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Paper-folding and Euler’s Theorem Revisited

Benedetto Scimemi

Abstract. Given three pointsO, G, I , we give a simple construction by paper-
folding for a triangle having these points as circumcenter, centroid, and incenter.
If two further pointsH andN are defined byOH = 3OG = 2ON, we prove
that this procedure is successful if and only ifI lies inside the circle onGH
as diameter and differs fromN . This locus forI is also independently derived
from a famous paper of Euler, by complementing his calculations and properly
discussing the reality of the roots of an algebraic equation of degree 3.

1. Introduction

The so-calledModern Geometry of the Triangle can be said to have been founded
by Leonhard Euler in 1765, when his article [2] entitledEasy Solution to some
Very Difficult Geometrical Problems was published in St. Petersburg. In this fa-
mous paper the distances between the main notable points of the triangle (centroid
G, circumcenterO, orthocenterH, incenterI) are calculated in terms of the side
lengths, so that several relationships regarding their mutual positions can be estab-
lished. Among Euler’s results, two have become very popular and officially bear
his name: the vector equationOH = 3OG, implying the collinearity ofG, O, H
on the Euler line, and the scalar equationOI2 = R(R − 2r) involving the radii of
the circumcircle and the incircle. Less attention has been given to the last part of
the paper, though it deals with the problem Euler seems most proud to have solved
in a very convenient1 way, namely, the “determination of the triangle” from its
pointsO, G, H, I. If one wants to avoid the “tedious calculations” which had
previously prevented many geometricians from success, says Euler in his introduc-
tion, “everything comes down to choosing proper quantities”. This understatement
hides Euler’s masterly use of symmetric polynomials, for which he adopts a clev-
erly chosen basis and performs complicated algebraic manipulations.

A modern reader, while admiring Euler’s far-sightedness and skills, may dare
add a few critical comments:

(1) Euler’s §31 is inspired by the correct intuition that, givenO, G, H, the
location of I cannot be free. In fact he establishes the proper algebraic
conditions but does not tell what they geometrically imply, namely thatI
must always lie inside the circle onGH as diameter. Also, a trivial mistake

Publication Date: August 19, 2002. Communicating Editor: Clark Kimberling.
1Latin: commodissime.
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leads Euler to a false conclusion; his late editor’s formal correction2 does
not lead any further.

(2) As for the determination of the triangle, Euler reduces the problem of find-
ing the side lengths to solving an algebraic equation of degree 3. However,
no attention is given to the crucial requirements that the three roots - in
order to be side lengths - be real positive and the triangle inequalities hold.
On the other hand, Euler’s equation clearly suggests to a modern reader
that the problem cannot be solved by ruler and compass.

(3) In Euler’s words (§20) the main problem is described as follows:Given
the positions of the four points . . . , to construct the triangle. But finding
the side lengths does not imply determining the location of the triangle,
given that of its notable points. The wordconstruct also seems improperly
used, as this term’s traditional meaning does not include solving an alge-
braic equation. It should rather refer, if not to ruler and compass, to some
alternative geometrical techniques.

The problem of the locus of the incenter (and the excenters) has been indepen-
dently settled by Andrew P. Guinand in 1982, who proved in his nice paper [5]
that I must lie inside the critical circle onGH as diameter3 (Theorem 1) and,
conversely, any point inside this circle - with a single exception - is eligible forI
(Theorem 4). In his introduction, Guinand does mention Euler’s paper, but he must
have overlooked its final section, as he claims that in all previous researches “the
triangle was regarded as given and the properties of the centers were investigated”
while in his approach “the process is reversed”.

In this paper we give an alternative treatment of Euler’s problem, which is inde-
pendent both of Euler’s and Guinand’s arguments. Euler’s crucial equation, as we
said, involves the side lengths, while Guinand discusses the cosines of the angles.
We deal, instead, with the coefficients for equations of the sides. But an indepen-
dent interest in our approach may be found in the role played by the Euler point of
the triangle, a less familiar notable point.4 Its properties are particularly suitable
for reflections and suggest a most natural paper-folding reconstruction procedure.
Thus, while the first part (locus) of the following theorem is well-known, the con-
struction mentioned in the last statement is new:

Theorem 1. Let O, G, I be three distinct points. Define two more points H , N on
the line OG by letting OH = 3OG = 2ON. Then there exists a nondegenerate,
nonequilateral triangle T with centroid G, circumcenter O, orthocenter H , and
incenter I , if and only if I lies inside the circle on GH as diameter and differs
from N . In this case the triangle T is unique and can be reconstructed by paper-
folding, starting with the points O, G, I.

