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Abstract 

There are a lot of 3861486lPentium-based personal computers (PCs) out there. They are 

affordable, reliable, and offer good performance. Thus, it is only natural to think of networking 
multiple PCs to create a high-performance parallel machine - the problem is that conventional 

networking systems cannot provide low latency synchronization and communication. Lou. 

latency allows fine grain parallelism; the longer the latency, the fewer thc' pn)g;ams that can 

achieve good speedup through use of parallelism. 

Typical parallel machines constructed using PC networks (e.g., PVM software using Ether- 
net hardware) generally have latencies between 0.001s and 0.1s. Even the "best" 

commercially-available parallel computers can do no better than a latency corresponding to the 

time to execute hundreds to thousands of floating-point operations. In contrast, PAPERS 

(Purdue's Adapter for Parallel Execution and Rapid Synchronization) provides a latency 

corresponding to execution of just a few floating-point operations. Despite this, PAPERS can be 

implemented at a cost of less than %50/PC, including cables. 

' This work was supported in pan by the Office of Naval Research (ONR) under grant number 

N00014-91-J-4013 and by the National Science Foundation (NSF) under award number 

9015696-CDA. 
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1. Theory of Operation 

The reason PAPERS can achieve such low latency is that it is not a conventional network. 

Rather, it is a box implementing a special type of fine-grain barrier synchronization that facili- 

tates compile-time scheduling of parallel operations [Di092]: the full dynamic barrier func- 
tionality described in [OKD90a]. In fact, PAPERS implements communication only as a side- 

effect of barrier synchronization. 

Hardware barrier synchronization was first proposed in a paper by Harry Jordon [Jor78], 

and has since become a popular mechanism for coordination of MIMD~ parallel processes. A 

barrier synchronization is accomplished by processors executing a w a i t  operation that does not 

terminate until sometime after all PEs have signaled that they are waiting. However, while 
building the 16 processor PASM (PArtitionable Simd Mimd) prototype in 1987 [SiN87], we real- 

ized that the hardware enabling a collection of conventional processors to execute both MIMD 

and and instruction-level SIMD~ programs was actually an extended type of barrier synchroniza- 

tion mechanism. Generalizing this barrier synchronization mechanism resulted in several new 

classes of barrier synchronization architectures, as reported in [OKD90] [OKD90a]. The new 
barriers differ from previous concepts in that: 

[I] Rather than requiring all processors to participate in every barrier, any arbitrary subset of 
the processors can participate in each barrier. This necessitates an efficient mechanism for 

enqueuing bit masks representing which processors participate in each barrier. 

[2] The hardware ensures that all participating processors are allowed to proceed after a w a i t  

at precisely the moment that the last processor signals that it is waiting. It is this timing 
property that makes our barrier mechanism able to use conventional processors to 

efficiently implement fine-grain MIMD, SIMD, and V L I W ~  execution [CoD94a], as well as 

providing an efficient target for compile-time instruction-level code scheduling [Di092]. 

[3] Because subsets of processors can participate in different barriers, it is possible to partition 

a parallel machine into smaller parallel submachines. Although partitioning is supported by 

all the mechanisms described in [OKD90] and [OKD90a], only the dynamic barrier func- 

tionality described in [OKD90a] efficiently supports arbitrary runtime partitioning. 

The static barrier mechanism described in [OKD90] became popular almost instantly. However, 

the dynamic functionality of [OKD90a] required too much hardware to implement mask enqueu- 

ing and arbitrary partitioning. 

The final insight that allowed us to build PAPERS came late in 1993 [CoD94]. It 

redesigned the implementation of the dynamic functionality described in [OKD90a] so that fancy 

MIMD refers to Multiple Instruction stream, Multiple Data stream; i s . ,  each processor independently 
executes it own program, synchronizing and communicating with other processors whenever the parallel 
algorithm requires. 

SIMD refers to Single Instruction stream, Multiple Data stream; i.e., a single processor with multiple 
function units organized so that the same operation can he performed simultaneously on multiple data values. 

