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Abstract 

 

The Pantograph-Catenary Dynamic Interaction Analysis Program (PantoCat) 

addresses the need for a dynamic analysis code able to analyze models of the complete 

overhead energy collecting systems that include all mechanical details of the 

pantographs and the complete topology and structural details of the catenary. 

PantoCat is a code based on finite elements method, for the catenary, and on 

multibody dynamics methods, for the pantograph, integrated via a co-simulation 

procedure. A contact model based on a penalty formulation is selected to represent the 

pantograph-catenary interaction. PantoCat enables models of catenaries with multiple 

sections, including their overlap, the operation of multiple pantographs and the use of 

any complex loading of the catenary or pantograph mechanical elements including 

aerodynamic effects. The models of the pantograph and catenary are fully spatial being 

simulated in tangential or curved tracks, with or without irregularities and perturbations. 

User-friendly interfaces facilitate the construction of the models while the post-

processing facilities provide all quantities of interest of the system response according 

to the norms and industrial requirements. 

 

1. Introduction 

 

PantoCat is a software that allows modeling and performing the dynamic simulation of 

the pantograph-catenary interaction. The program includes 3 modules that, being able to 

operate independently, are interfaced in the same user environment: PantoCatFEM, which 

is a Finite Element dynamic analysis code responsible for handling the catenary dynamics, 

PantoCatMB that is a Multibody Dynamics analysis code responsible to handle the 

dynamic simulation of the pantograph, and PantoCatPro that handles the models 

initialization and the results post-processing. The dynamic analysis code use methods 

defined in the time domain that handle all nonlinear effects present in the pantograph and 

catenary dynamics, such as the dropper slacking, friction, large rotations and nonlinearities 

of the pantograph system or the contact developing between components of the pantograph 

or between the pantograph registration strips and the catenary contact wires. 

The pantograph dynamic analysis code was first developed as a tool for the fully detailed 

modelling and analysis of realistic pantographs, including general motion trajectories and 

control models [1][2]. This module, PantoCatMB, is featured to be interfaced with catenary 

modelling and analysis software via co-simulation approaches [3]. In the scope of the 

European project EUROPAC the software, with the name Europacas-MB that is the basic 

version of the current module, was fully tested and advanced modelling features specific to 

pantograph mechanical systems were made available. However, the use of Europacas-MB 

in the framework of system optimization or other specific task soon showed limitations, due 

to the interactive features of the companion software [4][5]. These limitations were 

overcome by the development of the catenary dynamic analysis module, PantoCatFEM, 

whose implementation addresses not only the common dynamic analysis in a co-simulation 



environment with PantoCatMB but also design optimization, active control or any other 

environment in which it is necessary to run batches of simulations [6]. The advanced 

features of the software allow for the simulation of sophisticated and detailed models of the 

pantograph and catenary that have large sets of data, which are cumbersome, if not 

impossible, to manipulate by hand. The set of output data includes not only the contact 

forces but also all the kinematics of each mechanical element of the pantograph and 

catenary and the internal forces on both systems. In order to provide user friendly interfaces 

the PantoCatPro module was released. The complete set of modules is simply designated 

by PantoCat. Within the European project PantoTRAIN the software was fully tested and 

used for a wide range of scenarios, being its results compared with those of other software 

or with inline experimental data, when available, building not only the confidence on its 

quality but also identifying the required features for its use in practical applications [7]. 

Models for many of the European catenaries have been developed and analysed with 

PantoCat, being it able to handle stitch wire, composite or simple catenary types with one 

or more contact wires. 

The models for the catenaries are developed using the finite element method for tangent 

and curved tracks being the analysis fully 3-dimensional. The pantograph models may be 

lumped mass or fully 3-dimensional multibody and their base motion is defined as if the 

pantograph is roof-mounted in a vehicle that follows the track for which the catenary is 

developed. With this approach it is possible to include pantograph motion perturbations 

originated either from the general vehicle railway dynamics or from any other source [8]. 

