
PANTO: A Portable Natural Language Interface
to Ontologies

Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu

APEX Data and Knowledge Management Lab,
Department of Computer Science and Engineering,

Shanghai JiaoTong University, Shanghai, 200240, P.R. China
{wangchong,xiongmiao,jackson,yyu}@apex.sjtu.edu.cn

Abstract. Providing a natural language interface to ontologies will not
only offer ordinary users the convenience of acquiring needed informa-
tion from ontologies, but also expand the influence of ontologies and
the semantic web consequently. This paper presents PANTO, a Portable
nAtural laNguage inTerface to Ontologies, which accepts generic nat-
ural language queries and outputs SPARQL queries. Based on a special
consideration on nominal phrases, it adopts a triple-based data model to
interpret the parse trees output by an off-the-shelf parser. Complex mod-
ifications in natural language queries such as negations, superlative and
comparative are investigated. The experiments have shown that PANTO
provides state-of-the-art results.

1 Introduction

Ontology1, which both explicitly represents the taxonomy of a domain (classes
and properties) and stores a lot of knowledge (instances and instance relations),
plays a key role in the semantic web by enabling knowledge sharing and exchang-
ing [1]. However, in order to acquire the formal knowledge in ontologies, users
have to be familiar with:

– the ontology syntax, such as RDF and OWL;
– some formal query language, such as RDQL2 and SPARQL3;
– the schema (structure) and vocabulary of the target ontology.

Consequently, as Bernstein et al. stated in [2], there is a gap between the logic-
based semantic web and real-world users. In order to bridge the gap, this paper
presents PANTO, a Portable nAtural laNguage inTerface to Ontologies, which
offers users the convenience of acquiring needed information from formally de-
fined ontologies. Specifically, users can express their information needs in natural
language even without considering the syntax of RDF or OWL, the formal query
language, or the schema and vocabulary of ontologies.
1 In this paper, the term ontology refers to a knowledge base (KB) that includes

concepts, relations, instances and instance relations that together model a domain.
2 http://www.w3.org/Submission/RDQL/
3 http://www.w3.org/TR/rdf-sparql-query/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 473–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

474 C. Wang et al.

1.1 Background

Although the first natural language interface system came out more than three
decades ago (LUNAR [3]), a fully portable and widely used system for formalized
knowledge bases is still unavailable. As mentioned in [4], two major obstacles lie
in the way:

Firstly, the ambiguity and complexity make it difficult for a machine to un-
derstand arbitrary natural language. The NLP community have been keeping on
paying efforts in this area. The state-of-the-art statistical parsers [5] can reach
about 90% in precision and recall. However, it is still well regarded as an “AI
Complete” problem and far from totally resolved.

Secondly, even with correctly parsed natural language queries, a lot of chal-
lenges remain in translating them to correct formal queries:

– Vocabularies of the knowledge bases are controlled and lean compared with
users’, so it is a challenge to correctly map users’ words to vocabularies of
the knowledge bases.

– Together with the lexical and syntactic information of the parsed queries,
semantic information in the knowledge bases can also be utilized to help for-
mulate the formal query, but how to accomplish this is still an open problem.

– Different knowledge representations require different techniques to interpret
the semantics of users’ queries. For example, how to deal with queries con-
taining negations in ontologies is different from that in databases. SPARQL
has been recommended as the standard query language for the semantic web
community, but few researches have been carried out to investigate the new
opportunities and challenges in translating natural language queries into it.

1.2 Features and Contributions

PANTO focuses on the second obstacle mentioned above. It utilizes an off-the-
shelf statistical parser StanfordParser [5] to deal with the first major obstacle.
Multiple existing techniques and tools are integrated to interpret parse trees of
natural language queries into SPARQL. The following are the major features
and contributions:

Firstly, PANTO is designed to be ontology portable and no assumption is
made about any specific knowledge domain. To help make sense of the words in
the NL queries and map them to the entities (concepts, instances or relations) in
the ontology, existing tools such as WordNet [6] and string metrics algorithms [7]
are integrated.

Secondly, nominal phrase constituents in the parse trees are specially consid-
ered. We extract nominal phrases in the parse trees as pairs to form an inter-
mediate representation called QueryTriples. Then, by utilizing knowledge in the
ontology, PANTO maps QueryTriples to OntoTriples which are represented with
entities in the ontology. Finally, together with targets and modifiers extracted
from the parse trees, OntoTriples are interpreted as SPARQL.

Thirdly, we investigate certain problems in the process of translating natural
language queries into SPARQL queries. The translation of advanced semantic fea-
tures such as negation, comparative and superlative modifications are supported.

PANTO: A Portable Natural Language Interface to Ontologies 475

The rest of this paper is organized as follows. Section 2 introduces the sys-
tem architecture. Section 3 describes how the ontologies and other resources are
wrapped to construct a lexicon. Section 4 presents the key process to interpret
parse trees into SPARQL queries. Section 5 elaborates on the experiments. Sec-
tion 6 discusses about limitations and directs the future work. Section 7 describes
related work and section 8 concludes this paper.

