
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1994

PAPERS: Purdue's Adapter for Parallel Execution
and Rapid synchronization
H. G. Dietz
Purdue University School of Electrical Engineering

T. Muhammad
Purdue University School of Electrical Engineering

J. B. Sponaugle
Purdue University School of Electrical Engineering

T. Mattox
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Dietz, H. G.; Muhammad, T.; Sponaugle, J. B.; and Mattox, T., "PAPERS: Purdue's Adapter for Parallel Execution and Rapid
synchronization" (1994). ECE Technical Reports. Paper 180.
http://docs.lib.purdue.edu/ecetr/180

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages

PAPERS: PURDUE'S ADAPTER FOR

PARALLEL EXECUTION AND RAPID
SYNCHRONIZATION

TR-EE 94-1 1
MARCH 1994

PAPERS: Purdue's Adapter for

Parallel Execution and Rapid synchronizationi

H. G. Dietz, T. Muhammad, J. B. Sponaugle, and T. Muttox

Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayetre, IN 47907- 1285
hankdQecn . purdue . edu

Table of Contents

1 . Theory of Operation ...
2 . PC Hardware ..

2.1. PE Hardware Interface ...
2.2. PE Port Bit Assignments ..

3 . PAPERS Hardware ..

3.1. Logic Design ..

3.2. Packaging ...

4 . PAPERS Software ..

4.1. Operating System Interface ..

4.1.1. Generic UNIX ..

4.1.2. Linux ..

4.2. Port Access ...

4.3. Barrier Interface ...

4.3.1. Barrier enqueue () ..

4.3.2. Barrier p-wait () ...

4.3.3. Barrier p-waitvec () ...

... . 5 Conclusion

Abstract

There are a lot of 3861486lPentium-based personal computers (PCs) out there. They are

affordable, reliable, and offer good performance. Thus, it is only natural to think of networking
multiple PCs to create a high-performance parallel machine - the problem is that conventional

networking systems cannot provide low latency synchronization and communication. Lou.

latency allows fine grain parallelism; the longer the latency, the fewer thc' pn)g;ams that can

achieve good speedup through use of parallelism.

Typical parallel machines constructed using PC networks (e.g., PVM software using Ether-
net hardware) generally have latencies between 0.001s and 0.1s. Even the "best"

commercially-available parallel computers can do no better than a latency corresponding to the

time to execute hundreds to thousands of floating-point operations. In contrast, PAPERS

(Purdue's Adapter for Parallel Execution and Rapid Synchronization) provides a latency

corresponding to execution of just a few floating-point operations. Despite this, PAPERS can be

implemented at a cost of less than %50/PC, including cables.

' This work was supported in pan by the Office of Naval Research (ONR) under grant number

N00014-91-J-4013 and by the National Science Foundation (NSF) under award number

9015696-CDA.

Page 1

March 7, 1994 PAPERS

1. Theory of Operation

The reason PAPERS can achieve such low latency is that it is not a conventional network.

Rather, it is a box implementing a special type of fine-grain barrier synchronization that facili-

tates compile-time scheduling of parallel operations [Di092]: the full dynamic barrier func-
tionality described in [OKD90a]. In fact, PAPERS implements communication only as a side-

effect of barrier synchronization.

Hardware barrier synchronization was first proposed in a paper by Harry Jordon [Jor78],

and has since become a popular mechanism for coordination of MIMD~ parallel processes. A

barrier synchronization is accomplished by processors executing a w a i t operation that does not

terminate until sometime after all PEs have signaled that they are waiting. However, while
building the 16 processor PASM (PArtitionable Simd Mimd) prototype in 1987 [SiN87], we real-

ized that the hardware enabling a collection of conventional processors to execute both MIMD

and and instruction-level SIMD~ programs was actually an extended type of barrier synchroniza-

tion mechanism. Generalizing this barrier synchronization mechanism resulted in several new

classes of barrier synchronization architectures, as reported in [OKD90] [OKD90a]. The new
barriers differ from previous concepts in that:

[I] Rather than requiring all processors to participate in every barrier, any arbitrary subset of
the processors can participate in each barrier. This necessitates an efficient mechanism for

enqueuing bit masks representing which processors participate in each barrier.

[2] The hardware ensures that all participating processors are allowed to proceed after a w a i t

at precisely the moment that the last processor signals that it is waiting. It is this timing
property that makes our barrier mechanism able to use conventional processors to

efficiently implement fine-grain MIMD, SIMD, and V L I W ~ execution [CoD94a], as well as

providing an efficient target for compile-time instruction-level code scheduling [Di092].

