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CREATING SPACE MOBILITY: A VISION FOR
OUR TWENTY-FIRST CENTURY SPACELIFT ARCHITECTURE

Capt Fred Kennedy Maj Martin France
US Air Force Phillips Laboratory Headquarters, US Air Force Space Command

Kirtland AFB, NM Peterson AFB, CO

The opinions and conclusions expressed in this paper are those of the authors and are not intended to represent the
official position of the Department of Defense or the United States Air Force.

ABSTRACT

The current national spacelift architecture remains largely unchanged from the 60’s, consisting mainly of
expendable boosters, a small number of operating ranges populated with vehicle specific launch complexes, and
ground-based tracking, telemetry and command (lT&C) -- one more akin to the experimental than the operational
world. Today, however, we stand at a turning point in space-related technologies that will enable a whole new
class of systems promising to dramatically lower the cost of space access, while increasing operability,
responsiveness and reliability to levels approaching those of air and sealift. The key components of this future
architecture -- an Evolved Expendable Launch Vehicle (EELV); Single-Stage-to-Orbit (SSTO) Reusable Launch
Vehicles (RLV); an Orbital Transfer Vehicle; and a Space Based Range -- will offer synergistic benefits over our
current architecture that finally lead to the true aircraft-like access envisioned since before Sputnik. Only when
such a system is in place, either nationally or internationally, can we truly consider ourselves to be spacefaring,
fully exploiting the opportunities that occupying the high ground entails.

This paper outlines this future vision for a fully functional space architecture, reviewing the current state of
development and key technologies necessary to field the key components. It will outline how their operational
interaction maximizes spacelift capability for minimum cost, thus expanding the space transportation market and
providing new capabilities for the civil, commercial and military sectors. The resulting document serves as an
important concept of operations definition, usable by planning, RD&A and operations communities during this
period of transition.

NOMENCLATURE

AFMC Air Force Materiel Command
DoD Department of Defense
EELV Evolved Expendable Launch Vehicle
ELV Expendable Launch Vehicle
GEO Geosynchronous Earth Orbit
GPS Global Positioning System
IOTV Integrated Orbital Transfer Vehicle
ISUS Integrated Solar Upper Stage
kW kilowatt
LDEF Long Duration Exposure Facility
LEO Low Earth Orbit
mpl payload mass, kg
mT metric ton, 1000 kg (2200 lbs)
NASA National Aeronautics and Space Administration
nm nanometer
OAS Office of Aerospace Studies
OECS Space Propulsion and Power Operational Effectiveness and Comparison Study
OTV Orbital Transfer Vehicle
RLV Reusable Launch Vehicle
SSTO Single Stage To Orbit
ROTV Reusable Orbital Transfer Vehicle
TAV Transatmospheric Vehicle
USSPACECOM US Space Command
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INTRODUCTION

Foreword

Space exploitation is expensive, an undertaking currently beyond the reach of all but a few nations on Earth in
1996. The United States, the Former Soviet Union, France, Japan, and China all maintain space access via one or
more expendable launch vehicles. The U.S. relies primarily on a fleet of Delta, Atlas, and Titan boosters to
perform its current military missions. Civil (scientific) missions are flown from the partially-reusable Space
Shuttle. Commercial missions, comprised almost exclusively of geostationary communications satellites, are
flown aboard whatever launch vehicle is available for a reasonable cost.

Space exploitation is in its infancy. Those satellite assets in orbit today are there primarily for Earth observation
and communications. Conventional missions can be easily grouped along the electromagnetic spectrum: optical
imaging (visual bands between 4000 and 7000 rim), radar imaging (centimeter and millimeter bands), data relay,
transmission, and reception, including navigation (radio wavelengths between 0.1 cm and 100 km), weather
forecasting, nuclear detonation detection, and aircraft/launch vehicle boost detection and tracking (infrared bands,
chiefly between .75 mm and 100 mm). Current military missions are concerned with signaling and
reconnaissance, and as such are reminiscent not of World War I era aircraft (in which the battle for the air was
beginning to take on clear significance to European commanders) but of the American Civil War, in which
unwieldy balloons provided data on troop movements that would otherwise have been impossible to obtain.

The hydrogen-gas Union, which flew in August of 1861, permitted Thaddeus Lowe to assist northern artillery in
their assaults on southern positions in Virginia. Later, a total of seven balloons were constructed and added to the
North’s inventory. Lowe “made 3,000 ascents, spending several hundred hours aloft observing enemy
operations.” Balloon reconnaissance was attempted again, in Puerto Rico during the Spanish-American War in
1898. The hydrogen used for lift was flammable and expensive to produce, and the balloonist and his vehicle
remained at the mercy of the prevailing winds throughout his mission. Such issues--which translate into lack of
maneuverability (responsiveness) and affordability--are mirrored in today’s space architecture [Anderson, pp. 10-
14].

