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Pantographic beam: a complete second gradient 1D-continuum in plane

Emilio Barchiesi     Simon R. Eugster, Luca Placidi and Francesco dell’Isola

Abstract. There is a class of planar 1D-continua which can be described exclusively by their placement functions which 
in turn are curves in a two-dimensional space. In contrast to the Elastica for which the deformation energy depends 
on the projection of the second gradient to the normal vector of the placement function, i.e. the material curvature, the 
proposed continuum does also depend on the projection onto the tangent vector, introduced as the stretch gradient. Thus, 
the deformation energy takes into account the complete second gradient of the placement function. In such a model, non-
standard boundary conditions and more generalized forces such as double forces do appear. The deformation energy of 
the continuum is obtained by applying a heuristic homogenization procedure to a family of slender discrete pantographic 
structures constituted by extensional and rotational springs. Within the homogenization process, the overall length of the 
system is kept fixed, the number of the periodically appearing sub-systems, called cells, is increased, and the stiffnesses are 
appropriately scaled. For two examples, we numerically compare the family of discrete systems with the continuum. The 
analysis shows that the continuum represents the behaviour of the discrete system already for a relatively moderate number 
of cells. In particular, the behaviour of the deformation energy error between the discrete and the continuum models when 
the number of cells tends to infinity is determined by the homogenization process.

Keywords. Variational asymptotic homogenization, Nonlinear pantographic beam, Second gradient continuum.

1. Introduction

The static behaviour of discrete systems consisting of springs connected with each other can easily get very 
complex. For the analysis of such systems, a discrete model is not always the first choice. Particularly, if the 
system is composed of similar sub-systems which appear periodically, spatially continuous formulations 
are also able to capture the behaviour of the system at large [1–5]. A particular class of such systems is 
so-called pantographic structures [6–8], i.e. pantographic mechanisms which are well known from everyday 
life such as pantographic mirrors, expanding fences or scissor lifts. Discrete models of such structures are 
obtained, if the links in these systems are modelled by extensional and rotational springs being hinge-
joined together [9–11]. Thus, the links themselves are allowed to deform. These systems exhibit a peculiar 
null-energy deformation mode apart from the rigid body mode. A deformation mode is sometimes also 
referred to as extensional floppy mode [12], and which is characterized by its accordion-like (homogeneous) 
extension or compression forming a rhomboidal pattern. These pantographic structures [13–15]  have
shown to be the simplest example of structures whose continuum descriptions result in a wealth of non-
standard problems in the theory of higher-gradient and micromorphic continua [9,16–18] and to their 
related mathematical challenges [19]. Insofar, pantographic structures have proven to be an archetype in 
the mechanics of generalized media. This means that the overall behaviour of the system can be described 
synthetically at a larger length scale, i.e. at a macro-level, as a continuum model [20–22]. If we are instead 
interested in the behaviour at the smaller length scale of the periodically appearing sub-systems, i.e. at 
a micro-level, then the more refined discrete model is required. Accordingly, when we henceforth refer to 
the discrete and the continuum models, we will synonymously make use of the prefixes micro and macro,
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respectively. To pass from a discrete model into a continuum model, homogenization techniques can be
used [17,23–26]. These techniques require the establishment of precise micro–macro correspondences.
Consequently, such techniques allow to give a precise meaning to many features of the macro-model in
terms of those of the micro-model.

The last few decades have witnessed a high acceleration in the development of additive and subtractive
techniques such as 3D-printing [27], non-ablative femtosecond laser exposure [28], dry etching [29], wet
chemical etching [30], or micro-moulding [31]. These manufacturing processes allow for the design of mate-
rials possessing a highly controlled structure at length scales which are much smaller than those involved
in many engineering systems. This partly justifies the renewed research interest in homogenization and
the systematic search [32–34] for new micro-structures whose homogenized limits exhibit (desired) elastic
extremal behaviour, e.g. auxetic, negative stiffness, highly compliant, strongly nonlinear, multistable, etc.
This is the motif of the emerging field of (mechanical) metamaterials [35,36].

Recently, Barchiesi et al. [37] presented preliminary results of the derivation and computation of a
one-dimensional continuum model being capable of describing the finite planar deformation of a discrete
slender pantographic structure, referred to as pantographic beam. The continuum model was deduced
from a discrete model applying a variational asymptotic procedure [12,17,34,38]. The proposed model
generalizes the models derived in [12,38], in which also Γ-convergence results are available for the case of
free-boundary conditions (cf. also [39]). The achieved continuum model in [37] shows quite exotic features.
It was shown that the deformation energy density of such a 1D-continuum does not only depend on the
material curvature but also on the stretch gradient. Moreover, the derived continuum can exhibit phase
transition [40] and negative stiffness as well.

Besides the derivation of the continuum model, which is more pedagogical than the one presented
in [37], the aim of this paper is to numerically evaluate the differences between the micro- and the
macro-model. We try to elucidate to what extent the continuum retains the relevant phenomenology of
the discrete system, notwithstanding the unavoidable loss of information that a homogenization process
entails. In order to pursue this aim, it is crucial to gain a better understanding of the involved asymptotic
process, i.e. how the change in the micro-length scale affects the discrete model. Furthermore, special
attention is given to the difference between the deformation energy of the micro- and the macro-model
when the micro-length scale tends to zero, i.e. the discrete–continuum error. This deviation gives a
quantitative value to assess the quality of the approximation of the continuum by its discrete counterpart
and vice versa. In particular, we want to show that the behaviour of the energy error is determined by
the homogenization process.

2. Heuristic homogenization

The continuum is deduced by applying Piola’s micro–macro identification procedure [17,41], which can
be considered as a heuristic variational asymptotic procedure. The general idea how this procedure is
applied in the present case for a one-dimensional continuum is as follows:

(i) A family of discrete spring systems embedded in the two-dimensional Euclidean vector space E
2, i.e.

the micro-model with micro-length scale ε > 0 is introduced—generalized coordinates and energy
contributions Eε are defined

(ii) The kinematic descriptors of the continuum, i.e. the macro-model, are introduced as continuous
functions with a closed subset of the real numbers as their common domain—these functions must
be chosen such that their evaluation at particular points can be related to the generalized coordinates
of the micro-model

(iii) Formulation of the deformation energy of the micro-model Eε using the evaluation of the continuum
descriptors at particular points followed by a Taylor expansion of the energy with respect to the
micro-length scale ε



(a)

(b)

(c)

(d)

Fig. 1. a Undeformed configuration, b generalized coordinates of ith cell, c deformed configuration with redundant kinematic
quantities, and d force elements of a single cell

(iv) Specification of scaling laws for the constitutive parameters in the micro-model followed by a limit
process in which the energy of the continuum E is related to the micro-model by E = limε→0 Eε

2.1. Discrete model

The assembly and kinematics of the system are sketched in Fig. 1. In the undeformed configuration, see
Fig. 1a, N cells are arranged upon a straight line in direction of the unit basis vector ex ∈ E

2. The total
length L ∈ R of the undeformed pantographic beam accounts for N − 1 cells, as depicted in Fig. 1a.
The cells are centred at the positions Pi = iεex for i ∈ {0, 1, . . . , N − 1} with ε = L/(N − 1). The
basic ith unit cell is formed by four extensional springs hinge-joined together at Pi. Rotational springs,
which are coloured in blue and red in Fig. 1d, are placed between opposite collinear springs belonging
to the same cell. Note that the extensional springs are rigid with respect to bending such that they can
transmit torques. White-filled circles in Fig. 1 represent hinge constraints, requiring the end points of the
corresponding springs to have the same position in space.

