Cr(d)   =   i'Cr(l), T  =   0,  1,   •   •   •  .

Hence by 57.2 and 56.4
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(2t)1'2 zZcr(8)Brsk = ik(-i)' E cr(l)arsk = ik(-i)sW, ft) = (ft, ft),
r r

so that by 57.5

((2wy28 * ip, vk) = dk= (+, ft).

Expressing the coefficients of [D]h in terms of those of 5 one similarly has

(2rry<2 E {(r/2 + l/2)"2Cr+i(5) - (r/2yi2cr-i(8)}8r,k
r

= i*+\-i)> E {(r/2 + l/2yi*cr+i(l) + (r/2)1'2Cr_,(l)}ars*
r

= ik+1(-i)*({x}vk, ft)

-(£/2)1/2 its = k-l,

= ■ (k/2 + 1/2)1'2    Us = k+1,
0 otherwise.

Hence by 57.5

((2rryi2[D]8*iP, vk) = - (k/2yiHk-i + (k/2 + l/2y'2dk+i = ([D]iP, Vk).

A simpler proof may be obtained from the theory of Fourier transforms.

VI. Fourier transforms of pansions
61. The operators [T] and [r]. Let cf, be the pansion Ec*ft- Then we

define the Fourier transform [T]cf> and the conjugate Fourier transform [T]cf>
by the formulas

CO

(61.1) [T]cb ~ (E CkTvk ~) E (~*)*ftft,
*-o

(61.2) [T]cb ~ ( E ckTvk ~) E »*ftft-
Jb=0

If cf, is a function f of class Li then [T]cf>= Tf and [T]cf>= Tf (24).
The above definitions imply that

(61.3) ([T]<p, vk) = (cb, Tvk),        ([T]<t>, vk) = (<p, Tvk).

61 A. Inversion Formula. If\p= [T]cp then \T]\p=cf>.
Proof.   Let  cf, ~ Ec*ft-   Then  \p = [T]cp ~ zZ(~i)kCkVk,   hence   [T]\p

~zZik(~i)kckVk= Ec*ft-
61.5. Example. By 23.3 and 52.4

[r]{i} = o-)1'^,     [T]s = [T]8 = Jo)-1'2}.
62. Rules for Fourier transforms. One has the following rules for [T] and

corresponding rules for [r]:
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(62.1) [T][D]tp = i[x][T]4>,
(62.2) [T][x]<j> = i[D][T]<p,
(62.3) [r][77]c4= [77][r]c6,

and, more generally, if £ is an entire function,

(62.4) [T][E(H)]<p = [E(H)][T]<p.
Also

(62.5) [t][E(D)]* = [E(ix)][T]cp,
(62.6) [T}[E(x)}* = [E(iD)][T]<p

provided one of the two sides exists according to (54.4) or (54.3). In particular
one has the following formula for the transform of a translation:

(62.7) [T][e°°]<p = W°*][T]4>
whenever the coefficients of <p satisfy an inequality (54.6).

Finally, for the convolution,

(62.8) [T](<t>*+) = [T]4>[T]xb

provided one of the two sides exists according to 57.5 or 56.5.
Proofs. Let d>~ Zc^*- Then by (52.1) and (61.1)

[T][D]<p ~ Z (-»)*{(*/2 + l/2yi2ck+i - (k/2yi2ck-x}vk
= izZ {(k/2 + l/2yi2(-iy+hh+x + (k/2yi2(-i)k-'ck-x}vh

which by (53.1) and (61.1) is equal to i[x] [T]<p. This proves (62.1); the proof
of (62.2) is similar.

A proof of (62.3) and (62.4) follows from (54.1) and (54.2).
To prove (62.5) we remark that by (62.1)

(-i)k([D]»cp, vh) = ([T][DH, vk) = in([x]»[T]4>, Vk).

Thus the individual terms in the sums defining

([T][E(D)]4>, vk) = (-i)k([E(D)]<p, vk)

and ([£(ix)] [T]<j>, vk) are equal. The proof of (62.6) is similar.
To prove (62.8) we use the notation of 57.5. One has, using 57.2,

([T](<t> *yp), %)   =   (-*)* Z d, Z Cr8r,k
* r

= (-i)k Z d, Z Crik(-iy+>ar,k
8 r

=   X) (~i)*da 2  (-iYCrOlrek-
s r

But by 56.5 the last sum also represents ([2"]<£- [T\f/, vk).
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62.9. Application. Let f be the Fourier transform of a function g of"L\. Then

of = f(0)8.
For (2ir)1'25/= [T](l*g). Since

/OO p  00

g(u)du(2w)-1'2 I    vk(x)dx
-00 •*   — CO

the convolution l*g is equal to the constant function {(2ir)~ll2f1Kg(u)du\
= lf(0)}. Hence «/=(2ir)-»'*[r]{/(0)} =/(0)8.