Current Architecture and Trends

Assets employed by the space-faring nations are generally placed in a few basic orbits and left there for the life of
the asset’s mission. Station-keeping is performed to hold satellites in place, and maneuvers are occasionally
performed to move satellites (i.e. GEO latitude changes), but the latter are usually contingency moves responding
to crises. Such maneuvers use precious on-orbit propellant, reducing station-keeping life, and therefore mission
life. Satellite operators do not risk propellant on whims. Thus, today’s satellites are, for the most part, immobile.

Low-Earth orbit satellites (under 1000 km altitude) are primarily divided into: (1) high-inclination missions for
imaging applications, in which proximity to the planet is an important factor in resolution (optical imaging, such
as France’s SPOT) or power (radar imaging); and (2) various-inclination communications missions. Polar
missions, often in sun-synchronous orbits in order to achieve repeatable ground tracks, cannot be easily moved.
This is regrettable because these satellites can be clearly detected with ground-based telescopes and their orbits
determined precisely. Potential adversaries can thus mitigate these systems’ efficacy by judiciously selecting
times for the performance of crucial activities such as tests and troop movements, getting under cover during a
known overflight. A “no sparrow may fall” network, in which observational gaps are completely closed, would be
prohibitively expensive given today’s satellite and launch vehicle costs.

Low-altitude communications missions began with simple store-and-forward systems in the 1960s [Wertz, p. 505].
These have a signitificant disadvantage in their long delays between data reception and transmission (which can be
hours, waiting for specific ground stations to come into view). Larger constellations of low- and medium-orbit
communications satellites are planned for introduction in the late 1990s, supplying the growing demand for
mobile telecommunications. Crosslinking among numerous satellites provides both a robust, survivable
constellation and minimized delay times. The Global Positioning System (GPS), a 24-satellite constellation in six
55° inclined planes at 20,000 km altitude, is a medium-orbit solution to full Earth coverage. Teledesic, Iridium,
and Globalstar are commercial constellations proposed during the past several years, which would provide global
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mobile communications capability. They range in size horn a few tens of satellites to more than 800.
Inexpensive, small satellites and low-cost launch systems will be critical to the success of these ventures.

Geosynchronous orbit (35,786 km, circular) is an important resource for communications and remote sensing
payloads. Constant viewing over a specific Earth location confers a major advantage, permitting fixed ground
antennas for communications applications. This advantage is offset by the scarcity of “slots” (parceled out in 2°
increments to prevent interference), lack of coverage above 70° latitude, significant station-keeping requirements,
and the high delta-V required to achieve this orbit (4300 m/s LEO-GEO for conventional high-thrust upper
stages). Nevertheless, near-global coverage can be obtained at this altitude with three satellites. Numerous
military, civil and commercial assets occupy slots in GEO. Due to the finite number of slots, high launch costs,
and relatively small number of satellites needed for substantial Earth coverage, the trend in GEO will be to larger
systems, in fact, as large as can be launched. The most current example of this trend is Hughes’ HS702 satellite
bus, intended to service 12-15 kW communications satellites [Aviation Week, p. 27]. Methods for reducing the
cost and complexity of launch systems are essential for improving access to high orbits such as GEO.

Molniya orbits, highly-inclined (63.4°) and highly elliptical (e = 0.75, with apogees of 40,000 km) provide long
dwell times over high-latitude regions. Twelve-hour Molniya systems dwell over one hemisphere for up to ten
hours out of each day, and are particularly useful for communications relay and remote sensing (chiefly IR)
applications. The relatively low cost of access (delta-V= 2500 m/s, LEO-GEO) and high-latitude coverage of
Molniya-based assets provide some distinct advantages over GEO systems. Since two Molniya systems provide
essentially full coverage, the trend in these orbits will probably be similar to GEO--larger, more capable satellites.

American satellites in any of these orbits are launched aboard one of the domestic expendable launch vehicles, all
of which are descended from 1950s ballistic missile programs. Delta, Atlas, and Titan provide services ranging
from 5 mT to 22.5 mT in LEO. The Space Shuttle can place nearly 30 mT in a circular 300 km orbit. All of these
boosters are expensive and require extensive processing prior to launch. The Titan IV/Centaur, which launches
heavy military payloads to GEO, costs between $286M and $400M [payer], or as much as $75,000/kg. This
vehicle requires 211 days from call-up to launch, but one recent payload sat on the pad for more than 1,000 days.
Delta and Atlas can meet 60- and 90-day call-ups, respectively. Smaller U.S. boosters, including Pegasus, Taurus,
and LMLV, are intended to fill the perceived need for smaller payloads, below 5 mT to LEO.

