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Abstract

Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous

epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are

also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are

known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the

role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study

worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most

useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein

in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs,

primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent.

Keywords: Cell transformation, Growth factor receptors, Immune escape, Oncogene, Papillomaviruses, E5 oncopro-
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Introduction

PVs are established agents of human and animal cancers

[1]. They infect cutaneous and mucous epithelia indu-

cing benign tumours which usually regress. Occasion-

ally, the tumours progress to malignancy. Over 120

types of HPVs have been identified so far and among

these 15 have been defined as HR HPVs. These are con-

sistently associated with cancer. Genital HPVs are sexu-

ally transmitted and HR genital HPVs are a necessary

factor in the development of almost all cases of cervical

cancer. HPV-16 and -18 are the viruses most frequently

associated with cancer of the uterine cervix (CxCa) [2].

CxCa is the second most common cancer in women

worldwide killing about 0.25 million women per year.

However, in economically developed countries the rate

of CxCa is dramatically reduced due to screening pro-

gram based on exfoliative cervical cytology (PAP

smears).Vaccines to prevent HR HPV infection are avail-

able, although their use should be implemented along

with screening programmes to further reduce the

incidence of such cancer [3]. HR HPVs are also involved

in the etiopathogenesis of other anogenital cancer [4].

Furthermore HPV, particularly HR HPV-16 is strongly

associated to oral squamous cell carcinoma and other

potentially malignant oral lesions [5]. Growing evidence

also suggests that HR HPV-16 is involved in the etio-

pathogenesis of head and neck squamous cell carcino-

mas, suggesting that HPV vaccines should be also

considered for prevention of this type of cancer [5,6].

Additionally, HPVs may be involved in the etiopatho-

genesis of others cancer types, including tumours of the

upper respiratory tract, eye, esophagus, non-small-cell

lung cancers [7-10]. The presence of HPV-16 has been

reported also in colorectal carcinoma [11], breast cancer

[12] and urinary bladder carcinoma [13]. Recently, HPV

DNA has been associated also with prostatic tumours

[14]. The widespread causal association of PVs with can-

cer makes their study worthwhile not only in humans

but also in animal model systems which often provide

new and profitable avenues of research [15]. The BPV

system has been one of the most useful animal models

in understanding the oncogenic potential of PVs.

Furthermore, the mechanisms by which BPV induces

tumors are an outstanding model to better understand
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the pathogenesis of other cancer types. The importance

of the role of HPV in cancer etiology and development

has been recognized by the assignment of the 2008

Nobel Prize for Medicine to Prof. Harald zur Hausen

who firstly observed that infection with HPVs is respon-

sible for CxCa development. The genome of PVs is a

double stranded circular DNA roughly divided into

three parts: the E region coding for early proteins (E1-

E7) responsible for the pathogenicity of the virus; the L

region coding for late structural proteins (L1, L2) and a

non coding region which contains the cis-elements

necessary for replication and transcription of the viral

genome. Both in vivo and in vitro studies have pointed

to E6 and E7 as the main HPV oncogenes, whereas E5

is the major oncogene of BPV. The E6 oncoprotein

interacts with the cellular tumour suppressor p53 [16]

and directs its degradation [17]. The primary target of

the E7 oncoprotein is the retinoblastoma (Rb) proteins,

the inactivation of which leads to tumour progression

[18]. Both E6 and E7 also interact with many others cel-

lular factors inducing genomic instability, tumour pro-

gression and immune evasion [18].

While the oncogenic activities of E6 and E7 are well

characterised, the role of E5 is still rather nebulous.

However, recent studies have highlighted the important

role of this oncoprotein in cell transformation, tumouri-

genesis and immune modulation, thus implicating E5 in

pivotal steps of carcinogenesis. Because of the perceived

growing role of E5 in infection establishment and in cell

transformation, it is worth considering the most salient

features of the oncoprotein. This review will focus on

the activities of E5, in particular from HPV-16, and

from BPV. Targeting E5 as a possible therapeutic agent

will also be briefly discussed.

HPV E5

E5 and the evolution of HPVs

HPVs have been classified into five genera (Alpha-, Beta-,

Gamma-, Mu- and Nu-PVs), but not all HPV genera code

for an E5 protein [19]. For instance aHPVs encode and

express E5 but b HPVs do not. A phylogenetic analysis of

known genital HPV types (derived using a Bayesian meth-

odology, with notation of carcinogenic risk levels assigned

by the large case-control study conducted by the Interna-

tional Agency for Research on Cancer [20]), suggested

that at least 3 ancestral papillomaviruses are responsible

for the current heterogeneous group of genital HPVs. The

three major groups that emerged include alpha papilloma-

virus species and interestingly all carcinogenic types derive

from a common ancestor and can code for an E5 protein,

whereas the other HPVs either lack a definable E5 ORF

(Open Reading Frame) or a translation start codon for E5.