VII. Fourier transform theory for L2
71. L2 theory. The present derivation of Plancherel's theory shows some

similarity with Wiener's treatment [21, p. 46]. Both derivations are based on
Hermite expansions. However, the treatment given below is considerably
shorter.

Let / be a function of class Lj and let / have the Hermite expansion
Ec*ft- By the completeness of the vk

E Ick\2 = (/,/)
k=0

(25.1). In the spirit of this paper we define the Fourier transform of/ to be
the Fourier transform of the pansion zZckvk-

(71.1) [T]f = [T] E ckvk = E (~i)kckvh.

That is, [T]f is a pansion zZdkVk such that EM*12 converges. But then the
Riesz-Fischer theorem asserts that there is a function g in L2 such that
g~zZdki>k (25.1). By our convention we identify E^fcft with g. Note that

(g,g) = E |4|2 = E Ick\2 = (/,/).
Application of the inversion formula 61.4 completes the proof of the basic
theorem.

71.2. Theorem. Let f be a function of Li. Then g= [T]f is also a function of
L2. One has [T]g—f and

([T]f, [T]f) = (/,/).
72. Plancherel's definition. Plancherel was the first to prove that the

class L2 is closed under Fourier transformation. He used a different definition
of the Fourier transform of a function of L2. However, we will show that our
definition leads to the same Fourier transform as his original definition.

72.1. Plancherel's theorem. Let f be in L2. Then the functions
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ha(x) = (2*-)-1'2 f  f(u)e-^du
J —a

converge in the mean on (— co, ra) to a function h of Li as a—> oo. One has (h, h)
= (/,/). Reciprocally the functions

ka(x) = (27T)-1'2 f  hMe^du
J —a

converge in the mean to f as a—> oo.

Proof. We will show that the functions ha(x) converge in the mean to
g =[£]/•

Let/0(x) be equal to f(x) for |x| =a and equal to 0 for |x| >a. Then fa
is in Li (Schwarz's inequality) and hence ha=Tfa= [T]fa (61). By 71.2 the
transform g= [F]/is in Z2. Clearly

g-ha= [T](f-fa).

The function/— fa is in Li. Hence by 71.2

/OO y»  00 /       /* ~" ° /*   °°  \\g-ha\2dx=\     \f-fa\2dx= (   I      +1      )|/|2dx.
-oo *> —oo \ "^ —oo *^ a      /

As a—> oo the right hand side approaches 0, hence ha converges in the mean to
g. This proves that Plancherel's Fourier transform h of f exists and that h=g.
The reciprocal relation may now be proved in the same way.

VIII. Fourier transform theory for pansions of polynomial growth
81. Pansions of polynomial growth. The example [T] {1} = (2tt)1/25 (61.5)

shows that the transform of a function of polynomial growth need not be a
function of polynomial growth (52.6).

By 32.3 every function / of at most polynomial growth may be written
in the form 77"/0 where f0GL2. Or, using a weaker formulation (54.1) which
could actually be derived in a simpler fashion,

/ = [Hfro,       /o G Li.
Hence since [T] and [77] commute (62.3)

[T]f = [77]»go,        go = [T]f0 G Li.
In order to obtain a class of objects which contains all functions of poly-

nomial growth and which is closed under Fourier transformation we are thus
led to the following:

81.1. Definition. A pansion <j> is said to be of polynomial growth if it can
be written in the form

(81.2) 4>=[H]nfx, fxGL2,
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where re is an integer =50.

81.3. Theorem. The class of pansions of polynomial growth is closed under
Fourier transformation (as well as conjugate Fourier transformation).

Proof. Let cp be of the form (81.2). Then

[T]4> = [H]»[T]fi = [H]'gi, gi E Li.
In the next section we will give several characterizations of the class of

pansions of polynomial growth. We will show in particular that a pansion is
of polynomial growth if and only if it is the global derivative of some finite order
of a function of at most polynomial growth. Thus the pansions of polynomial
growth correspond to Laurent Schwartz's tempered distributions, that is, the
class of distributions for which Schwartz defines a Fourier transform [16, II,
p. 79].