When not otherwise mentioned, the indices i, µ, and ν belong henceforth to the following index sets:
i ∈ {0, 1, . . . , N −1}, µ ∈ {1, 2} and ν ∈ {D, S}.1 The kinematics of the spring system is locally described
by finitely many generalized coordinates. The coordinates are the positions pi ∈ E

2 of the points at
position Pi in the reference configuration and the lengths of the oblique deformed springs lµν

i ∈ R.
Nevertheless, we introduce various other kinematical quantities to formulate the total potential energy
in a most compact form. Applying the law of cosines, the angles ϕµν

i depicted in Fig. 1c are determined
by the relations

1D stands for dextrum, S for sinistrum.



ϕ1D
i = cos−1

[

‖pi+1 − pi‖2 +
(

l1D
i

)2 −
(

l2S
i+1

)2

2l1D
i ‖pi+1 − pi‖

]

,

ϕ2D
i = cos−1

[

‖pi+1 − pi‖2 +
(

l2D
i

)2 −
(

l1S
i+1

)2

2l2D
i ‖pi+1 − pi‖

]

,

ϕ1S
i = cos−1

[

‖pi − pi−1‖2 +
(

l1S
i

)2 −
(

l2D
i−1

)2

2l1S
i ‖pi − pi−1‖

]

,

ϕ2S
i = cos−1

[

‖pi − pi−1‖2 +
(

l2S
i

)2 −
(

l1D
i−1

)2

2l2S
i ‖pi − pi−1‖

]

.

(1)

For a ∈ E
2, ‖a‖ =

√
a · a corresponds to the norm induced by the inner product denoted by the dot.

Note that ϕµS
0 and ϕµD

N−1 cannot be determined by the relations (1) and belong strictly speaking also
to the set of generalized coordinates. However, for the sake of brevity, we will often omit them. Another
restriction is that the choice of generalized coordinates holds only locally, as long as the angles ϕ1D

i and
ϕ2D

i do not change sign. Throughout the derivation of the macro-model, we will assume that the angles
ϕ1D

i and ϕ2D
i remain in the range (0, π). For the reduced index set i = {1, 2, . . . , N −2}, the angle between

the two vectors pi − pi−1 and ex is denoted by ϑi. Then, the angle θi between the vectors pi − pi−1 and
pi+1 − pi can easily be determined by

θi = ϑi+1 − ϑi = tan−1

[

(pi+1 − pi) · ey

(pi+1 − pi) · ex

]

− tan−1

[

(pi − pi−1) · ey

(pi − pi−1) · ex

]

. (2)

We set θ0 = θ1 and θN−1 = θN−2 such that the deviation angles of two adjacent oblique springs from
being collinear are given for the entire index set of i by

β1
i = θi + ϕ1D

i − ϕ1S
i , β2

i = θi + ϕ2S
i − ϕ2D

i . (3)

For the undeformed configuration, see Fig. 1a, we have

lµν
i =

√
2

2
ε, β1

i = β2
i = 0, ‖pi − pi−1‖ = ε. (4)

Letting the summations for i, µ, and ν range over the above introduced sets {0, . . . , N − 1}, {1, 2} and
{D, S}, respectively, the micro-model deformation energy is defined as

Eε =
kE

2

∑

i

∑

µ,ν

(

lµν
i −

√
2

2
ε

)2

+
kF

2

∑

i

∑

µ

(βµ
i )

2

(3)
=

kE

2

∑

i

∑

µ,ν

(

lµν
i −

√
2

2
ε

)2

+
kF

2

∑

i

∑

µ

[

θi + (−1)
µ

(

ϕµS
i − ϕµD

i

)]2

,

(5)

with kE , kF > 0 being the stiffnesses of the extensional and rotational springs, respectively. Boundedness
of the deformation energy both for the micro-model and for the macro-model is considered throughout this
paper. It is worth remarking that besides the rigid body modes, also the set of admissible configurations
defined by

lµν
i =

√
2

2
ε, pi = pi−1 + Kex, p0 = P0, for K ∈

(

0,
√

2ε
)

, (6)

entails null deformation energy and is referred to as extensional floppy mode [12].
For the lengths lµν

i of the oblique springs, we assume the asymptotic expansion

lµν
i =

√
2

2
ε + ε2 l̃µν

i + o(ε2), (7)



where l̃µν
i ∈ R. Inserting assumption (7) into the energy (5) leads to

Eε =
kE

2

∑

i

∑

µ,ν

[

ε2 l̃µν
i + o(ε2)

]2

+
kF

2

∑

i

∑

µ

[

θi + (−1)
µ (

ϕµS
i − ϕµD

i

)

]2

. (8)

2.2. Micro–macro identification

The slenderness of the discrete system makes it reasonable to aim for a one-dimensional continuum [42]
in the limit of vanishing ε. The continuum is then parametrised by the arc length s ∈ [0, L] of the
straight segment of length L connecting all points Pi. We assume the independent kinematic Lagrangian
descriptors of the macro-model to be the functions

χ: [0, L] → E
2, l̃µν : [0, L] → R. (9)

The placement function χ places the 1D-continuum into E
2 and is best suited to describe the points

pi ∈ E
2 of the discrete system on a macro-level. To take into account also the effect of changing spring

lengths l̃µν
i introduced in (7), the placement function is augmented by the four micro-strain functions

l̃µν . We thus suggest the identification of the discrete system with a one-dimensional continuum which
can be classified as a micromorphic continuum, cf. [43–46]. It is also convenient to introduce the functions
ρ: [0, L] → R

+ and ϑ: [0, L] → [0, 2π) in order to rewrite the tangent vector field χ′ as

χ′(s) = ρ(s) [cos ϑ(s)ex + sin ϑ(s)ey] , (10)

where prime denotes differentiation with respect to the reference arc length s. Thus, ρ corresponds to the
norm of the tangent vector ‖χ′‖ and is referred to as stretch. We explicitly remark that the current curve

χ([0, L]) can in general have a length
L
∫

0

ρ ds different from L, as s is not an arc-length parametrization

for χ but for the reference placement χ0(s) = sex. Introducing moreover the normal vector field χ′
⊥(s) =

ρ(s) [− sin ϑ(s)ex + cos ϑ(s)ey], being rotated against χ′(s) about 90◦ in anti-clockwise direction, it can
be seen by straightforward computation that

ρ′(s) =
χ′(s) · χ′′(s)

‖χ′(s)‖ , ϑ′(s) =
χ′′(s) · χ′

⊥(s)

‖χ′(s)‖2
. (11)

In the following, ρ′ and ϑ′ are called stretch gradient and material curvature, respectively.
For Piola’s micro–macro identification, we relate the generalized coordinates of the discrete system

with the functions (9) evaluated at si = iε such that

χ(si) = pi, l̃µν(si) = l̃µν
i . (12)