As notable exceptions, 10 types which cause benign vener-

eal warts, can also code for an E5 protein. In addition,

16E5 variants with the greatest mitogenic activity in vitro

[21] are most frequently detected in the population and

most commonly associated with cervical lesions.

The HPV E5 ORF itself has been classified into four dif-

ferent groups: alpha, beta, gamma and delta [22], which

correlate with different clinical manifestations, in particu-

lar with oncogenic potential [23]. Thus, the E5-alpha pro-

tein is encoded by HR aHPV, whereas the E5-gamma and

E5-delta proteins are encoded by low-risk genital HPVs

[24]. The phylogenetic analysis suggests that E5 must give

some advantage to the virus expressing it and variants of

this protein appear to increase the likelihood of oncogenic

transformation following persistent infections. However,

the E5 ORF is absent in the genome of many HPVs, such

as beta-, gamma- and mu-HPVs, indicating that the pro-

tein is not essential for the life cycle of these viruses but

rather can give some ADDED VALUE to favour infection

and transformation (Figure 1). The HPV E5 ORF is

expressed during the early phases of the viral life cycle but

only as the fourth ORFs on polycistronic transcripts. Since

HPVs are thought to use a leaky ribosome-scanning

mechanism to translate proteins from polycistronic

mRNAs, little E5 protein is likely to be synthesized from

these transcripts. In contrast, on epithelial-cell differentia-

tion, E5 is expressed as the second ORFs of late tran-

scripts. It is therefore likely that E5 is synthesized highly in

differentiating suprabasal epithelial cells [25] (Figure 1). In

agreement, the BPV-1 E5 protein was detected at a low

uniform level in basal layers and at a higher level in the

uppermost layers of stratified squamous epithelium in

papillomas productively replicating BPV-1 [26]. In addi-

tion, E5 was also shown to be expressed in basal and

suprabasal layers of BPV4-induced papillomas [27] and of

HPV-16 induced cervix lesions [28].

In contrast to the highly transforming BPV-1 E5, the

HPV E5 proteins display weak transforming activity in

vitro (Table 1). Experiments with HPV-6 provided the

first evidence that a HPV E5 protein had transforming

activity in mammalian cells, as expression of HPV-6 E5

in established murine fibroblasts lead to anchorage inde-

pendent growth [29]. Later it was shown that also 16E5

induces anchorage independence, more efficient growth

in low serum and tumorigenic transformation of murine

keratinocytes and fibroblasts [30-32]. In addition, the

acute expression of 16E5 stimulates cellular DNA synth-

esis in primary human keratinocytes, and in cooperation

with E7, induces proliferation of primary rodent cells

[33-36]. The transforming activity of E5 from HPV-59

and rhesus papillomavirus has been demonstrated in

various cell types and assays [37,38].

Structure and cell interaction

16E5 is 83 amino acid long. The detection of this pro-

tein has proved very difficult given its extreme
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hydrophobicity, membrane localisation and very low

levels of expression. For these reasons expression of E5

is often inferred from the presence of E5 mRNA. 16E5

has been detected by immunohistochemistry by Chang

et al. [28] in low-grade squamous intraepithelial lesions

(LSILs), in high-grade SILs, CIN (cervical intraepithelial

neoplasia) and paradoxically in cancer lesions although

often this gene is deleted during viral integration into

the host genome. Amino acid sequence analyses of 16E5

suggest it comprises 3 anchor-like a-helices (residues 8-

30, 37-52 and 58-76), with only the first being long

enough to span a lipid bilayer.

When over-expressed, 16E5 is present in the endo-

plasmic reticulum (ER), in the nuclear envelope and in

the Golgi apparatus (GA) [39], whereas at a more phy-

siological level of expression, as shown in primary

human foreskin keratinocytes, it localizes almost exclu-

sively to the ER and to lesser extent to GA and early

endosomes [40]. Recently, it was reported that in

HaCaT cells about 10% of total 16E5 can localize to

plasma membrane with intracellular amino terminus

and extracellular carboxyl-terminus. This observation

suggests a fusogenic role of 16E5 with the induction of

cell-cell fusion and the formation of binucleated HaCaT

cells [41-43]. In contrast, other authors report the pre-

sence of 16E5 protein only in the ER of COS and ecto-

cervical cells in the opposite orientation: intraluminal

amino-terminus and cytoplasmic carboxyl-terminus [44].

The cytoplasmic localization of the C terminus is further

strengthened by the reported interaction of 10 amino

acids at the C terminus of 16E5 with karyopherin b3

(KNb3) [45], an abundant cellular protein localized

mainly in the cytoplasm [46,47]. An explanation for

these contrasting data is the possible presence of 16E5

in the plasma membrane as a consequence of the over-

expression of 16E5 by the adenovirus vector system

used in HaCaT cells. In agreement, when BPV-1 E5 is

expressed at very high levels, such as in baculovirus-

infected cells, it is detectable on the plasma membrane

in addition to the ER and GA [48].