[3] Because subsets of processors can participate in different barriers, it is possible to partition

a parallel machine into smaller parallel submachines. Although partitioning is supported by

all the mechanisms described in [OKD90] and [OKD90a], only the dynamic barrier func-

tionality described in [OKD90a] efficiently supports arbitrary runtime partitioning.

The static barrier mechanism described in [OKD90] became popular almost instantly. However,

the dynamic functionality of [OKD90a] required too much hardware to implement mask enqueu-

ing and arbitrary partitioning.

The final insight that allowed us to build PAPERS came late in 1993 [CoD94]. It

redesigned the implementation of the dynamic functionality described in [OKD90a] so that fancy

MIMD refers to Multiple Instruction stream, Multiple Data stream; i s . , each processor independently
executes it own program, synchronizing and communicating with other processors whenever the parallel
algorithm requires.

SIMD refers to Single Instruction stream, Multiple Data stream; i.e., a single processor with multiple
function units organized so that the same operation can he performed simultaneously on multiple data values.

VLlW refers to Very Long Instruction Word; i.e., a generalization of SIMD that allows each function
unit to perform a potentially different operation on its own data.

Page 2

March 7,1994 PAPERS

enqueuing logic and an associative mask matching memory were replaced by a very simple static

barrier mechanism replicated for each processor. With this change, the enqueuing logic mutated

into a communication mechanism that efficiently implements the simultaneous broadcast of one

bit from each processor - very simple hardware, but very useful for general communications, as

well as for determining future barrier masks.

Thus, PAPERS is the first implementation of the full dynamic barrier mechanism - it

surely will not be the last. The current PAPERS prototype will no doubt be followed by a series

of enhanced versions. The first prototype connects up to four PCs; later versions will be able to

connect at least 16 PCs, and will provide greater communications bandwidth without increasing

the latency.

Unlike most research prototype supercomputers, PAPERS is a fully public domain

hardware and software design intended to be widely replicated.

The PAPERS systems will also serve as a software testbed for a prototype supercomputer

based on the same barrier synchronization technology - CARDBoard, the Compiler-oriented
Architecture Research Demonstration Board. CARDBoard differs from PAPERS in that it does

not center on using PCs as processing elements, but simply uses PCs as hosts for up to 256

CARDBoards, each incorporating four high-performance RISC processors. Thus, CARDBoard

will offer much higher performance than PAPERS (200 MFLOPSJboard in the current design),

but requires much more complex and specialized hardware and software.

Page 3

March 7, 1994 PAPERS

2. PC Hardware

Although PAPERS provides very low latency synchronization and communication, it is

interfaced to PCs using only a standard parallel printer port and is implemented with a minimal

amount of external hardware. This section details the PC hardware involved in use of PAPERS.

Throughout the following description, we will distinguish between stand-alone PCs and

PCs used as processors within a parallel machine by referring to the later as "PEs' ' - processing
elements. The design presented here supports up to 4 PEs (PEO, PE1, PE2, and PE3); future

modifications will scale the the design to larger configurations, probably up to 16 PEs.

2.1. PE Hardware Interface

No changes are required to make standard PC hardware into a PAPERS PE. All that is
needed is a standard parallel printer port and an appropriate cable. Although some of the PCs on

the market provide extended-functionality parallel ports that allow %bit bidirectional data con-

nections, many PCs provide only an 8-bit data output connection. To ensure that PAPERS can be
used with any PC, PAPERS uses only the functions supported by a standard unidirectional paral-

lel port.

But if there is no parallel input port, how does PAPERS get data into the PC? The answer

lies in the fact that the 8-bit data output port is accompanied by a variety of input and output

status lines on two other ports associated with the 8-bit data output port. Counting these status

lines, there are actually 12 bits of data output and 5 bits of data input.

The current PAPERS design uses 11 of the 12 available output lines and all 5 of the input

lines. The pinlcontact assignment for each of these lines is given in Tables 1 and 2. Table 1 lists
the pin numbers as they appear on the PE's DB25 connector. Table 2 lists the contact numbers

for the signals as they appear on the PAPERS' 36-pin Centronics connector.

Page 4

March 7, 1994 PAPERS

Page 5

- -7-
-

March 7, 1994 PAPERS

2.2. PE Port Bit Assignments

Although the parallel port hardware is not altered to work with PAPERS, the parallel port

lines are not used as they would be for driving a Centronics-compatible printer. Thus. it is neces-

sary to replace the standard parallel port driver software with a driver designed to interact with

Table 2: Centronics Connector Contact Assignments

IR (Interrupt Request)

B1 (Barrier Mask Contains PEl)

Page 6

I0 (PExIO = PEyD such that y=(x+l)%4)

CE (Connection Established)

Contact 32

Contact 36

Error

Slct

March 7,1994 PAPERS

PAPERS. Toward this end, it is critical to understand which port addresses, and bits within the

port registers, correspond with each PAPERS signal.