For the asymptotic identification, we need to expand the energy (8) in ε. To approach this, the expansion
of χ is given by

χ(si±1) = χ(si) ± εχ′(si) +
ε2

2
χ′′(si) + o(ε2). (13)

Combining the asymptotic expansion (7) with (12)2, we have

lµν
i±1 =

√
2

2
ε + l̃µν(si±1)ε

2 + o(ε2). (14)

Substituting l̃µν(si±1) = l̃µν(si) + o(ε0) in (14), we obtain

lµν
i±1 =

√
2

2
ε + l̃µν(si)ε

2 + o(ε2). (15)



In order to further expand (8), we subsequently need to expand the terms θi and ϕµS
i − ϕµD

i up to first
order. The detailed expansion is given in “Appendix A”. For θi, we have according to (56)

θi = ϑ′(si)ε + o(ε). (16)

The differences ϕµS
i − ϕµD

i are given by (63) and (64) as

ϕµS
i − ϕµD

i =

√
2(ρ2)′ + 4

[

(l̃(3−µ)D − l̃(3−µ)S) + (ρ2 − 1)(l̃µS − l̃µD)
]

2
√

2ρ
√

2 − ρ2

∣

∣

∣

∣

∣

s=si

ε + o(ε). (17)

Substituting (16) and (17) into (5) together with ρ(si) = ‖χ′(si)‖, we compute the desired expansion of

the micro-model energy Eε as a function of the kinematic descriptors χ and l̃µν as

Eε =
kEε4

2

∑

i

[

(

l̃1S
)2

+
(

l̃1D
)2

+
(

l̃2S
)2

+
(

l̃2D
)2

+ o(ε0)
]

s=si

+
kF ε2

2

∑

i

[

ϑ′ +
−

√
2(ρ2)′ − 4

[

(l̃2D − l̃2S) − (ρ2 − 1)(l̃1D − l̃1S)
]

2
√

2ρ
√

2 − ρ2
+ o(ε0)

]2

s=si

+
kF ε2

2

∑

i

[

ϑ′ +

√
2(ρ2)′ + 4

[

(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)
]

2
√

2ρ
√

2 − ρ2
+ o(ε0)

]2

s=si

.

(18)

Let the parameters KE , KF > 0 be constants, which do not depend on ε. Then, these constants are
related to the stiffnesses of each discrete system with micro-length scale ε by a scaling law

kE = KEε−κ , kF = KF ε−η , (19)

with the scaling parameters κ and η. By choosing κ = 3 and η = 1 in (19), observing that
∑

i o(εn) =
o(εn−1), the global remainder in the energy (18) becomes o(ε0). This remainder specifies the deformation
energy error between the discrete and the continuum model, called discrete–continuum energy error.

2.3. Macro-model

The continuum limit is now obtained by letting ε → 0 and considering the sum to turn into an integral

according to
∑

i f(si)ε
ε→0−→

L
∫

0

f ds, where f is a real- valued function defined on [0, L]. Using (18) together

with the scaling law (19) for κ = 3 and η = 1, the deformation energy for the homogenized macro-model
becomes

E =

L
∫

0

KE

2

[

(

l̃1S
)2

+
(

l̃1D
)2

+
(

l̃2S
)2

+
(

l̃2D
)2

]

ds

+

L
∫

0

KF

2

[

ϑ′ +
−

√
2(ρ2)′ − 4

[

(l̃2D − l̃2S) − (ρ2 − 1)(l̃1D − l̃1S)
]

2
√

2ρ
√

2 − ρ2

]2

ds

+

L
∫

0

KF

2

[

ϑ′ +

√
2(ρ2)′ + 4

[

(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)
]

2
√

2ρ
√

2 − ρ2

]2

ds.

(20)

The basic properties of the energy are preserved during the asymptotic process. The energy of both
the micro- and the macro-models (5) and (20), respectively, is invariant under superimposed rigid body
motions. Also, the extensional floppy mode of the discrete model, see (6), transfers to the continuum.



Namely, if ρ′ = ϑ′ = l̃µν = 0, a constant stretch ρ(s) = K ∈ (0,
√

2) can still be present without causing
any change in the deformation energy.

The above choice of the scaling parameters is such that kF/kE ≈ ε2 asymptotically, as ε → 0. This
means that the extensional springs stiffen much faster than the rotational ones as ε → 0.

Let us define the deformation energy density ψ as the integrand of (20). For the energy to be stationary,
the necessary conditions are obtained by the variation of the deformation energy functional (20). To begin

with, we can also carry out only the variation with respect to l̃µν . This results in a linear system of four
equations given by ∂ψ/∂l̃µν = 0 in which l̃µν are the unknowns. Introducing the abbreviations

C1 =
2KF

4KF (ρ2 − 2) − KEρ2
, C2 =

2
√

2 − ρ2KF

KE (ρ2 − 2) − 4KF ρ2
, (21)

some necessary conditions for equilibrium are that

l̃µD =

√
2

2
ρ

[

ρ′C1 + (−1)µ−1ϑ′C2

]

, l̃µS =

√
2

2
ρ [−ρ′C1 + (−1)µϑ′C2] . (22)

To solve for l̃µν , we made use of a computer algebra program. Note that l̃1D = −l̃1S and l̃2D = −l̃2S .
Moreover, if χ′ = ρex with ρ = K ∈ (0,

√
2), it follows from (22) that l̃µν = 0. Hence, the independent

conditions for the extensional floppy mode are that ρ′ = ϑ′ = 0. We further remark that, if ϑ′ = 0, then,
from (22), we have that l1D = l2D and l1S = l2S .

Expanding the brackets in (20), it can readily be seen that the energy contains linear and quadratic

terms in l̃µν . Asking the coefficient of (l̃µν)2 to be strictly positive, the total deformation energy functional
(20) is strictly convex in lµν . Thus, convexity is equivalent to the condition that

KE

KF

> 2

(

1 +
1

ρ2 − 2
− 1

ρ2

)

. (23)

Since the right-hand side of the inequality (23) is strictly negative for ρ ∈ (0,
√

2), the inequality is always
satisfied. Accordingly, the set of micro-strains (22) minimizes the deformation energy (20).

By substituting the results (22) into (20), we perform a kinematic reduction resulting in the deforma-
tion energy functional of the pantographic beam

E =

L
∫

0

KEKF

[

ρ2 − 2

ρ2 (KE − 4KF ) − 2KE

ϑ′2 +
ρ2

(2 − ρ2) [ρ2 (KE − 4KF ) + 8KF ]
ρ′2

]

ds, (24)

which merely depends on the placement function χ. Notice that the complete second gradient χ′′ con-
tributes to the deformation energy. Indeed, besides the term

(

χ′
⊥ · χ′′) being related to the material

curvature ϑ′ by means of (11)1, also the term
(

χ′ · χ′′) appears which in turn is related to the stretch
gradient ρ′ given by the relation (24)2. We further remark that the bending stiffness in (24), i.e. the
coefficient of ϑ′2, does not only depend on the scaled stiffnesses of the elements of the microstructure,
but also on ρ. An analogous observation can be done for the coefficient of ρ′2. Besides, we notice that the
deformation energy (24) is strictly positive for 0 < ρ <

√
2 and ϑ′, ρ′ different from zero, as so are the

coefficients of ϑ′ and ρ′ in (24).