16E5 self-associates in vitro [49] and in vivo [40,50]

and this oligomerization takes part mostly by hydropho-

bic interaction. The reported disulfide bonding [40]

appears less likely because models of 16E5 membrane

topology predict the localization of all six cysteine resi-

dues within the lipid bilayer [21,51] rendering cysteine

dimerization more difficult.

E5 and cell transformation

E5 interacts with a number of cellular proteins and

these interactions are deemed important for the biologi-

cal activity of the protein in cell transformation and eva-

sion of the immune response. Thus the first

transmembrane domain of 16E5 and HPV-31E5 inter-

acts directly with the heavy chain component of the

MHC I (Major Histocompatibility Complex class I) via

the leucine pairs present in this region; interestingly this

same transmembrane domain interacts with a chaperone

Figure 1 E5 can improve HPV activity by altering host factors controlling the viral replication/persistence. A schematic view of the

papillomavirus life cycle highlighting the expression of the HPV genes, which is tightly regulated and strictly linked to epithelial differentiation.

E5 could contribute to a successful infection by inducing loss of surface MHC I expression in the infected basal cells preventing presentation of

viral antigens to effector T-cells and thus, in addition to other mechanisms of immune avoidance, such as lack of inflammation, contributing to

evasion of immune surveillance. Expression of E5 in the basal/suprabasal layers of the epithelium would lead to sustained cell proliferation to

favour virus-infected cells, but extinction of its expression in the more superficial layers would permit cell differentiation and virion production. If

E5 expression proceeds beyond early lesional stages, keratinocyte differentiation and immunological removal of infected cells would not take

place and the lesion would be at greater risk for neoplastic progression. E5 actions on host factors controlling viral replication/persistence are

indicated. Dashed dots indicate low levels of E5 gene expression.
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of MHC I, Bap31 [52,53]. A region within the second

helix (residues 41-54) may be the binding site for the 16

kDa pore sub-unit of vacuolar-ATPase (V-ATPase) [54],

although others claim this is located between residues

54-78 [55].

E5 is a weak transforming protein in vitro and its

effects are seen best when in co-operation with the

other viral oncoproteins: 16E5 together with E6 can

induce the formation of koilocytes, large cells with

cleared cytoplasm and pyknotic nuclei with inconspicu-

ous nucleoli, a well known morphological marker of

HPV infection [56]. The development of koilocytotic

vacuoles may be linked to the E5-induced relocalization

of calpactin I to the perinuclear region promoting peri-

nuclear membrane fusion [57]. Hu et al. [43] confirmed

previous reports describing the oncogenic capacity of

16E5 [30,58] and offered mechanistic insights into how

E5 expression brings about morphological changes in

the cervical epithelium. Further, by identifying endore-

plication as the mechanism by which the aberrant nuclei

form and increased DNA synthesis arises, there is now a

biological process that can be targeted to inhibit onco-

genesis [43]. Fusogenic 16E5 is expressed on the plasma

membrane of cells and both cells must express E5 for

cell-cell fusion to occur, indicating that E5 cannot

induce cell-cell fusion through an interaction with

another protein (receptor) on a neighbouring cell, but

rather forms E5-E5 dimers or complexes containing at

least two 16E5 molecules. These findings provide impor-

tant insight into how the fusogenic process is mediated

[41].

E5 of HR HPV by itself can induce morphological and

chromosomal changes that frequently accompany the

progression of normal cells to cancerous cells. Increased

nuclear size, increased DNA content and tetraploidy are

characteristic of LSIL [59,60]. All of these morphological

changes have been detected in cell expressing 16E5 and,

in particular, the aberrant nuclei formation seems to be

due to endoreplication rather than a consequence of

cell-cell fusion and failed cytokinesis [43]. Many of these

changes are criteria used in the clinical detection of cer-

vical cancer precursors in screening Pap tests [61].

Other morphological changes, such as the presence of

binucleated cells, increased DNA content and polyploidy

[62], are not used in the diagnosis of precancerous

lesions despite being less subjective because they require

larger amounts of material, time, and expenses.

HPV E5 interaction with host cell

HPVs infect stratified epithelia, and their whole life

cycle is inextricably linked to keratinocyte differentiation

and, in order to establish a persistent infection, HPVs

have evolved to overcome many “obstacles":

a) The stratified epithelium is associated with continu-

ous cellular turnover and desquamation of the termin-

ally differentiated keratinocytes, thus maintenance of the

papillomavirus within the tissue requires the infection of

basal epithelial cells and the propagation of these

infected cells.

b) Papillomaviruses use the cellular machinery for

their replication and need to maintain cell division

together with a delayed but not completely inhibited dif-

ferentiation. HPV infected keratinocytes with imbal-

anced DNA synthesis/differentiation are forced to

apoptosis by the cellular control mechanism.

c) To establish persistent infection HPV must fight or

evade immune-surveillance.

