Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1994

PAPERS: Purdue's Adapter for Parallel Execution
and Rapid synchronization

H. G. Dietz
Purdue University School of Electrical Engineering

T. Muhammad
Purdue University School of Electrical Engineering

J. B. Sponaugle
Purdue University School of Electrical Engineering

T. Mattox
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Dietz, H. G.; Muhammad, T.; Sponaugle, J. B.; and Mattox, T., "PAPERS: Purdue's Adapter for Parallel Execution and Rapid
synchronization” (1994). ECE Technical Reports. Paper 180.
http://docs.lib.purdue.edu/ecetr/180

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages

PAPERS. PURDUE'SADAPTER FOR
PARALLEL EXECUTION AND RAPID
SYNCHRONIZATION

H. G. DIETZ

T. MUHAMMAD
J. B. SPONAUGLE
T. MATTOX

TR-EE 94-11
MARCH 1994

&,
"1.& SCHOOL OF ELECTRICAL ENGINEERING

5 PURDUE UNIVERSITY

o> WEST LAFAYETTE, INDIANA 47907-1285

o
My
d
“~

3
="

PAPERS:. Purdu€e's Adapter for

Parallel Execution and Rapid synchronization!

H.G. Dietz, T. Muhammad, J. B. Sponaugle, and T. Martox

Parallel ProcessingL aboratory
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907-1285
hankd@ecn.purdue. edu

Tableof Contents

1. TREOIY Of OPEIALION ..eecvivierereeierecireeeeseereeeessetcvetts st steeaneenssnessesessssuesasseessensensensssensessensons
2. PO HABIMTAWANE ..conv ettt ettt ettt st es e e seassese s saesae seeneesenasssensesseneenenes
2.1 PE HardWar€ I NtErfaceco.eceeueieviererieneeieeieie e e eeces e er e es e sr e eraee e
2.2. PE POt Bit ASSIONMENES...cciviiiiciiiieteriirecririe e sner ettt st e e s esn s enees
S PAPERS HANOWAI© ..ottt ettt sttt e b ettt et et sr et st st eeese st e nes
3.1 L OQIC DESION vttt ettt ene e e e e sbe et eae st ese et emens e enenea

3.2, PACKAGING .veevervrereiertenrerieeeiireetenteeec s e e sves s e et sre b er e et ebestesse st asaseennstennen

4. PAPERS SOfIWEI ..ottt sttt ettt es et sh ettt st be e st sn st sb e
4.1. Operating SyStem INENfACEcovieriieeirei et e
4.1.1.GENENIC UNIX ..ottt et st st

BLL2. LINUX ctitieieeteeeee ettt eeres e e s s et e teb e e ses st b aesrenneseeanenes

4. 2. PONT ACCESS ...covteiiereeteienient et erert et st et et et bes et er e e esan e sae st sae s sasa s e aranas

4.3 BaTIE INEEITACE ..ot ee e e eeete e eeae s s erae e e ssavessstaesssnsressrsraaests

4.3.1.Barie @NQUEUE () oottt

A.3.2.BaTIE D_WALE () ciovriieieeeriene it ceeetteeee s e eteevee s eenseeenesrcessasnesseaneass

4.3.3.BaATE D_WAIEVEC L) ittt et erree e erae e

5. Conclusion

O N AN

10
12
14
15
15
16
16
18
18
19
20
23

Abstract

There are a lot of 386/486/Pentium-based persona computers (PCs) out there. They are
affordable, reliable, and offer good performance. Thus, it is only natural to think of networking
multiple PCs to create a high-performance parallel machine — the problem is that conventional
networking systems cannot provide low latency synchronization and communication. Low
latency alows fine grain parallelism; the longer the latency, the fewer the programs that can
achieve good speedup through use of parallelism.

Typical parallel machines constructed using PC networks (e.g., PVM software using Ether-
net hardware) generally have latencies between 0.001s and (.1s. Even the *best”
commercially-available parallel computers can do no better than a latency corresponding to the
time to execute hundreds to thousands of floating-point operations. In contrast, PAPERS
(Purdue’s Adapter for Parallel Execution and Rapid Synchronization) provides a latency
corresponding to execution of just afew floating-point operations. Despite this, PAPERS can be
implemented at a cost of less than $50/PC, including cables.

¥ This work was supported in pan by the Office of Naval Research (ONR) under grant number
NO00014-91-J4013 and by the National Science Foundation (NSF) under award number
9015696-CDA.

Page 1

March 7, 1994 PAPERS

1. Theory of Operation

The reason PAPERS can achieve such low latency is that it is not a conventiona network.
Rather, it is a box implementing a specid type of fine-grain barrier synchronization that facili-
tates compile-time scheduling of paralel operations [Di092]: the full dynamic barrier func-
tionality described in [OKD90a). In fact, PAPERS implements communication only as a side-
effect of barrier synchronization.

Hardware barrier synchronization was first proposed in a paper by Harry Jordon [Jor78],
and has since become a popular mechanism for coordination of MIMD! parallel processes. A
barrier synchronizationis accomplished by processorsexecuting a w ait operation that does not
terminate until sometime after all PEs have signaled that they are waiting. However, while
building the 16 processor PASM (PArtitionable Simd Mimd) prototypein 1987 [SiN87], wereal-
ized that the hardware enabling a collection of conventional processors to execute both MIMD
and and instruction-level SIMD?2 programs was actually an extended type of barrier synchroniza-
tion mechanism. Generalizing this barrier synchronization mechanism resulted in several new
classes of barrier synchronization architectures, as reported in [OKD90] [OKD90a]. The new
barriers differ from previous conceptsin that:

[11 Rather than requiring al processorsto participate in every barrier, any arbitrary subset of
the processorscan participate in each barrier. This necessitates an efficient mechanism for
enqgueuing bit masks representing which processors participate in each barrier.