VLlW refers to Very Long Instruction Word; i.e., a generalization of SIMD that allows each function 
unit to perform a potentially different operation on its own data. 
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enqueuing logic and an associative mask matching memory were replaced by a very simple static 

barrier mechanism replicated for each processor. With this change, the enqueuing logic mutated 

into a communication mechanism that efficiently implements the simultaneous broadcast of one 

bit from each processor - very simple hardware, but very useful for general communications, as 

well as for determining future barrier masks. 

Thus, PAPERS is the first implementation of the full dynamic barrier mechanism - it 

surely will not be the last. The current PAPERS prototype will no doubt be followed by a series 

of enhanced versions. The first prototype connects up to four PCs; later versions will be able to 

connect at least 16 PCs, and will provide greater communications bandwidth without increasing 

the latency. 

Unlike most research prototype supercomputers, PAPERS is a fully public domain 

hardware and software design intended to be widely replicated. 

The PAPERS systems will also serve as a software testbed for a prototype supercomputer 

based on the same barrier synchronization technology - CARDBoard, the Compiler-oriented 
Architecture Research Demonstration Board. CARDBoard differs from PAPERS in that it does 

not center on using PCs as processing elements, but simply uses PCs as hosts for up to 256 

CARDBoards, each incorporating four high-performance RISC processors. Thus, CARDBoard 

will offer much higher performance than PAPERS (200 MFLOPSJboard in the current design), 

but requires much more complex and specialized hardware and software. 
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2. PC Hardware 

Although PAPERS provides very low latency synchronization and communication, it is 

interfaced to PCs using only a standard parallel printer port and is implemented with a minimal 

amount of external hardware. This section details the PC hardware involved in use of PAPERS. 

Throughout the following description, we will distinguish between stand-alone PCs and 

PCs used as processors within a parallel machine by referring to the later as "PEs' ' - processing 
elements. The design presented here supports up to 4 PEs (PEO, PE1, PE2, and PE3); future 

modifications will scale the the design to larger configurations, probably up to 16 PEs. 

2.1. PE Hardware Interface 

No changes are required to make standard PC hardware into a PAPERS PE. All that is 
needed is a standard parallel printer port and an appropriate cable. Although some of the PCs on 

the market provide extended-functionality parallel ports that allow %bit bidirectional data con- 

nections, many PCs provide only an 8-bit data output connection. To ensure that PAPERS can be 
used with any PC, PAPERS uses only the functions supported by a standard unidirectional paral- 

lel port. 

But if there is no parallel input port, how does PAPERS get data into the PC? The answer 

lies in the fact that the 8-bit data output port is accompanied by a variety of input and output 

status lines on two other ports associated with the 8-bit data output port. Counting these status 

lines, there are actually 12 bits of data output and 5 bits of data input. 

The current PAPERS design uses 11 of the 12 available output lines and all 5 of the input 

lines. The pinlcontact assignment for each of these lines is given in Tables 1 and 2. Table 1 lists 
the pin numbers as they appear on the PE's DB25 connector. Table 2 lists the contact numbers 

for the signals as they appear on the PAPERS' 36-pin Centronics connector. 
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2.2. PE Port Bit Assignments 

Although the parallel port hardware is not altered to work with PAPERS, the parallel port 

lines are not used as they would be for driving a Centronics-compatible printer. Thus. it is neces- 

sary to replace the standard parallel port driver software with a driver designed to interact with 

Table 2: Centronics Connector Contact Assignments 

IR (Interrupt Request) 

B1 (Barrier Mask Contains PEl) 
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PAPERS. Toward this end, it is critical to understand which port addresses, and bits within the 

port registers, correspond with each PAPERS signal. 

There are three port registers associated with a PC parallel port. These ports have I/O 
addresses corresponding to the port base address (henceforth, called "PortBase") plus 0, 1, or 2. 
Typically, PortBase will be one of 0x378, 0x278, or Ox3bc, corresponding to MS-DOS printer 

names LPTl:, LPT2:, and LPT3:. Check the documentation for your PC system to determine the 

appropriate PortBase value for the parallel port that you are using as the interface to PAPERS. 