In the limit ρ →
√

2, the energy (24) reveals a phase transition of the model. While the bending
stiffness, i.e. the coefficient of ϑ′2, tends to zero, the coefficient of ρ′2 tends to infinity. As we assumed
boundedness of the energy, the stretch gradient ρ′ must therefore tend to zero. Accordingly, the panto-
graphic beam locally degenerates into a model of a uniformly extensible cable.

The pantographic beam problem can also be formulated by an augmented energy functional

Ẽ = E +

L
∫

0

Λ · [χ′ − ρ(cos ϑex + sin ϑey)] ds. (25)



in which the fields χ, ρ, and ϑ are regarded as independent kinematic descriptors. We define Ψ̃ as the sum
of Ψ and the integrand in Eq. (25). The Lagrange multiplier field Λ enforces weakly the relations (10).
The procedure for obtaining the corresponding Euler–Lagrange equations, not needed for our purposes
and thus also not reported here, leads to the following boundary conditions in strong non-dual form

(n) ρ′(0) = 0 ∨ (e) ρ(0) = ρ0 , (n) ρ′(L) = 0 ∨ (e) ρ(L) = ρL

(n) ϑ′(0) = 0 ∨ (e) ϑ(0) = ϑ0 , (n) ϑ′(L) = 0 ∨ (e) ϑ(L) = ϑL.
(26)

By (n) and (e), we denote natural and essential boundary conditions, respectively. The conditions for the
Lagrange multiplier field are given in strong dual form

Λ(0) · δχ(0) = 0 , Λ(L) · δχ(L) = 0 , (27)

which must hold for any kinematically admissible variation δχ of χ. Let us now make explicit the sets
of boundary conditions entailing ϑ′ = 0 everywhere. To this aim, let us consider the following sets of
kinematic quantities evaluated at the boundary: (1) {χ|0∧L · ex,with ‖χ0 − χL‖ <

√
2L}, (2) {χ|0⊻L ·

ex, ρ|0⊻L <
√

2}, and (3) {χ|0∨L · ex, ρ|0∨L <
√

2}, with ⊻ denoting the logical disjunction. If sets 1, 2, or

3 above are fixed as essential boundary conditions, we get ϑ′ = 0, with ϑ being undetermined, unless the
condition ϑ|0∨L = ϑ0 is enforced. In particular, fixing sets 1 or 2 above results in the extensional floppy
mode.

2.4. Simplifications of the energy

The choice κ < 3 ∨ η < 1 in Eq. (19), including κ < 3 ⊻ η < 1 or even κ < 3 ∧ η < 1, results in energy
functionals which are rather uninteresting from the macroscopic point of view, and we do not intend to
pay them further attention. The choice κ = 3 and η = 1 in (19) is such that the energies deriving from
all other possible choices can be obtained from the energies (20) and (24) found by means of it.

Case κ< 3∨η < 1. The cases where κ < 3 ⊻ η < 1 or even κ < 3 ∧ η < 1 are obtained by computing
the limits of (24) for KE → 0 ⊻ KF → 0 or KE → 0 ∧ KF → 0, respectively. All cases result in a
trivial null-energy functional which is rather uninteresting for further analysis. The same trivial cases are
achieved when choosing vanishing stiffnesses kE , kF already in the micro-model.

Case κ> 3∧η= 1. This scaling is obtained by computing the limit of (24) by letting KE → ∞. Using
l’Hospital’s rule, this results in

KF

L
∫

0

(

R(ρ)ϑ′2 +
ρ′2

2 − ρ2

)

ds. (28)

with

R(ρ) =

{

0 if ρ =
√

2

1 else
. (29)

Moreover, this limit process leads to vanishing C1 and C2 in (21) and according to (22) even to vanishing

l̃µν = 0. Hence, the very same energy can also be computed by just setting l̃µν = 0 in (20). The
deformation energy (28) is given by two additive contributions, the first being the deformation energy of

the Elastica [47]. Following the arguments from above, if ρ →
√

2, then the continuum behaves locally
like a uniformly extensible Elastica.

Note that this scaling captures the case in which the extensional springs become asymptotically so
stiff to behave like rigid links in the limit. In this way, it is also possible to recover the homogenized
energy for the pantographic slender system in Fig. 1 with rigid links in place of extensional springs. For a
detailed computation, we refer to [37]. This suggests that interchanging ε → 0 and KE → ∞ to kE → ∞



and ε → 0 leads to the same deformation energy. Also for rigid links, the heuristic homogenization still
gives a o(ε0) discrete–continuum energy error.

Case κ= 3∧η> 1. Carrying out the limit of (24) for KF → ∞, again by applying l’Hospital’s rule, we
get

KE

4

L
∫

0

[

2 − ρ2

ρ2
ϑ′2 +

ρ2

(2 − ρ2)2
ρ′2

]

ds. (30)

The values of l̃µν expressed in terms of ρ and ϑ which are computed the same way are

l̃µD = −l̃µS =

√
2

2
ρ

[

ρ′

2(ρ2 − 2)
+ (−1)µ

√

2 − ρ2

2ρ2
ϑ′

]

. (31)

In a straightforward although a bit cumbersome computation, it can readily be seen that the micro-strains
of (31) satisfy the two equalities

2ϑ′ρ
√

2
√

2 − ρ2 = (−1)µ
(√

2(ρ2)′ + 4
[

(l̃µD − l̃µS) + (ρ2 − 1)
(

l̃(3−µ)S − l̃(3−µ)D
)])

. (32)

Similar to the previous case, the energy (30) can also be obtained by inserting the results (31) directly into
(20). Due to (32), the two last terms of (20) with the factor KF do vanish. In fact, it is the homogenized
energy of the pantographic slender system in Fig. 1 in which two opposite oblique springs are enforced
to remain collinear.

Case κ> 3∧η > 1. If both KE , KF → ∞, the micro-strains must vanish but also satisfy (31). Conse-
quently, also ρ′ = ϑ′ = 0 allowing the continuum only to deform in the extensional floppy mode which
is characterized by a placement function such that χ′ = ρex with ρ = K ∈ (0,

√
2) together with a

null-energy functional.
Linearization. Let the vector valued displacement field u be defined by u(s) = χ(s)−sex. From Taylor

expansions, it follows that ϑ = tan−1(u′·ey/(1+u′·ex)) = u′·ey+o(‖u′‖) = o(‖u′‖0), ϑ′ = u′′·ey+o(‖u′‖0),

ρ = [(1 + u′ · ex)2 + (u′ · ey)2]
1

2 = 1 + u′ · ex + o(‖u′‖) = 1 + o(‖u′‖0), and ρ′ = u′′ · ex + o(‖u′‖0). Hence,
the energy of (24) is

L
∫

0

[

KEKF

KE + 4KF

‖u′′‖2 + o(‖u′‖0)

]

ds. (33)

For small-strain hypothesis, the remainder o(‖u′‖0) in Eq. (33) can be neglected. In the limit of KE → ∞,
(33) leads to

KF

L
∫

0

‖u′′‖2ds. (34)

This energy corresponds to the deformation energy in (5) with K+ = K− of [12], in which opposite
links and the rotational spring in between have been considered as a whole by linear and inextensible
Euler–Bernoulli beams.

