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ABSTRACT

Aim Recent advances in the availability of species distributional and high-

resolution environmental data have facilitated the investigation of species

richness–environment relationships. However, even exhaustive distributional

databases are prone to geographical sampling bias. We aim to quantify the

inventory incompleteness of vascular plant data across 2377 Chinese counties

and to test whether inventory incompleteness affects the analysis of richness–

environment relationships and spatial predictions of species richness.

Location China.

Methods We used the most comprehensive database of Chinese vascular

plants, which includes county-level occurrences for 29,012 native species

derived from 4,236,768 specimen and literature records. For each county, we

computed smoothed species accumulation curves and used the mean slope of

the last 10% of the curves as a proxy for inventory incompleteness. We created

a series of data subsets with different levels of inventory incompleteness by

excluding successively more under-sampled counties from the full data set. We

then applied spatial and non-spatial regression models to each of these subsets

to investigate relationships between the species richness of subsets and environ-

mental factors, and to predict spatial patterns of vascular plant species richness

in China.

Results Log10-transformed numbers of records and documented species were

strongly correlated (r = 0.97). In total, 91% of Chinese counties were identified

as under-sampled. After controlling for inventory incompleteness, the overall

explanatory power of environmental factors markedly increased, and the

strongest predictor of species richness switched from elevational range to

annual wet days. Environmental models calibrated with more complete inven-

tories yielded better spatial predictions of species richness.

Main conclusions Our results indicate that inventory incompleteness strongly

affects the explanatory power of environmental factors, the main determinants

of species richness obtained from regression analyses, and the reliability of

environment-based spatial predictions of species richness. We conclude that

even large distributional databases are prone to geographical sampling bias,

with far-reaching implications for the perception of and inferences about mac-

roecological patterns.
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INTRODUCTION

Efforts to explain the geographical variation in species rich-

ness have attracted enormous interest in ecology and bioge-

ography (Hawkins et al., 2003). Particularly in the past two

decades, a growing body of literature has documented spatial

patterns in biodiversity and their relationships with contem-

porary and historical abiotic factors (Kreft & Jetz, 2007; Field

et al., 2008). This scientific interest is partly attributable to

concerns about the current status of the world’s species and

their potential responses to climate and land use changes

(Boakes et al., 2010). The availability of vast amounts of

distributional data from online databases, high-resolution

environmental data (e.g. Hijmans et al., 2005) and novel ana-

lytical techniques (e.g. Dormann et al., 2007) has facilitated

rapid development in the analysis of richness–environment

relationships.

Many hypotheses have been proposed to explain geo-

graphical variation in species richness (Currie, 1991; Ricklefs,

2004; Mittelbach et al., 2007). Several hypotheses postulate

that species richness across broad scales is controlled mainly

by contemporary climate, especially the availability of water

and energy, by means of its effects on productivity or

its interaction with the physiological tolerances of species

(Francis & Currie, 2003; Kreft & Jetz, 2007). Another

hypothesis is that environmental heterogeneity may lead to

increased species richness by permitting more species to

coexist in diverse habitats or by causing accelerated diversifi-

cation rates in environmentally complex regions (Kerr &

Packer, 1997; Rahbek & Graves, 2001). Other hypotheses

suggest that geological or climatic histories play important

roles in determining patterns of species richness by deter-

mining rates of evolution and extinction (Latham & Ricklefs,

1993; Qian & Ricklefs, 2000; Sandel et al., 2011) or post-

glacial dispersal limitation (Svenning & Skov, 2005). Hypoth-

esis testing in macroecology usually employs regression

models to investigate relationships between species richness

and potential determinants. However, model fit can be

affected by many confounding factors, including the quality

of species richness data and choice of explanatory variables.