Commercial satellites also have the option of launching aboard one of several foreign boosters, including France’s
Ariane, China’s Long March, and Russia’s Proton, Zenit, and Cosmos vehicles. These systems tend to be cheaper
alternatives to American boosters, and have already seriously undercut the commercial launch industry in this
country over the past fifteen years.

The lack of affordability and responsiveness of the domestic fleet led to a comprehensive look at the nation’s
approach to space launch during 1993-94. NASA’s Access to Space Study in 1993 concluded that low-cost,
reusable single-stage-to-orbit boosters had become feasible and should be pursued. Lt Gen Moorman’s Space
Launch Modernization Study examined several options to reduce costs and improve the operations of launch
systems. A dual-track plan was suggested, in which: (1) the DoD would “evolve” the current fleet of expendable
launchers with the goal of reducing costs by 25% and, eventually, 50% over current values; and (2) NASA would
embark on technology development culminating in an experimental reusable launch vehicle. Such systems might
permit order-of-magnitude cost reductions and rapid turnaround on the order of days, approaching “aircraft-like”
operations. These studies virtually ignored a third, critical system--the launch vehicle upper stage or a future
cousin, the “orbital transfer vehicle” (OTV).

A recent Aerospace Corporation analysis [Chivington] concluded that over 60% of payloads in the 2000-2020
timeframe will be placed in orbits other than LEO. These include primarily GEO and medium orbits. Improving
the performance of the upper stage can drastically increase a booster’s payload capacity to high orbits, permitting
large payloads to be launched from smaller, less expensive boosters. This realignment of payloads, or
“stepdown,” can be significant: Moving from a Titan IV/Centaur ($400M) to an Atlas IIAS ($110-13OM) could
potentially save hundreds of millions of dollars per launch. AFMC’S Office of Aerospace Studies (OAS) recently
conducted the Space Propulsion and Power Operational Effectiveness and Cost Comparison Study (OECS), with
the assistance of Air Force Space Command, the Space and Missiles Systems Center, and the Phillips Laboratory.
OAS concluded that two OTV types, solar thermal and solar electric, could reduce constellation costs by as much
as 5 0°/0, without modifications to the current fleet of boosters. These systems could be expendable (’jettisoned
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once final orbit is reached) or integrated (remaining with the space asset and providing additional functionality,
including maneuvering and power). OAS is now examining reusable OTVS, or “Space Tugs,” their utility in a
next-generation space architecture and applicable technologies.

A FUTURE SPACELIFT ARCHITECTURE

Remote sensing and communications will not become obsolete as space missions; they will remain critical sources
of information. However, the architecture of the next century needs to mature substantially in order to become
both active and competitive. The current architecture is primarily passive; consisting of a set of spacecraft that
remain in stable orbits, collecting information and transmitting it Earthside. There is virtually no consideration
given to spacecraft defense, maneuvering, recovery, repair, and refueling, space-to-space surveillance, or denial.
These “missions” have obvious analogs in the aircraft community but have been consistently been viewed as both
futuristic and unnecessary by the space community. They will be implemented in the future space architecture
through the use of both OTVs and RLVs.

The current architecture is non-competitive: witness the consternation caused by foreign competition in the space
launch industry. U.S. vehicles, derivatives of ICBMs, are too expensive and difficult to process. Satellite builders
also share the blame for building one-of-a-kind packages and maintaining an R&D paradigm that prevents
“operationalization” of space. While the DOD-sponsored EELV Program moves to reduce launch costs by as
much as 50%, it is the NASA-led RLV effort that promises real changes in how we put vehicles in space. If
successful, the RLV will provide very low launch costs and rapid call-ups. Such a robust Earth-to-orbit element
allows “last-minute” satellite launches, re-manifesting without penalty, and expanded space access to users who
were formerly priced out of the market.

Defense will become increasingly important as more nations acquire the ability to place objects in orbit. Military
platforms in any orbit could become targets in future conflicts where the U. S.’ adversaries have ballistic missile or
launch vehicle capabilities. Military systems provide critical data during peace and wartime, and, if blinded, they
could significantly impair American communications and intelligence. The example of GPS is instructive. GPS
navigation is becoming increasingly accepted in military and commercial circles. Near-term satellites in LEO
may use GPS for attitude control. Trucking concerns will use GPS signals to track their deliveries. Military
commanders will rely on GPS to guide battlefield engagements. Deliberate incapacitation of one (or, perhaps, a
plane of four) GPS spacecraft could seriously degrade navigational capabilities across a variety of using
communities. The threat could take various shapes, including kinetic impact, explosive devices, or overloading
various sensors. An adversary’s vehicle could simply rendezvous with the satellite and obscure its photovoltaic
arrays, draining its batteries during a critical ground action, then withdrawing when the action is complete--not
“killing” the satellite but disabling it temporarily. Clearly, some form of evasive or defensive capability is
needed. Greater and greater reliance upon spaceborne assets, without consideration given to protection, is an
extremely risky strategy. It presumes an indefinite continuation of the status quo--a thesis not borne out by
history.