Due to the detailed pantograph modelling, wind forces acting on the pantograph elements 

can be included in the analysis [9]. Basically, any mechanical element existing in current 

pantograph construction technology can be included in the PantoCatMB models [10]. The 

catenary and pantograph dynamic analysis codes run in a co-simulation environment. It is 

possible to simulate single or multiple pantograph operations in catenaries that may include 

overlap sections [11][12]. All outputs considered in current regulations are standard in the 

PantoCatPro code. The current output of PantoCat include: 

 Kinematics of the overhead system, i.e., displacement, velocity and acceleration 

of all nodes of the model 

 Kinematics of all components of the pantograph, i.e., displacement, velocity and 

acceleration of the center of mass of all components or of any particular point 

 Contact forces between the pantographs registration strips and the catenary 

contact wires, raw and filtered 

 Position of the contact points in the contact wires and registration strips 

 Joint reaction forces between the pantograph mechanical elements. 

 Forces in the catenary droppers 

 Uplifts of the catenary steady arms. 

 Statistical parameters of the contact forces including average, standard 

deviation, maximum, minimum, number of contact losses, etc. 

 Histograms of the contact forces 

 PSD of the contact forces. 

 RMS of the contact forces.  

 Animation of the catenary and pantograph kinematics 

The software PantoCatFEM is written in Matlab as well as the PantoCatPro pre 

and post processing, including its graphical user interface. The multibody code 

PantoCatMB is programmed in Fortran95 while the post-processed results are 

displayed in Microsoft Excel. 

  



2. Methods applied in the benchmark 

 

The PantoCat code is structured into two independent modules that handle the catenary 

dynamics, PantoCatFEM which is a finite element module programed in Matlab, and the 

pantograph, PantoCatMB which is a multibody dynamics module programed in Fortran. 

These modules run in a co-simulation computational environment being their interaction 

achieved via the contact force between the contact strips of the pantographs and the 

contact wire of the catenary for which a penalty contact force formulation is used. 

 

2.1 Catenary Analysis Module and Models 

 

The finite element method is used to describe the catenary dynamics. The equilibrium 

equations for the catenary structural system are assembled as [12] 

   Ma C v K x f  (1) 

where M, C and K are the finite element global mass, damping and stiffness matrices of 

the finite element model of the catenary. All catenary elements, contact and messenger 

wires are modelled by using Euler-Bernoulli beam elements. Due to the need to 

represent the high axial tension forces the beam finite element used for the messenger, 

stitch and contact wire, designated as element i, is written as 

 e e e

i L GF K K K  (2) 

in which K
e
L is the linear Euler-Bernoulli beam element, F is the axial tension and K

e
G is 

the element geometric matrix. The droppers and the registration and steady arms are also 

modelled with the same beam element but disregarding the geometric stiffening. The 

mass of the gramps, attaching droppers to wires, are modelled here as lumped masses. 

Proportional damping is used to evaluate the damping matrix of each finite element, 

i.e, C
e
 = eKe

+eMe
 with e and e being proportionality factors associated with 

each type of catenary element, such as dropper, messenger wire, stitch wire, etc. 

Alternatively, the global damping matrix is evaluated with the same proportionality 

factors associated to all structural elements, i.e, C =  K+ M.  

The nodal displacements vector is x while v is the vector of nodal velocities, a is the 

vector of nodal accelerations and f is the force vector, written as 

 
( ) ( ) ( )c a d

  f f f f  (3) 

which contains the pantograph contact forces, f(c), the aerodynamic forces, f(a), and the 

dropper slacking compensating terms, f(d). Equation (1) is solved for x or for a 

depending on the integration method used. 

The integration of the nodal accelerations uses a Newmark family integration 

algorithm. The contact forces are evaluated for t+t based on the position and velocity 

predictions for the FE mesh and on the pantograph predicted position and velocity. The 

finite element mesh accelerations are calculated by 

  2

t t t t t t t t
t t           M C K a f Cv Kd  (4) 

Predictions for new positions and velocities of the nodal coordinates of the linear finite 

element model of the catenary are found as 

  
2
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2

t t t t t

t
t 


   d d v a  (5) 



  1 .
t t t t

t    v v a  (6) 

Then, with the acceleration at+t the positions and velocities of the finite elements at 

time t+t are corrected by 

 
2

t t t t t tt    d d a  (7) 

 .t t t t t tt    v v a  (8) 

In the current applications, to highspeed catenary dynamics, the coefficients used in the 

integration scheme depicted by Equations (4) through (8) are = ¼ and = ½. 