Primary distributional databases are becoming publicly

available at an unprecedented rate (Krishtalka & Humphrey,

2000; Sober�on & Peterson, 2004) and are heavily used in

macroecological studies. A common shortcoming in current

databases is that sampling effort is not uniform in space

(Hortal et al., 2007; Sober�on et al., 2007). On the one hand,

the ranges of many species are not fully documented owing

to geographical sampling bias (known as the ‘Wallacean

shortfall’; Lomolino, 2004). On the other hand, regional spe-

cies inventories are often incomplete, termed ‘inventory

incompleteness’ in this study. Previous studies have shown

that geographical sampling bias may lead to distorted spatial

patterns of biodiversity (Hortal et al., 2007; Boakes et al.,

2010; Ballesteros-Mejia et al., 2013). It is thus important to

investigate whether richness–environment relationships can

be correctly perceived and whether spatial patterns of species

richness can be reliably predicted from environmental

models without considering the bias in species richness data.

China has one of the richest national floras in the world,

harbouring four global biodiversity hotspots (Mittermeier

et al., 2005) and 31,847 native species of vascular plants

(Wang et al., 2011a). This enormous diversity is due to its

large area and high environmental variability, which includes

boreal, temperate, subtropical and tropical biomes, and com-

plex topography and geological history (Axelrod et al.,

1996). Millions of specimens have been collected and stored

in Chinese herbaria over the past c. 110 years. In 2005, a

project of specimen digitization was started involving the

majority of Chinese herbaria. We based our study on the

specimen data that are now available through online data-

bases as a result of this digitization effort. In addition,

we integrated records from a wide range of literature to pro-

duce a working database, which to our knowledge represents

the most extensive compilation of records for Chinese vascu-

lar plants and one of the largest regional plant databases in

the world. Owing to its extensive geographical and taxo-

nomic coverage, this database is suitable for studying data

bias and its potential effects on macroecological analyses.

In this study, we aim to quantify the spatial pattern of

inventory incompleteness across Chinese counties and to test

whether inventory incompleteness affects the analysis of rich-

ness–environment relationships. Specifically, we ask the fol-

lowing questions. (1) What proportion of Chinese counties

is under-sampled? (2) Are the explanatory power of rich-

ness–environment models, inferences about core determi-

nants, and spatial predictions of species richness affected by

incompleteness of sampling? (3) If so, how can we control

for under-sampling to ensure the robustness and reliability

of macroecological inferences?

MATERIALS AND METHODS

Species distributional data

We obtained information for c. 6.5 million specimens of

Chinese vascular plants from the Chinese Virtual Herbarium

(http://www.cvh.org.cn/cms/en/, accessed December 2008)

and the Chinese Educational Specimen Resource Centre

(http://mnh.scu.edu.cn/, accessed January 2009). These speci-

men data have been sourced from 42 major Chinese her-

baria. In addition, we assembled c. 2.5 million species

records from c. 500 national and provincial floras as well as

from local survey reports.

To improve the quality of the database, we performed a

data cleaning process involving the following steps. (1) All

records not determined to species level or not geo-referenced

to county level were excluded. (2) Scientific names were

standardized according to the Catalogue of Life: Higher Plants

in China (http://www.cnpc.ac.cn, accessed January 2009;

Wang et al., 2011a). (3) Infraspecific taxa were merged to

species level. (4) Multiple entries referring to the same speci-

men were removed. (5) Exotic species, as defined according

Journal of Biogeography

ª 2013 Blackwell Publishing Ltd

2

W. Yang et al.



to the classifications in national floras (Editorial Committee

of Flora Reipublicae Popularis Sinicae, 1959–2004; Wu et al.,

1994–2011), were excluded from the analysis. (6) Records of

species native to China but occurring outside their natural

range were excluded from the database. Natural ranges at the

province level were obtained from the national floras.

This process left 4,236,768 unique records (85% derived

from specimens and 15% from the literature) with county-

level distribution information in the database, including

29,012 native species (91% of all vascular plants in China),

with a mean of 146 records per species (Appendix S1: Fig. S1a

in the Supporting Information). China is divided politically

into 2377 counties (Fig. 1), with a mean size of 4138 km2. Our

database covered 2315 counties, accounting for 97% of all

counties and 98% of China’s land area. We calculated the

Pearson correlation coefficient between the log10-transformed

number of records and documented species richness (i.e. the

number of species documented in the database) per county.