Recovering an asset potentially permits repair and/or refueling, as well as assessment of satellite failure. Air
Force Space Command lists recovery as one of its top ten priorities for spacelift [AFSPC/XPX]. Yet recovery is
currently not practiced except in special cases. NASA’s Space Shuttle returned the Long Duration Exposure
Facility (LDEF) to Earth and made repairs to the Hubble Observatory. However, the Shuttle is limited to LEO. A
malfunctioning GEO or Molniya platform is currently out of reach, both monetarily and operationally. For
instance, retrieving an 1100-kg DSCS III military communications platform from GEO cannot be done even with
the largest U.S. vehicle, the Titan IV/Centaur. Note:

Titan IV/Centaur can place up to 5.22 mT of payload in GEO. It is a L02/LH2 chemical engine with a rated
specific impulse of 443 s and is capable of multiple restarts, which potentially would allow it to fly “empty” to
GEO, dock with an errant satellite (given appropriate structures and guidance), and perform a two-burn return to
LEO. Yet, even if the payload mass were entirely devoted to propellant, it would be insufficient to return the
stage itself



(the required propellant mass) gives:

Only 5220 kg of propellant are available; recovery is clearly not an option, even with advanced chemical
propulsion. Making recovery a standard operational mission will require high-spectilc impulse propulsion. Solar
electric and solar thermal OTVS are the systems that enable these missions.

Denial of hostile space assets is the reverse of satellite “defense.” The case of Rimsat lends credence to long-
unheeded concerns involving “rogue” satellites. Rimsat leased two Russian Gorizont satellites in GEO in order to
provide Asia-Pacific customers with television broadcast support. However, Rimsat failed to make payments to
the Russian operators, who threatened to interrupt service. The ensuing crisis was further exacerbated by a
confusion involving the assignment of GEO slots for these satellites (owned by the Kingdom of Tonga). There is
currently no capability in US or foreign inventories for enforcing international regulations concerning satellite
operation--were a company to “take over” a slot owned by a foreign nation and begin broadcasting, there would
be little the international community (or the offended nation) could do. Simply destroying the satellite is possible,
but such a course is often considered tantamount to war. A “graduated response” is clearly needed; a LEO
satellite could be “turned off” by shielding its antennas or solar arrays. An RLV or OTV could rendezvous with
the offending satellite and simply take a few high-resolution photographs, which could be discreetly provided to
the user, a warning of more extreme actions that could be taken. Clearly, these capabilities also extend into the
realm of warfare.

EXPENDABLE LAUNCH VEHICLES BRIDGE THE GAP

The fleet of current launch vehicles is largely expendable -- with the obvious exception being the partially
reusable Space Transportation System (shuttle). Within the United States, all medium to heavy lift boosters
(Delta, Atlas and Titan families) are derived from early IRBM and ICBM systems developed in the 1950s and 60s.
Each has seen several upgrades and additions, but the core vehicle technologies remain largely the same. They
are operated individually, from unique launch facilities, requiring many a large ‘standing army’ to support any
launch. Several recent studies have examined these and other short-comings (The Augustine Report of 1990, the
Aldridge Study of 1992, NASA’s Access to Space Study, the 1993 DOD Bottom-Up Review and the 1994
Moorman Report), and made recommendations for near and long term improvements. Only one of these studies,
NASA’s Access to Space Study, had the development of a reusable launch system as its primary recommendation.
All others recommended either continuation of the status quo, development of new expendable (either evolved or
‘clean sheet’) or some mix of new expendable and reusables. Each study, though, is clear in stating that the
current cost of expendable spacelift is high -- from $5K to more than $15K per pound to LEO depending on the
reference and system -- and that a viable spacelift architecture is vital to the US’s standing as a world leader.

Expendable vehicles will continue to be part of the spacelift landscape well into the future. The current National
Space Transportation Policy calls for NASA to take the lead in RLV development, while the DOD heads
development of expendable vehicles. With the recent the DOD commitment to the EELV program, targeting 25%.
to 50%. reduction in launch costs for medium and heavy lift missions and first flights expected in 2000 (Medium)
and 2003 (Heavy), a viable, economical fleet of expendable vehicles should be online well before a comparable
reusable fleet is available. If the projected savings are achieved -- through a streamlined acquisition strategy, the
use of mature technologies, highly reliable, low-cost systems and a common launch infrastructure -- the resulting
vehicle family will provide access to space at costs at or below that of state-subsidized foreign competitors such as
China’s Long March, the Russian Proton or ESA’S Ariane 5.