The bit assignments for the first port register, PortBase + 0, are listed in Table 3. This 

register is used to send PAPERS the information used in each barrier synchronization. Notice 
that bit 1 is currently unassigned, but should be set to 0. 

Table 3: PortBase + 0 Bit Assignments 

The second port register, PortBase + 1, is used to receive information from PAPERS. Bit 
assignments for this register are given in Table 4. The arrangement of bits within this register is 

the result of the fact that PCs usually can generate an interrupt signal when Ack is set; the inter- 

rupt line must be the Ack signal. The three remaining contiguous bits of the register are thus 

designated as the data input from other PEs. This leaves bit 7 as the GO signal - the bit tested 

to determine if synchronization has been achieved. It happens that the sense of bit 7 is inverted 

on the port; the PAPERS hardware compensates for this so that a port read sees the GO bit as a 1 

when the barrier has fired. 
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The third port register, PortBase + 2, is used by PAPERS only for output bits that change value 

relatively rarely - the software does not access this register in the course of executing a typical 

barrier synchronization. In other words, this register is used for the "modal" information out- 

lined in Table 5. Although this discussion refers to the signals as they are listed in Table 5, the 
port actually inverts the sense of bits 3, 2, 1, and 0; compensation for this inversion is done (by 

XOR with 0x0 inside the lowest-level PAPERS port driver. 

Part of the modal information involves the control of interrupts. Normal operation of 

PAPERS does not require interrupts. However, PAPERS does support the use of interrupts for 

two separate types of events: 

Table 5: PortBase + 2 Bit Assignments 

Bit Name Use In PAPERS 
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bit 7 

bit 6 

bit 5 

bit 4 

bit 3 

bit 2 

bit 1 

bit 0 

unused 

unused 

unused 

IntEn 

Slct 
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IE (Interrupt Enable) 

CE (Connection Established) 

Init 

AutoFD 
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[I] If the operating system on one PE determines that the other PEs should be informed of 
some event, it can interrupt any subset or all of the PEs by setting its IR bit (see Table 3). If 

any PE asserts its IR bit, then the INT bit (see Table 4) of each PE in this PE's barrier mask 

will be 1 and the GO bit (see Table 4) will be 0. Notice that the PE setting its IR bit will 

only interrupt itself if the corresponding bit is on in its barrier mask. 

[2] If desired, the PAPERS barrier hardware can be set to interrupt this PE when PAPERS 

determines that this PE's barrier has been satisfied. This response can be independently 
enabledldisabled by each PE by setting its GI bit. If GI is 1, then completion of a barrier is 

signaled by setting both the INT and GO bits to 1. If GI is 0, then only the IR bit can cause 

INT to be 1. 

The setting of the INT bit (see Table 4) happens whether the PE has enabled interrupts or not; an 

actual processor interrupt occurs only if the IE bit is set to 1. Use of true processor interrupts can 

be problematic due to conflicts with other devices sharing the same interrupt vector (e.g., the 

same interrupt is often generated by both the parallel port and a sound card). Thus, it may be 

preferable for PEs to use polling to detect these "interrupt" conditions. 

There are three other modal bits in port PortBase + 2. These bits are not actually used by 

the logic in PAPERS, but rather are used to drive an informational status display. The CE bit is 
used to indicate that the PAPERS hardware has been properly connected to the PE. The other 

two bits are "user-defined status" bits that can be used in any way desired, however, the sug- 

gested use is to encode the function that the PAPERS hardware is being used to implement. This 

use is summarized in Table 6. 

3. PAPERS Hardware 

Thus far, this document has focussed on the way in which PC hardware interacts with 

PAPERS. In this section, we briefly describe the hardware that implements PAPERS itself. 

Notice that there is, in fact, very little hardware inside PAPERS - which is why PAPERS is so 

inexpensive to build and fast to operate. 