It is clear that the timely and epithelial differentiation-

dependent expression of all E proteins is essential to

favour viral replication and in turn to overcome the

above mentioned obstacles. The “E5 added value” will

be highlighted in the following paragraphs.

E5, growth factors and cell cycling

HPV infection is thought to take place when epithelial

basal cells are directly exposed to the virus during

microinjuries [63]. Infection of epithelial stem cells,

which have the capacity for self-renewal, can ensure

Table 1 Comparison of function of HPV E5 proteins with

BPV E5 proteins

E5 LR HPV-6 HR HPV-16 BPV-1 BPV-4

FF n.e. - + +

SI n.e. + + +

AI + + + +

Koilocytosis + + n.e. n.e.

PDGFbR activation n.e. - + n.e.

EGF-R activation + + + n.e.

V-ATPase binding + + + +

Gap-j inhibition n.e. + + +

PI3-K activation n.e. + + n.e.

c-Src activation - - + +

Cyclin-cdk2 activation n.e. + + ++

MHC I down-regulation + + + +

KNb3 binding n.e. + n.e. n.e.

TRAIL pathway inhibition n.e. + n.e. n.e.

MAPK activation + + - n.e.

ETA activation n.e. + n.e. n.e.

PGE2 R expression n.e. + n.e. n.e.

Cellular zinc imbalance n.e. + n.e. n.e.

ER Stress pathway inhibition - + n.e. n.e.

Cellular fusion - + n.e. n.e.

P21 inibition + + n.e. n.e.

FF: focus formation; SI: serum independence; AI: anchorage independence. +:

presence of function; -: absence of function; n.e.: not established.
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long term maintenance of the viral genome. During the

productive stage of the HPV life cycle, the early viral

proteins are expressed, maintaining 50-100 copies of

episomal DNA per cell by synchronous replication with

host cell DNA [64-66]. The demonstrated ability of

16E5 to enhance ligand-dependent activation of the

EGF-R [56,58-60] (Figure 2) and to stimulate EGF-

dependent proliferation of cultured human keratinocytes

[33,35,58] suggests that 16 E5 may play a major role in

expanding populations of HPV-16-infected basal kerati-

nocytes in vivo by enhancing ligand-dependent EGF-R

activation. Confirmation of this E5 activity comes from

a study on 16E5 transgenic mice showing that functional

EGF-R is required for the induction of epidermal hyper-

plasia and formation of spontaneous skin tumours [67].

16E5 oncoprotein binds and inhibits the activity of the

16 kDa subunit of V-ATPase, altering the endosomal

acidification and degradation of EGF-R [34,68] thus

enhancing its recycling to the plasma membrane. 16E5

can also delay EGF-R degradation by interfering with

membrane trafficking and the fusion of early and late

endosomes [69]. Recently, 16E5 was shown to form a

complex with KNb3 which is localized mainly in the

cytoplasm near the nuclear envelope [45]. It has been

suggested that a KNb3/16E5 complex plays an impor-

tant role in vesicle trafficking, reinforcing the hypothesis

that E5 has a central role in altering protein trafficking

inside the cell. The EGF-R signalling pathway can be

activated by 16E5 through either EGF-dependent or

EGF-independent processes. 16E5 activates mitogen-

activated protein kinase (MAPK) p38 and ERK1/2 in

human keratinocytes in an EGF-independent manner

[70]. Two different pathways, a receptor tyrosin kinase-

mediated pathway and a protein kinase C (PKC)-depen-

dent pathway, are involved in the MAPK activation

[71,72] which increases the transcription of c-fos and c-

jun [33,73,74], forcing the cells through the cell cycle

and stimulating transcription of the viral oncogenes E6

and E7. In contrast with EGF-R data, less is know about

the role of the interaction of 16E5 with other ErbB

family members such as ErbB2 or ErbB4 receptor

[28,75-77].

Figure 2 HPV 16 E5 enhances growth factor signalling pathways. Activation of EGF-R and the downstream Ras-Raf-MAP kinase pathway or

PI3K-Akt pathway leads to altered cell proliferation, angiogenesis, and anti-apoptosis. The last two functions are further enhanced by the E5-

induced upregulation of COX-2 expression. COX-2 expression inhibits hydrogen peroxide-induced apoptosis and induces PGE2 secretion that

activates EP4 receptor. This, in turn, causes cAMP production, activating PKA; PKA contributes to E5-induced expression of EP4 by enhancing

CREB binding to variant CRE of the EP4 promoter. PKA influences also apoptosis through the ubiquitin-proteasome degradation of BAX. Finally,