[2] The hardwareensuresthat dl participating processors are allowed to proceed after a wai t
at precisely the moment that the last processor signalsthat it is waiting. It isthistiming
property that makes our barrier mechanism able to use conventional processors to
efficiently implement fine-grain MIMD, SIMD, and VLIW? execution [CoD94a], as well as
providing an efficient target for compile-timeinstruction-level code scheduling [DiO92].

[3] Becausesubsetsof processorscan participate in different barriers, it is possible to partition
aparalel machineinto smaller paralel submachines. Although partitioning is supported by
al the mechanisms described in [OKD90] and [OKD90a], only the dynamic barrier func-
tionality described in [OKD90a] efficiently supportsarbitrary runtime partitioning.

The static barrier mechanism described in [OKD90] became popular aimost instantly. However,

the dynamic functionality of [OKD90a] required too much hardwareto implement mask enqueu-

ing and arbitrary partitioning.
The fina insight that allowed us to build PAPERS came late in 1993 [CoD9%4). It
redesigned the implementation of the dynamic functionality described in [OKD90a] so that fancy

1L MIMD refers to Multiple Instruction stream, Multiple Data stream; i.e., each processor independently
executes it own program, synchronizing and communicating with other processors whenever the parallel
algorithmrequires.

2 SIMD refers to Single Ingtruction stream, Multiple Data stream; i.e., a single processor with multiple
function units or ganized so that the same operation can he performed simultaneouslyon multiple data values.

3 VLIW refersto Very Long Ingruction Word; i.e., a generalization of SIMD that allows each function
unit to perform a potentially different operation on itsown data.

Page 2

March 7,1994 PAPERS

enqueuing logic and an associative mask matching memory werereplaced by a very simple static
barrier mechanism replicated for each processor. With this change, the enqueuing logic mutated
into a communication mechanism that efficiently implements the simultaneous broadcast of one
bit from each processor — very simple hardware, but very useful for general communications, as
well asfor determining future barrier masks.

Thus, PAPERS is the first implementation of the full dynamic barrier mechanism — it
surely will not be the last. The current PAPERS prototype will no doubt be followed by a series
of enhanced versions. The first prototype connects up to four PCs; later versions will be able to
connect at least 16 PCs, and will provide greater communications bandwidth without increasing
thelatency.

Unlike most research prototype supercomputers, PAPERS is a fully public domain
hardware and software design intended to be widely replicated.

The PAPERS systems will also serve as a software testbed for a prototype supercomputer
based on the same barrier synchronization technology — CARDBoard, the Compiler-oriented
Architecture Research Demonstration Board. CARDBoard differsfrom PAPERS in that it does
not center on using PCs as processing elements, but smply uses PCs as hosts for up to 256
CARDBoards, each incorporating four high-performance RISC processors. Thus, CARDBoard
will offer much higher performance than PAPERS (200 MFLOPS/board in the current design),
but requires much more complex and specialized hardware and software.

Page 3

March 7, 1994 PAPERS

2. PC Hardware

Although PAPERS provides very low latency synchronization and communication, it is
interfaced to PCs using only a standard parallel printer port and is implemented with a minimal
amount of external hardware. This section details the PC hardwareinvolved in use of PAPERS.

Throughout the following description, we will distinguish between stand-alone PCs and
PCs used as processors within aparallel machine by referring to thelater as ‘‘PEs’’ — processing
elements. The design presented here supports up to 4 PEs (PEO, PE1, PE2, and PE3); future
modificationswill scale the the design to larger configurations, probably up to 16 PEs.

2.1. PE Hardwarelnterface

No changes are required to make standard PC hardware into a PAPERS PE. All that is
needed is a standard parallel printer port and an appropriatecable. Although some of the PCs on
the market provide extended-functionality parallel ports that alow 8-bit bidirectiona data con-
nections, many PCs provide only an 8-bit dataoutput connection. To ensurethat PAPERS can be
used with any PC, PAPERS usesonly the functions supported by a standard unidirectional paral-
lel port.

But if thereis no parallel input port, how does PAPERS get data into the PC? The answer
lies in the fact that the 8-bit data output port is accompanied by a variety of input and output
status lines on two other ports associated with the 8-bit data output port. Counting these status
lines, there are actualy 12 bits of dataoutput and 5 bits of datainpuit.

The current PAPERS design uses 11 of the 12 available output lines and dl 5 of the input
lines. The pin/contact assignment for each of theselinesisgivenin Tables1 and 2. Tablellists
the pin numbers as they appear on the PE’s DB25 connector. Table 2 lists the contact numbers
for the signals as they appear on the PAPERS' 36-pin Centronics connector.