3. Computational aspects

In this section, the solution methods employed for the macro- and micro-model are briefly recalled.



Fig. 2. Nodal points of the micro-model

3.1. Finite element formulation of the macro-model

From the stationarity condition of the energy, (25) follows the weak form equation

L
∫

0

(

∂Ψ̃

∂ρ
δρ +

∂Ψ̃

∂ρ′ δρ
′ +

∂Ψ̃

∂ϑ′ δϑ
′ +

∂Ψ̃

∂Λ
· δΛ +

∂Ψ̃

∂χ′ · δχ′
)

ds = 0 , (35)

with δ(·) being kinematically admissible (·), which can then be solved numerically by a finite element
method. The weak form package of the software COMSOL Multiphysics, which implements standard finite
element techniques (cf. [48,49]), was used for the discretization and the subsequent solution procedure.
Default settings were set. Essential boundary conditions, see (26) and (27), were not fulfilled by the basis
functions but enforced by additional Lagrange multipliers. Quadratic Lagrangian polynomials were used
as basis functions for the fields ρ, ϑ, and χ. For the field Λ linear Lagrangian polynomials were applied.
The mesh size was taken uniformly equal to L/100. Energy convergence of solutions was successfully
checked for the mesh size tending to 0.

3.2. Micro-model revisited

For solving the discrete micro-model directly and without making any of the hypotheses assumed for the
derivation of the continuum model, except for the scaling law (19), it is much more convenient to introduce
an alternative global, minimal set of generalized coordinates than the one used for the homogenization.
The kinematics of the discrete system is entirely described by the nodal points pi and pµν

i depicted in
Fig. 2 as white-filled circles. The Cartesian coordinates of the nodes are introduced as 2 × 1 matrices,

i.e. as “row vectors”, in accordance with xi = (pi · ex, pi · ey) and xµS
i = (pµS

i · ex, pµS
i · ey). Hence, the

f = 2(3N + 2) generalized coordinates are

q = (x0, · · · , xN−1, x1S
0 , · · · , x1S

N , x2S
0 , · · · , x2S

N )T ∈ R
f . (36)

Moreover, we introduce the Boolean connectivity matrices CµS
i , CµD

i ∈ R
4×f defined by the relations

qµS
i = (xi, xµS

i )T = CµS
i q qµD

i = (xi, xµS
i+1)

T = CµD
i q. (37)

These are the coordinates required to formulate the energy of the extensional springs. In the energies
of the rotational springs, three points are involved. Accordingly, these coordinates are extracted by the
connectivity matrices Cµ

i ∈ R
6×f defined by

q1
i = (x1S

i , xi, x2S
i+1)

T = C1
i q q2

i = (x2S
i , xi, x1S

i+1)
T = C2

i q. (38)

Let qe = (x1, y1, x2, y2)
T ∈ R

4 be the coordinates of two points interconnected by an extensional
spring . Introducing the abbreviations ∆x = x2 − x1 and ∆y = y2 − y1, the distance between the two
points is

l(qe) =
√

∆x2 + ∆y2 =
√

(x2 − x1)2 + (y2 − y1)2. (39)



The derivative with respect to qe is the row vector

∂l

∂qe
(qe) =

1

l(qe)
(−∆x,−∆y, ∆x,∆y). (40)

For the energy contributions of the rotational springs, we introduce a standard element with three points
with coordinates qr = (x1, y1, x2, y2, x3, y3) ∈ R

6 . With the abbreviations ∆x1 = x2 −x1, ∆x2 = x3 −x2,
∆y1 = y2 − y1 and ∆y2 = y3 − y2, the distances between the respective points are

l1(q
r) =

√

∆x2
1 + ∆y2

1 , l2(q
r) =

√

∆x2
2 + ∆y2

2 , (41)

with the corresponding derivatives

∂l1
∂qr

(qr) =
1

l1(qr)
(−∆x1,−∆y1,∆x1,∆y1, 0, 0),

∂l2
∂qr

(qr) =
1

l2(qr)
(0, 0,−∆x2,−∆y2,∆x2,∆y2).

(42)

The angles between the ex-axis and the vectors ∆x1ex + ∆y1ey and ∆x2ex + ∆y2ey, respectively, are
introduced by the relations

φ1(q
r) = tan−1

(

∆y1

∆x1

)

, φ2(q
r) = tan−1

(

∆y2

∆x2

)

(43)

with the corresponding derivatives

∂φ1

∂qr
(qr) =

1

l1(qr)2
(∆y1,−∆x1,−∆y1,∆x1, 0, 0),

∂φ2

∂qr
(qr) =

1

l2(qr)2
(0, 0,∆y2,−∆x2,−∆y2,∆x2).

(44)

The deformation energy of the micro-model, see (5), is

Eε(q) =
∑

i

∑

µ,ν

⎛

⎝

kE

2

[

l
(

Cµν
i q

)

−
√

2

2
ε

]2

+
kF

2

[

φ2

(

Cµ
i q

)

− φ1

(

Cµ
i q

)]2

⎞

⎠ . (45)

The variation of the deformation energy δEε = (∂Eε/∂q)δq determines the internal generalized forces
of the micro-model as

[

f int
ε (q)

]T

=
∂Eε

∂q
=

∑

i

∑

µ,ν

(

kE

[

l
(

Cµν
i q

)

−
√

2

2
ε

]

∂l

∂qe
(Cµν

i q) Cµν
i

+ kF

[

φ2

(

Cµ
i q

)

− φ1

(

Cµ
i q

)]

[

∂φ2

∂qr

(

Cµ
i q

)

− ∂φ1

∂qr

(

Cµ
i q

)

]

Cµ
i

)

.

(46)

Kinematic boundary conditions can be imposed by perfect bilateral constraints 0 = g(q) ∈ R
m with the

virtual work contribution δW c = δgTλ = δqTW (q)λ, where W (q)T = ∂g
∂q

(q) ∈ R
m×f is the matrix of

generalized force directions and λ ∈ R
m the vector of constraint forces. Together with the generalized

internal forces (46), the constrained system is thus determined by the set of nonlinear equations
[

f int
ε (q) + W (q)λ

g(q)

]

= 0 (47)

which can be solved, at least locally, by a Newton–Raphson iteration scheme.
To compare the numerical results of the micro- and macro-model, beyond the micro–macro identifi-

cation (12), the following micro–macro correspondences were taken into account

ρ

(

si + si−1

2

)

↔ ‖pi − pi−1‖
ε

, ϑ

(

si + si−1

2

)

↔ ϑi = tan−1

[

(pi − pi−1) · ey

(pi − pi−1) · ex

]

, (48)



(a) (b)