2A. Speiser in [2, p.155, footnote].
3This is also known as the orthocentroidal circle. See [7]. This term is also used by Varilly in [9].

The author thanks the referee for pointing out this paper also treats this subject.
4This point is the focus of the Kiepert parabola, indexed asX110 in [7], where the notable points

of a triangle are called triangle centers.
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We shall find the sides of the triangle sides as proper creases,i.e., reflecting
lines, which simultaneously superimpose two given points onto two given lines.
This can be seen as constructing the common tangents to two parabolas, whose foci
and directrices are given. Indeed, the extra power of paper-folding, with respect to
ruler-and-compass, consists in the feasibility of constructing such lines. See [4, 8].

The reconstruction of a triangle from three of its points (e.g. one vertex, the foot
of an altitude and the centroid G) is the subject of an article of William Wernick
[10], who in 1982 listed 139 triplets, among which 41 corresponded to problems
still unsolved. Our procedure solves items 73, 80, and 121 of the list, which are
obviously equivalent.5 It would not be difficult to make slight changes in our
arguments in order to deal with one of the excenters in the role of the incenterI.

As far as we know, paper-folding, which has been successfully applied to tri-
secting an angle and constructing regular polygons, has never yet produced any
significant contribution to the geometry of the triangle.

This paper is structured as follows: in§2 we reformulate the well-known prop-
erties of the Simson line of a triangle in terms of side reflections and apply them to
paper-folding. In§3 we introduce the Euler pointE and study its properties. The
relative positions ofE,O,G are described by analytic geometry. This enables us to
establish the locus ofE and a necessary and sufficient condition for the existence
of the triangle.6 An immediate paper-folding construction of the triangle fromE,
O, G is then illustrated. In§4 we use complex variables to relate pointsE andI.
In §5 a detailed ruler-and-compass construction ofE from I, O, G is described.7

The expected incenter locus is proved in§6 by reducing the problem to the former
results onE, so that the proof of Theorem 1 is complete. In§7 we take up Euler’s
standpoint and interpret his formulas to find once more the critical circle locus as
a necessary condition. Finally, we discuss the discriminant of Euler’s equation and
complete his arguments by supplying the missing algebraic calculations which im-
ply sufficiency. Thus a third, independent, proof of the first part of Theorem 1 is
achieved.

2. Simson lines and reflections

In this section we shall reformulate well-known results on the Simson line in
terms of reflections, so that applications to paper-folding constructions will be nat-
ural. The following formulation was suggested by a paper of Longuet-Higgins [6].

Theorem 2. Let H be the orthocenter, C the circumcircle of a triangle T =
A1A2A3.

(i) For any point P , let Pi denote the reflection of P across the side AjAh

of T . (Here, i, j, h is a permutation of 1, 2, 3). Then the points Pi are
collinear on a line r = r(P ) if and only if P lies on C. In this case H lies
on r.

5GivenI and two ofO, G, H .
6Here too, as in the other approaches, the discussion amounts to evaluating the sign of a

discriminant.
7A ruler and compass construction always entails a paper-folding construction. See [4, 8].
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(ii) For any line r, let ri denote the reflection of r across the side AjAh. Then
the lines ri are concurrent at a point P = P (r) if and only if H lies on r.
In this case P lies on C. When P describes an arc of angle α on C, r(P )
rotates in the opposite direction around H by an angle −α

2 .

All these statements are easy consequences of well-known properties of the Sim-
son line, which is obviously parallel tor(P ). See, for example, [1, Theorems 2.5.1,
2.7.1,2]. This theorem defines a bijective mappingP �→ r(P ). Thus, given any
line e throughH, there exists a unique pointE onC such thatr(E) = e.

We now recall the basic assumption of paper-folding constructions, namely the
possibility of determining a line,i.e., folding a crease, which simultaneously re-
flects two given pointsA, B onto points which lie on two given linesa, b. It
is proved in [4, 8] that this problem has either one or three solutions. We shall
discuss later how these two cases can be distinguished, depending on the relative
positions of the given points and lines. For the time being, we are interested in
the case that three such lines (creases) are found. The following result is a direct
consequence of Theorem 2.