Statistical significance was examined based on geographically

effective degrees of freedom (Dutilleul et al., 1993). The same

method was used in subsequent analyses.

Environmental factors

We focused on four core environmental factors that have

previously been shown to be strongly correlated with plant

species richness (Francis & Currie, 2003; Kreft & Jetz, 2007;

Kreft et al., 2010): area, elevational range, potential evapo-

transpiration (PET), and annual wet days. We also investi-

gated other variables such as mean annual temperature,

annual precipitation, and actual evapotranspiration (AET),

but excluded them to avoid multicollinearity (Pearson’s

r > 0.7; Appendix S1: Table S1). Area sizes of counties were

obtained from the National Fundamental Geographic Infor-

mation System of China (http://nfgis.nsdi.gov.cn/nfgis/

english/default.htm, accessed May 2007). Maximum eleva-

tional range within each county was used as a surrogate for

topographic complexity and habitat diversity (Kerr & Packer,

1997; Rahbek & Graves, 2001) and calculated from the

GTOPO-30 digital elevation model (US Geological Survey,

1996) at a spatial resolution of 30 arc-seconds. PET was used

as a measure of ambient energy (Francis & Currie, 2003) and

was derived from the Global Evapotranspiration and Water

Balance Data Sets at a spatial resolution of 0.5° (Ahn &

Tateishi, 1994). Annual wet days were extracted from a glo-

bal high-resolution data set of climate at a spatial resolution

of 10 arc-minutes (New et al., 2002). For each county,

spatial averages were calculated for climatic variables. Species

richness and all environmental variables were log10-

transformed to meet the assumption of normality of model

residuals and to improve the linearity of models.

Species richness estimation using Chao1

Documented species richness was assumed to be consistently

lower than actual richness. We employed Chao1 to estimate

the actual species richness for each county. Chao1 is an

abundance-based estimator that emphasizes the occurrences

of ‘rare’ species in a sample, that is, the species represented

(a)

(b)

(c)

Figure 1 (a) Number of records and (b) documented species

richness of vascular plants in 2315 counties of China, generated

from 4,236,768 records referring to 29,012 species. Insets in the

bottom right of figures show the south boundary of China,

including all islands in the South China Sea. Legends are in

quantile classification. Maps are in Albers projection. (c)

Correlation between the log10-transformed number of records

and documented species richness per county. The black line

shows a linear fit.
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by only one (singletons) or two (doubletons) records (Chao,

1984; Colwell & Coddington, 1994). We also compared other

estimators such as jackknife and bootstrap, which yielded

qualitatively very similar results. To validate Chao1 estimates,

we compared the estimated richness per county with species

numbers derived from an independent data set of checklists

for 86 nature reserves that were nested within single counties

(Appendix S1: Table S2 & Fig. S2). Considering that reserves

were smaller than counties, we expected Chao1 estimates to

be equal to or higher than the values from reserve checklists.

Inventory incompleteness assessment

Two methods were used to assess the inventory incomplete-

ness of Chinese counties. First, we calculated the ratio

between the documented and the Chao1-estimated species

richness for each county (Sober�on et al., 2007; Soria-Auza &

Kessler, 2008). Second, we used the curvilinearity of

smoothed species accumulation curves (SACs) (Tittensor

et al., 2010). This method is based on the fact that SACs of

poorly sampled counties tend towards a straight line, while

those of better sampled counties have a higher degree of cur-

vature (Fig. 2b–e; Gotelli & Colwell, 2001). Smoothed SACs

give the expected species richness for a certain number of

records and were calculated with the method ‘exact’ of the

function ‘specaccum’ in the R package vegan (Oksanen

et al., 2011). The application of SACs to our data is based

on the assumptions that records are sampled randomly and

that species occurrences are neither spatially nor temporally

autocorrelated (Colwell & Coddington, 1994; Gotelli & Col-

well, 2001). The mean slope of the last 10% of SACs reflects

the degree of curvilinearity and was used as a proxy for

inventory incompleteness (Fig. 2b–e). Shallow slopes (values

close to zero) indicate saturation in the sampling and thus

low levels of incompleteness, whereas steep slopes (values

close to one) reflect high levels of incompleteness. Slope val-

ues can also be interpreted as the probability of discovering

new species when sampling continues in the county (Dahl

et al., 2009). Here, we considered counties with slope values

� 0.05 as well sampled and those with slope values > 0.05

as under-sampled.