Fig. 3. Boundary conditions, reference configuration (gray), and deformed configuration (black) for a semicircle test, ρ0 =
1.405, and b three-point test, ū = 0.4 m

where i = {1, . . . , N − 1}. Accepting the stretch ρ and the inclination angle ϑ to be the same for s = 0
and s = ε

2 as well as for s = L and s = L − ε
2 , respectively, the micro–macro relations for the boundary

conditions are given by

ρ(0) ↔ ‖p1 − p0‖
ε

, ρ(L) ↔ ‖pN−1 − pN−2‖
ε

, ϑ(0) ↔ ϑ1, ϑ(L) ↔ ϑN−1. (49)

While the micro-strains l̃µν are related by

l̃µν(si) ↔ 1

ε2

(

l
(

Cµν
i q

)

−
√

2

2
ε

)

, (50)

the deformation energy density ψ(s), which is the integrand of (24), is compared by the following relation

ψ(si) ↔
∑

µ,ν

1

ε

⎛

⎝

kE

2

[

l
(

Cµν
i q

)

−
√

2

2
ε

]2

+
kF

2

[

φ2

(

Cµ
i q

)

− φ1

(

Cµ
i q

)]2

⎞

⎠ . (51)

4. Numerical investigations

In this section, we analyse the numerical solutions of two particular examples, the semicircle test and
the three-point test, see Fig. 3. The focus of interest is mainly to investigate how much the solutions
of discrete models deviate from the solutions of the continuum. Mostly, the solutions of the continuum
model are compared with the solutions of two discrete systems made out of 41 and 101 cells, respectively.
If not otherwise stated, the values KE = 10 J m and KF = 1 × 10−4 J m were applied. For the stiffnesses
of the discrete system, the scaling laws (19) were applied for κ = 3 and η = 1, i.e. kE = KEε−3 and
kF = KF ε−1.

4.1. Semicircle test

A cartoon of the semicircle test is given in Fig. 3a in which the reference and deformed configurations of
the discrete system are depicted. The applied boundary conditions for both the micro- and the macro-
models are specified in Table 1. For a beam of undeformed length L = π m, the positions of both ends are
fixed at the distance of 2 m from each other. Additionally, the inclination angles ϑ(0) = −ϑ(π) = −π/2
are prescribed such that the beam is forced to a curved configuration. Since the beam is a complete
second gradient continuum, also the stretch ρ can be prescribed. The stretch at both ends is given by
ρ(0) = ρ(L) = ρ0.
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(a) (b) (c)

Fig. 4. Semicircle test. Deformed configurations of micro- and macro-model for a ρ0 = 0.5, b ρ0 = 1, and c ρ0 = 1.405

The deformed configurations of the beam for three different values of ρ0 are shown in Fig. 4. For the
sake of clarity, only the micro-model’s centre points, i.e. xi for i = {0, . . . , N − 1}, are plotted. Figure 4b
shows the case ρ0 = 1, for which the deformed shape of the continuum is a semicircle with radius R = 1 m.
Due to the vanishing stretch gradient along the beam, i.e. ρ′ = 0 as it can be seen in Fig. 5b, the total
length of the beam remains equal to π m. Moreover, the material curvature takes uniformly the value
ϑ′ = 1/R = 1 m−1. This corresponds with the solution of the Elastica for the same boundary conditions.
Note that the inextensibility condition inherently contained in the formulation of the Elastica does not
allow to prescribe another value of the stretch than ρ = 1. The slight deviations of the discrete systems
from the circle are mainly due to the discrete “approximation” of the boundary conditions.

In Fig. 4a, c, the influence of the prescribed stretch becomes apparent. While for ρ0 < 1, the beam is
shortened, for ρ0 > 1, the beam is elongated. Besides the fact that it would have been a rather difficult task
to find a deformation energy (24) without homogenization, another convenient feature comes along with
that procedure. It allows to develop a more intuitive understanding of boundary conditions which appear
in higher-gradient continua. According to Table. 1, the boundary condition of the micro-model which
corresponds to the prescription of the stretch is realized by fixing the distance between two adjacent
centre points. If the distance between two adjacent points is increased with respect to the reference
configuration, as shown in Fig. 3a, an accordion-like (homogeneous) extension is observed in the micro-
model. Moreover, the boundary conditions of both stretch ρ and inclination angle ϑ effect over a much
larger distance than placement boundary conditions. This is precisely the characteristics contained in
higher-gradient continua.

In Fig. 5, the micro-stretch l̃1D, the stretch ρ, and the deformation energy density ψ are plotted
for different values of ρ0. The symmetry in the boundary conditions is reflected in the obtained curves
parametrised by s ∈ [0, π]. We have the symmetry ρ(s) = ρ(π − s) and ϑ(s) = −ϑ(π − s) (not plotted).
Consequently, the stretch gradient and the material curvature are odd and even functions shifted by π,
respectively, i.e. ρ′(s) = −ρ′(π − s) and ϑ′(s) = ϑ′(π − s). Since all these kinematical quantities appear
quadratically in (24), also the deformation energy density ψ is an even function shifted by π. Furthermore,

(22) implies that l̃1ν(s) = −l̃2ν(π − s). Accordingly, only the micro-stretch l̃1D is plotted in Fig. 5.
As discussed before, for ρ0 = 1, the stretch ρ and the material curvature ϑ′ are uniformly equal to 1.

It follows then immediately from (22) to (24) that the micro-stretch and the deformation energy density
take the values

l̃1D = −
√

2KF

KE + 4KF

= −1.41 × 10−5 m−1, ψ =
KEKF

KE + 4KF

= 1 × 10−4 J m−1, (52)

which is indeed the case when considering Fig. 5.
In Fig. 6a, the deformation energies are given as ρ0 increases. While for the continuum model, the

deformation energy attains a minimum at ρ0 = 1, this does not hold true for the micro-model, whose
deformation energies attain a minimum at ρ0 > 1. The simulation was performed to come as close to the



(a) (b) (c)

Fig. 5. Semicircle test. Stretch ρ, micro-strain l̃1D and deformation energy density ψ of micro- and macro-model for a

ρ0 = 0.5, b ρ0 = 1, and c ρ0 = 1.405

(a) (b)

Fig. 6. Semicircle test. a Deformation energy of the micro-model (5), Eε, and the macro-model (24), E, and b discrete–
continuum energy error on a log–log scale for different boundary conditions

limit case
√

2 = 1.41 as possible. The Lagrange multipliers satisfying the boundary conditions for ρ can
be considered as double forces acting at the ends of the beam. Their resultant value can be obtained by
Castigliano’s theorem by taking the derivative of the deformation energy with respect to ρ, i.e. considering
the inclination angles of the curves in Fig. 6a. The closer we come to

√
2, the steeper the curve gets, and

the double forces tend to infinity. In this extreme, regions numerical analysis gets difficult.
After a qualitative comparison between macro- and micro-model, we quantify the error by the absolute

value of the difference between the deformation energy of the macro-model E and the micro-model Eε.
Within the micro–macro identification procedure, we accepted a discrete–continuum energy error o(ε0),



(a) (b)

(c) (d)

Fig. 7. Three-point test. Micro- and macro-model for ū = 0.2 m a deformed configuration, b stretch ρ, c inclination angle
ϑ, and d deformation energy density ψ

i.e. of order 1 in ε. Therefore, for a meaningful analysis, the energy error in the finite element solution
of the macro-model (and/or that possibly done when considering the small-strain assumption) should be
o(ε), so as to be negligible with respect to the discrete–continuum energy error. In Fig. 6b, the discrete–
continuum energy error is plotted against 1/ε for the boundary stretches ρ0 = 0.75 and ρ0 = 1.25. An
error o(ε0) which is in particular polynomial in ε behaves asymptotically like Cε. Thereby C depends,
among others, on the considered boundary conditions, the load and constitutive parameters. Considering
its logarithm, we have log(Cε) = log(C) − log(1/ε). In other words, if the order of convergence in ε is
equal to 1, the log–log energy error plot should result in a line with slope −1 as ε tends to 0. Figure 6b
shows exactly this behaviour. It is therefore clear that, for the values of ε considered in our micro-to-
macro convergence analysis, the mesh size chosen in solving the continuum model (constant with ε) is
fine enough.