There are three port registers associated with a PC parallel port. These ports have I/O
addresses corresponding to the port base address (henceforth, called "PortBase") plus 0, 1, or 2.
Typically, PortBase will be one of 0x378, 0x278, or Ox3bc, corresponding to MS-DOS printer

names LPTl:, LPT2:, and LPT3:. Check the documentation for your PC system to determine the

appropriate PortBase value for the parallel port that you are using as the interface to PAPERS.

The bit assignments for the first port register, PortBase + 0, are listed in Table 3. This

register is used to send PAPERS the information used in each barrier synchronization. Notice
that bit 1 is currently unassigned, but should be set to 0.

Table 3: PortBase + 0 Bit Assignments

The second port register, PortBase + 1, is used to receive information from PAPERS. Bit
assignments for this register are given in Table 4. The arrangement of bits within this register is

the result of the fact that PCs usually can generate an interrupt signal when Ack is set; the inter-

rupt line must be the Ack signal. The three remaining contiguous bits of the register are thus

designated as the data input from other PEs. This leaves bit 7 as the GO signal - the bit tested

to determine if synchronization has been achieved. It happens that the sense of bit 7 is inverted

on the port; the PAPERS hardware compensates for this so that a port read sees the GO bit as a 1

when the barrier has fired.

Page 7

. -- - .- - - . -

I
- . - . -. -. .. .

March 7, 1994 PAPERS

The third port register, PortBase + 2, is used by PAPERS only for output bits that change value

relatively rarely - the software does not access this register in the course of executing a typical

barrier synchronization. In other words, this register is used for the "modal" information out-

lined in Table 5. Although this discussion refers to the signals as they are listed in Table 5, the
port actually inverts the sense of bits 3, 2, 1, and 0; compensation for this inversion is done (by

XOR with 0x0 inside the lowest-level PAPERS port driver.

Part of the modal information involves the control of interrupts. Normal operation of

PAPERS does not require interrupts. However, PAPERS does support the use of interrupts for

two separate types of events:

Table 5: PortBase + 2 Bit Assignments

Bit Name Use In PAPERS

Page 8

- - -7- - - - -

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

unused

unused

unused

IntEn

Slct
--

IE (Interrupt Enable)

CE (Connection Established)

Init

AutoFD

Strobe UO (User bit 0)

March 7, 1994 PAPERS

[I] If the operating system on one PE determines that the other PEs should be informed of
some event, it can interrupt any subset or all of the PEs by setting its IR bit (see Table 3). If

any PE asserts its IR bit, then the INT bit (see Table 4) of each PE in this PE's barrier mask

will be 1 and the GO bit (see Table 4) will be 0. Notice that the PE setting its IR bit will

only interrupt itself if the corresponding bit is on in its barrier mask.

[2] If desired, the PAPERS barrier hardware can be set to interrupt this PE when PAPERS

determines that this PE's barrier has been satisfied. This response can be independently
enabledldisabled by each PE by setting its GI bit. If GI is 1, then completion of a barrier is

signaled by setting both the INT and GO bits to 1. If GI is 0, then only the IR bit can cause

INT to be 1.

The setting of the INT bit (see Table 4) happens whether the PE has enabled interrupts or not; an

actual processor interrupt occurs only if the IE bit is set to 1. Use of true processor interrupts can

be problematic due to conflicts with other devices sharing the same interrupt vector (e.g., the

same interrupt is often generated by both the parallel port and a sound card). Thus, it may be

preferable for PEs to use polling to detect these "interrupt" conditions.

There are three other modal bits in port PortBase + 2. These bits are not actually used by

the logic in PAPERS, but rather are used to drive an informational status display. The CE bit is
used to indicate that the PAPERS hardware has been properly connected to the PE. The other

two bits are "user-defined status" bits that can be used in any way desired, however, the sug-

gested use is to encode the function that the PAPERS hardware is being used to implement. This

use is summarized in Table 6.

3. PAPERS Hardware

Thus far, this document has focussed on the way in which PC hardware interacts with

PAPERS. In this section, we briefly describe the hardware that implements PAPERS itself.

Notice that there is, in fact, very little hardware inside PAPERS - which is why PAPERS is so

inexpensive to build and fast to operate.