Table 6: Meaning Of U1 And UO Signals 

U1 UO Meaning 
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PAPERS is being used to barrier synchronize 
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3.1. Logic Design 

The active part of the PAPERS hardware follows the basic design presented in [CoD94], 

and is implemented using four small PLAs (programmable logic arrays) - one for each PE. For 

each PE, only two signals are actively derived from the signals fed into the PAPERS box: the 
GO and INT signals (see Table 4). The other three input signals for each PE (12, 11, and 10) are 

literally wires directly connected to the D outputs of the other PEs. 

Although the four PLAs are connected differently, their internal logic is the same and the 

differences in the connections follow a simple pattern. The following description refers to the 

PLA for PEa with respect to PEb, PEc, and PEd. Given a PE number for a, the PE numbers for b, 

c, and d can be derived by: b=(a+1)%4, c=(a+2)%4, d=(a+3)%4. Externally, each PLA appears 

as shown in Figure 1. 

Figure 1: PLA Pin Layout 

CLK 

PEaBb 
PEaBc 
PEaBd 

PEbBa 

PEcB a 

PEdB a 

PEaIR 

PEbIR 

PEcIR 

PEdIR 

GND 

VCC 
PEaBa 

GO 

PEaGI 
PEaGO 

PEdS 

PEcS 

PEbS 

CLKRST 

CLKSET 

PEaINT 

PEaS 

Most of the PLA's input signals are taken directly from the PE parallel ports, however, 

there are a few surprises. The basic barrier logic tree described in [CoD94] derives the CLKSET 

signal - it does not directly derive PEaGO or even GO. This is because when the barrier 
becomes satisfied we want to latch a 1 bit into GO; thus, 1 is hardwired on the input to the GO 

register and the CLKSET signal is used as a clock to cause 1 to be sampled. This use requires 

CLKSET to be externally wired to the CLK input. When all PEs involved in a synchronization 
have read their input data, the (asynchronous) reset of the GO register is internally triggered by 

CLKRST. 

The difference between the internal GO register and the PEaGO output signal is that inter- 

rupts can change the meaning of the GO bit. In essence, the PEaGO and PEaINT signals are 

really encoding a two bit PAPERS hardware state, as outlined in Table 7. 
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The PALASM code for the PLA follows. No attempt has been made to simplify these 
equations, since PALASM automatically minimizes the PLA complexity. 

Table 7: Meaning Of PEaGO And PEaINT Signals 

PEaGO PEaINT Meaning 

. ---------------- ------ -------- ----  , PIN Declarations ---------------  

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

PIN 

NODE 

No interrupt, synchronization not achieved 

No interrupt, synchronization achieved 

Interrupt for all PEs 
(given priority over achieving synchronization) 

Interrupt for synchronization achieved 

0 

1 

0 

1 

CLK 

PEaBb 

PEaBc 

PEaBd 

PEbBA 

PEcBa 

PEdBa 

PEaIR 

PEbIR 

PECIR 

PEdIR 

GND 

PEas 

PEaINT 

CLKSET 

CLKRST 

PEbs 

PEcs 

PEds 

PEaGO 

PEaGI 

GO 

PEaBa 

VC C 

GLOBAL 

0 

0 

I 

1 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORI AL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

COMBINATORIAL 

REGISTERED 

COMBINATORIAL 
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. -- _--_----------------------------- , Boolean Equation Segment - - - - - -  

EQUATIONS 

PEaINT = ( (PEaIR*PEaBa) + 
( PEbIR* PEbBa) + 
( PEcIR* PEcBa) + 
( PEdIR* PEdBa) + 
(GO*PEaGI) ) 

GO = VCC 

GLOBAL.RSTF = CLKRST 

CLKSET = ((/PEaBa+(PEaBa*PEaS)) * 
(/PEaBb+(PEbBa*PEbS)) * 
(/PEaBc+(PEcBa*PEcS)) * 
( / PEaBd+ ( PEdBa* PEdS ) ) * 
/GO) 

CLKRST = ((/PEaBa+(PEaBa*/PEaS)) * 
( /PEaBb+ ( PEbBa* / PEbS ) ) * 
(/PEaBc+(PEcBa*/PEcS)) * 
(/PEaBd+(PEdBa*/PEdS)) * 
GO) 

/PEaGO = ((PEaINT*/( (PEaIR*PEaBa) + 
( PEbIR* PEbBa) + 
(PEcIR*PEcBa) + 
(PEdIR*PEdBa))) + 

(/PEaINT*GO)) 

Notice that, if desired, the entire PAPERS design also could be implemented either by a sin- 

gle larger PLA or by a manageable number of simple gate-level chips. We suggest that using one 

or more larger PLAs (e.g., Xilinx parts) is probably the most effective way to scale PAPERS to 

handle larger numbers of PEs. 

