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Abstract 

Microfluidic paper-based analytical devices (µPADs) use the passive capillary-driven 

flow of aqueous solutions through patterned paper channels to transport a sample fluid into 

distinct detection zones that contain the reagents for a chemical assay. These devices are simple, 

affordable, portable, and disposable; they are, thus, well suited for diagnostic applications in 

resource-limited environments.  Adding screen-printed electrodes to the detection zones of a 

µPAD yields a device capable of performing electrochemical assays (an EµPAD).  

Electrochemical detection has the advantage over colorimetric detection that it is not affected by 

interferences from the color of the sample, and can be quantified with simple electronics.  The 

accessibility of EµPADs is, however, limited by the requirement for an external potentiostat to 

power and interpret the electrochemical measurement.  New developments in paper-based 

electronics may help loosen some of this requirement.  This review discusses the current 

capabilities and limitations of EµPADs and paper-based electronics, and sketches the ways in 

which these technologies can be combined to provide new devices for diagnostic testing. 

Keywords:  micro-paper-based analytical devices, diagnostics, electrochemical sensing, 
bioanalysis, electroanalytical devices, wax printing, developing world, 
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The need for accessible diagnostic devices 

Diagnosis is a critical part of the management of disease.  Although diagnostic tests, by 

themselves, contribute a relatively small amount to the total costs of healthcare, the results of 

diagnosis determine the subsequent treatment and its costs.  In the developed world, diagnostic 

testing is commonly carried out using dedicated instruments in well-equipped central 

laboratories.  The procedure-based reimbursement system encourages the development of 

sophisticated, and expensive, tests. This type of laboratory-based technology is inappropriate, 

however, for many applications, especially in resource-limited settings.  Affordability, 

portability, ease-of-use, and the ability to operate with little or no supporting equipment are 

particularly important for tests used in the developing world, in public health, at the point-of-

care, in drug testing and monitoring, and in agriculture (veterinary, food, environmental testing).   

The potential of paper as a substrate for colorimetric diagnostic testing has already been 

demonstrated,1-4 but there remains a substantial opportunity for paper-based devices that can 

replicate other commonly used modes of detection – particularly electrochemical detection – 

while retaining their low cost and simplicity.  The realization of this opportunity depends on our 

ability to build electrochemical and electronic capabilities on paper substrates.  

 

Paper-based approaches to bioanalysis  

As a matrix for chemical and biochemical analysis relevant to diagnosis, paper offers five 

properties that contribute to meeting these requirements: (i) the capillary wicking of aqueous 

solutions along the cellulose fibers of the paper matrix provides a means of transporting fluids 

that does not require external energy; (ii) the porosity and biocompatibility of paper allow 

reagents to be stored or immobilized in the paper device; (iii) the light weight and flexibility of 
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paper simplify the logistics of transport and storage; (iv) the patterning and processing of paper 

can use established methods to form microfluidic channels in paper; (v) the low cost and 

combustibility of paper make it suitable for disposable, safe, single-use tests.   

Paper-based systems are, of course, already extensively used. Test strips for urinalysis 

use an array of paper test pads, supported on a plastic strip, to perform up to eleven colorimetric 

assays in urine (glucose, protein, ketones, pH, nitrite, bilirubin, urobilinogen, leukocyte esterase, 

specific gravity, ascorbic acid, and blood).5  Immunochromatographic, “lateral-flow” assays 

move a sample (and analyte) between different zones on a linear nitrocellulose strip by passive 

wicking; the zones perform the different steps of an immunoassay (capture of antigen, addition 

of a labeled antibody for detection, washing) to produce a colored line in the presence of the 

analyte of interest.6 

 

Micro-paper-based analytical devices (µPADs) 

In 2007, we described a new design for a microfluidic device made from paper (a micro-

paper-based analytical device, or µPAD).  These devices use hydrophobic barriers patterned on 

hydrophilic paper by photolithography,7 by printing with PDMS8 or dissolved polystyrene,9 or by 

solid wax applied by a commercial printer10, 11 to create microfluidic channels that guide the 

transport of fluids into discreet test zones.  It is also possible to extend the topology of the 

microfluidic channels into the third dimension by stacking12 or folding13, 14 sheets of paper to join 

multiple layers. As in the case of urinalysis test strips, the test zones of a µPAD contain the 

reagents (enzymes, indicator dyes, buffers) required to generate a change in color in the presence 

of the analyte of interest.  The results can be read by eye, or imaged photographically and 

analyzed by computer.   