Corollary 3. Given two points A, B and two (nonparallel) lines a, b, assume that
there exist three different lines r such that A (respectively B) is reflected across r
onto a point A′ (respectively B′) lying on a (respectively b). These lines are the
sides of a triangle T such that

(i) a and b intersect at the orthocenter H of T ;
(ii) A and B lie on the circumcircle of T ;

(iii) the directed angle ∠AOB is twice the directed angle from b to a. Here, O
denotes the circumcenter of T .

3. The Euler point

We shall now consider a notable point whose behaviour under reflections makes
it especially suitable for paper-folding applications. The Euler pointE is the
unique point which is reflected across the three sides of the triangle onto the Euler
line OG. Equivalently, the three reflections of the Euler line across the sides are
concurrent atE. 8

We first prove that for any nonequilateral, nondegenerate triangle with pre-
scribedO andG (hence alsoH), the Euler pointE lies outside a region whose
boundary is a cardioid, a closed algebraic curve of degree 4, which is symmetric
with respect to the Euler line and has the centroidG as a double-point (a cusp; see
Figure 3). If we choose cartesian coordinates such that such thatG = (0, 0) and
O = (−1, 0) (so thatH = (2, 0)), then this curve is represented by

(x2 + y2 + 2x)2 − 4(x2 + y2) = 0 or ρ = 2(1 − cos θ). (1)

Since this cardioid is uniquely determined by the choice of the two (different)
pointsG,O, we shall call it theGO-cardioid. As said above, we want to prove that
the locus of Euler pointE for a triangle is the exterior of theGO-cardioid.

8This point can also be described as the Feuerbach point of the tangential triangle.
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Figure 1. The Euler point of a triangle

Theorem 4. Let G, O, E be three distinct points. Then there exists a triangle T
whose centroid, circumcenter and Euler point are G, O, E, respectively, if and
only if E lies outside the GO-cardioid. In this case the triangle T is unique and
can be constructed by paper-folding, from the points G, O, E .

Proof. Let us first look at isosceles (nonequilateral) triangles, which can be treated
within ruler-and-compass geometry.9 Here, by symmetry, the Euler pointE lies
on the Euler line; indeed, by definition, it must be one of the vertices, sayA3 =
E = (e, 0). Then being external to theGO-cardioid is equivalent to lying outside
the segmentGHO, whereHO = (−4, 0) is the symmetric ofH with respect toO.
Now the sideA1A2 must reflect the orthocenterH into the pointEO = (−2−e, 0),
symmetric ofE with respect toO, and therefore its equation isx = −e

2 . This
line has two intersections with the circumcircle(x + 1)2 + y2 = (e + 1)2 if and
only if e(e + 4) > 0, which is precisely the condition forE to be outsideGHO.
Conversely, given any two distinct pointsO, G, defineH andHO by GHO =
−2GH = 4GO. Then for any choice ofE on line OG, outside the segment
GHO, we can construct an isosceles triangle havingE, O, G, H as its notable
points as follows: first construct the (circum)-circle centered atO, throughE, and
let EO be diametrically opposite toE. Then, under our assumptions onE, the
perpendicular bisector ofHEO intersects the latter circle at two points, sayA1,
A2, and the isosceles triangleT = A1A2E fulfills our requirements.

We now deal with the nonisosceles case. LetE = (u, v), v �= 0 be the Euler
point of a triangleT . By definition,E is reflected across the three sides of the
triangle into pointsE′ which lie on the liney = 0. Now the line which reflects

9The case of the isosceles triangle is also studied separately by Euler in [2,§§25–29].
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E(u, v) onto a pointE′(t, 0) has equation2(u− t)x+2vy− (u2 +v2− t2) = 0. If
the same line must also reflect (according to Theorem 2) pointEO = (−u−2,−v)
onto the linex = 2 which is orthogonal to the Euler line throughH(2, 0), then a
direct calculation yields the following condition:

t3 − 3(u2 + v2)t+ 2u(u2 + v2) − 4v2 = 0. (2)

Hence we find three different reflecting lines if and only if this polynomial int
has three different real roots. The discriminant is

∆(u, v) = 108v2((u2 + v2 + 2u)2 − 4(u2 + v2)).

Sincev �= 0, the inequality∆(u, v) > 0 holds only if and only ifE lies outside
the cardioid, as we wanted.