E5 protein enhances cell proliferation through downregulation of tumor suppressor p21/p27 and through up-regulation of G protein-coupled

endothelin receptor (ETA)/ET1 autocrine loop. Dotted arrow shafts indicate uncertain pathways. The possible cross-talking between ETAR and

EGFR pathway through Src protein is also indicated.
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16E5 is also capable of interacting with, and enhan-

cing the signalling of, different classes of growth factor

receptors like the G protein-coupled endothelin receptor

(ETA) [36]. In growth factor-starved keratinocytes 16E5

enhances the mitogenic activity of endothelin-1 (ET-1)

the specific ligand of ETA (Figure 2). Interestingly it was

reported that the mitogenic activity of ET-1 may lead to

the chronic stimulation of keratinocyte proliferation

observed in psoriasis, an inflammatory/proliferative dis-

order of the skin, suggesting an important role for ET-1

in epithelial proliferation [78]. Furthermore cross-talking

between ETAR and EGF-R pathways would have an

amplifying effect on cell proliferation [79].

In contrast to the activation of EGF-R, 16E5 can

down-modulate the keratinocyte growth factor receptor/

fibroblast growth factor receptor 2b (KGF-R/FGF-R2b),

through reduction of transcripts and protein with altera-

tion of the receptor endocytic trafficking. This causes a

decrease in the growth response to the receptor ligands,

suggesting that 16E5 might have a role on HPV infec-

tion by perturbing the KGFR-mediated physiological

behaviour of confluent keratinocytes committed to dif-

ferentiation [80]. Thus, 16E5 could exert two opposite

effects, both related to virus replication: (a) increasing

the growth of the most basal undifferentiated cells by

up-regulating the EGF-R pathway and (b) decreasing the

physiological proliferation/differentiation of the supraba-

sal keratinocytes by down-modulation of KGFR expres-

sion and signalling.

16E5 can also down-regulate the expression of tumour

suppressor p21 and p27, both of which are cyclin-

dependent protein kinase inhibitors (CKIs), thus causing

cell cycle progression and DNA synthesis (S-phase) (Fig-

ure 2). The p21Wafl/Sdil/Cipl down-regulation is at tran-

scriptional level [81] whereas that of p27Kip1, one of the

most abundant CKIs, is through reduction of the half-

life of p27Kip1 protein [82].

Other biological activities of 16E5 contribute to the

proliferation of the infected cells, such as the interfer-

ence with cell-cell communication and alteration of

adherence and cell motility. The ability of 16E5 to inhi-

bit gap junction-mediated communication between

epithelial cells in monolayer [83] and in raft cultures

[84] by interfering with connexin 43 may render the

transformed cells more insensitive to homeostatic

growth control signals from adjacent normal cells.

E5 and apoptosis

Due to the integration of HR HPV genome during

malignant progression, the E5 gene is not expressed in

cervical tumours but both 16/18 E5 mRNA and protein

have been detected in anogenital LSIL [85,86] support-

ing the possibility that E5 plays a role in early steps of

HPV infection to protect infected cells from apoptosis.

Indeed, it has been proposed that inhibition of death

receptor-mediated apoptosis in human keratinocytes,

needed to prevent apoptosis at early stages of viral infec-

tion, is a primary function of the HR HPV E5 protein.

16E5 impairs tumor necrosis factor ligand (FasL) and

Tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL)-mediated apoptosis in HaCaT cells by: (a)

downregulating the total amount of Fas receptor and

reducing Fas surface location; and (b) altering the for-

mation of Death-Inducing Signalling Complex (DISC)

triggered by TRAIL [87]. Raft cultures of 16E5-expres-

sing keratinocytes were completely protected from FasL-

or TRAIL-induced cell death [88]. Likewise, when UV

radiation was used to induce stress, E5-expressing

human keratinocytes were protected from apoptosis

[89]. In contrast, 16E5 sensitizes human keratinocytes to

apoptosis induced by osmotic stress, perhaps due to cell

membrane modifications caused by this strongly hydro-

phobic molecule [90].

E5 and ER stress pathway

The presence of viral proteins may activate cellular

defence mechanisms and in particular the ER stress

response. 16E5 can suppress three key proteins of the

ER stress pathway: cyclooxygenase-2 (COX-2), XBP-1

and IRE1a. As it was suggested for other viruses, the

down-regulation of these proteins can favour viral per-

sistence [91] which is a major contributory factor to the

development of cancer by high-risk HPVs [92]. The

inhibition of the ER stress pathway by E5 seems to be

limited to the high risk types (Table 1); HPV-6b E5 is

unable to alter XBP-1 [93] and increased levels of COX-

2 were reported in recurrent respiratory papillomatosis

(RRP) lesions caused by low-risk HPV type 6b and 11

[94,95]. 16E5 is also able to lower COX-2 expression in

cells co-expressing E6/E7, suggesting that it might exert

similar activity during viral replication.