The droppers slacking are also corrected in each time step. Although the droppers 

perform as a bar during extension their stiffness during compression is either null or 

about 1/100
th

 of the extension stiffness. As the droppers stiffness is included in the 

stiffness matrix K as a bar element, anytime one of them is compressed such 

contribution for the catenary stiffness has to be removed, or modified. In order to keep 

the dynamic analysis linear the strategy pursued here is to compensate the contribution 

to the stiffness matrix by adding a force to vector f equal to the bar compression force 

 
( )

e

d t t dropper t t f K Bd  (9) 

where the Boolean matrix B simply maps the global nodal coordinates into the 

coordinates of the dropper element.  

 

 
Figure 1: Finite element models of a catenary: single section with the sag highlighted and 

a plant view displaying the stagger; multiple sections and a plant view showing the 

overlap. 

 

The correction procedure expressed by using Equations (5) through (9) and solving 

Equation (4) is repeated until convergence is reached for a given time step, i.e., until 

t t t t d
  d d  and 

t t t t d
  v v  being d and v user defined tolerances. At least 

6 iterations must be allowed for the convergence process, although it is recommended 

that a maximum of 10 iterations is defined in order to prevent that residual compressive 

forces appear in the dropper elements. 
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The European project Pantotrain presented recommendations on the minimum number 

of elements to be used for the discretization of each structural component of the catenary 

finite element models [5]. The models studied here use 6 beam elements, between 

droppers, to represent the contact, messenger and stitch wires. For the droppers, steady 

arms and registration arms, if needed, a single beam element is used. In order to preserve 

the bar behaviour of the droppers under traction, steady arms and registration arms the 

moments of inertia of the beam elements used for their representation are keep to a 

minimum, lower than 10
-11

. In this form not only the numerical stability of the methods 

used in the solution of the equations of motion is ensured but also the use of these residual 

values do not represent any rotational stiffness of the bar components of the model. 

The wave travelling velocity and the dissipative effects of the damping on the 

catenary are of crucial importance for its dynamic response. Therefore, the catenary 

model allows differential damping coefficients for its different structural components. 

The two entering and two exiting spans on each catenary section, where no contact with 

the pantograph exists, account for about 100 m of wire length in each end. Furthermore, 

the boundary conditions for the contact and messenger wire correspond to a spring-

damper element. Besides increasing the realism of the catenary models, these two 

modelling features ensure that the reflection of the elastic wave does not influence the 

pantograph contact during the dynamic analysis, due to the lengths of the entering and 

exiting spans and that the elastic wave is attenuated, due to the boundary conditions. 

 

2.2 Pantograph Analysis Methods and Models 

 

A typical multibody model is defined as a collection of rigid or flexible bodies that have 

their relative motion constrained by kinematic joints and that are acted upon by external 

forces. The forces applied on the system components may be the result of springs, 

dampers, actuators or external applied forces describing gravitational, contact/impact or 

other forces. The pantograph models, being lumped mass or detailed 3-dimensional, 

may use any of the features available in multibody methodologies [14].  

 

  
Figure 2: Typical pantograph and its multibody and lumped mass models. 

 

The equations of motion for a constrained multibody system of rigid bodies are 

written as a system of differential algebraic equations, solved for q  and  as [14]  
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where M is the system mass matrix, q  is the vector that contains the state accelerations, 

 is the vector that contains m unknown Lagrange multipliers associated with m 
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holonomic constraints, g is the generalized force vector, which contains all external 

forces and moments, and ( )T c

q
Φ λ f  is the vector of constraint reaction forces. 

 

 
Figure 3: Flowchart with the forward dynamic analysis of a multibody system 

 

In dynamic analysis, a unique solution is obtained when the constraint equations are 

considered simultaneously with the differential equations of motion and a proper set of 

initial conditions is specified. In each integration time step, the accelerations vector, q , 

together with velocities vector, q , are integrated in order to obtain the system velocities 

and positions at the next time step. This procedure is repeated until the final time is 

reached, as depicted in Figure 3. An integration algorithm with variable time-step and 

integration order is used to solve the multibody equations of motion [15]. 