Page4

March 7, 1994

Table 1: DB2S5 Parallel Port Pin Assignments
Pin # Std. Name Use In PAPERS
Pin 1 Strobe U0 (User bit 0)
Pin 2 DO D (Data Bit Value)
Pin 3 D1
Pin 4 D2 IR (Interrupt Request)
Pin 5 D3 S (Barrier Sync. Request)
Pin 6 D4 BO (Barrier Mask Contains PEQ)
Pin 7 D5 B1 (Barrier Mask Contains PE1)
Pin 8 D6 B2 (Barrier Mask Contains PE2)
Pin 9 D7 B3 (Barrier Mask Contains PE3)
Pin 10 | Ack INT (Interrupt)
Pin 11 | Busy GO (Barrier Sync. Completed)
Pin 12 | PE 12 (PExI2 = PEyD such that y=(x+3)%4)
Pin 13 | Slctln I1 (PExI1 = PEyD such that y=(x+2)%4)
Pin 14 | AutoFD U1 (User bit 1)
Pin 15 | Error 10 (PEXIO = PEyD such that y=(x+1)%4)
Pin 16 | Init GI (GO Causes Interrupt)
Pin 17 | Slct CE (Connection Established)
Pin 18 | Gnd
Pin 18 | Gnd
Pin 19 | Gnd
Pin20 | Gnd
Pin21 | Gnd
Pin22 | Gnd
Pin23 | Gnd
Pin24 | Gnd
Pin25 | Gnd

PAPERS

Page5

March 7, 1994

Table 2 Centronics Connector Contact Assignments
Contact # Std. Name Use In PAPERS
Contact 1 Strobe U0 (User bit 0)
Contact 2 DO D (Data Bit Value)
Contact 3 D1
Contact 4 D2 IR (Interrupt Request)
Contact 5 D3 S (Barrier Sync. Request)
Contact 6 D4 BO (Barrier Mask Contains PEO)
Contact 7 D5 B1 (Barrier Mask Contains PE1)
Contact 8 D6 B2 (Barrier Mask Contains PE2)
Contact 9 D7 B3 (Barrier Mask Contains PE3)
Contact 10 | Ack INT (Interrupt)
Contact 11 | Busy GO (Barrier Sync. Completed)
Contact 12 | PE 12 (PExI2 = PEyD such that y=(x+3)%4)
Contact 13 | Slctln 11 (PExI1 = PEyD such that y=(x+2)%4)
Contact 14 | AutoFD U1 (User bit 1)
Contact 19 | Ground
Contact 20 | Ground
Contact 21 | Ground
Contact 22 | Ground
Contact 23 | Ground
Contact 24 | Ground
Contact 25 | Ground
Contact 31 | Init GI (GO Causes Interrupt)
Contact 32 | Error 10 (PEXIO = PEyD such that y=(x+1)%4)
Contact 36 | Slct CE (Connection Established)

2.2. PE Port Bit Assignments

PAPERS

Although the parallel port hardware is not atered to work with PAPERS, the parallée port
lines are not used as they would be for driving a Centronics-compatibleprinter. Thus. it is neces-
sary to replace the standard parallel port driver software with adriver designed to interact with

Page 6

March 7,1994 PAPERS

PAPERS. Toward thisend, it is critical to understand which port addresses, and bits within the
port registers, correspond with each PAPERS signal .

There are three port registers associated with a PC parallel port. These ports have I/O
addressescorrespondingto the port base address (henceforth, called **PortBase™) plus0, 1, or 2.
Typically, PortBase will be one of 0x378, 0x278, or 0x3bc, corresponding to MS-DOS printer
namesLPT1:, LPT2:, and LPT3:. Check the documentation for your PC system to determine the
appropriatePortBase valuefor the parald port that you are using astheinterfaceto PAPERS.

The bit assignments for the first port register, PortBase + 0, are listed in Table 3. This
register is used to send PAPERS the information used in each barrier synchronization. Notice
that bit 1 is currently unassigned, but should be set to 0.

Table3: PortBaset 0 Bit Assignments

Bit Name Use In PAPERS

bit7 | D7 B3 (Barrier Mask Contains PE3)

bit6 | D6 B2 (Barrier Mask Contains PE2)
bit5 | DS B1 (Barrier Mask Contains PE1)
bit4 | D4 BO (Barrier Mask Contains PE())
bit3 | D3 S (Barrier Sync. Request)

bit2 | D2 IR (Interrupt Request)

bit1 | D1 0 (reserved for future use)

bit0 | DO D (Data Bit Value)

The second port register, PortBase+ 1, is used to receive information from PAPERS. Bit
assignmentsfor thisregister aregiven in Table 4. The arrangement of bits within this register is
the result of the fact that PCs usually can generate an interrupt signal when Ack is set; the inter-
rupt line must be the Ack signal. The three remaining contiguous bits of the register are thus
designated as the data input from other PEs. Thisleaves bit 7 asthe GO signal — the bit tested
to determineif synchronizationhas been achieved. It happensthat the sense of bit 7 isinverted
on the port; the PAPERS hardware compensates for this so that a port read seesthe GO bit asal
when the barrier hasfired.

March 7, 1994

Table 4: PortBase + 1 Bit Assignments
Bit Name Use In PAPERS
bit 7 | Busy GO (Barrier Sync. Completed)
bit6 | Ack INT (Interrupt)
bit5 | PE 12 (PExI2 = PEyD such that y=(x+3)%4)
bit4 | Slctln I1 (PExI1 = PEyD such that y=(x+2)%4)
bit3 | Error 10 (PExIO = PEyD such that y=(x+1)%4)
bit 2 | unused
bit 1 | unused
bit 0 | unused

PAPERS

The third port register, PortBase + 2, is used by PAPERS only for output bits that change vaue
relatively rarely — the software does not accessthis register in the courseof executing atypical
barrier synchronization. In other words, this register is used for the **moda** information out-
lined in Table 5. Although this discussion refersto the signals as they arelisted in Table 5, the
port actually inverts the sense of bits 3, 2, 1, and O; compensation for this inversion is done (by
XOR with 0xf) inside the lowest-level PAPERS port driver.