However, in different cell systems and clinical condi-

tions the same viral early genes seem to exert opposite

effects such as the induction of COX-2 expression in

spontaneously immortalized HaCaT and cervical cancer

lines C33A and SiHa [96,97]. It is possible that the dif-

ferent cell origin, immortalization and transformation

status, and the relative expression of the HPV early pro-

teins account for these contrasting data. Nevertheless

the reported consistent down-regulation of ER stress

response genes by 16E5 in primary genital keratinocytes

leads to speculation that this ER stress pathway inhibi-

tion is an event favourable to viral replication and per-

sistence [98].

Finally, 16E5 may induce expression of one of the

Prostaglandin E2 (PGE2) receptor in cervical cancer cells

by stimulating the binding of CREB to a variant CRE

site in the promoter of EP4 gene [99] (Figure 2). EP4
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pathway activates protein-kinase A which mediates ubi-

quitin-proteasome-mediated Bax degradation, inducing

antiapoptotic effects. Activation of EP4 by 16E5

increases anchorage-independent colony formation and

vascular endothelial growth factor (VEGF) expression,

leading to speculation that al least in some tumours E5

is involved in tumour growth, angiogenesis and metasta-

sis by inducing inflammatory cell signalling pathways.

HPV E5 and immune evasion

Cervical carcinogenesis is a multi-step process which

starts with viral infection; one of the steps is persistence

of viral infection. At least three major factors may

favour papillomavirus persistence: the virus life cycle

takes place away from dermal immune cells [100], the

virus does not cause cell lysis and therefore no or weak

inflammatory response [100], and, finally, the viral pro-

teins actively fight the immune response [101]. The E6

and E7 proteins play an important role in this fight but,

once again, the E5 protein seems to add help to the

virus by down-regulating MHC/HLA class I. MHC class

I is much reduced on the cell surface and accumulates

in the GA in cells expressing 16E5 [102]. The arrest of

MHC class I in the GA is due to E5-induced alkalinisa-

tion of the endomembrane compartments [103], follow-

ing 16E5-16 k subunit c interaction, and to the direct

interaction of E5 with the heavy chain of the MHC class

I complex [53,104]. These conclusions have been

reached in cultured HaCaT cells and W12 cell line, and

in vivo in the bovine model [105]. The functional effect

of the decreased expression of HLA is a reduction of

the recognition by CD8+ T cells in vitro [106].

Furthermore consistent with its role in the alkaliniza-

tion of endosomes, 16E5 can prevent the endosomal

breakdown of the invariant chain, a chaperone impor-

tant in the maturation of HLA class II, leading to inhibi-

tion of expression of surface HLA class II [107].

Inhibition of HLA class I transport by 16E5, in con-

trast to inhibition by BPV E5, is reversible by interferon

(IFN) treatment. IFN is sufficient to overcome the inhi-

bitory effect on MHC transport in presence of low levels

of 16E5. However, in oncogenic HPV infections, E6 and

E7 can inhibit the type I IFN pathway [108-110], thus

preventing the IFN-mediated release of E5-induced

blockage of HLA class I traffic.

Although an efficient mechanism to avoid cytoxic T

lymphocytes (CTL)-mediated immune clearance, the

reduction or absence of surface MHC class I renders

cells more susceptible to Natural Killer (NK) cell attack.

Human NK cells express multiple receptors that interact

with HLA class I molecules, including killer cell immu-

noglobulin-like receptors (KIRs) that predominantly

recognize classical HLA class I, including HLA-C, and

the C type lectin superfamily of receptors that

specifically interact with the nonclassical class I mole-

cule HLA-E. Recognition of the class I molecules by

their inhibitory receptors inhibits NK-mediated cell

lysis, which would occur in the absence of HLA-C/E.

Thus to efficiently evade immunosurveillance, HPV has

to selectively down-regulates the HLA class I molecules.

Indeed 16E5 selectively inhibits surface expression of

HLA-A and HLA-B without affecting either synthesis or

transport to the cell surface of HLA-C/E [97,100,101].

In this way HPV-16 is potentially capable of avoiding

both CTL and NK cell killing.

The bridging of innate and adaptive immune

responses can also be affected by E5 via the inhibition

of CD1d-mediated cytokine production that would

otherwise occurs upon interaction between cell surface

CD1d and iNKT cells [111].

It was reported that interactions between 16E5 and

calnexin interfere with modification of HLA class I HCs

and results in heavy-chain retention in the ER [51].

Since the synthetic pathways for CD1d and HLA class I

HCs are similar, this E5-calnexin interaction may alter

CD1d trafficking. Indeed, interactions between 16E5 and

calnexin do not appear to interrupt all of the functions

of calnexin, but just enough to coopt the cellular cytoso-

lic proteolytic pathway and degrade CD1d. Thus E5

inhibits the CD1d-mediated innate and adaptive

immune pathways early in HPV infection.