2 PANTO Architecture

Fig. 1 depicts the architecture of PANTO. It takes ontologies and natural lan-
guage queries as input, and finally returns SPARQL queries as output. When
an ontology is selected as the underlying knowledge base, the Lexicon Builder

Translator

Query Possessing

Ontology Processing

Natural

Language

Query
Parser Translator

Lexicon

Builder

Parse

Tree

Ontology

(OWL)

Query-

Triple

Extractor
SPARQL

Generator

Target &

Modifier

Extractor

Query

Triples

Ontology

Triples

Targets

&

Modifiers

Onto-Triple

Extractor

SPARQL

Queries

Lexicon

Fig. 1. Architecture of PANTO

automatically extracts entities out of the ontology to build the Lexicon. Word-
Net is utilized to find synonyms to enlarge the vocabulary of the ontology. Once
the user inputs a natural language query, PANTO first invokes the Parser to
produce the parse tree, which is then transfered to the Translator. The Trans-
lator is the core processing engine of PANTO. Upon receiving a parse tree, the
Translator processes it in two ways in parallel:

– The parse tree is first transformed into QueryTriples, which are less re-
stricted, for their predicates can be prepositions, verbs, phrases, or even
omitted. Then QueryTriples are mapped to OntoTriples with the help of
the Lexicon.

– The Target and Modifier Extractor extracts the potential words for targets
(variables after “SELECT”) and modifiers (information related to “FIL-
TER”, “UNION”, etc.) of the target SPARQL queries from the parse tree.

Finally the domain-compliant OntoTriples, targets and modifiers are sent to the
SPARQL Generator to produce SPARQL queries.

476 C. Wang et al.

3 The Lexicon

The Lexicon is mainly designed for making sense of words in natural language
queries and mapping them to entities in the ontology. It is composed of the fol-
lowing contents:

Ontology Entities. This is the most important part of the Lexicon. Entities in
the ontology, including classes (concepts), properties (relations), and instances
(individuals), are extracted and stored for fast access and matching. Since dif-
ferent ontology entities may have the same name (e.g. “Mississippi” river and
“Mississippi” state) and one ontology entity may have different names (e.g. “US”,
“United States”, and “USA” denote the same entity “United States of America”
in the ontology), ontology entities and their names are put into a special hash
table, in which a key maps to a set of ontology entities and an ontology entity can
be obtained by different keys. Given a word from the natural language query, the
Lexicon will acquire a set of possible entities. Proper nouns (e.g. “New Mexico”)
are also extracted from the ontology for fast access and matching.

General Dictionaries. In order to help bridge the gap between user vocabulary
and ontology vocabulary, general dictionary WordNet is utilized. The synsets in
the dictionary defined by linguists enable PANTO to match “work” in user’s
query to concept “Job” in the ontology. Also with the help of the dictionaries,
we are able to retrieve the property “length” when the user asks “how long ...”.
This module is open and other thesauri can also be adopted if available.

User-Defined Synonyms. Since users may use jargons and abbreviations to
denote entities, words from general dictionaries only may not be enough. There-
fore, the Lexicon allows users to define their own “synonymy words” (a set of
words that match the same entity in the ontology). This will be helpful when
PANTO is adopted to a certain domain.

Note that, the user-defined synonyms are not mandatory for the Lexicon, and
all the mandatory contents are extracted in a totally automatic way. Therefore,
the construction of the Lexicon is portable.

-hasName : string

-hasPopulation : long

City

Capital

-hasName : string

-hasArea : long

Lake

-hasName : string

-hasNumber : string

-hasAbbreviation : string

-hasArea : long

-hasPopulation : long

-hasHeighestPoint : string

-hasHeighestEvaluation : long

-hasLowestPoint : string

-hasLowestEvaluation : string

State
inState

inState

inState

runThrough

runThrough

border

subClassOf
hasCities

-hasNumber : long

Road

-hasHeight : int

-hasName : string

Mountain

-hasName : string

-hasLength : long

River

hasCapital

-hasName : string

-hasHeight : long

Fig. 2. The schema definition of geography ontology (the following examples are based
on this ontology)

PANTO: A Portable Natural Language Interface to Ontologies 477

4 Translator: Translating Parse Tree to SPARQL

The translator is the backbone of PANTO. Our basic idea for translating natural
language queries into formal ones is to specially consider nominal phrases. We
observe that a natural language query can usually be viewed as the combination
of multiple nominal-phrase pairs. From the parse trees by a deep parser, such
pairs are easily recognized. Inside each pair is a verb phrase, a preposition, a
conjunction or the like to represent the relationship between the two nominal
phrases. At the same time, nominal phrases or words also play an important
role in ontologies which store facts to model a domain. The facts are explicitly
or implicitly stated in the triple form <subject, predicate, object>. The subject
and the object may be classes, instances or literal values and usually should be
named with nominal words or phrases [8]. The predicate may be prepositions,
verbs, verb phrases and so on, and sometimes may also be nominal phrases.
Because a nominal-phrase pair represents some kind of semantic relationship
between the two nominal phrases, we expect it to be mapped to a triple in the
ontology. Fig. 2 presents the schema definition of an example ontology and Fig. 3
depicts the processing steps of an NL query to this ontology. In the following
subsections, we will detail the whole process of translating a parse tree of a
natural language query into SPARQL based on the above idea.