82. Characterizations of pansions of polynomial growth. We will prove

82.1. Characterization theorem. The following four statements about a
pansion 0~Ec*ft are equivalent:

(i) cf, is a pansion of polynomial growth:

<t> = [H]"fu /i E Li.
(ii) 0 can be written as a finite order global derivative of a function of at most

polynomial growth:

d, = [D]p(x2 + l)9/2, fi in Li and bounded,

(iii) 0 can be written as the global product of a power of [x] and a global poly-
nomial derivative of a function of Z,2:

0 = [x]-[D2 - l]«/8, /3 E Li.

(iv) there are constants M and m such that

| Gi,|   ^ Mkm, k = 1,2, ■ ■ ■ .

Proof, (i)—>(ii). Let (i) hold. In the case re=0 one has /i = [D]/ where
f(x) =/o/i is a function of at most polynomial growth.

Now let w^ 1 and suppose it has been shown already that \p= [il]"_I/i is
equal to [.D]8B_1g where g is a function of polynomial growth. One has
0= [i?]^= [x]2^— [-D]V- Hence it is sufficient to show that [x]x is equal to a
global derivative of order 2re — 1 of a function of polynomial growth whenever
X is. Set x= [D]2n~%. Then by 53.4

[x]x = [x][D]2»~lh = [D]2"~l({x}h - (2re - 1) f h\

and the result follows.
The above proof shows more precisely that (i) implies the representation
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cp = [D]2«+y

where |/(x)| £C(\x\ +1)4"+1/2.
(i)—»(iii). Let (i) hold. Then co=[r]c/> is also a pansion of polynomial

growth (81.3), hence we may apply (ii) to obtain

co = [D]'(x2 + l)'fi, fi G Li.

By the inversion formula 61.4 and other rules for Fourier transforms
(62.1), (62.6)

$ = [T]u = i'[x]r[i2D2 + i]»[r]/4

= [xY[D2 - l]'/3

where f3 = ir+2'[T]fiGLi.
(ii)—»(iv) and (iii)—>(iv). It will be sufficient to prove the first of these.

Let (ii) hold. The expansion coefficients of fiGLi are bounded (25.1). Hence
the coefficients dk of (x2 + l)8/2 are bounded by a constant times (& + l)«
(23.5), and it follows from the definition of [D] (52.1) that the coefficients
ck of d> are bounded by a constant times (k-\-l)q+pl2.

(iv)—»(i). Let (iv) hold. Let n be an integer ^0 and >m + l/2. Then the
numbers ek — (2k-\-l)~nck are the expansion coefficients of a function fiGLi
since Zle*|2 converges (25.1). And by the definition of [77] (54.1) we have
<P=[H]»fx.

83. Applications. We can now prove the following result in addition to
81.3.

83.1. Theorem. The class of pansions of polynomial growth is closed under
the operations listed: [77], global differentiation [D], global multiplication by
[x], translation [eaD], global multiplication by [eibx] (provided a and b are real).

Proof. The statement on [77], [D] and [x] follows from 82.1.
Once more using the representation <p= [D]pf,fa function of polynomial

growth, one has (54.7)

[e"D]<p = [e"D][D]"f = [D]*[eaD]f

and by 55.1,   [eoc]/= {/(x+a)}. Thus  [eaD]c/> is a pansion of polynomial
growth.

Finally by (55.6)
[eiix]<p = [e<te][7?]"/ = [D - ib]>»{eib*}f

which shows that [e**]c/> is a pansion of polynomial growth.

83.2. Corollary. The class of pansions of polynomial growth may be char-
acterized as the smallest vector space which contains Li and which is closed under
global differentiation [D] and global multiplication by [x].
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For every vector space with the properties stated contains all 0's of the
form 82.1 (ii).

Alternate computation of Fourier transforms. In the case of a function f of
at most polynomial growth the present Fourier transform [r]/is essentially
equal to the global &th derivative of Bochner's "&-Transformierte" of / [3,
p. 110]:

83.3. Theorem. Let f be a function such that // {| x| +1 }* is in Lx, k an
integer ^0. Definefi(x)—f(x) for \x\ ^l,/i(x) =0for \x\ >l,andsetf2=f—fi.
Then

[T]f= Tfi+[D]*T(fi/{-ixY)
where T is the ordinary Li Fourier transformation.