	   3	  

Advantages and limitations of colorimetric µPADs 

The portability, affordability, and simplicity of colorimetric µPADs make them attractive 

for use in remote areas, but the interpretation of the results may require expertise or image 

analysis that is not available at the point of care. Telemedicine offers one potential strategy with 

which to approach this problem.  In this strategy, a cell-phone camera at the point of care 

captures a photograph of the colorimetric result and transmits the image, via the network used for 

telephonic communications, to a central location where trained personnel (or a computer) 

analyze the image and transmit the results back to the user by text message.15  Even with the 

addition of telemedicine, however, colorimetric µPADs are not appropriate in every situation.  

Interferences from the color of the sample, inconsistencies in lighting, or the presence of 

particulate contaminants may confuse the interpretation of the colorimetric result.  For example, 

colorimetric assays in blood are complicated by the presence of (red) hemoglobin from whole or 

lysed red blood cells. 

 

Electrochemical readout as an alternative to colorimetry/fluorimetry 

Electrochemical analysis is a useful alternative (or complement) to colorimetric analysis 

for quantifying the results of a diagnostic test, since the measured current or voltage generated by 

the electrochemical device is insensitive to color contamination, and can be transformed into a 

numeric output by inexpensive electronics.  Electrochemical analysis can, in principle, be used 

either independently of or in combination with colorimetric analysis.   

There are several examples of successful electroanalytical systems already in large-scale 

use in point-of-care or clinical laboratory settings in the developed world.16  These include 

personal glucose meters (which are widely used in the management of diabetes), the iSTAT 
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Handheld Blood Analyzer (which is used in hospitals to measure electrolytes and other 

biomarkers in blood), and the ORIGEN Analyzer (a clinical instrument for performing 

quantitative immunoassays based on electro-chemiluminescence).  

 

Electrochemical capabilities of EµPADs 

Adding paper-based electrodes to a µPAD yields a paper-based device capable of 

performing electrochemical measurements (an EµPAD).17, 18  Carbon-based materials (graphite, 

graphene, or carbon nanotubes), gold, and platinum are appropriate choices for the working and 

counter electrodes because they are electrochemically inert over a wide range of working 

potentials.  Electrodes constructed from Ag/AgCl paste are included in electrochemical 

measurements that require a reference electrode. 

Electrochemical measurements made in paper differ from those performed in free 

solution due to the presence of the cellulose matrix, which largely blocks convection (in 

stationary fluids), acts as a barrier to diffusion (by increasing the tortuosity of the diffusion path), 

occupies some of the volume that would otherwise be occupied by fluid, and blocks a portion of 

the electrode surface (~30%, depending on the type of paper and fabrication method used).22  

Conversely, the presence of the cellulose matrix is advantageous for hydrodynamic 

measurements; capillary flow in paper can drive the transport of analytes over the surface of the 

electrode, resulting in increased sensitivity. 

 

Amperometric analysis of simple metabolites 

Amperometric EµPADs measure the current resulting from the oxidation or reduction of 

electroactive species at a fixed applied potential.  Only a few metabolites with low redox 
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potentials, such as ascorbic acid and uric acid, can be measured directly by this technique.  More 

commonly, amperometry is coupled with an enzymatic assay that consumes the analyte of 

interest and generates an electroactive product (Equation 1).  Many groups have demonstrated 

sensors for glucose, lactate, ethanol, and cholesterol using this principle.17-22 

Glucose+H
2
O+ 2 Fe(CN)

6

3- Glucose oxidase! "!!!! Gluconic acid+ 2H
+
+ 2 Fe(CN)

6

4-
  (1a) 

2 Fe(CN)6

4- Oxidizing electrode! "!!!!! 2 Fe(CN)6

3-
+ 2 e#      (1b) 

 

Voltammetric analysis of trace metals 

Voltammetric methods for the analysis of metals take advantage of the transition from 

soluble ions to an insoluble solid that occurs when metals are reduced.  The measurement occurs 

in two distinct stages (Equation 2): during an initial deposition stage, which can last several 

minutes, a reducing potential applied at the working electrode causes metal ions to deposit onto 

the electrode surface in the form of a solid metal, alloy, or amalgam; during the subsequent 

measurement, or “stripping” stage, the potential rapidly scans towards more positive values in a 

linear or square-wave sweep, and causes the deposited metals to reoxidize.  The oxidation is 

observed as a peak in the current at the characteristic redox potential for each metal.   

deposition:   M(aq)

n+
+ n e! Reducing electrode," #""""" M(s)     (2a) 

stripping:    M(s)