3.2. Packaging 

The prototype PAPERS unit is housed in a natural finish red oak box that is 11.75" wide by 
6" deep by 6" tall, with a simple 3" steel handle protruding by 1" on the left side (to aid in carry- 

ing the system for demonstrations at remote sites). Inside the box, on the left side there is one 4" 
by 6" wire-wrapped card containing the PLAs and LED driving circuitry; on the right side is a 5 
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volt switching power supply (although a maximum of less than 1.5 amps is needed, we used a 

supply rated at 3 amps). The cover of the case is a simple piece of 0.25" thick oak, attached by 

velcro and perforated above the power supply to allow convection cooling. Behind the circuit 
card on the back of the box are four panel-mounted Centronics connectors - so that the cables 

used to connect PEs to PAPERS are standard PC parallel printer cables. The AC cord enters the 

box from behind the power supply. In front of the circuit card, rear-mounted on the front panel, 

is an array of LEDs used as a status display for the PEs connected to PAPERS. 

Strictly speaking, there is no need to have any display connected to the PAPERS hardware. 

Indeed, eliminating the display can greatly simplify the hardware because it eliminates the need 

for LED drivers and perhaps even eliminates the separate power supply (the PLAs might be 

powered by the parallel port, but there is not enough power to drive the LEDS). However, 

PAPERS is a research prototype: the LEDs make it a lot easier to see what is happening ... and to 

debug the system. 

The prototype LED display consists of 40 LEDs arranged in 4 columns, each column 

representing the status of one PE. These columns are numbered in decreasing order from left to 
right (as the LEDs are normally viewed), i.e., PE3 PE2 PE1 PEO. The signal descriptions are 

given in Table 6. Notice that none of the LEDs displays a derived signal - this is because the 

two derived signals change value only momentarily, so fast that the state change would not be 

perceptible. 

Of course, there are some active components used for more than driving LEDs. The critical 

portion of the current version of PAPERS is implemented by four identical PLAs. Although, in 

theory, Figure 1 combined with the rules given earlier suffices to completely specify how the 

PLAs are connected to the PE signals, it isn't exactly easy to see how the chips get wired. Thus, 

Figure 2 gives the pinouts for all four PLAs. 
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PAPERS 

Figure 2: Specific Pin Assignments for All Four PLAs 
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4. PAPERS Software 

Although PAPERS will be supported by a variety of software tools including public domain 

compilers for parallel dialects of both C and Fortran [Di092] [CoD94a], in this document we res- 

trict our discussion to the most basic hardware-level interface. The code given is written in C 
(the ANSI C-based dialect accepted by GCC) and is intended to be run under a unix-derived 

operating system. However, this interface software can be adapted to most existing (sequential) 

language compilers and interpreters under nearly any operating system. 
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The following sections discuss the operating system interface, PAPERS port access, and a 

simple barrier interface. 

4.1. Operating System Interface 

Although it would certainly be possible to implement the PAPERS software interface as 

part of an operating system's kernel, it is more efficient for an ordinary user program to directly 

access the ports connected to the PAPERS hardware. Although the ports can be directly accessed 
under most operating systems, here we focus on what it takes for a program under generic UNIX 
or Linux to gain port access. 

4.1.1. Generic UNIX 

In general, UNIX allows user processes to have direct access to all 110 devices. However, 
only processes that have a sufficiently high 110 priority level can make such accesses. Further, 

only a priviledged process can increase its I/O priority level - by calling iopl ( ) . The follow- 
ing C code suffices: 

if (iopl(3)) { 

/ *  iopl failed, implying we were not priv * /  

exit (1) ; 

1 

But beware! This call grants the user program access to all I/O, including a multitude of unre- 

lated ports. 