Table5: PortBase * 2 Bit Assignments

Bit Name Useln PAPERS

bit 7 | unused

bit6 | unused

bit5 | unused

bit4 | IntEn |E (Interrupt Enable)

bit3 | Slct CE (Connection Established)
bit2 | Init GI (GO Causes Interrupt)

bit 1 | AutoFD | U1 (User bit 1)

bit0 | Strobe U0 (User bit 0)

Part of the moda information involves the control of interrupts. Norma operation of
PAPERS does not require interrupts. However, PAPERS does support the use of interrupts for
two separatetypesof events:

March 7, 1994 PAPERS

[11 If the operating system on one PE determines that the other PEs should be informed of
someevent, it can interrupt any subset or all of the PEs by setting its IR bit (see Table 3). If
any PE assertsits IR bit, then theINT bit (see Table 4) of each PE in this PE's barrier mask
will be 1 and the GO bit (see Table 4) will be 0. Notice that the PE setting its IR bit will
only interrupt itself if the corresponding bit isonin its barrier mask.

[2] If desired, the PAPERS barrier hardware can be set to interrupt this PE when PAPERS
determines that this PE's barrier has been satisfied. This response can be independently
enabledldisabled by each PE by setting its Gl bit. If Gl is 1, then completion of abarrieris
signaled by setting both the INT and GO hitsto 1. If Gl is0, then only the IR bit can cause
INT to be 1.

The setting of the INT bit (see Table 4) happens whether the PE has enabled interrupts or not; an
actual processor interrupt occursonly if the IE bitis set to 1. Useof true processor interruptscan
be problematic due to conflicts with other devices sharing the same interrupt vector (e.g., the
same interrupt is often generated by both the parallel port and a sound card). Thus, it may be
preferablefor PEs to use polling to detect these "*interrupt™ conditions.

There are three other moda bits in port PortBase + 2. These hits are not actualy used by
the logic in PAPERS, but rather are used to drive an informational status display. The CE bit is
used to indicate that the PAPERS hardware has been properly connected to the PE. The other
two bits are ""user-defined status™ bits that can be used in any way desired, however, the sug-
gested useisto encode the function that the PAPERS hardwareis being used to implement. This
useis summarizedin Table 6.

Table6: Meaning Of Ul And UO Signals

Ul U0 Meaning

PAPERSIs not currently in use

PAPERS:I s being used to barrier synchronize

PAPERSI s being used to transmit user data

Rl O] ©
=N =N Ll =)

PAPERSIs being used by the operating system

3 PAPERSHardware

Thus far, this document has focussed on the way in which PC hardware interacts with
PAPERS. In this section, we briefly describe the hardware that implements PAPERS itself.
Noticethat thereis, in fact, very little hardwareinside PAPERS — which is why PAPERS s so
inexpensive to build and fast to operate.

March 7,1994 PAPERS

3.1. Logic Design

The active part of the PAPERS hardware follows the basic design presented in [CoD94],
and isimplemented using four small PLASs (programmablelogic arrays) — one for each PE. For
each PE, only two signals are actively derived from the signals fed into the PAPERS box: the
GO and INT signals (see Table 4). The other threeinput signals for each PE (12, I1, and I0) are
literally wiresdirectly connected to the D outputsof the other PEs.

Although the four PLAS are connected differently, their internal logic is the same and the
differencesin the connections follow a simple pattern. The following description refersto the
PLA for PEa with respect to PEb, PEc, and PEd. Given aPE number for a, the PE numbersfor b,
¢, and d can be derived by: b=(a+1)%4, c=(a+2)%4, d=(a+3)%4. Externally, each PLA appears
asshownin Figure 1.

Figurel: PLA Pin Layout

PAL22VI10
CLK | 1 24 | VCC

PEaBb | 2 23 | PEaBa
PEaBc | 3 22 | GO
PEaBd | 4 21 | PEaGI
PEbBa | 5 20 | PEaGO
PEcBa | 6 19 | PEdS
PEdBa | 7 18 | PEcS
PEalR | 8 17 | PEbS
PEbIR | 9 16 | CLKRST
PECIR | 10 15 | CLKSET
PEdIR | 11 14 | PEaINT

GND | 12 13 | PEaS

Most of the PLA’s input signals are taken directly from the PE paradle ports, however,
there are afew surprises. The basic barrier logic tree described in [CoD94] derives the CLKSET
signal — it does not directly derive PEaGO or even GO. This is because when the barrier
becomes satisfied we want to latch a 1 bit into GO; thus, 1 is hardwired on the input to the GO
register and the CLKSET signal is used as a clock to cause 1 to be sampled. This use requires
CLKSET to be externally wired to the CLK input. When all PEs involved in a synchronization
have read their input data, the (asynchronous) reset of the GO register is internaly triggered by
CLKRST.

The difference between the internal GO register and the PEaGO output signal is that inter-
rupts can change the meaning of the GO bit. In essence, the PEaGO and PEaINT signals are
really encoding a two bit PAPERS hardwarestate, asoutlinedin Table 7.

Page 10

March 7, 1994 PAPERS

Table7: Meaning Of PEaGO And PEalNT Signals

PEaGO PEalNT Meaning

0 0 Nointerrupt, synchronization not achieved
1 0 Nointerrupt, synchronization achieved
0 1 Interrupt for all PEs

(given priority over achieving synchronization)

1 1 Interrupt for synchronization achieved

The PALASM code for the PLA follows. No attempt has been made to simplify these
equations, since PALASM automatically minimizes the PLA complexity.