Proof. Since/i and /3 =fi/ {x} * are in Li one has

[T]fi = Tfh       [T]f3 = Tf,
(61). Hence by rule (62.2)

[T]f2= [T]({ *}*/„)= [iD]*Tf3.

We may apply the preceding result to obtain a formula for the Fourier
transform of any pansion of polynomial growth:

83.4. Theorem. Let cf, be a pansion of polynomial growth. Then we may
write 0 = [D]"f where ps±0 andf/{ \x\ +1}*GZ-i for some integer k^.0. Using
the notation of 83.3 one has

[T]0 = {ix}"Tfi+ [ix]'[iD]i°T(fi/{x\k).

The proof follows from 82.1 which gives the representation cf>=[D]"f,
83.3 and (62.1).

83.4 shows once more that [T]cp is a pansion of polynomial growth.

IX. Fourier transform theory for pansions of exponential growth
91. Pansions of exponential growth. By 35.1 every function/ of at most

exponential growth may be written in the form E(H)f0 where foELi and
E(z2) is an even entire function of z of exponential type. More precisely, if
/ is of exponential type m then E(z2) may be taken of exponential type m.

Using a weaker formulation which could actually be derived in a much
simpler fashion we have the representation (54.2)

/ = [E(H)]U, /o E Li.
Hence since [T] and [-E(-rT)] commute (62.4)

[T]f = [E(H)]go, go = [T]fo E Li.
In order to obtain a class of objects which contains all functions of ex-
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ponential growth and which is closed under Fourier transformation we are
thus led to the following:

91.1. Definition. A pansion d> is said to be of exponential growth if it can
be written in the form

(91.2) 0 = [£(77)]/!, fxGL2,
where E is an entire function such that E(z2) is of exponential type as a function
of z.

A pansion tp is said to be of exponential type m if it can be written in the
form (91.2) with £(z2) of type m, but not with £(z2) of type <m. A function
/of exponential type m will be of type =w when considered as a pansion.

91.3. Theorem. The class of pansions of exponential growth is closed under
Fourier transformation.

For if tp has the form (91.2) then

[T]tp = [E(H)][T]fx = [£(77)]gl, gx G L2.

In the next sections we will obtain several characterizations of the class
of pansions of exponential growth. It will be shown in particular that a
pansion is of exponential growth if and only if it is an infinite order global de-
rivative of exponential type of a function of at most exponential growth.

92. Characterization by coefficients. We will prove the following:

92.1. Characterization theorem. A pansion d>~ Z^* & of exponential
growth if and only if there are constants M and b such that

(92.2) \ck\   ^ M exp {b(2ky2}, k = 0, 1, • • • .

The type of tp as defined in 91 is equal to

log   | Ck I
(92.3) / = max (X, 0),        X = lim sup-•

*-.«      (2k)1'2

Proof, (i) Let cp be of the form (91.2) with £(z2) an even entire function of
z of exponential type m. The coefficients dk oi fiGL2 are bounded (25.1).
Hence the coefficients ck = E(2k-T-l)dk of tp (54.2) are bounded by an expres-
sion of the form M(e) exp {(w + e)(2£ + l)1/2} for every t>0. This proves
(92.2). It also follows that the number / in (92.3) has a value ^m. In par-
ticular / can not exceed the type of d>.

(ii) Let </> be a pansion whose coefficients ck satisfy (92.2). Then I = max
(X, 0) is finite, and the function / defined by

f(x) =   \ck\,        (2k)1'2 =   |*|   < (2k + 2)1/2, k = 0, 1, • ■ •

will be of type / on the real axis. Thus by 33.3 there exists an entire function
£0(z) such that £o(z2) is of exponential type / as a function of z while /(x)
^£o(x2). That is, \ck\ ^E0(2k + l), k=0, 1, • • • .
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Now define

dk = ck/(2k + l)Eo(2k +1), k - 0, 1, • • • ,

and let /i be the function of Z2 which has the numbers dk as its expansion
coefficients (25.1). Then

d, = [H-E0(H)]fi.

It follows that 0 is a pansion of exponential growth. Moreover the type of cf,
does not exceed the type / of z2E0(z2).

We can now prove the following result in addition to 91.3.

92.4. Theorem. The class of pansions of exponential growth is closed under
the following operations: the taking of infinite order global derivatives [E(D)]
and global multiplication by [E(x) ] where E is any entire function of exponential
type. If 0 is of type m and E of type p then [E(D) ]cf> and [E(x) ]cf> are of type
^m+p.