4.2. Three-point test

The discrete system’s reference and deformed configuration of the three-point test are depicted in Fig. 3b.
The applied boundary conditions for both the micro- and the macro-models are specified in Table. 1. For
a beam of undeformed length L = 1 m at both ends, the positions and the inclination angles are fixed.
In the centre of the beam, the vertical displacement ū is prescribed. We remark that the small-strain
approximation is for each point (to different extents) as less valid as ū increases and, in what follows, we
have been using the deformation energy (24).

In Fig. 7, the deformed configuration, the stretch ρ, the inclination angle ϑ, and the deformation
energy density ψ are plotted for ū = 0.2 m. Also here, the symmetry in the boundary conditions is
reflected in the obtained curves parametrised by s ∈ [0, 1]. We have the symmetries ρ(s) = ρ(1 − s) and



(a) (b) (c)

Fig. 8. Three-point test. Micro-stretch l̃1D of the micro- and macro-model for a ū = 0.1, b ū = 0.25 m, and c ū = 0.4 m

(a) (b)

Fig. 9. Three-point test. a Stretch ρ and b deformed configuration of macro-model

ϑ(s) = −ϑ(1 − s). According to the same arguments given in the semicircle test, the deformation energy
density (24) must be an even function shifted by 0.5. Figure 7d shows that this property is fulfilled by
both the micro- and the macro-models. Due to the symmetries appearing also in the micro-stretches, in
Fig. 8, only the micro-stretch l̃1D is plotted for different values of ū.

In Fig. 9, the stretches ρ and the deformed configurations of the continuum are plotted for different
values of ū. The remarkable phenomena appearing in this test are that for ū = 0.4408, one has ρ ≈

√
2

and ρ′
≈ 0 everywhere. Hence, if ū is tending to some value slightly greater than 0.4408 m, then ρ tends

to
√

2. This is the value, where the model undergoes a phase transition from a pantographic beam to a
uniformly extensible cable. Even though this phase transition can be interpreted from the deformation
energy (24), it is not directly captured by the continuum model due to the restrictions made in the
choice of minimal coordinates. The discrete model could overcome this problem. However, as we will see
below, stability problems become an issue for which reason the numerical solution procedure needs to be
extended.

In Fig. 10, the deformation energy ū = 0.2 m as KE and KF increase. The red lines indicate the total
deformation energy as the kinematic constraints corresponding to KE → ∞ and to KF → ∞ are enforced.
These values are asymptotes for the black curves, indicating that the energy of the macro-model in (24),
as KE → ∞, converges to that in (28) and the energy of the micro-model (5) converges to that of the
same system with extensional springs replaced by rigid links. Let us consider Fig. 10a. For ε → 0, the
asymptotes (red lines) related to the micro-model converge to that of the macro-model, as well as the
black curves do. Therefore, in agreement to what has been suggested by heuristic analytical derivations,
Fig. 10a indicates that interchanging ε → 0 and KE → ∞ to kE → ∞ and ε → 0 leads to the same
deformation energy. Similar conclusions can be drawn for KF → ∞ and kF → ∞, referring to Fig. 10b.



(a) (b)

Fig. 10. Three-point test. Deformation energy of the micro-model (5), Eε, and the macro-model (24), E, for ū = 0.2 m. The

red lines indicate the deformation energies for cases in which the kinematic constraints corresponding to a kE → ∞, KE → ∞

or b kF → ∞, KF → ∞ are enforced (color figure online)

(b)(a)

Fig. 11. Three-point test. a Deformation energy of the micro-model (5), Eε, and the macro-model (24), E and b discrete–
continuum energy error on a log–log scale for different boundary conditions

In Fig. 11a, the deformation energy is plotted as the prescribed displacement ū increases. According
to Castigliano’s theorem, the required pulling force in the centre of the beam corresponds with the slope
of the deformation energy graph ∂E/∂ū, and in turn to the Lagrange multiplier employed to enforce the
corresponding kinematic constraint. The required change in force to pull the beam further (proportional—
with positive ratio—to the stiffness) is positive and decreasing, tending to zero for ū approaching 0.405 m
(see Fig. 12). Therefore, the Newton–Raphson scheme does not converge and the simulation cannot go
further. Arc-length methods such as the Riks’ arc-length method [50] have to be implemented in order to
overcome this problem which is beyond the scope of this article. The continuum model could be instead
solved for values of ū greater than 0.405 m, showing negative and decreasing stiffness blowing up to −∞
for ū approaching 0.4408 m. Figure 11b shows on a log–log scale the energy error between micro- and
macro-model for decreasing length scale ε. Also for this test, the predicted discrete–continuum energy
error is o(ε0).



Fig. 12. Three-point test. Plot of the Lagrange multiplier λ employed to enforce the constraint χ(1/2) · ey = pN/2 · ey = ū

(reaction force, rate of deformation energy with respect to ū according to Castigliano’s theorem) versus ū for the continuum
model (continuous line) and the discrete one (dotted line: 41 cells; dashed line: 101 cells). Newton–Raphson scheme has
been employed for solving the micro-model

5. Conclusions

With (24), the deformation energy of a complete second gradient 1D-continuum in plane was derived by
applying Piola’s micro–macro identification procedure. The underlying family of discrete systems does
not only lead to the deformation energy but also allows for an intuitive interpretation of non-standard
boundary conditions which appear in this formulation.