Data subsets with different level of inventory

incompleteness

We created subsets of the data by successively excluding

under-sampled counties (SAC slope > 0.05) from the full

data set. The sequence of excluding counties was determined

by SAC slope values; that is, less complete counties were

excluded first. Each time we excluded one or several coun-

ties, we regarded the remaining counties as a subset (1485

subsets in total). Overall, the intention was to gradually min-

imize the inventory incompleteness of successive subsets.

Environmental representativeness of data subsets

To investigate how environmental factors varied by subset,

we calculated summary statistics of environmental factors for

each subset. We further investigated the environmental rep-

resentativeness of each subset as compared with the full data

set. Principal components analysis (PCA) was applied to

three environmental factors (elevational range, PET and

annual wet days). We created a kernel density surface on

counties of each subset in a biplot space depicted by the first

two principal components by using the function ‘kde2d’ in

the R package mass (Venables & Ripley, 2002). Kernel den-

sity captures both the extent and the spatial structure (i.e.

aggregation and dispersion tendencies) of counties in the

(a)(b)

(c) (e)

(d)

Figure 2 (a) Inventory incompleteness of vascular plants in 2315 counties of China. High values (in blue) indicate high levels of

inventory incompleteness. The inset in the bottom right of the figure shows the south boundary of China, including all islands in the

South China Sea. The legend is in quantile classification. The map is in Albers projection. (b)–(e) Species accumulation curves with

different curvilinearity of four exemplary counties. The parts between the two black points indicate the last 10% of the species

accumulation curves. Red lines and numbers indicate slopes. Confidence intervals of the curves are very narrow and are omitted for

visual clarity.
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space. The environmental representativeness of each subset

was calculated as the Pearson correlation between kernel

density surfaces of the subset and of the full data set within

the PCA space.

Species richness–environment models

We first investigated the relationships between single envi-

ronmental variables and species richness by applying simple

ordinary least squares regressions (OLS) to all data subsets.

We then performed multi-predictor OLS and explored the

overall explanatory power of the four target predictors.

Moran’s I correlograms and global Moran’s I values were

used to evaluate the pattern and strength of spatial autocor-

relation in model residuals (Dormann et al., 2007). Strong

and significant spatial autocorrelation was found among the

residuals of OLS models (Appendix S2: Fig. S1). Spatial

autocorrelation might inflate type I error rates and bias

parameter estimates (Dormann et al., 2007). We thus addi-

tionally employed spatial simultaneous autoregressive (SAR)

models. Model selection was based on the Akaike informa-

tion criterion (AIC) (Johnson & Omland, 2004). SAR models

of the error type were chosen with a lag distance of 300 km

and weighted neighbourhood structure. The selection of lag

distance was based on the trade-off between AIC values and

the number of counties having no neighbours within the dis-

tance class (Appendix S2: Fig. S2). The optimal lag distance

varied slightly among subsets owing to different neighbour-

hood structures, but we opted to take a lag distance of

300 km for all models to make them comparable. The appli-

cation of spatial models significantly reduced the spatial

autocorrelation of SAR model residuals for both the full data

set and the subset including only well-sampled counties

(SAC slope � 0.05; Appendix S2: Fig. S1). Pseudo-R2 (here-

after R2) values for SAR models were calculated as the

squared Pearson correlation between predicted and observed

values (Kissling & Carl, 2008). R2 values were plotted against

the inventory incompleteness (indicated by SAC slope values)

of the most incomplete county in each subset.