Proof. Let 0~Ec*ft De of type m. By 92.1 we will have an inequality
(92.2) for every b>m. Let E be of type p. Then E(x) = Ea»x" where the an
satisfy an inequality |a„| 5=i?rn/re! for every r>p [2, p. 11 ].

Just as in 25.2

|   ([*]»0, Vk)\     £{(* + »)•••(*+   1)} I/22-«'2( |  Ck+n I   +  Cn,l |  Ck+n-1 \    +   •   •   •)

^ {(k + re) • • • (k + 1)} u*2»i*M exp {b(2k + 2re)1'2}.

Hence by (54.3) and the inequality for the an,

| ([E(x)]cf>, Vk) |   =   E an([x]"cj,, Vk)
n

^MRzZ{(k + n)---(k+ l)}1'2 exp [b(2k + 2n)1'2} ■ (21'V)"/re!.
n

Take k large. Then the maximum term in the above series has an index re
roughly equal to (2k)1/2r. Comparing the sum of the series with the maxi-
mum term one finds by routine calculation that

| ([E(x)]cb, Vk) |   ^ S(e) exp {(b + r + e)(2k)1'2},

where e>0 is arbitrary. Since we may take b=m + e and r = p + e it follows
that [E(x)]0 is of type ^m+p.

The proof for [E(D)]cp is similar.
93. The basic representation theorem. Instead of a pansion we first con-

sider a function g, of class Lx, say. We try to write g in the form

(93.1) g = [cos aD]f, a > 0,

where/is another function of Li. Taking Fourier transforms we obtain (62.5)

Tg = [cosh ax]Tf.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



94 JACOB KOREVAAR [April

One solution of this equation is

Tf = {1/cosh ax} Tg;

the general solution differs from it by an infinite linear combination of trans-
lates of 5 (55.5), (62.9).

An easy calculation shows that {1/cosh ax} is the Fourier transform of
{(7r/2)1/2/a cosh (7rx/2a)}. Hence the Convolution Theorem 41.4 leads one
to expect that

(93.2) /(*) = (l/2a) f - g/u)du
J -a, cosh {x(x — u)/2a)

will be a particular solution of (93.1). This result is actually true even if g
is a function of exponential growth, provided the type of g is less than ir/2a.
A proof may be given by computation of the Hermite expansion of [cos aD]f
where/ is given by (93.2) (see 95). Or one may use the methods of Hirschman
and Widder [9, p. 16].

Now consider the equation

(93.3) 4> = [cos aD]f, a > 0,

where d> is a given pansion of exponential growth. Then d> — [£(77) ]/i where
fiGLi, E(z2) of exponential type. Proceeding as above one obtains a formal
solution of (93.3) in the form (93.2) with g replaced by d>= [£(77)]/. To find
the proper interpretation of this answer we recall that 77is self-adjoint (14.1).
It follows that £(77) is self-adjoint, hence one is led to the conjecture that a
particular solution of (93.3) is given by

(93.4) f(x) = (l/2«)  C fi(u)E(H) -—-r du,   H=u2-d2/du\
J _„ cosh { tt(x — u)/2a)

Unfortunately there is a complication which makes the solution (93.4)
valid only when £(z2) is of sufficiently small exponential type. The reason for
this restriction is as follows. £(77)(l/cosh bu) will exist for small u only when
1/cosh bu is analytic in a sufficiently large disc about the origin. That means
that b must be small. On the other hand £(77) (1/cosh bu) will go to 0 as
m—> oo only when b is sufficiently large. No value of b will satisfy both require-
ments unless £(z2) is of small type.

One can get around this difficulty by replacing equation (93.3) by the
equation

(93.5) <f> = [cos aD j \\ (1 - £*/>!)]/*, a > 0,

where pj = (j—l/2)ir/a. Proceeding as before we now need the conjugate
Fourier transform of
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|(l/coshax)-II (l + x/p,)\.

Induction with respect to 5 shows that the above function is the Fourier
transform of

(tt/2)1'2{2-4 • • • 25/1-3 ■ ■ ■ (2s - l)a}{cosh (irx/2a)}-2'~1.

Hence one may expect that for suitable a and s equation (93.5) will have the
particular solution

<93.« rw -1... ^L-IJjmew I_]-^-^_ ,„,
H=u2-d2/du2.