SBAR

WHNP S

WDT

VBZ NP

is SBAR

WHNP

WDT

Which

VP

NP

DT NNJJS

the riverlongest

that

S

VBZ

flows

PP

IN

through

S

NP

DT NNS

the states

VP

VBG NP

neighbouring NNP

Mississippi

1

2

3

1

2

2

2

2

3

1

1

BaseNP Pair :

Query-
Triples :

Onto-
Triples :

Non-BaseNP

BaseNP

[longest . river . | flows through | . states .]
[. states . | neighboring | . Mississippi .]

< :River , :runThrough , :State >
< :River , :hasLength , Long >

< :State , :border , :Mississippi_state>

BaseNP Pair :

1 2

2 3

lenth River states

: State

:inState

:River

:hasLength :Mississippi_river

:Mississippi_state

Mississippi

OntoEntity Matching
and linking

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?river
WHERE {
 ?river rdf:type :River .
 ?river :hasLength ?length .
 ?state rdf:type :State .
 ?river :runThrough ?state .
 ?state :border :Mississippi_state .
}
ORDER BY DESC(?length)
LIMIT 1

SPARQL

Fig. 3. Parse tree of query “which is the longest river that flows through the states
neighboring Mississippi” by StanfordParser (with the default root node “ROOT” re-
moved for brevity). BaseNP, Head BaseNP propogation, BaseNP pairs, QueryTriples,
OntoEntity matching, linking OntoEntities as OntoTriples, OntoTriples and final
SPARQL query are illustrated.

478 C. Wang et al.

4.1 QueryTriple Extractor

In this part, we extract the nominal-phrase pairs out of the parse tree to form
the intermediate representation QueryTriples. This includes the following steps:

Identify and propagate Head BaseNP. In the parse tree, a nominal phrase
is tagged as NP4. Since NPs may be nested, we need to find those that can
be mapped to entities in the ontology. We introduce the notion BaseNP (Fig.
3). BaseNP is formally defined as NonrecursiveNP (and BaseNP is called for
short) in [9], where it refers to an NP that does not directly dominate an NP
itself, unless the dominated one is a possessive NP (i.e. it directly dominates a
POS-tag “POS”). Here we slightly extend the concept of BaseNP to also include
a constituent (some WHNP) if it contains nouns but does not dominate an NP.
We make this extension to capture all nominal words, which may not be parsed to
be contained in a BaseNP by a statistical parser. For example, StanfordParser
parses “how many rivers” in the query “how many rivers does alaska have”
as (WHNP(WHADJP((WRB how)(JJ many))(NNS rivers)). There is a noun
“rivers” inside WHNP, but there is no NP.

With this definition, we first identify all the BaseNPs from a parse tree. After
that, we prepare for identifying and linking those related NPs as pairs. We fol-
low the rules used by Michael Collins [9] for mapping from trees to dependency
structures (StanfordParser also uses these rules and this is one of the reasons
why it is utilized in PANTO). The difference is: Collins used those rules to find
head words (see [9] for details), and we use a subset of the rules to propagate
head BaseNPs. The only modification to the rules is: if there is a node con-
taining conjunctive children nodes, the head BaseNPs of all the children will be

SBARQ

WHNP SQ

WP NP

DT CCNN

the andpopulation

1

what

VBZ

is

NN

area

NP

IN NP

of

PP
VP

PP

IN

VB

CCVP

VB

traverse

NP

NN

VP

through

or

Alaska

2

1

1

1

2

2

2 3

3

3

2

Conjunctive Head BaseNPs

Conjunctive Head Nouns

NP

NNP

Modifier Indicators

SBARQ

WHNP

WDT

which

NP

NNS

1

1

rivers

SQ

run

Mississippi

1

2

Targets

NN

DT

the

NN

state

ADJP

RBS

most

JJ

populated

Fig. 4. Parse trees of the queries “what is the population and area of the most pop-
ulated state” and “which rivers run through Mississippi or traverse Alaska” by Stan-
fordParser (with default root node “ROOT” removed for brevity). Targets, modifier
indicators, conjunctive Head Nouns and conjunctive Head BaseNPs are illustrated.

4 NP, short for “Nominal Phrase”, is a syntactic tag in parse tree. In the following,
we will use such syntactic tags as well as POS tags without explanations.

PANTO: A Portable Natural Language Interface to Ontologies 479

propagated to it as its head BaseNPs (Fig. 4). All these operations can be done
via a bottom-up traversal along the parse tree.