Oxidizing electrode! "!!!!! M(aq)

n+
+ n e#    (2b) 

 

EµPADs employing biomolecular recognition 

There are examples of electrochemical lateral-flow test strips and EµPADs that 

incorporate antibodies,23-29 aptamers,14 or complementary DNA13 to capture or label target 
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molecules.  The biomolecular recognition changes the electrochemical properties of the system 

as a result of enzyme-catalyzed production of an electroactive species,24, 27-29 mellitin-induced 

rupture of liposomes containing ferrocyanide,26 localization of cadmium quantum dots on the 

working electrode,25 or charge repulsion of electroactive species at the electrode surface.13  

 

Paper-based electronic systems 

The potential of EµPADs for application in resource-limited settings is restricted by the 

fact that nearly all of the existing devices require an external potentiostat.  Although it may not 

be possible to completely eliminate this requirement, the increasing sophistication of paper-based 

electronic devices offers hope that some electronic functions may be integrated into the paper-

based device itself.  Alternatively, the devices needed to carry out more complicated 

electrochemical measurements using simple, paper-based strips are being developed. 

There are a number of recently established techniques for patterning electrodes,18 wires,30 

and piezoresistors31 on paper, including screen printing32, 33 direct-writing with a pen/pencil 

dispensing conductive material,34, 35 physical deposition of metals, or spraying conductive inks 

through stencils.30  These patterning techniques can also be used to form resistive heating 

elements on paper.  Siegel and coworkers demonstrated a paper-based display that used a 

resistive heating element to change a layer of thermochromic ink from opaque to transparent and 

reveal a message selected to summarize the result of a test (Figure 2A).36   

An alternative strategy for forming circuits on paper involves patterning “disconnects” by 

removing material from a sheet of metallized paper with laser-based ablation.37   This method 

can be used to create inexpensive paper-based capacitive touch pads capable of replacing the 

buttons or keypads required for collecting user input (Figure 2B).  
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Proof-of-concept studies have demonstrated the potential of fabricating active electronic 

devices on paper (e.g., ring oscillators38 and transistors39-43, Figure 2C).  Nevertheless, there is 

still a need to develop manufacturing processes and reduce the cost of fabrication if paper-based 

transistors are to price comparably with silicon-based electronic components: a standard 

operational amplifier containing 20 transistors costs ~ US $0.20, or $0.01 per transistor;44 

microprocessors containing more than one billion transistors cost less than $300, or < $0.000001 

per transistor.  While paper-based microprocessors are not practical at this point, patterning tens 

or hundreds of transistors on disposable substrates might enable simple signal processing or 

amplification that would facilitate electrochemical measurements.   

Recent academic demonstrations have shown the storage of energy with paper-based 

supercapacitors45 and batteries46-48, and the generation of power by solar cells49 (Figure 2D).  

The integration of these elements into EµPADs could, in the future, eliminate the need for 

external power sources. 

 

Combining paper-based electronics and bioanalysis 

One of the advantages of using electrodes patterned on paper is that the analyte only 

makes contact with a small, low-cost, disposable strip.  When external electronics are used to 

control and analyze electric potentials and currents, they are designed to make no contact with 

analyte, and thus do not require sterilization or cleaning between uses.  The disposable strips 

only require passive elements that can also have chemically functionalized conductive regions.  

Disposable electrodes are also preferable to reusable electrodes in a point-of-care setting, 

because they eliminate the need for reconditioning of the electrode surface.  
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Glucometers are an excellent example of a successful electrochemical diagnostic device 

that combines disposable test strips with a portable electrochemical reader.50  They are 

affordable, easy to use, highly engineered, and globally available; their availability will also 

increase as the incidence of diabetes and similar metabolic syndromes continues to rise. Based 

on the success of the glucometer, early applications of EµPADs may follow a similar model. 

As an alternative to glucometers, there is a growing interest in adapting “smart” mobile 

phones (smartphones), which combine capabilities for telecommunications, photography, and 

computing, to act as readers for point-of-care diagnosis.51, 52  Most current examples use the 

built-in camera to capture and process the result of a colorimetric test, but new accessory devices 

for smartphones, like the iMultimeter,53 can be used to measure electrical signals as potentials.  

With the addition of simple electronic components such as capacitors, switches, and resistors, 

these devices could act as readers for a variety of electrochemical measurements.14  Although 

smartphones obviously facilitate the communication of results by telemedicine, they are 

expensive, and the advanced networks required for data transmission are not yet available in 

many resource-limited environments.  