RLVS will be developed in an incremental fashion, starting with the X-33 program and progressing to more
capable vehicles as technology and operational capabilities are proven. The commercial RLV envisioned to
follow the X-33 tech demonstration program probably demonstrates small and medium lift on a responsive and
inexpensive basis relatively soon after completion and initial operational capability (IOC), as envisioned by
marketing assessments of each of the current X-33 contractors. This development will cause the medium lift
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EELV to be a transitional system, or cost-saving ‘stop gap’ in our lift architecture, phasing out of the picture when
and if the economics of dependable SSTO Reusable Launch Vehicles prove too attractive to ignore.

The ability to perform certain heavy lift missions (Shuttle or Titan IV-class) will continue to be largely performed
by the expendable fleet at least until a reusable vehicle is operating as a shuttle replacement. Reusable launch
vehicles cannot easily perform these high-weight, high-orbit (Molniya, GPS, and GEO) missions without the
inclusion of an upper stage or orbital transfer vehicle.

Currently, the number of heavy lift launches per year is projected to average about three per year for Titan IV over
the next 25 years, with eight Shuttle flights per year through at least 2008. In comparison, the medium lift market
(<20,000 lbs to LEO) expects nearly 30 launches per year based upon the Air Force Space Command National
Mission Model, with many more possible flights in the international market. The cost of developing a special,
heavy lift RLV for this small portion of the mission model available may not, in fact, be justifiable. Many of
these and other large payloads are also volumetrically large, requiring unique payload fairings and payload
integration considerations that may not be compatible with a standardized RLV payload bay, optimized for
repeatable operations. Additionally, the responsiveness that an SSTO system might provide may not be of any
advantage to missions that require long lead times for satellite construction.

Another important class of missions well-suited to expendable vehicles is space exploration -- particularly
interplanetary missions. Again, these are long lead-time missions with very specific volume and weight
requirements relative to the payload. Such ‘one time’ shots certainly do not justify major modification to an
operating RLV system.

A functional, inexpensive (relative to today’s costs), reliable and expendable heavy lift capability that can
adequately respond to special missions as described above will complement a largely reusable spacelift
architecture by eliminating the need for RLVS to cover every niche in the spacelift market. Such a strategy would
allow RLVS to do what they do best -- multiple standard profile missions with common payload interfaces on a
responsive, low-cost basis.

REUSABLE LAUNCH VEHICLES AS WORKHORSES

The Space Shuttle, developed in the 1970s, was the world’s first reusable launch vehicle. While it is the most
reliable launch system in the inventory, with only a single failure to date, it is both extremely expensive and
difficult to maintain. At $300-500M per flight [Bayer], it has not permitted the order-of-magnitude reduction in
per-kilogram cost to orbit that helped sell the program to Congress. Still, the Shuttle does demonstrate the
technological feasibility of RLVS. Next century’s launch infrastructure will require the advent of low-cost
reusable systems to bring about true space mobility; our current launch capability will be viewed as incredibly
primitive by our descendants in 2025 or 2050.

NASA's Access to Space Study, conducted in 1993, examined three potential options for the future launch vehicle
architecture: (1) “retain and upgrade the Space Shuttle and expendable launch vehicles,” (2) develop new
expendable vehicles using conventional technologies and transition from current vehicles beginning in 2005,” and
(3) develop new reusable vehicles using advanced technology, and transition from current technology beginning in
2008.” NASA’s analysts concluded that a fleet of single-stage-to-orbit RLVS would eventually reduce launch
costs by up to 80%, although the development of these vehicles would require a significant up-front investment.
The current cost of placing a pound of payload in LEO would be reduced from Shuttle’s current capability of
$7,488/lb to $1,500/lb. NASA’s SSTO will permit reduced operations costs in the Space Station era, where
numerous deployment and resupply flights have raised dire predictions about Station’s feasibility. Furthermore,
SSTO would “leapfrog the US into a next-generation launch capability,” garnering the domestic launch industry
an extremely favorable position in the international spacelift market. A medium-lift RLV would be capable of
handling the vast majority of communication platforms placed on-orbit.

SSTO will require advanced technology to perform its mission. The margins afforded by multistaging are not
available here; a single-stage-to-orbit vehicle must ascend to orbit and return to an Earthside landing site for
maintenance and turnaround. Until recently, the technology to produce a viable SSTO was not in hand. The
required propellant mass fraction of such a vehicle is approximately .88; that is, 88% of the vehicle’s gross lift-off
weight is propellant -- liquid hydrogen and liquid oxygen. The remainder is tied up in structure, engines, avionics,
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and support equipment. The figure of. 88 represents current propulsive performance with LOX/LH2 or
tripropellant engines. The attainable mass fraction, given current technological capabilities in structures, is
currently between .88 and .91 [Sponable]. Advances in lightweight thermal protection, aluminum-lithium LO2

tanks, and graphite composite hydrogen tanks make SSTO an achievable system [Bekey].