To initialize the solution process the positions and velocities of the mechanical 

elements must be compatible with the kinematic constraint equations. Such constraint 

fulfilment is ensured by loop1 of the solution scheme described in Figure 3. The set of 

differential algebraic equations of motion, Equation (10) does not use explicitly the 

position and velocity equations associated to the kinematic constraints. Consequently, 

when using the route labelled as loop 3 in Figure 3, the original constraint equations are 

rapidly violated due to the integration process. Thus, in order to stabilize or keep under 

control the constraints violation, Equation (10) is solved by using the Baumgarte 

stabilization method or the augmented Lagrangean formulation [16]. Due to the long 

simulations time typically required for pantograph-catenary interaction analysis, it is also 

necessary to use of a coordinate partition method, as implied in loop 2 of Figure 3, 

whenever the stabilization of the constraints is not possible otherwise. 

 

2.3 Pantograph-Catenary Contact Force Model 

 

The contact problem is treated with a penalty formulation in which the contact force is a 

function of the relative penetration between the two cylinders. The contact model used 

here includes hysteresis damping in the impact between bodies in the systems 
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where K is the generalized stiffness contact, e is the restitution coefficient,   is the 

relative penetration velocity and 
( ) 

 is the relative impact velocity. K can be obtained 
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from the Hertz contact theory as the external contact between two cylinders with 

perpendicular axis [17]. Although standard EN50318 specifies a value of K=50 10
3
 

N/m, the findings of the European Project PantoTRAIN [7] suggest that a more realistic 

value is K=200 10
3
 N/m for current highspeed catenaries. Although all parameters used 

in the PantoCat code are user inputs, the parameters used in the contact model for the 

purpose of this benchmark are K=200 10
3
 N/m, e=1 and n=1. 

 

2.4 Numerical Integration Procedures 

 

Linear finite elements provide all modelling features for the development of the 

catenary dynamic analysis while (nonlinear) multibody mechanisms include all modelling 

features required for any type of pantograph model. In order to take the best advantage of 

the two different types of dynamic analysis a co-simulation environment between 

PantoCatFEM and PantoCatMB codes is implemented in the PantoCat program. The 

multibody code provides the finite element code with the positions and velocities of the 

pantographs registration strips. The finite element code calculates the contact force, using 

the contact model represented by Equation (11), and the location of the application points 

in the pantographs and catenary, using geometric interference functions. The contact 

forces are applied to the catenary, in the finite element code, and to the pantograph model, 

in the multibody code, as implied in Figure 4. Each code handles separately the equations 

of motion of each sub-system based on the shared force information. 

 

 

Figure 4: Co-simulation between a finite element and a multibody code 

 

The key of the synchronization procedure between the multibody and finite element 

codes is the time integration step, ensuring the correct dynamic analysis of the 

pantograph-catenary system, including intermittent contact. The finite element integration 

code is of the Newmark family and has a constant time step that is small enough not only 

to assure the stability of the integration of the catenary but also to capture the initiation of 

the contact between the pantograph registration strip and the contact wire of the catenary. 

The multibody code uses a predictor-corrector integrator that can be an Adams-Bashforth 

or the Gear algorithm, with variable order and time-step [14]. The only restriction that is 

imposed in the integration algorithm of the multibody module is that its time step cannot 

exceed the time step of the finite element code. Both modules can start independently 

from each other, i.e., the catenary finite element model and the pantograph multibody 

model include the initial conditions for the start of the analysis expressed in terms of the 

initial positions and velocities of all components of the systems.  

In order to ensure that the initiation and loss of contact is captured a maximum time 

step of 10
-3

 s is allowed. Note that in some particular applications, such as those 

focusing analysis of irregularities and singularities in the contact wire, the maximum 

allowable time step may have to be reduced. 
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The co-simulation procedure was validated for a very wide number of scenarios of 

tangent tracks that included models of different catenary types and various lumped mass 

pantograph models at different operating velocities. All results obtained using the co-

simulation approach are indistinguishable from the results obtained when the pantograph 

lumped mass models are analyzed with the finite element code without co-simulation. 