LinkBaseNPPair to form QueryTriple. After the basic constituent BaseNPs
are identified and propagated on the parse tree, we link them one another where
there is modification relationship to form BaseNP pairs. The process is: for each
BaseNP, traverse up towards the root node and link it with the first different head
BaseNP(s) as BaseNP pair(s). The two BaseNPs in such a pair, together with the
words which syntactically connect them, form a QueryTriple (Fig. 3). A Query-
Triple is a triple in the form of [subject |predicate |object]. The subject and the
object are the two BaseNPs and the modifiers to them extracted from the origi-
nal query. The predicate is composed of the words (may be a preposition, a verb
phrase, etc) that connect the subject and the object together.

Specify internal structure for QueryTriple. A linked BaseNP pair is only
a raw QueryTriple. Since a BaseNP may contain more than nominal words, we
need to separate different contents. First of all, the head nouns for the BaseNPs
are identified. A Head Noun is a nominal word acting as head word [9] in a
BaseNP. The rules to find head noun again follows [9], with the exception that
when conjunction exists, treat all nominal words of conjunctive relations as head
nouns (Fig. 4). As the next step, the internal structure of QueryTriples are spec-
ified. For the subject and the object of each QueryTriple, the internal structure
is in the form of [pre-modifier . head noun . post-modifier]. Here, only the head
noun is mandatory and the pre/post-modifiers represent the words modifying
the head noun or the whole BaseNP.

4.2 OntoTriple Extractor

QueryTriples are only the intermediate forms of the user’s query. We need to
map them to the semantic content in the ontology. This is carried out as below.
First, the OntoTriple Extractor matches the words (especially nominal words)
with the OntoEntities (OntoEntity, short for Ontology Entity, represents con-
cepts, instances, relations/properties in the ontology). Then, it makes use of
lexical and syntactic information extracted with QueryTriples to find the se-
mantic relationships among OntoEntities, which will be explicitly represented
with OntoTriples. The detail is as follows:

Map user words to OntoEntities. The first is to find the corresponding
OntoEntities for each word in the query. For each QueryTriple, we retrieve the
matching OntoEntities for the head nouns of the subject and the object, by in-
voking the Lexicon. The Lexicon employs a number of matching methods, which
can be classified as two types: (1) semantic matching mainly uses general dictio-
naries like WordNet to find synonyms of words; (2) morphological matching uses
WordNet, string metrics or heuristic rules (e.g. algorithms to find abbreviations,
which may also be separately designed when PANTO is adopted to a particular
domain) to find morphologically similar matchings. Different matching methods
are sometimes combined to find matching entities for a word. For example, the
word “states” gets the matching list {State, inState} (Fig. 3). “State” is a class

480 C. Wang et al.

entity retrieved by morphological matching and “inState” is a property entity
matched by a heuristic rule based on naming conventions for ontology and string
metrics algorithms.

Map QueryTriples to OntoTriples. An OntoTriple (short for Ontology
Triple) is a triple that is compatible with some statements in the ontology, in
the form of <subject, predicate, object>, where the predicate can be a relation
(property) and the subject or the object can be a concept (class) or an instance.
When the predicate is a datatype property, the object must be a literal value or
the value type. A nominal word may also be mapped to the predicate, besides the
subject and the object. Therefore, the subject or the object in the QueryTriple
does not necessarily be mapped to that in the OntoTriple. In PANTO, 11 cases
are enumerated for OWL ontology to generate OntoTriple(s) from two OntoEn-
tities. For example, if one OntoEntity is a property and the other is a class which
is the domain of the property, one OntoTriple is generated; if both are properties
and can be related by a class, two OntoTriples are generated. With different
combinations of the matching OntoEntities of the head nouns in the subject and
the object of the QueryTriple, multiple OntoTriples will be generated. When
the predicate of a QueryTriple is not empty, we use it to verify the generated
OntoTriples. For example, from the QueryTriple [river | flows through | mis-
sissippi], we get two OntoTriples <:Mississippi, rdf:type, :River> and <:River,
:runThrough, :Mississippi>. Since “flows through” can be mapped to ontology
property “:runThrough”, we discard the first OntoTriple. On the other hand,
if the two OntoTriples are generated from QueryTriple [river | | mississippi],
we discard the second one. Because this pattern is usually used by people to
indicate an entity [10], in such a case we believe with high confidence that “mis-
sissippi” should be mapped to the entity “Mississippi river” rather than “Missis-
sippi state”. Thus we remove all the other matching OntoEntities for the word
“mississippi”, and finally also discard the triple <:Mississippi, rdf:type, :River>
and only hold that OntoEntity. Besides the OntoTriples generated above, this
module also generates OntoTriples from inside a BaseNP. Take the BaseNP “the
longest river” in Fig. 3 as an example, the OntoTriple Extractor, with the help of
WordNet, transforms “longest” to “long” and then to the nominal form “length”.
Now “length” is used to match OntoEntities. These matching OntoEntities are
then used to generate OntoTriples with those matching OntoEntities of “river”.
Finally, a valid OntoTriple <:River, hasLength, Long> is generated.