The results of the kinematical quantities imply a qualitatively good agreement between the discrete
and the continuum models, already for a moderate number of cells. A quantification of the discrepancy
between the micro- and the macro-model is given by the energy error whose behaviour is determined
within the homogenization procedure by the remainder in the energy (18). For the chosen scaling law,
the remainder is of order 1 in ε. The same order was observed in the numerical evaluation of two par-
ticular examples. This analysis of the quality of a continuum model in approximating the behaviour of a
discrete system is an important passage in establishing whether such a synthetic continuum description
is satisfactory. It becomes of particular interest if such a system is used as a building block of a more
complex structure. Indeed, like any beam element, it can be used for the analysis of assemblies of pan-
tographic beams involving « generalized» constraints, distributed/lumped rotational/extensional springs,
etc. We can conclude the following. Any discrete pantographic beam with given micro-stiffnesses, given
micro-length scale ε, and given total length can be regarded as embedded within a family of discrete
systems of variable micro-length scale together with the proposed scaling law. The corresponding macro-
stiffnesses are immediately obtained by the scaling law. We then know that the quality in terms of energy
of the continuum to represent the discrete system behaves linearly in the micro-length scale ε. Finally, the
methodology and results of the present paper should serve as prototypes for the asymptotic analysis of
more complex systems, especially for a class of bi-dimensional structures which generalizes pantographic
fabrics (cf. [38]).
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Appendix A

The terms θi and ϕµS
i −ϕµD

i are expanded up to first order by using definitions (1) and (2) together with
expansions (13) and (14). According to (12) and (13), the vectors between two adjacent points are

pi+1 − pi = ε
[

χ′(si) +
ε

2
χ′′(si) + o(ε)

]

, pi − pi−1 = ε
[

χ′(si) − ε

2
χ′′(si) + o(ε)

]

. (53)

The arguments of the tan−1 in (2) can be written as functions of ε

hi+1(ε) =
(pi+1 − pi) · ey

(pi+1 − pi) · ex

(53)1
=

χ′(si) · ey + ε
2χ′′(si) · ey + o(ε)

χ′(si) · ex + ε
2χ′′(si) · ex + o(ε)

,

hi(ε) =
(pi − pi−1) · ey

(pi − pi−1) · ex

(53)2
=

χ′(si) · ey − ε
2χ′′(si) · ey + o(ε)

χ′(si) · ex − ε
2χ′′(si) · ex + o(ε)

.

(54)

It can readily be seen that hi(0) = hi+1(0) = [χ′(si) · ey] / [χ′(si) · ex]. Moreover,

h′
i+1(0) = −h′

i(0) =
1

2[χ′ · ex]2
[(χ′′ · ey)(χ′ · ex) − (χ′′ · ex)(χ′ · ey)]

∣

∣

∣

∣

s=si

=
1

2[χ′ · ex]2
χ′′ · (ey ⊗ ex − ex ⊗ ey) · χ′

∣

∣

∣

∣

s=si

=
χ′′(si) · χ′

⊥(si)

2 [χ′(si) · ex]
2 .

(55)

For a real-valued function h(ε), we can expand tan−1(h(ε)) = tan−1(h(0)) + h′(0)
1+h(0)2 ε + o(ε). Since

hi(0) = hi+1(0), the first terms in the Taylor series of both tan−1 expressions in (2) coincide and we
obtain

θi =

[

1

1 + hi+1(0)2
h′

i+1(0) − 1

1 + hi(0)2
h′

i(0)

]

ε + o(ε)

(55)
=

1

1 +
[

χ′(si)·ey

χ′(si)·ex

]2

χ′′(si) · χ′
⊥(si)

[χ′(si) · ex]
2 ε + o(ε) (56)

=
χ′′(si) · χ′

⊥(si)

‖χ′(si)‖2
ε + o(ε)

(11)
= ϑ′(si)ε + o(ε).

For the expansion (1), we first require the expansion of the norm of a vector valued function a(ε), i.e.

‖a(ε)‖ = ‖a(0)‖ + a(0)·a′(0)
‖a(0)‖ ε + o(ε). Taking a(ε) to be the expansions appearing in the squared brackets

of (53) and considering that ρ(s) = ‖χ′(s)‖, we can write

‖pi±1 − pi‖ = ε

[

‖χ′(si)‖ ± χ′(si) · χ′′(si)

‖χ′(si)‖
ε

2
+ o(ε)

]

= ε
[

ρ(si) ± ρ′(si)
ε

2
+ o(ε)

]

. (57)

Consequently, the expansion of the squared expression of (57) is

‖pi±1 − pi‖2 = ε2
[

‖χ′‖2 ± (χ′ · χ′′)ε + o(ε)
]

s=si
= ε2

[

ρ2 ± ρρ′ε + o(ε)
]

s=si
. (58)



Using (15), (57), and (58) in the argument of cos−1 of (1)2, we can compute

h1S(ε) =
‖pi − pi−1‖2 + (l1S

i )2 − (l2D
i−1)

2

2l1S
i ‖pi − pi−1‖

=
ε2

[

ρ2 − ρρ′ε +
√

2ε(l̃1S − l̃2D) + o(ε)
]

ε22
[√

2
2 + l̃1Sε + o(ε)

] [

ρ − ρ′ ε
2 + o(ε)

]

∣

∣

∣

∣

∣

∣

s=si

=
ρ2 + ε

[√
2(l̃1S − l̃2D) − ρρ′

]

+ o(ε)
√

2ρ + ε
(

2l̃1Sρ −
√

2
2 ρ′) + o(ε)

∣

∣

∣

∣

∣

∣

s=si

.

(59)

Similarly, the expansions of the arguments of cos−1 appearing in (1)1,3,4 are

h1D(ε) =
ρ2 + ε

[√
2(l̃1D − l̃2S) + ρρ′

]

+ o(ε)
√

2ρ + ε
(

2l̃1Dρ +
√

2
2 ρ′) + o(ε)

∣

∣

∣

∣

∣

∣

s=si

(60)

h2S(D)(ε) =
ρ2 + ε

[√
2(l̃2S(D) − l̃1D(S)) − ρρ′

]

+ o(ε)
√

2ρ + ε
(

2l̃2S(D)ρ −
√

2
2 ρ′) + o(ε)

∣

∣

∣

∣

∣

∣

s=si

(61)

All functions are of the form hµν(ε) = [a + εbµν + o(ε)] / [c + εdµν + o(ε)] with hµν(0) = a/c and
(hµν)′(0) = (bµνc − dµνa)/c2. The angles ϕµν

i can thus be expanded as

ϕµν
i = cos−1 [hµν(0)] − ε

√

1 − hµν(0)2
(hµν)′(0) + o(ε) . (62)

Expanding ϕµS
i − ϕµD

i with the help of (62), the first term thereof cancels. Inserting the derivative with
respect to ε evaluated at ε = 0 of (59) and (60)1, we obtain

ϕ1S
i − ϕ1D

i =

√
2ρ

[

2ρρ′ +
√

2(l̃1D − l̃2S + l̃2D − l̃1S)
]

+ ρ2
[

2ρ(l̃1S − l̃1D) −
√

2ρ′
]

2ρ2

√

1 − ρ2

2

∣

∣

∣

∣

∣

∣

s=si

ε + o(ε)

=

√
2

2 ρρ′ + (l̃2D − l̃2S) + (ρ2 − 1)(l̃1S − l̃1D)

ρ
√

1 − ρ2

2

∣

∣

∣

∣

∣

∣

s=si

ε + o(ε) . (63)

In the same manner, we obtain the expansion for the difference in angles of the oblique springs indexed by
µ = 2. Moreover, we manipulate the expression slightly to get rid of the fractions within the nominator
and denominator which results in

ϕ2S
i − ϕ2D

i =

√
2(ρ2)′ + 4

[

(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)
]

2
√

2ρ
√

2 − ρ2

∣

∣

∣

∣

∣

s=si

ε + o(ε). (64)
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