The preceding argument can be also used for sufficiency: the assumed locus of
E guarantees that (2) has three real roots. Therefore, three different lines exist
which simultaneously reflectE onto linea = OH andEO onto the lineb through
H, perpendicular toOH. According to Corollary 3, these three lines are the sides
of a triangleT which fulfills our requirements. In fact,H is the intersection of
linesa andb and thereforeH is the orthocenter ofT ; a andb are perpendicular,
henceE andEO must be diametrically opposite points on the circumcircle ofT ,
so that their midpointO is the circumcenter ofT . The three sides reflectE onto
thex-axis, that is the Euler line ofT . Hence, by definition,E is the Euler point of
T . Since a polynomial of degree 3 cannot have more than 3 roots, the triangle is
uniquely determined. �

Let us summarize the procedure for the reconstruction of the sides from the
pointsO,G, E:

(1) Construct pointsH andEO such thatGH = −2GO andOEO = −OE.
(2) Construct linea throughO,H and lineb throughH, perpendicular toa.
(3) Construct three lines that simultaneously reflectE on toa andEO on tob.

4. Coordinates

The preceding results regarding the Euler pointE are essential in dealing with
the incenterI. In fact we shall constructE from G, O and I, so that Theorem
1 will be reduced to Theorem 3. To this end, we introduce the Gauss plane and
produce complex variable equations relatingI andE.10 The cartesian coordinates
will be different from the one we used in§3, but this seems unavoidable if we want
to simplify calculations. A pointZ = (x, y) will be represented by the complex
numberz = x + iy. We writeZ = z and sometimes indicate operations as if
they were acting directly on points rather than on their coordinates. We also write
z∗ = x− iy and|z|2 = x2 + y2.

LetAi = ai be the vertices of a nondegenerate, nonequilateral triangleT . With-
out loss of generality, we can assume for the circumcenter thatO = 0 and|ai| = 1,
so thata−1

i = a∗i . Now the orthocenterH and the Euler pointE have the following
simple expressions in terms of elementary symmetric polynomialsσ1, σ2, σ3.

10A good reference for the use of complex variables in Euclidean geometry is [3].
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H =a1 + a2 + a3 = σ1,

E =
a1a2 + a2a3 + a3a1

a1 + a2 + a3
=
σ2

σ1
.

The first formula is trivial, asG = 1
3σ andH = 3G. As forE, the equation for

a side, sayA1A2, is z+ a1a2z
∗ = a1 + a2, and the reflection across this line takes

a pointT = t on toT ′ = a1 + a2 − a1a2t
∗. An easy calculation shows thatE′

lies on the Euler linezσ∗1 − z∗σ1 = 0. This holds for all sides, and this property
characterizesE by Theorem 2. Notice thatσ1 �= 0, as we have assumedG �= O. 11

We now introduceσ3 = a1a2a3, k = |OH| and calculate

σ∗
1 = σ2σ

−1
3 , |σ3|2 = 1, |σ1|2 = |σ2|2 = σ1σ2σ

−1
3 = k2.

Hence,

σ3 =
σ1σ2

k2
=

(σ1

k

)2
· σ2

σ1
=

H

|H| · E.

In order to deal with the incenterI, letBi = bi denote the (second) intersection
of the circumcircle with the internal angle bisector ofAi. Thenb−1

i = b∗i and
b2i = ajak, andb1b2b3 = −a1a2a3. SinceI is the orthocenter of triangleB1B2B3,
we have, as above,I = b1 + b2 + b3. Likewise, we define

τ1 = b1 + b2 + b3, τ2 = b1b2 + b2b3 + b3b1, τ3 = b1b2b3, f = |OI|,

and calculate

τ∗1 = τ2τ
−1
3 , |τ3|2 = 1, |τ1|2 = |τ2|2 = τ1τ2τ

−1
3 = f2.

From the definition ofbi, we derive

τ2
2 =σ3(σ1 − 2τ1),

τ3 = − σ3 =
(
τ3
τ2

)2

· τ
2
2

τ3
= −

(
τ1
f2

)2

(σ1 − 2τ1).

Equivalently,

σ3 = −τ3 =
(
τ1
f

)2

· σ1 − 2τ1
f2

,

(
H

|H|

)2

· E =
(
I

|I|

)2

· H − 2I
|I|2 ,

(
G

|G|

)2

·E =
(
I

|I|

)2

· 3G− 2I
|I|2 , (3)

where the Euler equationH = 3G has been used.