In order to obtain a solution/of (93.3) one finally has to solve the ordinary
differential equation

(93.7) f* = IE (1 - D*/p))f-

After some further preparations in 94 we will in 95 prove the following:

93.8. Representation theorem. Let cpbea pansion of exponential type m.
That is, we may write 0= [E(H)]fi where fiELi and E is an entire function
such that E(z2) is of exponential type m as a function of z. Then for a > 18m2
+2 log 2 and sj£0 so large that ir(s + l/2)>3ma one has the representation
(93.3) where f is a function of exponential growth given by (93.7) and (93.6).

94. Lemmas on E(H). We will prove a few lemmas which will be used in
the proof of 93.8.

Throughout this section we will assume that E(z2) is of exponential type
m. Then E(z) = E°»2" where the a„ satisfy a set of inequalities

(94.1) |o»|   g Mu2n/(2n)!, re = 0, 1, • • •

for every u>m [2, p. 11 ].
The letter H will stand for u2—d2/du2.

94.2. Lemma. Let F(x) = zZdpX" where for some p>8m

| dp |   :£ Rp-P, p = 0, 1, • • • .

Then the series  zZanH"F(x — u) is convergent for \x — u\ <p/2. One has the
following inequalities for the partial sums and the sum of the series:

N
E anHnF(x - u) i    i i i
„=o [^ Mi exp (Mi | x\),        \ x — u\   :g p/2 — t,
| E(H)F(x - u) |   .
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where the M, are independent of x and u.

Proof. One has first of all

Hn(u - x)p = Z Anj(u - *)*+'',      p ^ 0, n ^ 0,
max (— in,—p)sj"s2n

where

An+X,j  =   An,j-1 +  2x.4n.y_! +  X2 Anj —   (p + j +  2) (J> +j +   l)^n.i+2.

Hence by induction with respect to w

(94 3) '^' - 3"(1 + ^"^ +2n + ®!/{{p + © K« + i/2)!}
= 3»22"+*+«(l + £)n+)/2(2n)!/(« + j/2)!

where £= |x| +2.
We next consider the series

00

HnF(x - u) = Z dpHn(x - u)"
j>= o

where we take |x — u\ ^p/2 — e. By (94.3) the sum is bounded by

| 77nF(x - u) |
2n

^ 723"22"+«(2w)!  Z   (1 + £>B+y/7(» + i/2) 1        Z       2*> | x - u |*+''/p"

(94.4)
= 7?3»22"+*(2«)!{   £     Z   +ZZJ

V/=—2n   pg—y j—1 j>g0/

^ Af33"22»+f(2w)![(p/2)-2" exp {p2(l + f)/4}

+ 2»(1 + £)"/«! + 2«(l + £)2n| x - m|2"/(2«)!j.

We finally turn to the series zZanHnF(x —u). Estimate (94.4) combined
with (94.1) with m<p,<p/8 implies that this series converges uniformly for
| x — u\ 5=p/2 — e, —c^x^c. It also follows that for | x — u\ Sip/2 — e the par-
tial sums and the sum E(H)F(x — u) are bounded by the expression given in
94.2.

94.5. Lemma. Let F(x) = zZep exP {ia-\~p8)x] where a>0, 8>0 and

| ep\   = Se>", p = 0, 1, • • • .

Then the series zZanHnF(x — u) is convergent for u— x>9w2+log 2-\-a/8. One
has the following inequalities for the partial sums and the sum of the series:

N
Z anH"F(x — u) . .     , ,
n-o \ _= Mi exp {a(x — u) + (3m + e) | «| },

| £(77)F(x - tt) |   .
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provided u — x^9m2+log 2+cr//3 + e. Here Mi is independent of x and u.

Proof. One has for real t
tn

Hnetu = E BnjU'e1"
y-o

where

Bn+i.j = Bnj-i - (j + 2)(j + l)Bn,j+i - 2t(j + l)BnJ+i - t2B„j.

Hence by induction with respect to re

(94 6) ' Bni'   - 2"(1 + t)""'72(2w + t) !/{tv"K» ~ J/2)!}
g 23»+*(l + r)"-'/2(2re)!/{;!(« - ;/2)l}

where r = \t\.
Combining (94.1) and (94.6) we obtain the estimate

N co

E anHnetu   ^  E  I °» |  | Hne'u |
n—0 n=0

g M2V« E I u\'/j\  E  (3m)2"(1 + t)«->'/2/(w - j/2)\
(94.7) j=0 nij/l

^ M52V" exp {9M2(1 + t)} E {3m | «| } Vi'
y-o

= M6 exp {(9/x2 + log 2) \ t\ } exp {tu + 3u\ u\ }.