We investigated the relative importance of each variable in

OLS and SAR multi-predictor models using the function

‘calc.relimp’ with metric ‘pmvd’ in the R package relaimpo

(Gr€omping, 2006). The metric ‘pmvd’ calculates a weighted

average of sequential R2 values over all possible models. The

adjusted R2 (hereafter R2) value of each OLS model was par-

titioned into relative proportions (proportional R2) explained

by each environmental variable. The relative proportions

were then multiplied by the R2 of the model to obtain the

absolute fraction of R2 value explained by a particular vari-

able. To account for spatial autocorrelation, we first per-

formed a standard SAR model, then removed the spatial

component of the fitted values and entered richness exclud-

ing the spatial component as a new response variable in the

R2 partitioning procedure (Belmaker & Jetz, 2011).

To test whether the varying number of counties in subsets

had an effect on model parameterization and fit, we created

simulated subsets in which the number of counties was held

equal to the numbers in actual subsets while the counties

were randomly drawn from the pool of counties. Multi-

predictor OLS was applied to the simulated subsets. Means

and 95% confidence intervals of R2 values for null models

were obtained from 1000 permutations.

Spatial predictions of species richness

OLS models with all four environmental variables were used

to predict the spatial pattern of vascular plant species rich-

ness in China. We parameterized the model separately with

the documented species richness of the full data set and of

the well-sampled counties. We also parameterized the model

with the Chao1-estimated species richness of well-sampled

counties to account for under-sampling in the counties. We

excluded six island counties in the South China Sea from

predictions owing to a lack of climate data and because

islands show different richness–environment relationships

from those on the mainland (Kreft et al., 2008).

We conducted a cross-validation test to evaluate the pre-

dictive performance of the models calibrated by different

data sets (Hortal et al., 2007). A data set was randomly split

100 times into two subsets, with 85% of the counties used to

calibrate the model and the remaining 15% to validate the

result. The prediction error of models was calculated as

Pn
k¼1

ðDRk�PRkÞ
DRk

n
;

where DR and PR are the documented and predicted species

richness in each county, respectively, and n is the number of

counties.

RESULTS

Spatial patterns of records, richness and

incompleteness

The number of records per county ranged from 0 to 114,569

with a mean of 1835 records (Fig. 1a, Appendix S1:

Fig. S1b). The documented species richness ranged from 0

to 4328 species per county with a mean of 411 (Fig. 1b,

Appendix S1: Fig. S1c). The log10-transformed numbers of

records and documented species per county were strongly

correlated (Pearson’s r = 0.97, P < 0.001; Fig. 1c).

Inventory incompleteness of counties assessed by the slope

at the last 10% of SACs was strongly and negatively corre-

lated with the number of records (Pearson’s r = �0.80,

P < 0.001). Values of inventory incompleteness ranged from

0.005 to 1, with a mean of 0.35 (Fig. 2a, Appendix S1:

Fig. S1d). A total of 216 counties (SAC slope � 0.05),

accounting for 9% of all counties and 21% of China’s land

area, were identified as well sampled. This pattern shows a

strong correlation with the pattern of an alternative measure

of inventory incompleteness expressed by the ratio between

documented and Chao1-estimated richness (Pearson’s
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r = 0.91, P < 0.001). This suggests that the assessment of

inventory incompleteness is not sensitive to the measure

used.

Species richness estimation using Chao1

The Chao1-estimated species richnesses of all well-sampled

counties with nature reserve checklist data (n = 33), except

for two with highly even distributions of individuals among

species in the samples, were higher than the species richness-

es of the nature reserves nested within those counties

(Fig. 3). However, the estimated richnesses of 37 under-

sampled counties with checklist data (n = 53) were lower

than the species richnesses of nature reserves, suggesting

that the reliability of Chao1 estimation is affected by the

completeness of sampling.