Link OntoTriples. A natural language query represents the semantic relation-
ships and constraints among different concepts and individuals in the domain.
When multiple BaseNP pairs are available, there are BaseNPs shared by two
or more QueryTriples. Therefore, a valid OntoTriple set should be linked one
another to form a tree (Fig. 3). Since one word may match multiple OntoEnties,
there may be different combinations and multiple valid OntoTriple result sets.

4.3 Target and Modifier Extractor

To translate a natural language query into a SPARQL query, we must find
the targets, i.e. the words that correspond to the variables after “SELECT” in

PANTO: A Portable Natural Language Interface to Ontologies 481

the resultant SPARQL query. This process is as follows: first find the allowed
wh-word [10] like “what”, “who” and “how” or an enumerated set of command
words like “list”, “give me” and “return”; then take the nouns in the same or the
directly followed constituent as targets (Fig. 4). Detailed rules vary for different
question/command words, and are usually common for different domains.

Filter is provided in SPARQL to enable the users to specify constraints on
relations and variables. Solution Modifier is provided for the users to carry out
operations (Order by, Limit, Offset) on the result. In natural language queries,
both of these are expressed through certain types of words, which we call modi-
fier indicators (Fig. 4). In the current version of PANTO, we mainly deal with
the following: (1)negation, including “not” and “no”; (2)superlative, superlative
words will be tagged as “JJS” (superlative adjective) or “RBS” (superlative ad-
verb); (3)comparative, comparative words will be tagged as “JJR” (comparative
adjective) or “RBR” (comparative adverb); (4)conjunctive/disjunctive, includ-
ing “and” and “or”.

The extractor records the positions and types of targets and modifier indica-
tors, and then send them as input to the SPARQL Generator.

4.4 SPARQL Generator

The targets and modifiers are extracted from the parse tree, and it is straightfor-
ward to relate them with corresponding OntoEntities and OntoTriples extracted
by the OntoTriple Extractor. After that, we interpret them into SPARQL:

SELECT. OntoEntities matched with target words are interpreted as variables
after “SELECT” according to the following rules: (1) If it is a class entity
“:SomeClass”, interpret it as the variable “?someclass”, and add a triple pat-
tern5 <?someclass, rdf:type, :SomeClass> to the “WHERE” clause. (2) If it is
an RDF Literal Type entity, such as “Long”, “String” or the like, directly inter-
pret it as a variable, e.g. “?long”, “?string”, etc.

WHERE. An ordinary OntoTriple is directly interpreted as a triple pattern
after “WHERE”. Instance and property entities are directly interpreted as their
URIs in the ontology. As for class entities or RDF Literal Type entities in each
OntoTriple (except those with the property “rdf:type”), interpret them as vari-
ables according to the above rules for targets. For some complex queries, there
may be multiple words mapped to the same class entity. For example, the two
“state” in the query “what state borders the state that has the largest popu-
lation?” are both mapped to the class entity “:State”. However, they should
obviously be interpreted as different variables. Our current solution is to always
interpret such entities as different variables. [11] mentioned a technique to check
whether such two words mean the same or not, by comparing their local contexts
in the query according to some heuristics, but it requires ad hoc rules. According
to the current experiments, our approach works fine. More investigations will be
carried out as future work. RDF Literal Type entities are treated similarly.

5 http://www.w3.org/TR/rdf-sparql-query/

482 C. Wang et al.

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?population ?area

WHERE {

?state rdf:type :State .

?state :hasPopulation ?population .

?state :hasArea ?area .

}

ORDER BY DESC(?population)

LIMIT 1

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?river

WHERE {

?river rdf:type :River .

{

 { ?river :runThrough :Mississippi_state . }

 UNION

 { ?river :runThrough :Alaska_state . }

}

}

Query: what is the population and area of the most populated

state?

Query: which rivers run through Mississippi or traverse

Alaska?