PIN Declarations ---------------

PI'N 1 CLK COVBI NATORI AL
PI'N 2 PEaBb COVBI NATORI AL
PI'N 3 PEaBc COVBI NATORI AL
PI'N 4 PEaBd COVBI NATORI AL
PI'N 5 PEbBA COMBI NATCRI AL
PI'N 6 PEcBa COMBI NATCORI AL
PI'N 7 PEdBa COMVBI NATORI AL
PI' N 8 PEaIR COMBI NATCRI AL
PI'N 9 PEbIR COVBI NATORI AL
PI'N 10 PECIR COMBI NATCRI AL
PI'N 11 PEAIR COMBI NATORI AL
PI'N 12 GN\D

PI'N 13 PEas COMVBI NATORI AL
PI'N 14 PEal NT COVBI NATCORI AL
PI'N 15 CLKSET QCOMVBI NATORI AL
Pl N 16 CLKRST QCOMVBI NATCRI AL
PI'N 17 PEbs COMVBI NATORI AL
PI'N 18 PECs COVBI NATORI AL
PI' N 19 PEds COVBI NATORI AL
PI'N 20 PEaGO COMVBI NATCORI AL
PI'N 21 PEaGI COMVBI NATORI AL
PI'N 22 GO REG STERED
PI'N 23 PEaBa COMVBI NATORI AL
PI'N 24 vcC

NODE 1 GLOBAL

Page 11

March 7, 1994 PAPERS

v - - Bool ean Equati on Segment ------
EQUATI ONS

PEaINT = ((PEaIR*PEaBa) +
(PEbl R*PEbBa) +
(PECIR*PEcBa) +
(PEAIR*PEdBa) +
(GO*PEaGI))

GO = VCC

GLOBAL.RSTF = CLKRST

CLKSET = ((/PEaBa+ (PEaBa*PEaS)) *
(/PEaBb+ (PEbBa*PEbS)) *
(/PEaBc+ (PEcBa*PEcS)) *
(/PEaBd+ (PEdBa* PEAS)) *

/GO)

((/PEaBa+ (PEaBa*/PEaS)) *
(/PEaBb+ (PEbBa* /PEbS)) *
(/PEaBc+ (PEcBa*/PEcS)) *
(/PEaBd+ (PEdBa* /PEdS)) *
GO)

CLKRST

/PEaGO = ((PEaINT*/((PEaIR*PEaBa) +
(PEbl R* PEbBa) +
(PECIR*PEcCBa) +
(PEAIR*PEdBa))) +

(/PEaINT*GO))

Noticethat, if desired, theentire PAPERS design aso could beimplemented either by asin-
glelarger PLA or by a manageable number of simple gate-level chips. We suggest that using one
or morelarger PLAS (e.g., Xilinx parts) is probably the most effective way to scale PAPERS to
handlelarger numbersof PEs.

3.2. Packaging

The prototype PAPERS unit is housed in a naturd finish red oak box that is 11.75" wide by
6" deep by 6" tal, with asimple 3" steel handle protruding by 1" on theleft side (to aid in carry-
ing the system for demonstrations a remote sites). Inside the box, on the left side there is one 4"
by 6" wire-wrapped card containing the PLAs and LED driving circuitry; on theright sideisa5

Page 12

March 7, 1994 PAPERS

volt switching power supply (although a maximum of less than 1.5 amps is needed, we used a
supply rated at 3 amps). The cover of the caseis asimple piece of 0.25" thick oak, attached by
velcro and perforated above the power supply to alow convection cooling. Behind the circuit
card on the back of the box are four panel-mounted Centronics connectors — so that the cables
used to connect PEs to PAPERS are standard PC parallel printer cables. The AC cord enters the
box from behind the power supply. In front of the circuit card, rear-mounted on the front panel,
isanarray of LEDs used as astatusdisplay for the PEs connected to PAPERS.

Strictly speaking, thereis no need to have any display connected to the PAPERS hardware.
Indeed, eliminating the display can greatly smplify the hardware because it eliminates the need
for LED drivers and perhaps even eliminates the separate power supply (the PLAs might be
powered by the parallel port, but there is not enough power to drive the LEDS). However,
PAPERS s aresearch prototype: theLEDsmakeit alot easier to see what is happening... and to
debug the system.

The prototype LED display consists of 40 LEDs arranged in 4 columns, each column
representing the status of one PE. These columns are numbered in decreasing order from left to
right (as the LEDs are normdly viewed), i.e., PE3 PE2 PE1 PEO. The signal descriptions are
givenin Table 6. Noticethat none of the LEDs displays a derived signal — thisis because the
two derived signals change value only momentarily, so fast that the state change would not be
perceptible.

Display Position = Label On The PAPERS Unit PAPERS Signal

Green LED 5 PE Connection Established CE
Green LED 4 Interrupt Request IR
Green LED 3 User-defined Status Bit 1 U1
Green LED 2 User-defined Status Bit () uo
Green LED 1 Data Bit Value D
Green LED 0 Barrier Sync. Request S

Amber LED 3 Barrier Mask Contains PE3 B3

Amber LED 2 Barrier Mask Contains PE2 B2

Amber LED 1 Barrier Mask Contains PE1 Bl

Amber LED 0 Barrier Mask Contains PEO BO

Of course, there are some active components used for more than driving LEDs. Thecritical
portion of the current version of PAPERS is implemented by four identical PLAs. Although, in
theory, Figure 1 combined with the rules given earlier suffices to completely specify how the
PLAs are connected to the PE signals, it isn't exactly easy to see how the chips get wired. Thus,
Figure 2 givesthe pinoutsfor al four PLAS.