 

2.5 Models and Analysis Initialization 

 

The initialization of the catenary and pantograph models, i.e., the initial positions and 

velocities of the catenary finite element nodes and of the pantograph body components 

have different requirements due to the different methods used in the solution of their 

dynamics. The definition of the initial conditions for the catenary finite element model 

poses a different set of challenges. Recognizing that the geometric specification of the 

catenary geometry is defined for its static deformed state due to gravitational loading, the 

definition of the finite element nodal positions of the catenary model in its undeformed 

configuration are found before the dynamic analysis starts. For this purpose an 

optimization problem is defined to minimize the function that quantifies the distance 

between the static deformed geometry of the contact wire and its specified position, as 

 
   

 

2

1

min

. .

n
r

i i

i

z z

s t



 

  

b

l b u

F
 (12) 

in which the vector of design variables is b=[z1, z2, …,zn]
T
, being zi the position of node i 

of the messenger wire along the height direction, assuming the position of the dropper 

node in the contact wire as unchanged. The design variables are equivalent to the dropper 

length. Only the nodes of the messenger wire located at the droppers and steady arm are 

considered in vector b. The reference height of each node i, i.e., the height of each node of 

the messenger wire at the steady arm, specified as input for the catenary geometry is 

defined as zi
r
. The constraints of the optimization problem include the orientations of 

steady arms and lengths of the droppers. Note that the catenary axial tensioning of the 

wires and the gravitational loading lead to catenary deformations require a nonlinear static 

analysis due to the large displacements and rotations of the finite element mesh. During 

the optimization problem a solution for a static analysis is required, every iteration, as if 

the deformation of the catenary model is linear. Although good solutions for the initial 

catenary positions have been obtained with the approach used here there is no guarantee 

that a good solution for the initial catenary configuration is always obtained. 

In the case of the multibody pantograph model the initial velocities of all mechanical 

elements must be not only compatible with the forward velocity of the system along the 

track but also consistent with the kinematic constraints used [16]. In case of small errors 

the PantoCatMB module initialization, the code ensures their correction via loop 1 in 

Figure 3 so that the state variables ensure the kinematic consistency of the model. 

Having the pantograph and catenary properly initialized, with the position of the 

pantograph contact strips located under the contact wire, in its close vicinity but without 

contact, the dynamic analysis starts. Some trial runs may be necessary before the 

pantograph lifting force/moment is fine tuned to ensure that the average contact force in 

the catenary-pantograph interface meets the required average force [18]. In any dynamic 

analysis of the system the dynamic response is not collected, or processed, during the first 

2-3 spans after contact between the pantograph and catenary starts. Such transient 

response is discarded from any further analysis.  



3. Additional methods available and not used in the benchmark 

 

The PantoCat program has a number of analysis features that allows the study of 

pantograph and catenary models with characteristics that go well beyond the 

requirements of the benchmark. In terms of dynamics analysis PantoCat allows for: 

 The application to the pantograph base of the kinematics of the train roof, including 

all disturbances resulting from track/wheel interaction, vehicle suspensions and 

operating conditions of the train. 

 Generation of catenary geometries consistent with general track geometries including 

horizontal and vertical curves. 

 Dynamics of the pantograph models that represent all of its constructive details 

including imperfections of the mechanical joints, dynamics of the pneumatic 

actuators, flexibility of the system components, fully spatial kinematics of all system 

components and any nonlinearity of the suspension mechanical elements. 

 The simulation of catenary models with multiple sections, including realistic 

representations of the overlapping in the transition between sections. 

 The introduction of active control by providing for the effect all necessary interfaces to 

test active control algorithms in realistic pantograph models. 

Although without direct influence on the analysis features implemented in the 

PantoCat code, the ability to input catenary data in a neutral format widens the 

applicability of the program. By using the data format agreed in the PantoTrain project, 

implemented in an Excel database file, all geometric and material characteristics of the 

catenary are specified. This allows also the inclusion of any particular element and 

singularity in the catenary construction such as defects or dampers, as those being tested 

in some Japanese catenaries [19]. 

The implementation of other advanced features in PantoCat, such as the ability to 

include the flexibility of the pantograph mechanical elements in the dynamic analysis, is 

underway. Some of the initial results are available showing that in particular conditions 

there is an influence of the system flexibility in the quality of the contact [20]. 