The Ballistic Missile Defense Organization, in concert with McDonnell-Douglas, developed a technology
demonstration vehicle, the Delta Clipper, during 1991-93. DC-X was procured on a fast-track schedule for under
$70M and demonstrated several key SSTO capabilities. The first, and most important, was the ability to emulate
aircraft operations. For a reusable launcher to fly cheaply, call-up, turnaround time, simplified procedures and
processes, and a small crew are essential. DC-X also demonstrated adverse weather flight capability, a flight
abort capability (following damage to the vehicle), and selected technologies, including autonomous vertical
takeoff/vertical landing ability.

The follow-on NASA-led effort in reusable launchers will culminate in 1999 with a series of test flights of the
newest experimental spaceplane, the X-33. Three contractors -- McDonnell-Douglas, Rockwell, and Lockheed-
Martin -- are vying for the rights to build and test the SSTO suborbital demonstrator vehicle. Some of the key
technologies that will have to be in hand in order to successfully show a single-stage orbit capability are
lightweight composite tankage and structure, robust thermal protection systems, advanced, highly operable
cryogenic propulsion, vehicle health management, and advanced avionics.

In the hands of the military, such a vehicle’s potential moves beyond mere issues of life-cycle cost savings. A
reusable spaceplane, prepared to move from an initial call-up to launch in times measured in hours rather than
months, can be an effective platform for numerous military missions. The spaceplane fulfills the US Air Force’s
requirement for “global reach," bringing any location on the globe within striking distance in only 40 minutes.
Potential applications include “many mission areas.. reconnaissance, surveillance, and precision employment of
weapons.” Streamlined maintenance and operations will permit blue-suit crews, not a cadre of engineers and
scientists, the ability to launch space vehicles in the same manner aircraft are flown today.

Expendable launch vehicles will remain as gap-fillers for some time, but they are not the key to the 21st century’s
space paradigm. Achieving space mobility rests on the development of two systems: A highly-reliable earth-to-
orbit vehicle that can operate like current aircraft, performing multiple missions (spacelift, force enhancement,
space control, and force application), and space-to-space transfer systems, or orbital transfer vehicles, which
extend the area of potential exploitation--and control--from low earth orbit across the entire Earth-Moon system.

INTEGRATED AND REUSABLE TRANSFER VEHICLES

The current method for reaching high orbits, such as geosynchronous, is to include an expendable solid motor or
liquid propellant engine with the mission payload inside a launch vehicle’s payload fairing. Solid motor stages,
such as McDonnell-Douglas’ Payload Assist Module (PAM), produce high thrust-to-weight but low specific
impulse capability (<300 s). Liquid systems, based on monopropellant and bipropellant hydrazine, or, at the top
of the performance spectrum, LOX/LH2, also permit high thrust-to-weight at increased ISP (<460 s). Both solid
and chemical upper stages have been used aboard US and foreign launchers to place payloads in high earth orbit.
A typical geosynchronous communications satellite aboard an Atlas IIAS is lofted to a suborbital trajectory,
whereupon the high-thrust chemical stage performs a series of burns that raises orbital apogee to GEO altitude.
Inclination changes and circularization burns are performed. Transfer between LEO and GEO requires
approximately five hours. Upon reaching orbit, they are inactivated and often jettisoned from the space asset.

Over the past several decades, novel approaches to delivering payloads to high orbits have been suggested and
developed. The most common, and best investigated, are the multiple approaches that rely on electrical
propulsion, the power source being either solar photovoltaics or, downstream, nuclear reactors. Electrothermal
propulsion (resistojets and arcjets) offers specific impulses of up to 1400 s. Electrostatic propulsion (ion thrusters
and stationary plasma thrusters) offer even higher performance, in the thousands of seconds of ISP. This very high
level of performance permits electrically-propelled vehicles to dramatically reduce the propellant mass required to
achieve high orbit, but this capability comes at a cost: Long transfer times. These systems are limited by
available power input, and typically provide thrust levels in the millinewton to several newton thrust range. A
LEO-GEO transfer of a standard HS 601 communications satellite by electric propulsion might require six months
to several years. Such long transfer times often conflict with user desires to achieve orbit as quickly as possible,
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in order to either generate revenue (in the case of commercial communications satellite builders) or to satisfy
military requirements. Nevertheless, the large performance gains allowed by electrically-propelled orbital transfer
vehicles could potentially shift large payloads to smaller, less expensive boosters. Placing Titan IV payloads on
Atlas or medium-lift ELVs could substantially reduce our dependence on the heaviest launchers in the domestic
fleet, easing the transition to a fully reusable architecture.