In fact, this call allows the process to execute instructions enabling and disabling interrupts. 

By disabling interrupts, it is possible to ensure that all processors involved in a barrier synchroni- 

zation act precisely in unison; thus, the number of port operations (barrier synchronizations) 

needed to accomplish PAPERS operations can be dramatically reduced. A basic barrier syn- 

chronization takes at least four port operations when timing cannot be ensured, but only two port 

operations with interrupts disabled. However, background scheduling of DMA devices (e.g., 

disks) and other interference makes it hard to be sure that a unix will provide precise timing con- 

straints even when interrupts are disabled, so we do not advocate disabling interrupts. 

Even so, performance of the barrier hardware can be safely improved by causing unix to 

give priority to a process that is waiting for a barrier synchronization. This improves perfor- 

mance because if any one PE is off running a process that has nothing to do with the synchroniza- 
tion, then all PEs trying to synchronize with that PE will be delayed. The priority of a 

priviledged unix process can increased by a call like: 

/ *  set priority just below critical OS code * /  
nice(-20) ; 

The argument to nice ( ) should be a negative value between -20 and -1. 
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4.1.2. Linux 

Although Linux supports the unix interface described in the previous section, it also pro- 
vides a more secure way to obtain access to the YO devices. The ioperm ( ) function allows a 
priviledged process to obtain access to only the specified port or ports. The C code: 

if (ioperm ( PortBase, 3, 1) ) { 

/ *  like iopl, failure implies we were not priv * /  

exit (1) ; 

1 

Would obtain access for 3 ports starting at a base port address of PortBase. 

Because the 3861486Pentium hardware checks port permissions, this security does not des- 

troy port YO performance; however, checking the permission bits does add some overhead. For a 
typical PC parallel printer port, the additional overhead is just a few percent, and is probably 

worthwhile for user programs. 

42. Port Access 

Although Linux and most versions of unix provide routines for port access, these routines 

often provide a built-in delay loop to ensure that port states do not change faster than the external 

device can examine the state. Consequently, the PAPERS support code uses its own direct 

assembly language YO calls. The code is: 

inline unsigned int 

inb(unsigned short port) 

{ 

unsigned char -v; 

delay ( ) ; 

-asm- - v o l a t i l e  ("inb %w1,%bOU 
' 11 =a" (-v) 

. "dIl (port), "0" (0)); 
return -v; 
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inline void 

outb(unsigned char value, 

unsigned short port) 

delay ( 1  ; 

- asm- - volatile ("outb %bO,%wlU 
: / *  no outputs * /  
: llall (value), "d" (port) ) ; 

1 

However, these port T/O calls are "sanitized for your protection" by the following PAPERS- 
specific macro definitions. Notice that the modal port inverts its four output lines; the 

P-MODE ( ) macro includes an exclusive or operation to compensate for this. The code is: 

/ * Stuff concerning the regular output port . . .  
* / 
#define P-OUT(x) \ 

outb(( (unsigned char) (x)), ((unsigned short) PortBase)) 

#define B3 0x80 / *  Barrier Mask Contains PE3 * /  
#define B2 0x40 / *  Barrier Mask Contains PE2 * /  
#define B1 0x2 0 / *  Barrier Mask Contains PE1 * /  
#define BO Ox10 / *  Barrier Mask Contains PEO * /  
#define S 0x08 / *  Barrier Sync. Request * /  
#define IR 0x04 / * Interrupt Request * / 
#define D Ox0 1 / *  Data Bit Value * /  

/ * Stuff concerning the input port. . . 
* / 
#define P-IN() \ 

inb((unsigned short) (PortBase + 1)) 
#define GO 0x80 / *  Barrier Sync. Completed * /  
#define INT 0x4 0 / *  Interrupt * /  
#define I2 0x2 0 / *  PExD such that x=(iproc+3)&3 * /  
#define I1 0x1 0 / *  PExD such that x=(iproc+2)&3 * /  