Page 13

March 7, 1994

PAPERS

Figure2: Specific Pin Assignmentsfor All Four PLAs

FEO PLA
CLK | 1 24
PEOB1 | 2 23
PEOB2 | 3 22
PEOB3 | 4 21
PEIBO | § 20
PE2BO | 6 19
PE3BO | 7 18
PEOR | 8 17
PEIIR | 9 16
PE2IR | 10 15
PE3IR | 11 14
GND | 12 13
PE2 PLA
CLK 1 24
PE2B3 2 23
FE2B0 3 22
PE2B1 4 21
PE3B2 5 20
PEOB2 6 19
PEIB2 7 18
PE2IR 8 17
PE3IR 9 16
PEOIR 10 15
PEIIR 11 14
GND 12 13
e —|

4. PAPERS Software

VCC

PECGI

PE3S
PE2S
PEIS
CLKRST
CLKSET
PEOINT

VCC
PE2B2
GO
PE2GI
PE2GO
PEIS
PEOCS
PE3S
CLKRST
CLKSET
PE2INT
PE2S

CLK
PE1B2
PE1B3
PE1BO
PE2B1
PE3B1
FEOB1
PEIIR
PE2IR
PE3IR
PEOIR

GND

CLK
PE3BO
PE3B1
PE3B2
PEOB3
PE1B3
PE2B3
PE3IR
PEOR
PEILIR
PE2IR

GND

PE1 PLA

24
23
22
21
20
19
18
17
16
15
14
13

O 00 3 DN W b W N

—
N =

PE3PLA

24
23
22
21
20)
19
18
17
16
15

O 0 3 & h bW N

— =
-0

—
N

13

VCC
PEIB1

PE1G|
PE1GO

PE3S
PE2S
CLKRST
CLKSET
PELINT
PEIS

VCC
PE3B3
GO
PE3GI
PE3GO
PE2S
PEIS
PECS
CLKRST
CLKSET
PE3INT
PE3S

Although PAPERS will be supported by a variety of softwaretoolsincluding public domain
compilersfor parale dialectsof both C and Fortran [Di092] [CoD94a], in this document we res-
trict our discussion to the most basic hardware-level interface. The code given is written in C
(the ANSI C-based dialect accepted by GCC) and is intended to be run under a unix-derived
operating system. However, this interface software can be adapted to most existing (sequential)
language compilersand interpreters under nearly any operating system.

Page 14

March 7, 1994 PAPERS

The following sections discuss the operating system interface, PAPERS port access, and a
simple barrier interface.

4.1. Operating System Interface

Although it would certainly be possible to implement the PAPERS software interface as
part of an operating system's kernel, it is more efficient for an ordinary user program to directly
accessthe ports connected to the PAPERS hardware. Although the ports can be directly accessed
under most operating systems, here we focuson what it takes for a program under generic UNIX
or Linux to gain port access.

4.1.1. GenericUNIX

In general, UNIX allows user processesto have direct access to al I/0 devices. However,
only processes that have a sufficiently high 1/0 priority level can make such accesses. Further,
only a priviledged process can increaseits I/O priority level — by calling i opl (). Thefollow-
ing C code suffices:

if (iopl(3)) {
/* iopl failed, inplying we were not priv */
exit (1);

}

But beware! This call grantsthe user program accessto all I/O, including a multitude of unre-
lated ports.

In fact, thiscall alows the processto executeinstructionsenabling and disabling interrupts.
By disabling interrupts, it is possible to ensurethat al processorsinvolvedin a barrier synchroni-
zation act precisely in unison; thus, the number of port operations (barrier synchronizations)
needed to accomplish PAPERS operations can be dramatically reduced. A basic barrier syn-
chronization takes at |east four port operationswhen timing cannot be ensured, but only two port
operations with interrupts disabled. However, background scheduling of DMA devices (e.g.,
disks) and other interference makesit hard to be sure that a unix will provide precise timing con-
straints even when interrupts are disabled, so wedo not advocate disablinginterrupts.

Even so, performance of the barrier hardware can be safely improved by causing unix to
give priority to a process that is waiting for a barrier synchronization. This improves perfor-
mance becauseif any one PE is off running a process that has nothing to do with the synchroniza-
tion, then al PEs trying to synchronize with that PE will be delayed. The priority of a
priviledged unix process can increased by acal like:

/* set priority just belowcritical C5 code */
ni ce(-20);

Theargument to ni ce () should be a negative value between -20 and -1.

Page 15

March 7, 1994 PAPERS

412. Linux

Although Linux supports the unix interface described in the previous section, it also pro-
vides a more secure way to obtain accessto the YO devices. The i oper m() functionalowsa
priviledged processto obtain accessto only the specified port or ports. The C code:

if (iopermPortBase, 3, 1)) {
/* like iopl, failure inplies we were not priv */
exit (1);

}

Would obtain accessfor 3 ports starting at a base port addressof PortBase.

Because the 386/486/Pentium hardware checks port permissions, this security does not des-
troy port YO performance; however, checking the permission bits does add some overhead. For a
typical PC parallel printer port, the additional overhead is just a few percent, and is probably
worthwhilefor user programs.