Table 6: Meaning Of U1 And UO Signals

U1 UO Meaning

Page 9

- -7
-

0

0

1

1

0

1

0

1

PAPERS is not currently in use

PAPERS is being used to barrier synchronize

PAPERS is being used to transmit user data

PAPERS is being used by the operating system

March 7,1994 PAPERS

3.1. Logic Design

The active part of the PAPERS hardware follows the basic design presented in [CoD94],

and is implemented using four small PLAs (programmable logic arrays) - one for each PE. For

each PE, only two signals are actively derived from the signals fed into the PAPERS box: the
GO and INT signals (see Table 4). The other three input signals for each PE (12, 11, and 10) are

literally wires directly connected to the D outputs of the other PEs.

Although the four PLAs are connected differently, their internal logic is the same and the

differences in the connections follow a simple pattern. The following description refers to the

PLA for PEa with respect to PEb, PEc, and PEd. Given a PE number for a, the PE numbers for b,

c, and d can be derived by: b=(a+1)%4, c=(a+2)%4, d=(a+3)%4. Externally, each PLA appears

as shown in Figure 1.

Figure 1: PLA Pin Layout

CLK

PEaBb
PEaBc
PEaBd

PEbBa

PEcB a

PEdB a

PEaIR

PEbIR

PEcIR

PEdIR

GND

VCC
PEaBa

GO

PEaGI
PEaGO

PEdS

PEcS

PEbS

CLKRST

CLKSET

PEaINT

PEaS

Most of the PLA's input signals are taken directly from the PE parallel ports, however,

there are a few surprises. The basic barrier logic tree described in [CoD94] derives the CLKSET

signal - it does not directly derive PEaGO or even GO. This is because when the barrier
becomes satisfied we want to latch a 1 bit into GO; thus, 1 is hardwired on the input to the GO

register and the CLKSET signal is used as a clock to cause 1 to be sampled. This use requires

CLKSET to be externally wired to the CLK input. When all PEs involved in a synchronization
have read their input data, the (asynchronous) reset of the GO register is internally triggered by

CLKRST.

The difference between the internal GO register and the PEaGO output signal is that inter-

rupts can change the meaning of the GO bit. In essence, the PEaGO and PEaINT signals are

really encoding a two bit PAPERS hardware state, as outlined in Table 7.

Page 10

- - - 7 -

March 7, 1994 PAPERS

The PALASM code for the PLA follows. No attempt has been made to simplify these
equations, since PALASM automatically minimizes the PLA complexity.

Table 7: Meaning Of PEaGO And PEaINT Signals

PEaGO PEaINT Meaning

. ---------------- ------ -------- ---- , PIN Declarations ---------------

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

PIN

NODE

No interrupt, synchronization not achieved

No interrupt, synchronization achieved

Interrupt for all PEs
(given priority over achieving synchronization)

Interrupt for synchronization achieved

0

1

0

1

CLK

PEaBb

PEaBc

PEaBd

PEbBA

PEcBa

PEdBa

PEaIR

PEbIR

PECIR

PEdIR

GND

PEas

PEaINT

CLKSET

CLKRST

PEbs

PEcs

PEds

PEaGO

PEaGI

GO

PEaBa

VC C

GLOBAL

0

0

I

1

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORI AL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

COMBINATORIAL

REGISTERED

COMBINATORIAL

Page 1 1

- .

1
- - - - -

March 7, 1994 PAPERS

. -- _--_----------------------------- , Boolean Equation Segment - - - - - -

EQUATIONS

PEaINT = ((PEaIR*PEaBa) +
(PEbIR* PEbBa) +
(PEcIR* PEcBa) +
(PEdIR* PEdBa) +
(GO*PEaGI))

GO = VCC

GLOBAL.RSTF = CLKRST

CLKSET = ((/PEaBa+(PEaBa*PEaS)) *
(/PEaBb+(PEbBa*PEbS)) *
(/PEaBc+(PEcBa*PEcS)) *
(/ PEaBd+ (PEdBa* PEdS)) *
/GO)

CLKRST = ((/PEaBa+(PEaBa*/PEaS)) *
(/PEaBb+ (PEbBa* / PEbS)) *
(/PEaBc+(PEcBa*/PEcS)) *
(/PEaBd+(PEdBa*/PEdS)) *
GO)

/PEaGO = ((PEaINT*/((PEaIR*PEaBa) +
(PEbIR* PEbBa) +
(PEcIR*PEcBa) +
(PEdIR*PEdBa))) +

(/PEaINT*GO))

Notice that, if desired, the entire PAPERS design also could be implemented either by a sin-

gle larger PLA or by a manageable number of simple gate-level chips. We suggest that using one

or more larger PLAs (e.g., Xilinx parts) is probably the most effective way to scale PAPERS to

handle larger numbers of PEs.