Species richness–environment models

The multi-predictor OLS model explained 23% of the vari-

ance in the species richness of the full data set. Elevational

range contributed 55% to the explained variance and was the

most important variable in the model (Fig. 4). When under-

sampled counties were gradually excluded, the explanatory

power of environmental factors strongly and consistently

increased. A model including only the well-sampled counties

explained 57% of the variance in species richness. The con-

tribution of elevational range decreased to 16%, whereas

annual wet days became the most important variable in the

model, with a contribution increasing from 36% to 53%.

Similar results with slightly better model fits were obtained

from SAR models (Appendix S3: Fig. S1). The 95% confi-

dence intervals of R2 values of the null models became wider

as county numbers in simulated subsets decreased, but the

means did not vary. Elevational range was the strongest pre-

dictor for 87% of random subsets where the number of

counties was the same as the number of well-sampled coun-

ties (n = 216), whereas annual wet days was the most impor-

tant variable for the other 13%. Results from null models

suggest that model fits and identification of core determi-

nants were determined by the counties rather than by the

number of counties in the analysis. Consistent with results

from multi-predictor models, univariate analyses revealed

that elevational range was the strongest predictor (r2 = 0.14)

for the species richness of the full data set (Appendix S3:

Fig. S2), whereas annual wet days was the strongest predictor

(r2 = 0.37) for well-sampled counties.

Environmental representativeness of subsets

The environmental characteristics of subsets shifted when un-

dersampled counties were successively excluded (Fig. 5a–d),

and the variation was particularly significant for elevational

range and PET. The mean elevational range increased from

1431 to 2252 m, while the average PET decreased from 764

to 496 mm year�1, indicating that well-sampled counties

have a larger elevational range and lower PET than other

counties. Kernel density surfaces of well-sampled counties

and the full data set were strongly correlated (Pearson’s

r = 0.73, P < 0.001; Fig. 5e, f).

Spatial predictions of species richness

The predicted species richness based on the full data set ran-

ged from 42 to 992 species per county, with a mean of 351

(Fig. 6a, Appendix S3: Table S1), while the prediction based

on well-sampled counties varied from 45 to 4782 species per

county, with an average of 1067 (Fig. 6b, Appendix S3: Table

S1). With prediction errors of 0.35 as compared with 0.69,

the prediction based on well-sampled counties was much

more plausible than that based on the full data set. The pre-

diction from the model calibrated by the Chao1-estimated

richness of well-sampled counties ranged from 31 to 5207

species per county (mean = 1206; Fig. 6c, Appendix S3:

Table S1). A prediction error of 0.33 indicated that this pre-

diction was the best of the three.

DISCUSSION

Species distribution information is becoming increasingly

available through online databases (Graham et al., 2004;

Sober�on et al., 2007; Jetz et al., 2012). However, these data

often suffer from significant bias in the spatial distribution

of sampling effort (Meier & Dikow, 2004; Sober�on & Peter-

Figure 3 Comparison between the Chao1-estimated vascular

plant species richness of 86 Chinese counties and species

richness derived from an independent data set consisting of

checklists for the same number of nature reserves each fully

nested within a single county. Black circles represent 33 well-

sampled counties (species accumulation curve slope � 0.05),

and grey circles represent 53 under-sampled counties (species

accumulation curve slope > 0.05). Bigger circles indicate the

nature reserves are closer in size to the respective counties. The

black line shows the 1:1 fit.
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Figure 4 (a) Explanatory power of multi-predictor ordinary least squares (OLS) models and (b) proportional R2 of environmental

variables on vascular plant species richness of 1485 subsets of Chinese counties with different levels of inventory incompleteness. (a) The

coloured area represents the total variance in species richness explained for each subset. Areas with specific colours indicate the

hierarchical partitioning of total variance to the relative contribution of each environmental factor. Grey solid and dotted lines indicate

means and 95% confidence intervals of R2 values of null models, respectively. Null models represent results from 1000 permutations

while keeping the number of counties constant as in the respective subset.