#define I0 0x08 / *  PExD such that x=(iproc+l)&3 * /  
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/ * Stuff concerning the modal output port . . .  
* / 
#define P-MODE(x) \ 

outb(((unsigned char) ((x) (UO I U1 I GI 1 CE)), \ 
((unsigned short) (PortBase + 2 ) )  ) 

#define IE 0x1 0 / *  Interrupt Enable * /  
#define CE Ox0 8 / *  Connection Established * /  
#define GI 0x04 / *  Go Causes Interrupt * /  
#define U1 0x02 / *  User bit 1 * /  
#define UO 0x01 / *  User bit 0 * /  

4.3. Barrier Interface 

The basic barrier interface consists of C inline routines serving three primary functions. 

The first is called enqueue ( ) , and is used to enqueue a new barrier mask that will be used by 

all barrier operations until a new mask is enqueued. The second function is performed by 

p-wai t ( ) . It barrier synchronizes using the current barrier mask. The third is much like the 
second, but also communicates one bit of data from each PE. It is called p-waitvec ( ) , 

because it barrier synchronizes and then returns a vector constructed using one bit from each PE. 

43.1. Barrier enqueue ( ) 

The barrier enqueue operation consists primarily of sending PAPERS the requested barrier 

pattern, however, there is more to this than one might expect. One detail is that if there is no 

change in the mask, we have nothing to do. Another detail is that the mask pattern cannot be 

changed until everyone who was synchronizing with it is done reading their data. This is because 

our D bit is not buffered for each PE that might read it, but is directly examined by other PEs. 

Finally, there is the detail that enqueue ( ) should set special variables so that other routines 

can cheaply obtain the current barrier mask as either the mask itself, last-mask, or as the 

mask shifted for P-OUT ( ) , lastsout. The code is: 

extern inline void 

enqueue(register barrier mask) 

{ 

/ *  If appropriate, enqueue the new barrier pattern given by 
mask. Note that mask represents PEk by bit k - -  not quite 

the way that the port hardware works. 

* / 

Page 18 



March 7,1994 PAPERS 

#ifdef PARANOID 

if (mask & "ALL-MASK) { 

/ *  Bits are on for nonexistant PEs * /  

p-error("enqueue of barrier containing nonexistant PE"); 

1 
# endi f 

/ *  Is mask different from what we had? * /  

if (mask ! =  last-mask) { 

/ *  If last-mask had somebody beside us... * /  

if (last-mask & "OUR-MASK) { 

/ *  Wait for barrier reset * /  

while (P-IN0 & GO); 

1 

/ *  Update mask info & enqueue mask with PAPERS * /  
P-OUT(last_pout = ((last-mask = mask) << 4 ) ) ;  

1 

4.3.2. Barrier p-wai t ( ) 

The basic barrier wait operation is p-wait ( ) , as coded below. However, there is a minor 

optimization in that there is no need to use the PAPERS hardware to synchronize with yourself. 
Thus, there are two minor variants of this operation. Ordinary user code would use p-wait ( ) , 
however, 2-wait ( ) is used within library routines where we already know that we are syn- 

chronizing with at least one other PE. 

extern inline void 

2-wait(register portdata p) 

{ 

/ *  Simple barrier synchronization on p. * /  

while ( P I N O  & GO); / *  wait for barrier reset * /  

P-OUT (p 1 S )  ; / *  synchronize on p * /  
while ( !  (P-IN() & GO) 1 ;  / *  wait for barrier GO signal * /  

P-OUT ( p ) ; / *  reset barrier * /  
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extern inline void 

p-wait ( 

{ 

/ *  Simple barrier synchronization on current barrier. 
Nothing to do unless we are not alone . . .  

* / 
if (last-mask & "OUR-MASK) { 

2-wait (lastaout ) ; 

1 
1 

4.3.3. Barrier p-wa i tvec ( ) 

The p-wai t vec ( ) and 2-wa i t vec ( ) routines are very similar to the p-wai t ( 

and 2-wait ( ) routines, however, these routines transmit one bit of data i?om each PE as a 
side-effect of the barrier synchronization. There are four new complications introduced by this 

data transmission. 