3.2. Packaging

The prototype PAPERS unit is housed in a natural finish red oak box that is 11.75" wide by
6" deep by 6" tall, with a simple 3" steel handle protruding by 1" on the left side (to aid in carry-

ing the system for demonstrations at remote sites). Inside the box, on the left side there is one 4"
by 6" wire-wrapped card containing the PLAs and LED driving circuitry; on the right side is a 5

Page 12

March 7, 1994 PAPERS

volt switching power supply (although a maximum of less than 1.5 amps is needed, we used a

supply rated at 3 amps). The cover of the case is a simple piece of 0.25" thick oak, attached by

velcro and perforated above the power supply to allow convection cooling. Behind the circuit
card on the back of the box are four panel-mounted Centronics connectors - so that the cables

used to connect PEs to PAPERS are standard PC parallel printer cables. The AC cord enters the

box from behind the power supply. In front of the circuit card, rear-mounted on the front panel,

is an array of LEDs used as a status display for the PEs connected to PAPERS.

Strictly speaking, there is no need to have any display connected to the PAPERS hardware.

Indeed, eliminating the display can greatly simplify the hardware because it eliminates the need

for LED drivers and perhaps even eliminates the separate power supply (the PLAs might be

powered by the parallel port, but there is not enough power to drive the LEDS). However,

PAPERS is a research prototype: the LEDs make it a lot easier to see what is happening ... and to

debug the system.

The prototype LED display consists of 40 LEDs arranged in 4 columns, each column

representing the status of one PE. These columns are numbered in decreasing order from left to
right (as the LEDs are normally viewed), i.e., PE3 PE2 PE1 PEO. The signal descriptions are

given in Table 6. Notice that none of the LEDs displays a derived signal - this is because the

two derived signals change value only momentarily, so fast that the state change would not be

perceptible.

Of course, there are some active components used for more than driving LEDs. The critical

portion of the current version of PAPERS is implemented by four identical PLAs. Although, in

theory, Figure 1 combined with the rules given earlier suffices to completely specify how the

PLAs are connected to the PE signals, it isn't exactly easy to see how the chips get wired. Thus,

Figure 2 gives the pinouts for all four PLAs.

Page 13

March 7, 1994

I

PAPERS

Figure 2: Specific Pin Assignments for All Four PLAs

PEO PLA PEl PLA

CLK

PEOB 1

PEOB2

PEOB 3

PElBO

PE2BO

PE3BO

PEOIR

PElIR
PE2IR

PE3IR

GND

CLK
PE2B 3

PE2BO

PE2B 1

PE3B2

PEOB2

PElB2

PE2IR

PE3IR

PEOIR
PElIR

GND

PE2 PLA

VCC

PEOBO

GO

PEOGI

PEOGO

PE3S
PE2S

PElS

CLKRST
CLKSET

PEOINT

PEOS

VCC
PE2B2

GO

PE2GI

PE2GO

PElS

PEOS

PE3S

CLKRST
CLKSET
PE2INT

PE2S

CLK

PElB2

PElB3

PEl BO

PE2B 1

PE3Bl
PEOB 1

PElIR

PE2IR

PE3IR

PEOIR

GND

CLK
PE3BO

PE3B 1

PE3B2

PEOB3

PElB3

PE2B 3

PE3IR

PEOIR

PE 1 IR
PE2IR

GND

VCC

PElB 1

GO
PE 1 GI

PElGO

PEOS
PE3S

PE2S

CLKRST
CLKSET

PE 1 INT

PElS

PE3 PLA

VCC
PE3B 3

GO

PE3GI

PE3GO

PE2S

PElS

PEOS

CLKRST

CLKSET
PE3INT

PE3S

4. PAPERS Software

Although PAPERS will be supported by a variety of software tools including public domain

compilers for parallel dialects of both C and Fortran [Di092] [CoD94a], in this document we res-

trict our discussion to the most basic hardware-level interface. The code given is written in C
(the ANSI C-based dialect accepted by GCC) and is intended to be run under a unix-derived

operating system. However, this interface software can be adapted to most existing (sequential)

language compilers and interpreters under nearly any operating system.

Page 14

March 7, 1994 PAPERS

The following sections discuss the operating system interface, PAPERS port access, and a

simple barrier interface.

4.1. Operating System Interface

Although it would certainly be possible to implement the PAPERS software interface as

part of an operating system's kernel, it is more efficient for an ordinary user program to directly

access the ports connected to the PAPERS hardware. Although the ports can be directly accessed
under most operating systems, here we focus on what it takes for a program under generic UNIX
or Linux to gain port access.

4.1.1. Generic UNIX

In general, UNIX allows user processes to have direct access to all 110 devices. However,
only processes that have a sufficiently high 110 priority level can make such accesses. Further,

only a priviledged process can increase its I/O priority level - by calling iopl () . The follow-
ing C code suffices:

if (iopl(3)) {

/ * iopl failed, implying we were not priv * /

exit (1) ;

1

But beware! This call grants the user program access to all I/O, including a multitude of unre-

lated ports.