 

4. Validation of the software 

 

The norm EN50318 [21] provides two validation steps, defined as steps 1 and 2, for the 

assessment of a simulation method, one by comparison with other validated simulation 

methods and other by comparison with line tests. On step 1 simple reference models are 

provided for catenary and pantograph. For a successful validation it is necessary to obtain 

a given number of simulation output parameters within given ranges. Following step 1, 

which gives assurance on the precision and accuracy of the simulation tool, step 2 states a 

required accuracy of the method used concerning key parameters extracted from line 

tests. The PantoCat code has been validated according to both steps of the EN50318 

norm.  

In the first step of EN50318 reference models of the catenary and pantograph are 

defined being the simulation outputs deemed to fall within pre-defined ranges, for two 

different pantograph speeds. The pantograph is represented by a two stage lumped mass 

model while the catenary model is obtained by the basic geometry and material norm 

definitions, for a length of ten spans. These minimal modelling data requirements are 

short of the detailed definition of the catenary characteristics used in the benchmark, 

particularly with respect to the mechanical characteristics of the supports and structures. 

Another critical aspect concerns the norm specification of no damping on the catenary 



model, which ultimately leads to the reflection of the wave propagation if neither energy 

absorbing boundary conditions nor entrance and exiting spans are used for the contact 

wire. The pantograph-catenary interaction is evaluated for pantograph speeds of 250 

km/h and 300 km/h, being the results processed only for the 5
th

 and 6
th

 spans. The forces 

are filtered with a cut-off frequency of 20 Hz, fulfilling the norm specifications. 

The statistical characteristics of the contact forces defined by the norm as 

requirement for the 1
st
 step of the validation as well as the range of acceptance are 

shown in Table 1. All quantities required for the software acceptance fall, successfully, 

inside the ranges specified by EN50318.  

 
speed  [km/h] 250 300 

    Norm Model Norm Model 

Mean contact force [N] 110 - 120 114.6 110 - 120 115.5 

Standard deviation [N] 26 - 31 28.6 32 - 40 34.3 

Statistical maximum [N] 190 - 210 200.4 210 - 230 218.5 

Statistical minimum [N] 20 - 40 28.9 -5 - 20 12.5 

Actual maximum [N] 175 - 210 196.7 190 - 225 195.7 

Actual minimum [N] 50 - 75 52.6 30 - 55 34.7 

Maximum uplift at support [mm] 48 - 55 54 55 - 65 60 

Percentage of loss of contact [%] 0 0 0 0 

 

Table 1: Statistical quantities required by EN50318, and range of acceptance, for the 

pantograph-catenary simulation software. 

 

The 2
nd

 step of the validation procedure consists on modelling existing catenary and 

pantograph and verifying the correlation of the model response with inline acquired 

data. The simulation results and acquired data are filtered similarly. The successful 

validation of the simulation tool, and implicitly of the models developed, requires a 

maximum deviation of 20% for the standard deviation of the contact force, maximum 

uplift at the supports and the vertical displacements of the contact point. For this type of 

validation it is necessary to access not only experimental inline measured data but also 

the modelling data for the catenary and pantograph of the existing system. The data 

concerning the LN2 catenary of the TGV Atlantique line and the Faiveley CX 

pantograph running at an operational speed of 300 km/h, was made available by SNCF 

for the PANTOTRAIN European project and used here. Two numerical simulations 

were produced for a pantograph to catenary contact force model, considering elastic 

contact only or including hysteresis damping.  

 

 
Experimental Elastic Damped 

Maximum [N] 319.3 283.5 298.5 

Minimum [N] 73.7 100.6 97.0 

Amplitude [N] 245.5 182.9 201.5 

Mean [N] 179.8 179.4 179.5 

Standard Deviation [N] 44.3 44.4 46.9 

Standard Deviation Accuracy [%] - 0.08 5.92 

Statistical Maximum [N] 312.8 312.5 320.3 

Statistical Minimum [N] 46.9 46.3 38.6 

Contact Loss [%] 0 0 0 

 

Table 2: Statistical parameters for the experimental and simulated contact forces. 

 



 
 

Figure 5: Statistics of the contact force for the experimental and simulated data. 