(a) (b)

(c) (d)

(e) (f)

Figure 5 (a)–(d) Environmental

characteristics of 1485 subsets of Chinese

counties with different levels of inventory

incompleteness of vascular plants. Black

lines indicate means. Dark grey areas

indicate the 25% and 75% percentiles, and

light grey areas indicate the 5% and 95%

percentiles. (a) Area (km2); (b) elevational

range (m); (c) potential evapotranspiration

(mm year�1); (d) annual wet days

(number year�1). Biplots showing the

distribution of (e) all counties and (f) well-

sampled counties in a space depicted by the

first two principal components of a

principal component analysis (PCA) applied

to three environmental factors: ER,

elevational range; PET, potential

evapotranspiration; WET, annual wet days.

Grey points represent counties. The blue

cloud shows the kernel density surface on

the counties of each data set. The intensity

of blue colour indicates the sum of kernel

densities contributed by each data point.
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son, 2004; Hortal et al., 2007), which may affect macroeco-

logical analyses and inferences. Using a large distributional

database of Chinese vascular plants, we demonstrate that

geographical sampling bias has strong effects on the percep-

tion of species richness patterns in commonly applied analy-

ses of richness–environment relationships and on the spatial

predictions of species richness.

What proportion of Chinese counties is

under-sampled?

According to our assessment, 91% (n = 2161) of Chinese

counties are under-sampled (Fig. 2a). The high incomplete-

ness of sampling at the county level may be due to the rela-

tively short history of intensive floristic surveys in China and

to the limited number of collections given the country’s large

size and enormous floristic diversity (Wang et al., 2011a). To

our knowledge, few surveys have been conducted specifically

for the purpose of completing county inventories. Rather,

collecting effort has been concentrated on regions with the

highest species richness or number of endemics (e.g. Heng-

duan Mountains), with less diverse regions having a consid-

erably lower collection intensity (e.g. North China Plain;

Fig. 1). However, complete distribution information at finer

scales could provide deeper insights into the processes that

create and maintain biodiversity patterns (Beck et al., 2012).

Under-sampled counties in south-eastern China and the

North China Plain should be particularly emphasized in the

future. However, it should be noted that reaching a reason-

able degree of completeness requires a tremendous effort.

Assuming that a minimum of 5914 specimens should be col-

lected for each county (i.e. the average number of specimens

of well-sampled counties), a roughly estimated total of 10

million specimens are still required to accomplish a near-

complete survey of all counties.

Does geographical sampling bias impair

macroecological inferences?

We found that the R2 values of multi-predictor models

strongly and consistently increased when under-sampled

counties were successively excluded from the analysis

(Fig. 4, Appendix S3: Fig. S1). The overall effect of environ-

mental predictors was severely underestimated when all

counties were included, ignoring the bias in species richness

data. Importantly, the strongest single predictor of species

richness switched from elevational range to annual wet days

when excluding under-sampled counties (Fig. 4, Appendix

S3: Figs S1 & S2). The correlation between elevational range

and species richness of the full data set may be inflated by

the geographical sampling bias that mountainous regions

have more collections, resulting in higher documented

numbers of species (Fig. 1). Annual wet days and PET

appeared to be the most important predictors for the spe-

cies richness of well-sampled counties and together

accounted for 44% of the variance (Fig. 4). These results

underscore how difficult it may be in hypothesis testing to

distinguish between the importance of water, energy and

environmental heterogeneity when geographical sampling

(a)

(b)

(c)

Figure 6 Spatial predictions of vascular plant species richness in

2371 counties of China derived from multi-predictor ordinary

least squares (OLS) models calibrated by (a) the documented

species richness of all counties, (b) the documented, and (c)

Chao1-estimated species richness of well-sampled counties.

Insets in the bottom right of figures show the south boundary of

China, including all islands in the South China Sea. Legends are

in quantile classification. Maps are in Albers projection.
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bias in species richness data varies non-randomly with envi-

ronment and is not accounted for.