In fact, this call allows the process to execute instructions enabling and disabling interrupts.

By disabling interrupts, it is possible to ensure that all processors involved in a barrier synchroni-

zation act precisely in unison; thus, the number of port operations (barrier synchronizations)

needed to accomplish PAPERS operations can be dramatically reduced. A basic barrier syn-

chronization takes at least four port operations when timing cannot be ensured, but only two port

operations with interrupts disabled. However, background scheduling of DMA devices (e.g.,

disks) and other interference makes it hard to be sure that a unix will provide precise timing con-

straints even when interrupts are disabled, so we do not advocate disabling interrupts.

Even so, performance of the barrier hardware can be safely improved by causing unix to

give priority to a process that is waiting for a barrier synchronization. This improves perfor-

mance because if any one PE is off running a process that has nothing to do with the synchroniza-
tion, then all PEs trying to synchronize with that PE will be delayed. The priority of a

priviledged unix process can increased by a call like:

/ * set priority just below critical OS code * /
nice(-20) ;

The argument to nice () should be a negative value between -20 and -1.

Page 15

March 7, 1994 PAPERS

4.1.2. Linux

Although Linux supports the unix interface described in the previous section, it also pro-
vides a more secure way to obtain access to the YO devices. The ioperm () function allows a
priviledged process to obtain access to only the specified port or ports. The C code:

if (ioperm (PortBase, 3, 1)) {

/ * like iopl, failure implies we were not priv * /

exit (1) ;

1

Would obtain access for 3 ports starting at a base port address of PortBase.

Because the 3861486Pentium hardware checks port permissions, this security does not des-

troy port YO performance; however, checking the permission bits does add some overhead. For a
typical PC parallel printer port, the additional overhead is just a few percent, and is probably

worthwhile for user programs.

42. Port Access

Although Linux and most versions of unix provide routines for port access, these routines

often provide a built-in delay loop to ensure that port states do not change faster than the external

device can examine the state. Consequently, the PAPERS support code uses its own direct

assembly language YO calls. The code is:

inline unsigned int

inb(unsigned short port)

{

unsigned char -v;

delay () ;

-asm- - v o l a t i l e ("inb %w1,%bOU
' 11 =a" (-v)

. "dIl (port), "0" (0));
return -v;

Page 16

- - ------ - -7 - - -

March 7, 1994 PAPERS

inline void

outb(unsigned char value,

unsigned short port)

delay (1 ;

- asm- - volatile ("outb %bO,%wlU
: / * no outputs * /
: llall (value), "d" (port)) ;

1

However, these port T/O calls are "sanitized for your protection" by the following PAPERS-
specific macro definitions. Notice that the modal port inverts its four output lines; the

P-MODE () macro includes an exclusive or operation to compensate for this. The code is:

/ * Stuff concerning the regular output port . . .
* /
#define P-OUT(x) \

outb(((unsigned char) (x)), ((unsigned short) PortBase))

#define B3 0x80 / * Barrier Mask Contains PE3 * /
#define B2 0x40 / * Barrier Mask Contains PE2 * /
#define B1 0x2 0 / * Barrier Mask Contains PE1 * /
#define BO Ox10 / * Barrier Mask Contains PEO * /
#define S 0x08 / * Barrier Sync. Request * /
#define IR 0x04 / * Interrupt Request * /
#define D Ox0 1 / * Data Bit Value * /

/ * Stuff concerning the input port. . .
* /
#define P-IN() \

inb((unsigned short) (PortBase + 1))
#define GO 0x80 / * Barrier Sync. Completed * /
#define INT 0x4 0 / * Interrupt * /
#define I2 0x2 0 / * PExD such that x=(iproc+3)&3 * /
#define I1 0x1 0 / * PExD such that x=(iproc+2)&3 * /

#define I0 0x08 / * PExD such that x=(iproc+l)&3 * /

Page 17

I

March 7,1994 PAPERS

/ * Stuff concerning the modal output port . . .
* /
#define P-MODE(x) \

outb(((unsigned char) ((x) (UO I U1 I GI 1 CE)), \
((unsigned short) (PortBase + 2)))

#define IE 0x1 0 / * Interrupt Enable * /
#define CE Ox0 8 / * Connection Established * /
#define GI 0x04 / * Go Causes Interrupt * /
#define U1 0x02 / * User bit 1 * /
#define UO 0x01 / * User bit 0 * /

4.3. Barrier Interface

The basic barrier interface consists of C inline routines serving three primary functions.