 

The statistical analysis of the experimental and simulated contact forces are 

presented on Table 2 and Figure 5. The standard deviation accuracy also presented 

shows that its values, either for the elastic or damped contact models, are well inside the 

20% required accuracy required by the norm for validation. For the elastic contact 

results the standard deviation is very close to the experimental results, however the 

deviation from the maximum and minimum contact force is more significant than the 

ones presented by damped contact result. 

 

5. Considerations about the benchmark results 

 

In general, for all important quantities in the study of the pantograph-catenary 

interaction problem, the dynamic response obtained with all software tested is similar. 

The few particular differences can be justified by modelling assumptions, sometimes 

forced by the software capabilities of analysis. The dynamic response obtained for the 

benchmark, with PantoCat, is analyzed here with reference to both modelling 

assumptions and software analysis capabilities. 

 

5.1 Static analysis and initialization 

 

The relevant results of the static analysis of the catenary concerns the position of the 

contact wire and the elasticity of the catenary, depicted respectively in Figures 4 and 5 of 

the benchmark general paper [22].  The position of contact wire at the regulation arms 

obtained by PantoCat is basically 5mm lower than what most of the remaining codes 

obtain, for the planar catenary, as seen in right side of Figure 6 . This may be due to either 

the initialization procedure for the catenary geometry, to the finite element model used or 

to the model for the regulator arm. For the three-dimensional catenary model the height of 

the contact wire at the regulation arm, depicted in the left side of Figure 6 is coincident 

with that of most of the other codes. Note that the optimization procedure depicted by 

equation (12) is used to fine tune to position the steady arm. All rotations of the steady 

arms during the analysis are considered small, and consequently no large deviations on 

the steady arm positions are considered. The steady arms are pined to a fixed element in 

one end and pinned to the contact wire in the other end in the models considered here. 

The catenary elasticity can be evaluated with a pure static analysis or with a dynamic 

analysis in which the pantograph moves with a velocity low enough to disregard any 

dynamic effects on the response. For the load F=200N the two methods of identifying the 
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catenary elasticity, with PantoCat, lead to slightly different results, as shown in Figure 

7. For a load F=100N there is no difference between the two methods of identifying the 

catenary flexibility, which suggests that the compression of the droppers, inexistent for 

the lower force, plays a role in the dynamical system due to the inertia forces. 

 

 
 

Figure 6: Position of the contact wire across the 6
th

 span with 0.1 m reporting step for 

the 3D model (left) and 2D model (right). 

 

The catenary geometric initialization is a critical step in the process of setting any 

catenary in general, and in this benchmark in particular. The gravitational forces tend to 

force the contact wire downwards while the axial tension in the wires tends to raise the 

messenger and contact wires. In most of the catenaries these two opposite trends almost 

cancel each other and the equilibrium position of the loaded catenary is not too far from 

the reference position. From the mechanical point of view this situation means that 

small variations on the unloaded geometry of the catenary allow for the complete 

system, upon loading, to reach a predefined geometry while assumptions for linearity of 

the system behaviour remain valid. However, for some particular catenary geometries, 

topologies and loadings the assumption of linearity of the catenary during loading may 

not be valid, due in particular to large rotation of the elements. In these cases, the 

identification of a preloaded geometry, which after loading is the specified 

configuration, may be difficult to find without using a nonlinear analysis. 

 

 
 

Figure 7: Elasticity of the catenary in the central span for a contact fore F=200N, 

evaluated with PantoCat with a static analysis and with a dynamic analysis using a 

very slow moving pantograph. 
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5.2 Dynamic analysis 

 

In the catenary models used here the starting and exiting spans are not specified, neither 

is the type of boundary conditions used to fix the messenger and contact wires. This is a 

particularly sensitive issue for dynamic analysis at speeds for which the reflection of the 

catenary elastic deformation wave plays a role in the pantograph-catenary interaction. In 

order to avoid problems associated to the elastic wave reflection the catenary models 

used in PantoCat have two initial and two terminal spans similar to those of current 

highspeed lines in which no contact exists, i.e, the two spans account for a total length 

in the order of 100 m. Furthermore, the boundary conditions for the messenger and 

contact wires are defined with energy absorption. This is achieved by considering the 

elements that connect each of the wires to each attachment point as a spring and damper 

element in which the damper is used to fine tune the energy absorption. 