Fig. 5. SPARQL queries for the two example queries in Fig. 4

FILTER and Modifiers. Corresponding to the modifier indicators mentioned
above, this part currently includes the following: (1)negation. Negations are in-
terpreted by utilizing the operators “!” and “bound” of SPARQL. For example,
“not” in the query “which river’s length is not 5000” is interpreted as a FIL-
TER clause “(FILTER(?length != 5000))”. Negation on property (relation) are
interpreted by a combination of “OPTIONAL” and “FILTER”. Take the query
“which rivers do not run through Alaska” as an example, “do not” is interpreted
as “{OPTIONAL {{?river :runThrough ?state.} FILTER (?state = :Alaska)}
FILTER (!bound(?state))}”. However, some kinds of negations can not be in-
terpreted, e.g. queries like “which rivers do not run through states bordering
Alaska”. (2)superlative. Superlative modification on datatype can be interpreted
with Order By and Limit (Limit can be removed if there are multiple results)
of SPARQL (e.g. the NL query and its resultant SPARQL query shown in Fig.
3), but superlative modifications that require the functionality of count are not
supported (e.g. “most” in query “which river runs through the most states” can
not be expressed with the current version of SPARQL). (3)comparative. Simi-
lar as above, currently only comparative modification on datatype is supported.
(4)conjunctive/disjunctive. OntoTriples related to conjunctive constituents (con-
junctive BaseNPs or conjunctive head nouns) indicated by “and” are interpreted
as conjunctive triple patterns to the “WHERE” clause by default. Since “and”
may sometimes be used in disjunctive relation (e.g. in the query “list all the
cities in California and Maine”), we need to link their triple patterns with a
“UNION” in such a situation. Currently, when the two conjunctive words are
both mapped to the same class entity (or instances of the same class), multi-
ple SPARQL queries are produced for different interpretations of “and”. Those
OntoTriples related to “or” are always interpreted with a linking “UNION”.

As an example, Fig. 3 depicts the final SPARQL query. Fig. 5 depicts the final
SPARQL queries for the two example queries used in Fig. 4.

5 Experiments and Evaluation

The goal of the experiments is to quantitatively assess the performance and ef-
fectiveness of our approach in the current implementation.

PANTO: A Portable Natural Language Interface to Ontologies 483

Table 1. Performance of PANTO. Row 2 shows the number of original Mooney queries
and row 3 shows that of the selected testing queries (duplicated ones are removed).

Domain Geography Restaurant Job
Original Mooney Queries# 880 250 641
Selected Testing Queries# 877 238 517

Precision 88.05% 90.87% 86.12%
Recall 85.86% 96.64% 89.17%

5.1 System Implementation and Experiment Setup

PANTO was implemented as a stand-alone web application. In the current ver-
sion, it adopts Protégé API6 to access the underlying ontologies. The version
of WordNet used in the system is 2.1. The lexicalized StanfordParser7, version
1.5.1 without additional training, is adopted as the statistical parser. It produces
one parse tree for each input. The experiments were performed on a PC with
2.4GHz P4 CPU and 1G Memory.

Test Data. The test data are based on those provided by Mooney8 which have
been widely used to evaluate natural language interfaces [2,12,13]. There are
test data and queries on three domains: one about geography data in the United
States, one about restaurant information and the third about job announce-
ments. We translated the original three Prolog databases into OWL as the test-
ing ontologies. There are several hundreds of natural language queries for each
domain. We removed the duplicated ones in each query set, Table 1 presents the
numbers of queries for experiments.

5.2 Results and Discussion

Performance. With the initialization time (i.e. loading ontologies and parsers)
excluded, the total average processing time of a query was less than one second
(0.787s) and the running time is related with the scale of the ontology and the
complexity of the query (the length and the number of clauses).

Correctness. In order to assess the correct rate that how many of the translated
queries correctly represent the semantics of the original natural language queries,
we compare the output with the manually generated SPARQL queries. The
metrics we used are precision and recall. For each domain, precision means the
percentage of correctly translated queries in the queries that PANTO produced
an output; recall refers to the percentage of queries that PANTO produced an
output in the total testing query set. Since the queries are originally prepared for
evaluating natural language interface to database, some features in the queries
are not supported by the current version of SPARQL, but we also count them
as correct if they match the manually generated ones.
6 http://protege.stanford.edu/download/registered.html
7 http://nlp.stanford.edu/software/lex-parser.shtml
8 http://www.cs.utexas.edu/users/ml/nldata.html

484 C. Wang et al.

To the best of our knowledge, the only existing system that also translates
generic natural language queries into SPARQL is Querix [14], which provides
preliminary results on the geography dataset with 215 selected queries. Querix
claimed to achieve a precision of 86.08% and recall 87.11%. From Table 1 we can
see that PANTO provides comparable results.

Coverage. In this part we analyze the effectiveness of the approach to inter-
preting the queries in a triple-based model. The experiments on the Mooney
data and queries show that all the correctly parsed natural language queries can
be correctly translated into QueryTriples and then be mapped to OntoTriples
at a high accuracy. What’s more, we also parsed and analyzed the 170 sample
queries presented on the AquaLog web site9. AquaLog claims to be able to parse
these kinds of queries, and with PANTO, all of them can generate pretty good
QueryTriples. Hence we can expect that the PANTO approach can cover the
query scope supported by AquaLog.

6 Limitations and Future Work

The limitations with the current version of PANTO mainly include the following:

Restrictions on Query Scope. Though the triple-based analysis is effective
to cover a broad range of natural language queries, the supported query scope is
still limited. First, PANTO depends on an off-the-shelf parser to correctly parse
the NL queries and thus is limited by the NLP techniques. But we can continu-
ally utilize the new achievements in NLP community. Second, it can not totally
interpret semantics that is beyond the expressiveness of SPARQL (e.g. queries
involving count on instances). When more features are added to SPARQL, these
limitations are expected to be resolved.