The first is called enqueue () , and is used to enqueue a new barrier mask that will be used by

all barrier operations until a new mask is enqueued. The second function is performed by

p-wai t () . It barrier synchronizes using the current barrier mask. The third is much like the
second, but also communicates one bit of data from each PE. It is called p-waitvec () ,

because it barrier synchronizes and then returns a vector constructed using one bit from each PE.

43.1. Barrier enqueue ()

The barrier enqueue operation consists primarily of sending PAPERS the requested barrier

pattern, however, there is more to this than one might expect. One detail is that if there is no

change in the mask, we have nothing to do. Another detail is that the mask pattern cannot be

changed until everyone who was synchronizing with it is done reading their data. This is because

our D bit is not buffered for each PE that might read it, but is directly examined by other PEs.

Finally, there is the detail that enqueue () should set special variables so that other routines

can cheaply obtain the current barrier mask as either the mask itself, last-mask, or as the

mask shifted for P-OUT () , lastsout. The code is:

extern inline void

enqueue(register barrier mask)

{

/ * If appropriate, enqueue the new barrier pattern given by
mask. Note that mask represents PEk by bit k - - not quite

the way that the port hardware works.

* /

Page 18

March 7,1994 PAPERS

#ifdef PARANOID

if (mask & "ALL-MASK) {

/ * Bits are on for nonexistant PEs * /

p-error("enqueue of barrier containing nonexistant PE");

1
endi f

/ * Is mask different from what we had? * /

if (mask ! = last-mask) {

/ * If last-mask had somebody beside us... * /

if (last-mask & "OUR-MASK) {

/ * Wait for barrier reset * /

while (P-IN0 & GO);

1

/ * Update mask info & enqueue mask with PAPERS * /
P-OUT(last_pout = ((last-mask = mask) << 4)) ;

1

4.3.2. Barrier p-wai t ()

The basic barrier wait operation is p-wait () , as coded below. However, there is a minor

optimization in that there is no need to use the PAPERS hardware to synchronize with yourself.
Thus, there are two minor variants of this operation. Ordinary user code would use p-wait () ,
however, 2-wait () is used within library routines where we already know that we are syn-

chronizing with at least one other PE.

extern inline void

2-wait(register portdata p)

{

/ * Simple barrier synchronization on p. * /

while (P I N O & GO); / * wait for barrier reset * /

P-OUT (p 1 S) ; / * synchronize on p * /
while (! (P-IN() & GO) 1 ; / * wait for barrier GO signal * /

P-OUT (p) ; / * reset barrier * /

Page 19

-.

- ---7
.

March 7, 1994 PAPERS

extern inline void

p-wait (

{

/ * Simple barrier synchronization on current barrier.
Nothing to do unless we are not alone . . .

* /
if (last-mask & "OUR-MASK) {

2-wait (lastaout) ;

1
1

4.3.3. Barrier p-wa i tvec ()

The p-wai t vec () and 2-wa i t vec () routines are very similar to the p-wai t (

and 2-wait () routines, however, these routines transmit one bit of data i?om each PE as a
side-effect of the barrier synchronization. There are four new complications introduced by this

data transmission.

The first is that the bit transmitted by this PE is not made available to this PE through the

P-IN () value. Thus, this bit must be determined directly from the local variable, as seen in

p-waitvec () .
A second problem lies in the fact that the GO signal is better driven than the data bits. This

can result in a slight delay between the P-IN (GO bit becoming 1 and the data bits achieving

their final values. This is remedied within 2-waitvec () by simply issuing one more

P-IN () after the GO bit has become 1. Future versions of PAPERS will hopefully correct this

problem in hardware.

The third complication is that the data bits that correspond to each PE in the P-IN ()
value are not positioned such that PEL is represented by bit k. This problem is solved using a

PE-dependent lookup table to re-map the bits to their standard positions.

Finally, there is the problem that all input bits have values, but only bits corresponding to

PEs that synchronized with us are valid. Thus, p-waitvec () ensures that the bits for all PEs

that did not participate in the barrier are set to 0.

Including the handling of these problems, the code is:

Page 20

March 7, 1994 PAPERS

extern inline portdata

_p-waitvec(register portdata b)

{

/ * Simple barrier synchronization collecting data. It is

assumed that b is either lastsout or lastsout I D
depending on whether we want to send a 0 or 1 bit
Note that the return is the raw (unmapped) port input.