We now turn to the series zZa^nP(x~u)- Estimate (94.7) implies that
00 00 00

E | on | | HnF(x - re) |   ^ E •Se"" E I «- I | #" exp {(a + p8)(x - u)} |
n—0 p=0 n=0

oo

^ ikf7exp [a(x - u) + 3p\ u\ } E exP {/>0(9m2 + log 2 + cr/0 + x - «)}.
p—0

The result follows since /i may be any number >m.
95. Proof of Representation Theorem 93.8. Let

(95.1) F(x) = (cosh Jx)-2'-1, b = ir/2a, s ^ 0,

and let E(z2) = zZanZ2n be of exponential type m. By 94.2 and 94.5 with
p=a — e, cr — e the partial sums of the series zZa^HnF(x — u) as well as its
sum E(H)F(x — u) are bounded by

Mi exp (M2 [ x | )    for     | x — u |   g a/2 — e,

Ma exp {ir(s + 1/2) (x - w)/a + (3w* + e) | u | }  for u - x ^ 9w2 + log 2 +e,

provided a>8w. An inequality similar to the second one holds for u—x
g -9m2-log 2-e.
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Now choose

(95.2) a > 18m2 + 2 log 2,        t(s + 1/2) > 3ma.

(Hence a>8w.) Then the above inequalities cover all values of x and u, and
we can summarize our information as follows.

95.3. Lemma. Let F(x) be given by (95.1) where a and s satisfy (95.2). Let
£(z2) = zZanZ2n be of exponential type m. Then there are positive constants c,
such that

N

Z anH"F(x - u)
n=o \ _= Ci exp (ci | x I   — c31 u | ),

| E(H)F(x - u)\

— oo <x, u<<x>, N = 0, 1, • •

Proof of 93.8. Let </>= [£(77)]/! where fiGL2 and £(z2) is of exponential
type m. Let a and 5 satisfy (95.2) and define/* by (93.6). By 95.3 the func-
tion/* will be of exponential growth. Finally let/be any solution of (93.7).
Then/will also be of exponential growth. We have to show that c/> = [cos aT?]/.

We will use the notation

(95.4) G(D) = cos aD / H (1 — D / pf) = Z «>7)2",   p, = (j - l/2)x/_.
'       is*

Then by (93.7) (compare 54.7)

(95.5) [cosa7J>]/= [G(D)]f*.
By (54.4) and (52.3)

([G(D)]f*, Vk) = Z «2,([B]!f, vk)
= Z «*(/*, £>2^) = (/*> G(D)vk).

The last step may be justified by dominated convergence: we have the in-
equalities

N

Y\ a2vD2pvk(x) .     . ,
(95.7) t'o ;-_5C(|*| + l)*exp(| 2ax|   - %2/2),

I G(D)vk(x) |     )

— oo <x< oo, N = 0, 1, • ■ •   (compare 55).
We now replace /* in the last scalar product of (95.6) by its definition

(93.6). In the resulting repeated integral we may invert the order of integra-
tion because of 95.3, (95.7) and Fubini's theorem. We obtain

(95.8) (f*,G(D)vk) = y f   fx(u)du f   E(H)F(x - u)■ G(D)vk(x)dx
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where F is given by (95.1), 7 = 2-4 • • • (2s)/{l-3 ■ ■ • (2s-l)2a).
We will first consider the integral with respect to x in (95.8). By 95.3 and

(95.7) the series

E anHnF(x - u)-G(D)vk(x)        (u, k fixed)

is dominatedly convergent on — oo <x< oo. Hence it may be integrated term
by term and it follows that the integral with respect to x in (95.8) is equal to

(95.9) E(H) f   F(x - u)G(D)vk(x)dx.
J -00

In order to compute the integral in (95.9) we remark that F and G(D)vk
have the following Fourier transforms (compare 93 and (62.5)):

(2,rf I/2(l/7) {(1/cosh ax) \\ (1 + x/p))\ , {G(ix)(-i)\k(x)).
\ J£8 J

Hence by the Convolution Theorem 41.4 and the definition of G (95.4) the
Fourier transform of the integral in (95.9) equals (l/y)( — i)kvk. Thus by the
Inversion Theorem 41.3 the integral in (95.9) is equal to (l/y)vk(u).

Collecting results, starting with (95.5),

([cos aD]f, vk) = (/*, G(D)vk) = (fu E(H)vk),

which by the definition of [E(H)] (54.2) equals

([E(H)]fh Vk) = (0, vk).