Weakness in User Interaction. At present, PANTO is not a full-fledged sys-
tem. It focuses on the query processing step and is currently weak in supporting
complex user interactions. However, a well-designed interaction model can enable
users to paraphrase the query and guide them correctly express their informa-
tion need with system processable input. In future, we will investigate more on
user interaction to make PANTO more effective.

Scalability. The ontologies used for evaluation is relatively small and all process-
ing operations are carried out in memory. An investigation on the system per-
formance with larger ontologies will be part of the future work. Database and
indexing techniques will also be involved.

7 Related Work

Natural language interface to knowledge bases, which can help ordinary users ex-
press their information needs in natural language that they are familiar with and
9 http://kmi.open.ac.uk/technologies/aqualog/examples.html

PANTO: A Portable Natural Language Interface to Ontologies 485

can consequently populate the knowledge bases, has been studied for decades [15,
16]. According to the ability of processing the natural language input, such nat-
ural language interfaces can be classified into two categories, namely, full natural
language interface and restricted natural language interface.

Masque [17] is a typical natural langue interface to databases. It first trans-
forms the natural language query into an intermediate logic representation and
then translates the logic query into SQL. Systems which employ machine learning
methods for transforming natural language query into formal logic representa-
tion or formal query have been studied for many years too. With the training
on domain specific sentences, these systems [18,19,20] gain a good result (pre-
cision can be higher than 95% and recall can reach 80%). However, they need
a lot of domain specific training. In order to avoid the defects brought up by
NLP parsers, many systems only use the shallow parsing result of NLP tools,
e.g. POS tags, chunks, etc. Rodrigo et al. tried to break down the query into
words and form a formal query with words in their semantic search engine for
the international relation sector [21]. Kang et al. have also formed the SQL query
with keywords in [22]. As it is summarized by the authors in [21], “...the query
construction is at present the weakest link in the chain...”. Since PANTO com-
bines the OntoTriples and the modifiers generated from the parse tree and the
Lexicon, it can easily constructs the SPARQL query. NaLIX [4,11] is a generic
natural language interface to XML Database. It focuses on correct parse trees
output by a dependency parser and translated them into XQuery. Querix [14]
is a domain-independent natural language query interface to Ontologies based
on clarification dialogs. It is the only known system that also translates full
natural language queries into SPARQL. Similar to PANTO, Querix also adopts
an off-the-shelf parser (also StanfordParser), but it differs from PANTO in an-
alyzing the parse trees. Querix directly uses the POS tags and a set of heuristic
rules to extract skeletons (e.g. Q-V-N for “what are the population sizes”), while
PANTO identifies BaseNPs and utilizes structure information inside and among
the BaseNPs.

Because of the complexity and ambiguity of full natural language, many sys-
tems only accept queries which are in a subset of natural language. Controlled
natural language, which restricts the terminology and grammar and is equiv-
alent to First Order Logic [23], avoids the ambiguity of full natural language.
Bernstein et al. [2] have adopted Attempto Controlled English to query ontolo-
gies and Nelken et al. [24] have employed controlled language to query historical
databases. The queries are in the form of natural language, but users have to
first learn the syntactic restrictions to make sure they are in the “controlled” set.
PRECISE [13] defines a notion of “semantic tractable” questions on database
and can translate them into SQL queries. However, all tokens must be distinct
and questions with unknown words are not semantically tractable and cannot
be handled. In contract, with the Lexicon, PANTO can deal with questions even
some of them are not “semantic tractable”. Pattern based methods are also
widely used in natural language interfaces. Lopez et al. [25] have classified ques-
tions into 23 categories in AquaLog. If the input query is classified into some

486 C. Wang et al.

category, AquaLog will process it correctly. However, due to the limited cover-
age of the patterns, many queries will be left unresolved. Comparing to other
systems, AquaLog is more similar to PANTO. Its underlying knowledge base is
ontology, it also adopts a triple-based intermediate presentations and it is the
one that introduces the notion of query-triple and onto-triple. The difference is,
AquaLog is based on a shallow parser and depends on handcrafted grammars to
identify terms, relations for composing query-triples, while the parse tree by the
deep parser provides PANTO more modification information between nominal
phrases. What’s more, different from the query-triple of Aqualog, our Query-
Triple are always formed with two nominal phrases (the BaseNP pair). Bern-
stein et al. have also proposed a guided natural language search engine [12,26]
to help users form the query and avoid ambiguity, but the processing ability of
the system is also limited to the defined grammar.

8 Conclusion

This paper presents PANTO, a portable natural language interface to ontologies.
Based on the observation that nominal words or phrases play an important
role in both natural language query and ontology triples, PANTO adopts a
triple-based data model as the intermediate representation to translate natural
language queries into SPARQL. The experiments on three different ontologies
have shown that the PANTO approach produces promising results. Our approach
helps bridge the gap between the logic-based semantic web and real-world users.