In the future, paper-based devices for performing electrochemical measurements may be 

completely self-contained and disposable.  One existing example, by Liu and coworkers, used a 

paper-based fluidic battery to power the amperometric oxidation of glucose or hydrogen 

peroxide, and a spot of electrochromic dye (Prussian blue) that changed color in response to the 

amperometric current;22 the results could be read by eye, as in a colorimetric assay (based on the 

appearance or disappearance of the Prussian blue spot), and the device required no external 

electronics.  
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Outlook 

With ingenuity, there is the possibility of developing analogs of many electrochemical 

and electrical systems now used in developed-world medicine that could meet the requirements 

of low-cost systems.  For example, Novell et al. demonstrated paper-based electrodes that 

incorporated ion-selective membranes for the measurement of [K+], [NH3
+] and pH. An EµPAD 

based on the same principle could be used to quantify serum electrolytes and provide a less 

expensive and more portable alternative to the iSTAT Handheld Blood Analyzer.  

Electrochemiluminescence is a powerful detection technique for immunoassays because 

the timing of the chemiluminescent emission is controlled by the electrochemical system.  This 

advantage is important in point-of-care settings, because medical personnel juggling multiple 

patients may be unable to return to interpret the results of a test with precise timing.  Paper-based 

electrochemiluminescent devices have already been demonstrated for the detection of 

immunoassays.54, 55 

Diagnostic techniques based on the amplification and detection of nucleic acids offer 

excellent sensitivity and the ability to identify specific strains or mutations in the pathogen of 

interest.  These techniques are particularly challenging to implement in resource-limited settings 

because the amplification processes require elevated temperatures or thermal cycling.56  Paper-

based resistive heating elements could be printed directly onto a µPAD to permit on-device 

amplification.  Developed methods for patterning electrodes in paper-based electronics could 

also be used in the measurements of body temperature, pulse, and blood pressure. 
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Conclusion 

EµPADs have already been adapted for a wide variety of different types of measurements 

and analytes.  Translating these advances into real point-of-care devices will, however, require a 

range of new or improved features. 

In most bioassays, the characteristic of the assay that ultimately determines performance 

is the biology (the specificity/binding constant/kinetics of the antibodies, enzymes, etc.), not the 

electronics.  New amplification strategies that increase the sensitivity of EµPADs and reduce the 

time required for analysis will permit the application of the techniques developed thus far to a 

wider range of analytes.  Amplification strategies that remove the time-dependence of the 

measured signal, or the dependence on environmental factors, are particularly valuable in point-

of-care settings. 

The requirement for external equipment to power the electrochemical measurement and 

detect and process the resulting signal should drive innovations in handheld readers.  Despite the 

advantages of glucometers (cost, availability), they are limited by their design in the types of 

measurements that they can perform.  The development of more versatile portable 

electrochemical readers that are inexpensive and simple will be an important step for making 

EµPADs broadly useful.  Paper-based electrical devices such as circuit boards, thermochromic 

displays, buttons, and resistors can perform some of the simpler electronic functions required by 

EµPADs; the methods used in the fabrication of other, more complex components, including 

paper-based energy storage devices, transistors, and other active elements on paper, require 

further development. 

Integration of bioanalysis with telemedicine is a core theme for the future of public health 

and point-of-care medicine.  Electrochemical systems seem particularly well suited for 
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integration with cell-phone-based systems, since the disposable biosensor (paper) is light, 

inexpensive, and easy to use, and the output can be an electrical signal.   
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Figure Captions 

 

Figure 1: EµPADs for diagnostic and environmental testing; A) Multiplexed amperometric 

device for the analysis of glucose, lactate, and uric acid18; B) Square-wave voltammetry device 

for the determination of lead in drinking water17;  C) Amperometric EµPAD integrated with a 

commercial glucometer20; D) Adenosine-sensing EµPAD with aptamer-based recognition and a 

potentiometric concentration cell.14  

 

 

Figure 2: Paper-based electronic devices; A) Thermochromic display, i) resistive heating 

elements, ii) no current applied to resistors, iii) and iv) activation of left and right resistors for the 

display of different test results; B) Capacitive touch pads fabricated by “disconnection” on 

metallized paper37; C) SEM image of interdigitated electrodes of a paper-based transistor42;  D) 

Photovoltaic circuits49; E) Piezoresistive paper cantilever for mechanical sensing.31  



	   13	  

Figure 1
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Figure 2 
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