Finally, the reported novel association of HPV-16 and

HPV-31 E5 with Bap31 and A4 can also have an effect

on immune escape [52]. Bap31 is a chaperone involved

in quality control of, for instance, MHC molecules; A4

is a putative ion channel protein of the endoplasmic

reticulum. E5 and Bap31 physically interact and coloca-

lise in perinuclear structures and it was demonstrated

that this binding correlates with the ability to retain the

proliferative capacity of infected keratinocytes following

differentiation. E5 also binds and colocalises with A4

independently of Bap31, however the biological signifi-

cance of this interaction remains to be established.

Interestingly 16E5 first transmembrane domain which

binds MHC heavy chain shows homology with the third

transmembrane domain of Bap31 [53]. Therefore it is

possible that membrane-bound 16E5 displaces Bap31

from MHC I, maybe taking advantage of its own inter-

action with Bap31, and thus retains MHC I in the ER/

GA.

Thus immune escape mediated by E5 seems to be a

complex process, perhaps evolved to impact on different

pathways regulating the intracellular trafficking of

immunosurveillance molecules by general not-specific

mechanisms, such as endosomal alkalization, and speci-

fic ones, such as binding to MHC I heavy chain and

chaperones such as calnexin, invariant chain or Bap31.

It remains to be seen if E5 expression causes immune
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escape also in vivo. An inverse correlation exists

between expression of 16E5 and presence of surface

MHC I in the W12 keratinocyte line derived from a

CIN I biopsy [106], and in a small panel of naturally

occurring CIN lesions (Campo, unpublished observa-

tions). Additionally, again in a limited number of sam-

ples, an association has been reported between

decreased CD1d immunoreactivity and progression of

cervical neoplastic lesions with statistical significance (P

= 0.0001) [111].

Cell transformation pathways alternative to E5

Beta-HPVs do not code for an E5 protein. Considering

the ubiquitous presence of beta-HPVs in the healthy

population with almost no associated pathologies, the

lack of E5 ORF in these HPV could represent a factor

hampering the fully replicative cycle of these viruses.

Moreover, some beta-HPVs are detected together with

HPV-3 or related genotypes [112], and such a co-detec-

tion with E5-encoding HPVs suggests that beta-HPVs

benefit from E5 delivered by the co-infecting HPV

[113]. In human pathology there is a rare, autosomal

recessive genodermatosis associated with a high risk of

skin carcinoma, Epidermodysplasia Verruciformis (EV),

characterized by abnormal susceptibility to infection by

beta HPVs. Genetic analysis led to the identification of

two adjacent genes (EVER1 and EVER2), the mutation

of which segregates with the disease [114]. This extraor-

dinarily high sensitivity to infections by cutaneous beta-

HPVs in otherwise-healthy individuals carrying a muta-

tion in one of the EVER genes suggests that in humans

a natural EVER-based barrier exists, which protects the

host from PVs. The EVER proteins are crucial for the

functional integrity of the EVER/ZnT-1 complex

[115,116] responsible for maintaining a low level of free

zinc, modulating the activity of the AP-1 transcription

factors needed for viral genome expression. It has been

proposed that a cellular zinc imbalance constitutes an

important, perhaps even a crucial, step in the HPV life

cycle. It seems that breaking the barrier to cellular zinc

balance is an important element of the pathogenesis of

both alpha- and beta-HPVs, and the main difference

between these two groups would be a mechanism

employed to achieve the same goal. Beta-HPVs are

defective for this zinc imbalance, an important growth-

promoting function performed by E5 of alpha-HPVs,

and inactivation of EVER proteins may compensate for

the missing viral function [117]. Indeed the transmem-

brane viral 16E5 and cellular EVER proteins interact

both with the zinc transporter ZnT1, and are likely to

modulate zinc homeostasis [115,117]. The disruption of

the cellular zinc-transporting complex achieved during

the long co-evolution of HPV and the human species by

two completely unrelated strategies underlines the

general importance of the cellular zinc (im)balance in

the papillomavirus life cycle and the central role played

by E5.

In the absence of E5, beta-papillomaviruses have

evolved a mechanism to escape immunosurveillance

independent of E5. Indeed the E6 and E7 oncoproteins

of cutaneous HPV-38 interfere with the interferon path-

way. Expression of the two viral proteins in HaCaT ker-

atinocytes led to a decrease of MHC I levels. This

down-regulation was associated with a reduction of

expression of MHC I heavy chain, of the peptide cha-

perone TAP and of the STAT-1 downstream effector

IRF-1 [118]. Thus, at least for some (high risk?) beta

papillomavirus other E5-unrelated mechanisms take part

in the process of viral replication and avoidance of

immune control.