42 . Port Access

Although Linux and most versionsof unix provide routines for port access, these routines
often provide a built-in delay 1oop to ensurethat port states do not changefaster than the external
device can examine the state. Consequently, the PAPERS support code uses its own direct
assembly language I/O calls. Thecodeis:

inline unsigned int
inb(unsigned short port)
{
unsi gned char _v;
del ay () ;
—asm__ __volatile ("inb %wl,%b0o"

.u:au (_V)
.wgw (port), "0 (0));

return _v;

March 7, 1994 PAPERS

inline void
outb (unsigned char val ue,
unsi gned short port)

del ay () ;

—asm__ __volatile ("outb %b0, $wl"
/* no outputs */
ary (Val Ue), "an (port));

}
However, these port YO calls are " sanitized for your protection™ by the following PAPERS-

specific macro definitions. Notice that the modal port inverts its four output lines, the
P_MODE () macroincludes an exclusive or operationto compensatefor this. Thecodeis:

/* Stuff concerning the regul ar output port ...
*/
#defi ne P_OUT(x) \

outb (((unsi gned char) (x)), ((unsigned short) PortBase))
#define B3 0x80 /* Barrier Mask Contains PE3 */
#define B2 0x40 /* Barrier Mask Contains PE2 */
#def i ne B1 0x20 /* Barrier Mask Contains PE1 */
#defi ne BO 0x10 /* Barrier Mask Contains PEO */
#define S 0x08 /* Barrier Sync. Request */
#define IR 0x04 /* Interrupt Request */
#define D 0x01 /* Data Bit Val ue */
/* Stuff concerning the input port. ..
*/

#define P_IN() \
inb((unsigned short) (PortBase + 1))

#define QO 0x80 /* Barrier Sync. Conpl eted */

#define I NT 0x40 /* Interrupt */

#define 12 0x20 /* PExD such that x=(iproc+3)&3 */

#define 11 0x10 /* PExD such that x=(iproc+2)&3 */

#define 10 0x08 /* PExD such that x=(iproc+1)&3 */
Page 17

March 7,1994 PAPERS

/* Stuff concerning the nodal output port...
*/
#defi ne P_MODE (x) \
outb(((unsigned char) ((x) ~ (U0 | Ul | A | CE)), \
((unsi gned short) (PortBase + 2)))
#define | E 0x10 /* Interrupt Enable */
#def i ne CE 0x08 /* Connection Established */
#define A 0x04 /* Go Causes Interrupt */
#defi ne Ul 0x02 /* User bit 1 */
#defi ne WO 0x01 /* User bit 0 */

4.3. Barrier Interface

The basic barrier interface consistsof C inline routinesserving three primary functions.
Thefirst iscalled enqueue (), and is used to enqueue a new barrier mask that will be used by
al barrier operations until a new mask is enqueued. The second function is performed by
p_wait (). It barrier synchronizes using the current barrier mask. The third is much like the
second, but also communicates one bit of data from each PE. It is caled p_waitvec (),
becauseit barrier synchronizes and then returns a vector constructed using one bit from each PE.

43.1. Barrier enqueue()

The barrier enqueue operation consists primarily of sending PAPERS the requested barrier
pattern, however, there is more to this than one might expect. One detail is that if thereis no
change in the mask, we have nothing to do. Anocther detail is that the mask pattern cannot be
changed until everyone who was synchronizingwith it is donereading their data. Thisis because
our D hit is not buffered for each PE that might read it, but is directly examined by other PEs.
Finaly, thereis the detail that enqueue () should set specia variables so that other routines
can cheaply obtain the current barrier mask as either the mask itself, | ast - nask, or as the
mask shifted for P_OUT (), last_pout. Thecodeis:

extern inline void
enqueue (register barrier nask)
{

/* |f appropriate, enqueue the new barrier pattern given by
mask. Note that mask represents PEk by bit k -- not quite
the way that the port hardware works.

*/

Page 18

March 7,1994 PAPERS

#ifdef PARANO D
if (mask & "ALL- MASK) {
/* Bits are on for nonexi stant PEs */
p_error {"engueue Of barrier containing nonexistant PE");

#endi f

/* 1s mask different fromwhat we had? */
if (mask t= | ast-nmask) {
/* If last-nask had sonebody beside us... */
if (last-mask & "QOUR- MASK) ¢
/* Wit for barrier reset */
while (P_IN() & QO;

/* Updat e mask i nfo & enqueue mask with PAPERS */
P_OUT(last_pout = ((last-mask = mask) << ¢));

432 Barrier p_wait ()

Thebasic barrier wait operationis p_wait (), ascoded below. However, thereis aminor
optimization in that thereis no need to use the PAPERS hardware to synchronize with yourself.
Thus, there aretwo minor variants of this operation. Ordinary user code would use p_wait (),
however, _p_wait () isused withinlibrary routines where we already know that we are syn-
chronizing with at |east one other PE.

extern inline void
_p_wait (register portdata p)

{
/* Sinple barrier synchroni zation on p. */

while (P_IN() & GO; /* wait for barrier reset */
P_OUT(p | 8); /* synchroni ze on p */
while (1 (P_IN() & GO)); /* wait for barrier GO signal */
P_OUT(p) ; /* reset barrier */

Page 19

March 7, 1994 PAPERS

extern inline void
p_wait ()
{

/* Sinple barrier synchronization on current barrier.

Not hing to do unl ess we are not al one...
*/
if (last-nmask & "QUR- MASK) {
_b_wait (last_pout) ;

433 Barrier p_waitvec{)

The p_wait vec() and _p_wait vec() routinesare very similar to the p_wait ()
and _p_wait () routines, however, these routines transmit one bit of data from each PE as a
side-effect of the barrier synchronization. There are four new complications introduced by this
data transmission.

Thefirst is that the bit transmitted by this PE is not made available to this PE through the
P- I N() value. Thus, this bit must be determined directly from the local variable, as seen in
p_waitvec ().

A second problemliesin the fact that the GO signal is better driven than the data bits. This
can result in adlight delay betweenthe P- 1 N{) GO bit becoming 1 and the data bits achieving
their final values. This is remedied within _p_waitvec () by simply issuing one more
P- I N() after the GO bit has become 1. Future versions of PAPERS will hopefully correct this
problem in hardware.