11The triangle is equilateral ifG = O.
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5. Construction of the Euler point

The last formulas suggest easy constructions ofE from O, G (or H) and I.
SinceH − 2I = 3G − 2I = G − 2(I − G), our attention moves fromT to
its antimedial triangleT ∗ (the midpoints of whose sides are the vertices ofT )
and the homothetic mapping:Z �→ G − 2(Z − G). ThusI∗ = 3G − 2I is the
incenter ofT ∗. Note that multiplying by aunit complex numbercos θ + i sin θ
is equivalent to rotating aroundO by an angleθ. SinceG/|G| andI/|I| are unit

complex numbers, multiplication by
(I/|I|)2
(G/|G|)2 represents a rotation which is the

product of two reflections, first across the lineOG, then acrossOI. Since|I|2 =
f2, dividing f2 by I∗ is equivalent to invertingI∗ in the circle with centerO and
radiusOI. Altogether, we conclude thatE can be constructed fromO,G andI by
the following procedure. See Figure 2.

(1) Construct linesOG andOI; constructI∗ by the equationGI∗ = −2GI.
(2) Construct the circleΩ centered atO throughI. By inverting I∗ with re-

spect to this circle, constructF∗. Note that this inversion is possible if and
only if I∗ �= O, or, equivalently,I �= N . 12

(3) ConstructE: first reflectF∗ in lineOG, and then its image in lineOI.

Note that all these steps can be performed by ruler and compass.

E

F

F∗

I∗

I

nine-point circle

incircle

circumcircle

O H

NG

HO

Figure 2. Construction of the Euler point fromO, G, I

12It will appear thatF ∗ is the Feuerbach point ofT ∗. Thus, at this stage we have both the
circumcircle (centerO, throughF∗) and the incircle ofT (centerI , throughF , as defined byGF∗ =
−2GF).
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6. The locus of incenter

As we know from§3, one can now apply paper-folding toO,G,E and produce
the sides ofT . But in order to prove Theorem 1 we must show that the critical
circle locus forI is equivalent to the existence of three different good creases. To
this end we check thatI lies inside the orthocentroidalGH-circle if and only ifE
lies outside theGO-cardioid. If we show that the two borders correspond under
the transformationI �→ E described by (3) for givenO,G,H, then, by continuity,
the two ranges, the interior of the circle and the exterior of the cardioid, will also
correspond.

We first notice that the right side of (3) can be simplified whenI lies on the
GH-circle, as|IO| = 2|IN | = |I∗O| implies that the inversion (step 2) does not
affectI∗. In order to compare the transformationI �→ E with our previous results,
we must change scale and return to the cartesian coordinates used in§2, where
G = (0, 0), H = (2, 0). If we setI = (r, s), thenI∗ = (−2r,−2s). The first
reflection (across the Euler line) mapsI∗ on to (−2r, 2s); the second reflection
takes place across lineOI: s(x+ 1) − (r + 1)y = 0 and yieldsE(u, v), where

(u, v) =
(
−2(r3 − 3rs2 + r + 2r2 − s2)

(r + 1)2 + s2
,
−2s(3r2 − s2 + 3r)

(r + 1)2 + s2

)
.

I

I∗

E

O H

NG

HO

Figure 3. Construction of the GO-cardioid from the GH-circle

Notice thatI �= O implies (r + 1)2 + s2 �= 0. Then, by direct calculations, we
have

((u2 + v2 + 2u)2 − 4(u2 + v2))((r+ 1)2 + s2) = 16(r2 + s2 − 2r)(r2 + s2 + r)2

and conclude thatI(r, s) lies on theGH-circlex2 + y2 − 2x = 0 wheneverE lies
on theGO-cardioid (1), as we wanted. Thus the proof of Theorem 1 is complete.
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7. Euler’s theorem revisited

We shall now give a different proof of the first part of Theorem 1 by exploiting
Euler’s original ideas and complementing his calculations.

Necessity. In [2] Euler begins (§§1-20) with a nonequilateral, nondegenerate trian-
gle and calculates the “notable” lengths

|HI| = e, |OI| = f, |OG| = g, |GI| = h, |HO| = k

as functions of the side lengthsa1, a2, a3. From those expressions he derives a
number of algebraic equalities and inequalities, whose geometrical interpretations
he only partially studies.13 In particular, in§31, by observing that some of his
quantities can only assume positive values, Euler explicitly states that the two in-
equalities

k2 <2e2 + 2f2, (4)

k2 >2e2 + f2 (5)

must hold. However, rather than studying their individual geometrical meaning, he
tries to combine them and wrongly concludes, owing to a trivial mistake, that the
inequalities19f2 > 8e2 and13f2 < 19e2 are also necessary conditions. Speiser’s
correction of Euler’s mistake [2, p.155, footnote] does not produce any interesting
result. On the other hand, if one uses the main resultOH = 3OG, defines the
nine-point centerN (by letting OH = 2ON) and applies elementary geometry
(Carnot’s and Apollonius’s theorems), it is very easy to check that the two original
inequalities (4) and (5) are respectively equivalent to

(4′) I is different fromN , and
(5′) I lies inside theGH-circle.