Environmental models calibrated by only the least biased

counties yielded more reliable spatial predictions of species

richness (Fig. 6). In the prediction based on the full data set,

the species richness of many counties was significantly

underestimated, particularly in south-western China, where it

is expected to be highest (Fig. 6a). Spatial predictions based

on well-sampled counties appeared to be much more plausi-

ble, with species richness high in mountainous regions and

decreasing significantly from south to north (Fig. 6b, c). This

is consistent with previous studies on spatial patterns of

Chinese woody plants (Wang et al., 2011b) as well as with

global predictions (Kreft & Jetz, 2007). Nevertheless, species

richness in glacial refugia or centres of diversification

(L�opez-Pujol et al., 2011; Huang et al., 2012) is likely to be

underestimated by a model considering only contemporary

environment unless historical patterns co-vary with contem-

porary conditions. The prediction is likely to be improved by

including further factors representing climatic and geological

histories (Qian & Ricklefs, 2000; Sandel et al., 2011).

How to control for geographical sampling bias to

ensure the robustness and reliability of

macroecological inferences

Macroecological analyses are likely to be affected when

strong geographical bias exists in distributional data. Our

study offers an approach to observe potential shifts in envi-

ronmental predictors along an inventory incompleteness gra-

dient and to identify well-sampled sampling units. To ensure

the robustness of results, we suggest including in analyses

only well-sampled units. However, whether the inferences

can be scaled up may depend on how well the well-sampled

units represent the whole study area. In our study, PCA and

kernel density analyses indicated that c. 73% of the environ-

mental variance (expressed by elevational range, PET

and annual wet days) in China is still covered by the well-

sampled counties (Fig. 5e, f). The conclusions based on this

subset are consistent with findings from previous studies that

water availability and ambient energy rather than topo-

graphic complexity are the main determinants for vascular

plant diversity in China (e.g. Wang et al., 2011b). It has been

widely recognized that the latitudinal gradient, namely plant

diversity decreasing from south to north, is determined

mainly by ambient energy, while plant diversity from east to

west is controlled largely by water availability (Wang, 1992).

Our study provides an example of how to utilize an imper-

fect distributional database for fundamental macroecological

research (cf. Ballesteros-Mejia et al., 2013).

Comparison of two methods for assessing inventory

incompleteness

A number of previous studies used the ratio between docu-

mented and ‘true’ species richness as a proxy for inventory

incompleteness (Sober�on et al., 2007; Mora et al., 2008; Soria-

Auza & Kessler, 2008). To this end, the ‘true’ species richness

of each sampling unit is commonly estimated based on the

existing sampling and application of species richness estima-

tors (Chao, 1984; Colwell & Coddington, 1994) or statistical

models (Bebber et al., 2007). However, this estimation might

not be consistently reliable and accurate, and is limited by spa-

tial and temporal variation in sampling effort (Fig. 3). In con-

trast, our method does not estimate the ‘true’ species richness.

Instead, we compute the slope at the tail of SACs to represent

the rate at which new species are added to the inventory with

continuing sampling. This method appears to be more robust

for counties with few records, where commonly applied spe-

cies richness estimators produce unrealistic results. However,

this method is not without drawbacks. For instance, the proba-

bility of finding new species depends not only on the number

of undiscovered species, but also on factors such as species

abundance distributions that might vary considerably between

sampling units (Mora et al., 2008). Despite the different prin-

ciples of the two methods, the patterns of inventory incom-

pleteness of Chinese counties obtained from them are strongly

correlated (r = 0.91, P < 0.001), suggesting that the pattern

and rankings of inventory incompleteness are relatively robust

to the choice of method (Fig. 2).

In conclusion, strong geographical sampling bias is found

in this database, which hampers an unbiased perception of

spatial patterns of vascular plant species richness in China.

Macroecological analyses based on databases with strong geo-

graphical bias are likely to yield an underestimation of envi-

ronmental effects, a misidentification of the main

determinants of species richness patterns, and unreliable spa-

tial predictions of species richness. Our study highlights the

importance of carefully evaluating data quality before using

such information for theoretical and practical applications.

In addition, our results clearly show the urgent need for

continuing intensive and targeted field surveys, particularly

in poorly explored regions.
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