A critical characteristic of the system that affects the pantograph-catenary interaction is 

the catenary damping. While in the benchmark the damper is completely characterized, in 

an existing catenary it has to be identified. Ambrosio et al. [6] actually shows that in a 

multiple pantograph operation scenario, depending on the catenary damping, the contact 

of the leading pantograph can be heavily affected by the rear, in the case of very lightly 

damped catenaries, or the inverse, in the case of more damped catenaries. 

The contact law used for the pantograph-catenary interaction in this benchmark is not 

fixed. PantoCat allows the user to choose the parameters. According to the findings of 

the PantoTRAIN project [5] the recommended stiffness for the contact is F=50-200 kN 

and the damping null for the higher stiffness. It is found that variations on the stiffness 

and damping of the contact law lead to variations in the results that may not be negligible. 

The emphasis on the pantograph catenary interaction modelling issues is generally 

put on the catenary side and not the pantograph because the lumped mass pantograph 

models result from a system identification being their dynamic response, for the type of 

displacements observed, basically obtainable with a linear pantograph model. For larger 

head displacements, or when used in lines with curves, the lumped mass pantograph 

model cannot be used anymore, being a multibody approach to pantograph modelling 

unavoidable. However, clear specifications on how to model and use multibody 

pantographs do not exist yet. Preliminary studies show how the existing laboratory tests 

used for the identification of the lumped pantograph models can still be used to identify 

the selected unknown modelling parameters of multibody pantographs [23]. 

It must be referred that PantoCat presents good computational efficiency allied to 

the accuracy demonstrated in the benchmark. In order to measure such efficiency, for 

the cases simulated in this benchmark and other cases simulated throughout the life of 

PantoCat, each 1s of real time takes about 11s of computer time for the single 

pantograph case and 16 s for the two pantograph scenarios in a computer equipped with 

the Intel i7 2600K, or using another measure, a simulation of a pantograph running at 

300 km/h in 1 km of track takes about 132s of computer time. 

Finally it must be referred that the benchmark now developed does not allow to 

understand the importance, or lack of it, of using spatial catenary models in place of the 

planar models. That is mainly because the pantograph model used in the benchmark is 

one dimensional, i.e., its mobility is only in the vertical direction and consequently, 

even if excited in any other direction, its dynamic response is only in the direction it is 

modeled. Physically realistic pantographs models use a fully three-dimensional 

representation of all mechanical components being them allowed to develop a spatial 

motion. The understanding of the differences between planar and spatial catenary 

models is clarified when interacting with fully three-dimensional pantograph models. 



 

6. Conclusions 

 

The PantoCat code is a dynamic analysis software that accepts fully three dimensional 

finite element models of catenaries and spatial nonlinear multibody models of 

pantographs. A co-simulation procedure, via the contact force model is used to couple 

the simulation of both models. By using the finite element method for the dynamic 

analysis of the catenary and a multibody methodology for the dynamics of the 

pantograph PantoCat can take advantage of the best features of each method and 

handle detailed models with complex topologies and geometries. Although many of the 

features of the software are not used in this benchmark, such as the curved track with 

curved catenaries, the multibody pantographs or the perturbations of the pantograph 

trajectory, all features required exist by nature in the original PantoCat. The 

interaction force between the pantograph and catenary very sensitive to the catenary 

geometry, effort to develop a more advanced initialization procedure for the geometry 

of the catenary and for the initial conditions of the pantograph is underway. The 

benchmark in which the code PantoCat is used considers models for the catenary and 

pantograph not only more detailed than those used in EN50318 but much closer to the 

current highspeed railway lines and to the modeling capabilities of modern pantograph-

catenary dynamic analysis codes. Among the catenary characteristics not specified in 

this benchmark that have influence in some of the results it must be emphasized the 

characteristics of the boundaries of the contact and messenger wires and/or the 

geometry of the first and last spans on the catenary. Another aspect of the benchmark 

that must be taken into account is the impossibility to use the dynamic response in the 

first 2-3 spans after the effective contact between the pantograph head and the catenary 

contact wire takes place, due to the need to raise the pantograph head until line contact 

is achieved at a correct contact force. 
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