An alternative to electrically-propelled OTVs is a direct thermal propulsion system. Such a vehicle would provide
an intermediate performance capability between existing chemical propulsion and electric propulsion. Specific
impulses of between 600 and 1000 s are achievable, while thrust levels of tens to hundreds of newtons would
allow relatively rapid transfer between low and high orbits (one week to one month). Like electric propulsion
systems, direct thermal systems can be powered by solar or nuclear energy. Thermal systems provide a useful
compromise between the low performance and rapid response of existing systems, and the extremely high
performance and poor responsiveness of electric systems. Thermal systems, unlike electric propulsion, can access
highly elliptical orbits (such as the highly-inclined Molniya orbit, used for long dwell over one hemisphere).

Both solar electric and solar thermal systems are potentially demonstrable within the next several years. Ion
thrusters have been baselined aboard Hughes’ HS 702 satellites to provide greater payload capability to high orbit
(these systems would make up part of the delta-V requirement, the majority of the transfer being performed by
chemical systems). One variant of a solar thermal system, the Integrated Solar Upper Stage (ISUS), will be
ground-demonstrated in a joint Air Force/NASA test in early 1997 [Kennedy]. The ISUS system is “bimodal,”
transferring a satellite from low orbit to high, and then remaining with the satellite to provide electrical power to
the payload. This dual-mode operation potentially saves significant additional weight, as on-orbit power systems
typically make up between 20 and 30% of a spacecraft’s dry weight.

Either electric or thermal propulsion potentially enables one of two types of advanced orbital transfer vehicle --an
integrated orbital transfer vehicle (or IOTV, such as the ISUS system described above), which remains with the
satellite after achieving orbit; and a reusable orbital transfer vehicle (ROTV), which is based on-orbit, is refueled
after each transfer mission, and which must rendezvous and dock with payload packages in LEO and transfer
these payloads to their ultimate destination orbits. ROTVs, paired with RLVs, access all of near-earth space. A
rapid-response RLV capability, which can launch prespecified payloads into low orbit, permits the creation of an
aircraft-like architecture between the ground and LEO. ROTVs, which remain in orbit, will link LEO with high
energy orbits. Molniya, GEO, GPS (half-GEO), and lunar orbits are potential destinations that an RLV-ROTV
architecture could make commonplace. Thus, this new, mobile architecture provides an opportunity to enhance
not only commercial and military missions, but journeys of exploration.

SPACE-BASED RANGE

As the previously described ‘transport’ components of a future spacelift architecture are fielded, the current range
and tracking systems will not be capable of handling a full-scale ‘operationalized’ space environment. The future
scenario is likely to include multiple RLV sorties per day originating from many different sites on the globe, not
necessarily landing at their respective liftoff facility. ROTVs will be in constant operation, plying the LEO to
GEO milieu with valuable cargo to deploy, return or reposition. Transpace operations will not only include
traditional lift missions, but also Earth-to-Earth rapid transport, military RLV missions such as training and
reconnaissance and surveillance, space tourism and Space Station servicing. Increasingly, the line between air
and space operations will blur, causing conflicts between those responsible for effective, safe air control and
others conducting space missions. It is for this reason that steps should be taken immediately to break down the
barriers between the current world-wide air traffic control system and the space (near-Earth) surveillance and
control infrastructure operated largely by US Space Command.

Just as the Federal Aviation Administration’s Air Traffic Control system has become the accepted model upon
which a world-wide command and control network for air travel is based, US SPACECOM’S space surveillance
system would form the basis for a civil Space Traffic Control system. Composed of both ground and space-based
assets, a future, integrated Aerospace Traffic Control system would support the full gamut of air and space
operations to include:

1. space debris tracking and warning
2. atmospheric and exo-atmospheric weather
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3. orbit and flight path allocation
4. satellite control integration and coordination
5. takeoff (launch) and landing coordination

The catalog and current status of all debris and civil space assets on orbit would be provided via direct
communications link to all users, thus reducing the chances of an on-orbit collision that could effectively ‘poison’
an entire orbital belt.

Weather information via direct satellite broadcast from assets in GEO would be provided to all civil users of air
and space. The usual tropospheric and stratospheric conditions would be augmented by conditions updates for the
ionosphere and magnetosphere to warn trans-atmospheric and space assets of dangerous magnetic storms or solar
particle events that might warrant shielding, a change in mission plans or vehicle orientation.

Just as certain airspace is currently is restricted by nations to conduct military training or for national security
proposes, orbital ‘alleys’ -- a specific orbital plane and altitude range could be reserved for particular military
assets or training using military RLVs.

Satellite operators at ground stations around the world would be linked into the world-wide traffic control system
as the ‘pilots’ of their vehicles. They would obtain authorization for repositioning, launch or return just as today’s
pilots do from the air traffic control system.