* /
register portdata x;

while (P-IN0 & GO); / * wait for barrier reset * /
P-OUT(b 1 S); / * synchronize & send data bit * /

while (! (P-IN() & GO)); / * wait for barrier GO signal * /
x = P-IN () ; / * get data bit vector (I2,IlIIO) * /

P-OUT (b) ; / * reset synchronization * /
return (x) ; / * return data bit vector * /

1

extern inline barrier

p-waitvec(register int flag)

{

/ * Do a barrier wait sending flag and return the collected flag
vector. This is not super efficient, but is an easier

interface than using the raw P-OUT0 and P-IN0 calls

directly. Notice that the flag vector bit positions that

correspond to PEs not in the current barrier are 0.

* /
register barrier mask = (flag ? OUR-MASK : 0);

/ * If we're not the only PE in our mask, we have work to
do . . . but if we are alone, we are done.

* /
if (last-mask & -OUR-MASK) {

/ * Must gather a bit from each PE . . . * /
register barrier b = (flag ? (lastsout (D) : lastsout);

register portdata x;

/ * Translate {12,11,10) into a standard mask * /
mask I= (IToMask (3-waitvec (b) & last-mask) ;

1

Page 2 1

- - ---7- -

--

March 7, 1994

I

PAPERS

/ * Return constructed bit mask . . . * /

return (mask) ;

Page 22

--I-
-- -

March 7,1994 PAPERS

5. Conclusion

In this paper, we have presented the complete design of PAPERS, a very simple hardware

adapter to allow multiple personal computers to act as one or more fine-grain parallel computers.

To support parallel processing, the PAPERS hardware provides full dynamic barrier synchroniza-

tion, simultaneous broadcast of one data bit from each processor to every other processor, and a

variety of maskable interrupt capabilities.

Perhaps the best thing about PAPERS is that it does not require any special interface to the

processors; it is connected to ordinary personal computers (or workstations) by their standard

Centronics parallel printer ports. However, this also is the worst thing about PAPERS, because
these ports often limit performance. Basically, the problem is that many ports are deliberately

designed to insert enough wait states so that very slow printer interfaces will be able to sample

the output signal without the need for a software delay loop. The speeds of basic operations on

PAPERS, assuming a 10' cable, are:

Operation PAPERS Speed Speed Using Slow Port

As the table shows, if your machine doesn't have a slow port, PAPERS is a dream come

true However, if you have a slow port, you might want to either (1) get a better parallel port or

(2) wait for us to build a version of PAPERS that directly interfaces to the PC bus.

Dynamic barrier sync.

with arbitrary PEs

Multiple broadcast
communication op.

ANY conditional

Random communication

involving all PEs

Page 23

- - - - -

-7
.

0.2ps

OApsh yte

0 . 2 ~ ~

1.6pshyte

1 4 . 0 ~ ~

28.5pshyte

14.Ops

1 14.0pshyte

March 7,1994 PAPERS

References

[CoD94] W. E. Cohen, H. G. Dietz, and J. B. Sponaugle, "Dynamic Barrier Architecture For
Multi-Mode Fine-Grain Parallelism Using Conventional Processors; Part I: Barrier

Architecture," submitted to 1994 Int'l Conf. on Parallel Processing.

[CoD94a] W. E. Cohen, H. G. Dietz, and J. B. Sponaugle, "Dynamic Barrier Architecture For

Multi-Mode Fine-Grain Parallelism Using Conventional Processors; Part 11: Mode
Emulation," submitted to 1994 Int'l Conf. on Parallel Processing.

[Di092] H. G. Dietz, M.T. O'Keefe, and A. Zaafrani, "Static Scheduling for Barrier MIMD

Architectures," The Journal of Supercomputing, vol. 5 , pp. 263-289, 1992.

[Jor78] H. F. Jordon, "A Special Purpose Architecture for Finite Element Analysis," Proc.
Int'l Con$ on Parallel Processing, pp. 263-266, 1978.

[OKDW] M. T. O'Keefe and H. G. Dietz, "Hardware barrier synchronization: static barrier

MIMD (SBM)," Proc. of 1990 Int'l Con$ on Parullrl Processing, St. Charles, IL,

pp. I 35-42, August 1990.

[OKDWa] M. T. O'Keefe and H. G. Dietz, "Hardware barrier synchronization: static barrier

MIMD (DBM)," Proc. of 1990 Int'l Conf on Pnrtlllel Processing, St. Charles, IL,

pp. 143-46, August 1990.

[SiN87] T. Schwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer, "The Implementation

of the PASM Prototype Control Hierarchy," Proc. @'Second Int'l Conf on Super-

computing, pp. 1418-427, 1987.

Page 24

~.. ~ -- - . -

1
-~

	Purdue University
	Purdue e-Pubs
	3-1-1994

	PAPERS: Purdue's Adapter for Parallel Execution and Rapid synchronization
	H. G. Dietz
	T. Muhammad
	J. B. Sponaugle
	T. Mattox