The first is that the bit transmitted by this PE is not made available to this PE through the 

P-IN ( ) value. Thus, this bit must be determined directly from the local variable, as seen in 

p-waitvec ( ) . 
A second problem lies in the fact that the GO signal is better driven than the data bits. This 

can result in a slight delay between the P-IN ( GO bit becoming 1 and the data bits achieving 

their final values. This is remedied within 2-waitvec ( )  by simply issuing one more 

P-IN ( ) after the GO bit has become 1. Future versions of PAPERS will hopefully correct this 

problem in hardware. 

The third complication is that the data bits that correspond to each PE in the P-IN ( ) 
value are not positioned such that PEL is represented by bit k. This problem is solved using a 

PE-dependent lookup table to re-map the bits to their standard positions. 

Finally, there is the problem that all input bits have values, but only bits corresponding to 

PEs that synchronized with us are valid. Thus, p-waitvec ( ) ensures that the bits for all PEs 

that did not participate in the barrier are set to 0. 

Including the handling of these problems, the code is: 
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extern inline portdata 

_p-waitvec(register portdata b) 

{ 

/ *  Simple barrier synchronization collecting data. It is 

assumed that b is either lastsout or lastsout I D 
depending on whether we want to send a 0 or 1 bit . . . .  
Note that the return is the raw (unmapped) port input. 

* / 
register portdata x; 

while (P-IN0 & GO); / *  wait for barrier reset * /  
P-OUT(b 1 S); / *  synchronize & send data bit * /  

while ( !  (P-IN() & GO)); / *  wait for barrier GO signal * /  
x = P-IN ( ) ; / *  get data bit vector (I2,IlIIO) * /  

P-OUT ( b ) ; / *  reset synchronization * /  
return (x) ; / *  return data bit vector * /  

1 

extern inline barrier 

p-waitvec(register int flag) 

{ 

/ *  Do a barrier wait sending flag and return the collected flag 
vector. This is not super efficient, but is an easier 

interface than using the raw P-OUT0 and P-IN0 calls 

directly. Notice that the flag vector bit positions that 

correspond to PEs not in the current barrier are 0. 

* / 
register barrier mask = (flag ? OUR-MASK : 0); 

/ *  If we're not the only PE in our mask, we have work to 
do . . .  but if we are alone, we are done. 

* / 
if (last-mask & -OUR-MASK) { 

/ *  Must gather a bit from each PE . . .  * /  
register barrier b = (flag ? (lastsout ( D) : lastsout); 

register portdata x; 

/ *  Translate {12,11,10) into a standard mask * /  
mask I= ( IToMask (3-waitvec (b) & last-mask) ; 

1 
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/ *  Return constructed bit mask . . .  * /  

return (mask) ; 
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5. Conclusion 

In this paper, we have presented the complete design of PAPERS, a very simple hardware 

adapter to allow multiple personal computers to act as one or more fine-grain parallel computers. 

To support parallel processing, the PAPERS hardware provides full dynamic barrier synchroniza- 

tion, simultaneous broadcast of one data bit from each processor to every other processor, and a 

variety of maskable interrupt capabilities. 

Perhaps the best thing about PAPERS is that it does not require any special interface to the 

processors; it is connected to ordinary personal computers (or workstations) by their standard 

Centronics parallel printer ports. However, this also is the worst thing about PAPERS, because 
these ports often limit performance. Basically, the problem is that many ports are deliberately 

designed to insert enough wait states so that very slow printer interfaces will be able to sample 

the output signal without the need for a software delay loop. The speeds of basic operations on 

PAPERS, assuming a 10' cable, are: 

Operation PAPERS Speed Speed Using Slow Port 

As the table shows, if your machine doesn't have a slow port, PAPERS is a dream come 

true .... However, if you have a slow port, you might want to either (1) get a better parallel port or 

(2) wait for us to build a version of PAPERS that directly interfaces to the PC bus. 

Dynamic barrier sync. 

with arbitrary PEs 

Multiple broadcast 
communication op. 

ANY conditional 

Random communication 

involving all PEs 
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