Acknowledgments

This work is carried out as part of a university joint research project between
IBM China Research Lab and Department of Computer Science and Engineer-
ing, Shanghai JiaoTong University. The authors sincerely thank the anonymous
reviewers for their valuable comments. We also would like to thank Zhangmei
Yao for his participation in this research.

References

1. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What Are Ontologies, and
Why Do We Need Them? IEEE Intelligent Systems 14(1) (1999) 20–26

2. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying Ontologies: A
Controlled English Interface for End-Users. In: International Semantic Web Con-
ference. (2005) 112–126

3. Woods, W., Kaplan, R., Webber, B.: The Lunar Sciences Natural Language Infor-
mation System: Final Report. Technical report, Bolt Beranek and Newman Inc.,
Cambridge, Massachusetts (1972)

4. Li, Y., Yang, H., Jagadish, H.V.: NaLIX: an interactive natural language interface
for querying XML. In: SIGMOD Conference. (2005) 900–902

PANTO: A Portable Natural Language Interface to Ontologies 487

5. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL. (2003)
423–430

6. Fellbaum, C. In: Wordnet: An Electronic Lexical Database. Cambridge: MIT Press
(1998)

7. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance
Metrics for Name-Matching Tasks. In: IIWeb. (2003) 73–78

8. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. Technical Report SMI-2001-0880, Stanford University School
of Medicine (2001)

9. Collins, M.: Head-driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania (1999)

10. Quirk, R., et al. In: A Comphrehensive Grammar of the English Language. Long-
man, London (1985)

11. Li, Y., Yang, H., Jagadish, H.V.: Constructing a Generic Natural Language Inter-
face for an XML Database. In: EDBT. (2006) 737–754

12. Bernstein, A., Kaufmann, E., Kaiser, C.: Querying the Semantic Web with Gin-
seng: A Guided Input Natural Language Search Engine. In: 15th Workshop on
Information Technology and Systems (WITS 2005). (2005) 45–50

13. Popescu, A.M., Etzioni, O., Kautz, H.A.: Towards a Theory of Natural Language
Interfaces to Databases. In: Intelligent User Interfaces. (2003) 149–157

14. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A Natural Language Interface
to Query Ontologies Based on Clarification Dialogs. In: 5th International Semantic
Web Conference (ISWC 2006), Springer (2006) 980–981

15. Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to
Databases - An Introduction. Natural Language Engineering 1(1) (1995) 29–81

16. Copestake, A., Jones, K.S.: Natural Language Interfaces to Databases. Knowledge
Engineering Review 5(4) (1990) 225–249

17. Androutsopoulos, I., Ritchie, G., Thanisch, P.: An Efficient and Portable Natural
Language Query Interface for Relational Databases. In: 6th International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems. (1993) 327–330

18. Zelle, J.M., Mooney, R.J.: Learning to Parse Database Queries Using Inductive
Logic Programming. In: AAAI/IAAI, Vol. 2. (1996) 1050–1055

19. Thompson, C.A., Mooney, R.J.: Automatic Construction of Semantic Lexicons for
Learning Natural Language Interfaces. In: AAAI/IAAI. (1999) 487–493

20. Zhang, L., Yu, Y.: Learning to Generate CGs from Domain Specific Sentences. In:
ICCS. (2001) 44–57

21. Rodrigo, L., Benjamins, V.R., Contreras, J., Patón, D., Navarro, D., Salla, R.,
Blázquez, M., Tena, P., Martos, I.: A Semantic Search Engine for the International
Relation Sector. In: International Semantic Web Conference. (2005) 1002–1015

22. Kang, I.S., Na, S.H., Lee, J.H., Yang, G.: Lightweight Natural Language Database
Interfaces. In: NLDB. (2004) 76–88

23. Fuchs, N.E., Schwertel, U., Torge, S.: Controlled Natural Language Can Replace
First-Order Logic. In: ASE. (1999) 295–298

24. Nelken, R., Francez, N.: Querying Temporal Databases Using Controlled Natural
Language. In: COLING. (2000) 1076–1080

25. Lopez, V., Pasin, M., Motta, E.: AquaLog: An Ontology-Portable Question An-
swering System for the Semantic Web. In: ESWC. (2005) 546–562

26. Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A Guided Input
Natural Language Search Engine for Querying Ontologies. In: 2006 Jena User
Conference. (2006)

	Introduction
	Background
	Features and Contributions

	PANTO Architecture
	The Lexicon
	Translator: Translating Parse Tree to SPARQL
	QueryTriple Extractor
	OntoTriple Extractor
	Target and Modifier Extractor
	SPARQL Generator

	Experiments and Evaluation
	System Implementation and Experiment Setup
	Results and Discussion

	Limitations and Future Work
	Related Work
	Conclusion