The third complication is that the data bits that correspond to each PE in the P-1N()
value are not positioned such that PEk is represented by bit k. This problem is solved using a
PE-dependent |ookup tableto re-map the bitsto their standard positions.

Finally, thereis the problem that all input bits have values, but only bits corresponding to
PEs that synchronized with usarevalid. Thus, p_waitvec{) ensuresthat the bitsfor dl PEs
that did not participatein the barrier are set to 0.

Including the handling of these problems, the codeis:

Page 20

March 7, 1994 PAPERS

extern inline portdata
_pb_waitvec(register portdata b)
{
/* Sinple barrier synchronization collecting data. It is
assuned that b is either last_pout or last_pout | D
dependi ng on whether we want to send a 0 or 1 bit....
Note that the return is the raw (unmapped) port i nput.
*/
regi ster portdata X;

while (P_IN() & GO; /* wait for barrier reset */
P_OUT(b | S); /* synchroni ze &« send data bit */
while (I (P_IN() & GO)); /* wait for barrier GO signal */
X = P_IN(); /* get data bit vector (12,I11,10)
P_OUT (b) ; /* reset synchronization */
return(x); /* return data bit vector */

}

extern inline barrier
p_waitvec (register int fl ag)
{

/* Do a barrier wait sending flag and return the collected flag

vector. This is not super efficient, but is an easier
interface than using the raw p_oUT() and P_IN() calls

directly. Notice that the flag vector bit positions that

correspond to PEs not in the current barrier are O.
*/
regi ster barrier mask = (flag ? QJR-MASK : 0);

/* If we're not the only PE in our nmask, we have work to
do... but if we are al one, we are done.
*/
if (last-nmask & -CQUR- MASK) {
/* Must gather a bit fromeach PE... */

register barrier b - (flag ? (last_pout | D) : last_pout);

regi ster portdata X;

/* Translate {12,11,10} into a standard mask */
mask |= (IToMask(_p_waitvec (b)) & |ast-nask):;

March 7, 1994

/* Return constructed bit
return(mask);

mask. . .

*/

PAPERS

March 7,1994 PAPERS

5. Conclusion

In this paper, we have presented the complete design of PAPERS, a very simple hardware
adapter to allow multiple persona computersto act asone or more fine-grain parallel computers.
To support parallel processing, the PAPERS hardware providesfull dynamic barrier synchroniza-
tion, simultaneous broadcast of one data bit from each processor to every other processor, and a
variety of maskable interrupt capabilities.

Perhaps the best thing about PAPERS s that it does not require any specia interface to the
processors; it is connected to ordinary personal computers (or workstations) by their standard
Centronics paralel printer ports. However, this aso is the worst thing about PAPERS, because
these ports often limit performance. Basically, the problem is that many ports are deliberately
designed to insert enough wait states so that very slow printer interfaces will be able to sample
the output signal without the need for a software delay loop. The speeds of basic operations on
PAPERS, assuming al10' cable, are:

Operation PAPERSSpeed Speed Using Slow Port
Dynamic barrier sync. 0.2us 14.0ps
with arbitrary PEs
Multiple broadcast 0.4us/byte 28.5us/byte
communication op.
ANY conditional 0.2us 14.0us
Random communication 1.6pus/byte 114.0us/byte
involving al PEs

As the table shows, if your machine doesn't have a dow port, PAPERS is a dream come
true.... However,if you have aslow port, you might want to either (1) get a better parallel port or
(2) wait for usto build aversion of PAPERSthat directly interfacesto the PC bus.

March 7,1994 PAPERS

References

[CoD9%4]

[CoD94a]

[Di092]

[Jor78]

{OKD90]

[OKD90a]

[SiN87]

W. E. Cohen, H. G. Dietz, and J. B. Sponaugle, " Dynamic Barrier Architecture For
Multi-Mode Fine-Grain Parallelism Using Conventional Processors; Part |: Barrier
Architecture,"* submitted to 1994 Int'l Conf. on Parallel Processing.

W. E. Cohen, H. G. Dietz, and J. B. Sponaugle, ** Dynamic Barrier Architecture For
Multi-Mode Fine-Grain Parallelism Using Conventional Processors; Part II; Mode
Emulation,” submitted to 1994 Int'l Conf. on Parallel Processing.

H. G. Dietz, M.T. O'Keefe, and A. Zaafrani, ** Static Scheduling for Barrier MIMD
Architectures,”* The Journal of Supercomputing,vol.5, pp. 263-289, 1992.

H. F. Jordon, "*A Specia Purpose Architecture for Finite Element Anaysis," Proc.
Int'l Conf. on Parallel Processing, pp. 263-266, 1978.

M. T. O'Keefe and H. G. Dietz, *"Hardware barrier synchronization: static barrier
MIMD (SBM)," Proc. of 1990 Int'| Conf. on Parallel Processing, St. Charles, IL,
pp. | 35-42, August 1990.
M. T. OKeefe and H. G. Dietz, ""Hardware barrier synchronization: static barrier
MIMD (DBM)," Proc. of 1990 Int'l Conf on Parallel Processing, St. Charles, IL,
pp- 143-46, August 1990.

T. Schwederski, W. G. Nation, H. I. Siegel, and D. G. Meyer, " The Implementation
of the PASM Prototype Control Hierarchy," Proc. of Second Int'l Conf on Super-
computing, pp. 1418-427, 1987.

Page 24

	Purdue University
	Purdue e-Pubs
	3-1-1994

	PAPERS: Purdue's Adapter for Parallel Execution and Rapid synchronization
	H. G. Dietz
	T. Muhammad
	J. B. Sponaugle
	T. Mattox