That is, the pansions [cos aD]f and 0 have the same coefficients, hence they
are identical.

96. Applications. We will first prove the following

96.1. Basic characterization theorem. A pansion is of exponential
growth if and only if it can be written as an infinite order global derivative of ex-
ponential type of a function of at most exponential growth.

The proof follows immediately from 93.8 and 92.4. We can also say that
the class of pansions of exponential growth is the class of pansions of the form

(96.2) cb = [cos aD]{cosh bx}f2, a ^ 0, b = 0,/2 £ L2.

96.3. Corollary. The class of pansions of exponential growth may be char-
acterized as the smallest class of pansions which contains L2 and which is closed
under the operations [E(D) ] and [E(x) ]for every entire function E of exponential
type.

Alternate computation of Fourier transforms. Let/ be a given function. In
what follows we shall define /+(x) =/(x) for x^O, /+(x)=0 for x<0, and
/-=/-/+•
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96.4. Theorem. Let f be a function such that [e~mx}f+ and {epx}/_ are in
7,1. Then

[T]f= [eimD]T{e~mi}f+ + [«-*fl]r{e»»}/_

where T is the ordinary Li Fourier transformation.

Proof. One has [£]/= [£]/++[£]/_. Furthermore

[T]f+ = [r]{ «-*}{<—}/+ = [eimfl]r{e—}/+

by (62.6) and because {e_ma:}/+ is in Li. Similarly for [£]/_.
We may apply the preceding result to obtain a formula for the Fourier

transform of any pansion of exponential growth:

96.5. Theorem. Let tp be a pansion of exponential growth. Then we may
write tp — [cos aD]f where f is a function of exponential growth and hence satisfies
the conditions of 96A for suitable m and p. Using the notation introduced above
one has

[T]tp = [eimD]{cosh a(x - im)}T{e-mx}f+ + [e-ipD]{cosh a(x + ip)}T{epx}f_.

The proof follows from (62.5), 96.4 and 55.2.

References
1. R. Bellman, Stability theory of differential equations, New York, 1953.
2. R. P. Boas, Jr., Entire functions, New York, 1954.
3. S. Bochner, Vorlesungen uber Fouriersche Integrate, Leipzig, 1932.
4. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, New York,

1955.
5. P. A. M. Dirac, The principles of quantum mechanics, Oxford, 1930, 1947.
6. G. Doetsch, Theorie und Anwendung der Laplace Transformation, Berlin, 1937.
7. L. Ehrenpreis, Analytic functions and the Fourier transform of distributions I, Ann. of

Math. (2) vol. 63 (1956) pp. 129-159.
8. I. M. Gel'fand and G. E. Silov, Fourier transforms of rapidly increasing functions and

questions of uniqueness of the solution of Cauchy's problem, Uspehi Mat. Nauk (N.S.) vol. 8
(58) (1953) pp. 3-54.

9. I. I. Hirschman and D. V. Widder, Convolution transforms, Princeton, 1955.
10. L. Infeld and T. E. Hull, The factorization method, Rev. Mod. Phys. vol. 23 (1951) pp.

21-68.
11. J. Korevaar, Distributions defined by fundamental sequences, Nederl. Akad. Wetensch.

Proc. Ser. A vol. 58 (1955) pp. 368-389, 483-503, 663-674.
12. -, Fourier transforms of generalized functions, Proceedings of the Symposium on

Harmonic Analysis, Cornell University, 1956, Ithaca, 1957, vol. 2, pp. 1-43.
13. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, New York,

1934.
14. S. Saks, Theory of the integral, New York, 1937.
15. E. Schrodinger, A method of determining quantum-mechanical eigenvalues and eigen-

functions, Proc. Roy. Irish Acad. Sect. A vol. 46 (1940) pp. 9-16.
16. L. Schwartz, Thtorie des distributions, I, II, Paris, 1950, 1951.
17. G. Szego, Orthogonal polynomials, New York, 1939.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1959 PANSIONS AND THE THEORY OF FOURIER TRANSFORMS 101

18. E. C. Titchmarsh, The theory of functions, Oxford, 1932, 1939.
19. -, Introduction to the theory of Fourier integrals, Oxford, 1937, 1948.
20. H. Weyl, The theory of groups and quantum mechanics, New York, 1931.
21. N. Wiener, The Fourier integral and certain of its applications, Cambridge, 1933.

The University of Wisconsin,
Madison, Wis.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