Launch and return operations from aerospace ports would proceed much as they do from today’s large
international airports -- with the addition, probably, of a tram-atmospheric concourse from which passengers and
freight will be loaded aboard trans-atmospheric vehicles for delivery to space or for very rapid surface-to-surface
transportation.

As GPS technology moves into the cockpit, allowing for safer all-weather operation of aircraft, it has also
surfaced in satellites, allowing for more autonomous operation -- requiring less ground-based infrastructure and
direct control. Systems such as GPS, coupled with future space-based radar systems and the space surveillance
network to supplement the current air traffic control system and provide complete coverage of all activity from
surface to GEO and beyond require only integration to provide the type of control and range services that the next
century’s fully operationalized air and space environment will demand.

IMPLEMENTATION STRATEGIES

Obviously, the future spacelift architecture outlined in above will not take shape overnight. Several components
are already in development, though, and there is a real chance that the vision contained herein will become reality
within the next 25 years. The primary driver for all decisions relevant to this operationalized space environment,
or course, is economics -- particularly the economics of Single-Stage-to-Orbit Reusable Launch Vehicles.
Reusable orbit transfer will be of secondary importance to RLVS, as it can economically leverage the capabilities
of both ELVs and RLVs. It is the success then of NASA’s X-33 program and the viability of the commercially-
developed follow-on RLV which will dictate the development and timing of

1. ELV transition to heavy-lift only, small mission rate systems and interplanetary exploration,
2. increased utility and cost savings afforded by reusable OTVS;
3. an integrated air and space traffic control system.

Assuming that the X-33 program proceeds on schedule, as does the Air Force-led EELV, then Figure 1 below
describes a timeline for implementation culminating in ‘full-up’ system by the year 2025.
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Figure 1 Spacelift Modernization Roadmap

While the ultimate decision criteria for each step along this path will be economic, there are certain key
technologies that deserve increased current funding to insure the proper level of maturity when needed. Most of
these have been previously identified in the Air Force Space Command 1995 Mission Area Plan for Spacelift, and
are described below briefly grouped by the system component most effected by their development.

Reusable Launch Vehicles
1. Advanced Reusable Liquid Propulsion Engines
2. Lightweight, Reusable Thermal Protection Systems
3. Lightweight, Durable Structures and Tanks
4. Fault Tolerant Avionics

Reusable Orbit Transfer Vehicles
1. Advanced, Reusable Space Propulsion
2. Advanced Space Power Systems
3. Robotic Rendezvous Systems

Expendable Launch Vehicles
1. Low-Cost Manufacturing Technology
2. Low-Cost, Light-Weight Structures and Tanks
3. Low-Cost Expendable Propulsion Engines

Space-Based Range
1. Space-Based Radar
2. Full-Coverage Earth and Space Weather Coverage/Sensing
3. High-Level Integration of Air and Space Traffic Control Architectures
4. Autonomous Satellite Navigation and Operation

CONCLUSIONS

Over the last decade, innumerable studies have pointed the ‘way ahead’ for spacelift. Many have generated short-
lived development and acquisition programs that began with great fanfare, a few billion dollars and a managing
bureaucracy already in place. Today, we see two new programs (EELV and RLV) that make many of the same
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claims of cheaper access to space, the chance for ‘aircraft-like operations, etc.’ One must ask if our chances of
success any greater today than in 1986?

For a variety of reasons, the answer to the above question is a resounding “yes.” Both NASA and DOD have
learned from past management mistakes and are now committed to a more efficient, less suffocating approach.
The keys to success for both programs are low-cost, low-cost and low-cost. The market will therefore decide what
systems we use to deploy our assets to and through space. Technology, too, has matured. Today, Single-Stage-
to-Orbit RLVs seem technically feasible without the great leaps of faith demanded by earlier ventures. The
incremental approach to testing and development that served the nation so well during the hey-day of “X” aircraft
is taking us ‘Back to the Future,’ with a sane and sensible route from X-33 to fully commercial RLV.

On the expendable front, the waste of overcapacity, large standing armies required for processing and launch,
unique launch facilities and decades old infrastructure has given way to the new low-cost, highly-operable family
of vehicles approach embodied in the EELV program.

Technology advances in high efficiency space propulsion have driven ROTVs to the brink of on-orbit
demonstration, promising greatly reduced launch costs by decoupling launch and final deployment performing
‘tactical’ spacelift -- transporting payloads throughout the Near-Earth Theater of Operations.

Space-based radar and full-Earth surveillance will then combine with these advances to finally erase the line
between air and space operations, making access to space truly routine. For decades now, this routine access to
space has been discussed, planned and in some cases actually claimed, but until each of the components described
above is fully operational, we remain like Thaddeus Lowe and his balloon -- merely able to venture forth and
observe when the conditions are right, for limited periods at points not providing the full picture we and others
require.
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