These are precisely the conditions of Theorem 1. It is noteworthy that Euler,
unlike Guinand, could not use Feuerbach’s theorem.

Sufficiency. In §21 Euler begins with three positive numbersf , g, h and derives
a real polynomial of degree 3, whose rootsa1, a2, a3 - in case they are sides of
a triangle - produce indeedf , g, h for the notable distances. It remains to prove
that, under the assumptions of Theorem 1, these roots are real positive and satisfy
the triangle inequalities. In order to complete Euler’s work, we need a couple of
lemmas involving symmetric polynomials.

Lemma 5. (a) Three real numbers a1, a2, a3 are positive if and only if σ1 =
a1 + a2 + a3, σ2 = a1a2 + a2a3 + a3a1 and σ3 = a1a2a3 are all positive.

13The famous result on the collinearity ofO, G, H and the equationOH = 3OG are explicitly
described in [2]. The other famous formulaOI2 = R(R − 2r) is not explicitly given, but can be
immediately derived, by applying the well known formulas for the triangle area1

2
r(a1 +a2 +a3) =

a1a2a3
4R

.
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(b) Three positive real numbers a1, a2, a3 satisfy the triangle inequalities a1+a2 ≥
a3, a2 + a3 ≥ a1 and a3 + a1 ≥ a2 if and only if 14

τ(a1, a2, a3) = (a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 +a3)(a1 + a2 − a3) ≥ 0.

Now suppose we are given three different pointsI, O, N and define two more
pointsG, H by 3OG = 2ON = OH. Assume thatI is inside theGH-circle. If
we let

m = |ON |, n = |IN |, f = |OI|,
then we havem > 0, n > 0, f > 0, n+f−m ≥ 0, and also, according to Lemma
5(b), τ(f,m, n) ≥ 0. Moreover, the assumed locus ofI within the critical circle
implies, by Apollonius,f − 2n > 0 so thatf2 − 4n2 = b2 for some realb > 0.
We now introduce the same quantitiesp, q, r of Euler,15 but rewrite their defining
relations in terms of the new variablesm, n, f as follows:

n2r =f4,

4n2q =b2f2,

9h2 =(f − 2n)2 + 2((n + f)2 −m2),

4n2p =27b4 + 128n2b2 + 144h2n2.

Notice that, under our assumptions, all these functions assume positive values, so
that we can define three more positive quantities16

σ1 =
√
p, σ2 =

p

4
+ 2q +

q2

r
, σ3 = q

√
p.

Now leta1, a2, a3 be the (complex) roots of the polynomialx3−σ1x
2 +σ2x−σ3.

The crucial point regards the discriminant

∆(a1, a2, a3) =(a1 − a2)2(a2 − a3)2(a3 − a1)2

=σ2
1σ

2
2 + 18σ1σ2σ3 − 4σ3

1σ3 − 4σ3
2 − 27σ2

3 .

By a tedious but straightforward calculation, involving a polynomial of degree
8 inm, n, f , one finds

n2∆(a1, a2, a3) = b4τ(f,m, n).

Since, by assumption,n �= 0, this implies∆(a1, a2, a3) ≥ 0, so thata1, a2,
a3 are real. By Lemma 5(a), sinceσ1, σ2, σ3 > 0, we also havea1, a2, a3 > 0.

A final calculation yieldsτ(a1, a2, a3) =
4pq2

r
> 0, ensuring, by Lemma 5(b)

again, that the triangle inequalities hold. Therefore, under our assumptions, there
exists a triangle witha1, a2, a3 as sides lengths, which is clearly nondegenerate
and nonequilateral, and whose notable distances aref , m, n. Thus the alternative
proof the first part of Theorem 1 is complete. Of course, the last statement on

14The expressionτ (a1, a2, a3) appears under the square root in Heron’s formula for the area of
a triangle.

15These quantities readP , Q, R in [2, p.149].
16These quantities readp, q, r in [2, p.144].
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construction is missing: the actual location of the triangle, in terms of the location
of its notable points, cannot be studied by this approach.
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