HPV E5 and carcinogenesis

HPV E5 proteins are not thought to play a role in the

later steps of malignant progression because in high-risk

HPV infections that progress to cancer the viral DNA

typically integrates into the host genome often resulting

in the loss of the E2 and E5 genes [65]. However in con-

trast to other high-risk HPVs, HPV-16 DNA can exist in

integrated, episomal or integrated and episomal form in

malignant lesions of the cervix. In one study about 60%

of HPV-16-positive cervical cancer expressed the 16E5

protein [28] and recent reports suggest that these

tumours with episomal HPV-16 may have a more

aggressive behaviour (Venuti, unpublished data). Never-

theless, the fact that a substantial proportion of the

tumours do not express E5 indicates that the protein is

not essential for HPV-16 mediated tumour progression.

Although 16E5 may not contribute to malignant pro-

gression, there is evidence that if E5 expression proceeds

beyond early lesional stages, keratinocyte differentiation

and immunological removal of infected cells does not

take place increasing the likelihood of subsequent onco-

genic transformation.

The presence of an E5 gene in all HR HPVs [23] and

the detection of E5 variants with higher codon usage in

high grade lesions [119] point to an important role of

E5 during PV-induced pathogenesis. This assumption is

further strengthen by studies on transgenic animals: (a)

Transgenic mice expressing only HPV-16 E6 and E7

oncogenes in the basal epithelium develop fewer

tumours than those arising in transgenic mice expres-

sing HPV-16 E5, E6 and E7 genes [120] (b) Mice trans-

genic for 16E5 (without HPV 16 E6 and E7) develop

skin tumours with high frequency [67].

One or more of the demonstrated biological activities

of 16E5 may be responsible for early post-infection

events enhancing the probability of subsequent carcino-

genesis. Indeed viral persistence is considered to be an
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important factor in the neoplastic progression of a pre-

malignant lesion [65]. The 16E5-induced down regula-

tion of MCH I [104] and MHC II [107], resulting in the

infected cell evading immunosurveillance, may increase

the duration and size of the HPV infection raising the

probability that some infected cells will become trans-

formed. The expansion of infected cells may also be

favoured by 16E5-induced DNA synthesis in differentiat-

ing keratinocytes [121] and by 16E5-enhanced ligand-

dependent activation of EGF-R [56,58-60]. Furthermore

the ability of 16E5 to inhibit gap-junction-mediated

intercellular communication via connexin 43 interaction

may render the infected cells more insensitive to

homeostatic growth control signals from adjacent, non-

infected cells [83,84]. 16E5 induction of cell fusion may

represent another critical event in the early stage of

HPV-associated cervical cancer [41-43]. Thus, HR HPVs

E5 is involved in the very early stage of carcinogenesis

by prolonging the life and expanding the pool of the

infected cells from which cancer may arise as a stochas-

tic event. Finally E5 can be also involved in negative

selection of cells harboring episomal virus and in turn

favoring the selection of cells with integrated virus. Epi-

some loss, associated with induction of antiviral

response genes, could be a key event in the spontaneous

selection of cervical keratinocytes containing integrated

HPV16. Microarray analysis showed that episome loss

was closely associated with endogenous activation of

antiviral response genes that are also inducible by type I

IFN pathway [122]. Recently this activation of the anti-

viral state was shown to be induced by 16E5 through

the stimulation of IRF-1 and IFN-b [123]. In this sce-

nario cervical carcinogenesis requires not only HR HPV

integration, but also loss of inhibitory (E2 expression)

episomes by the E5-induced establishment of an anti-

viral state that may accelerate episomal clearance.

BPV E5
BPV E5 is the best characterized of the E5 proteins and

has provided the blueprint for investigations into HPV

E5. E5 is the major BPV oncoprotein, only 44 amino

acid in BPV type 1 (BPV-1) and 42 in BPV type 4 (BPV-

4) [124-127]. Both proteins can be divided into two dis-

tinct domain: an amino-terminal domain which makes

up the majority of the protein and consists of strongly

hydrophobic leucine-rich membrane-spanning amino

acid residues with a single hydrophilic amino acid at

position 17 (glutamine in BPV-1 E5 and asparagine in

BPV-4 E5), and a short hydrophilic carboxyl-terminal

domain[125,128]. Both E5 proteins localize in the endo-

membrane compartments of the GA, ER and plasma

membrane. It has been suggested for BPV-1 E5 that

helix-helix hydrophobic contacts within the TM domain

play a critical role in functional dimer assembly and that

the cystein-containing motif functions as additional

dimer stabilization [129-131].

Cell transformation by BPV E5

Despite their structural similarity, BPV-1 and BPV-4 E5

differ in the ways they achieve cell transformation, likely

reflecting the different origin of the cells hosting the

two viruses. BPV-1 infects fibroblasts and skin keratino-

cytes giving rise to fibropapillomas, whereas BPV-4

infects solely the epithelial cells of the mucous epithe-

lium of the upper gastrointestinal tract [132]. Thus,

while expression of BPV-1 E5 by itself is sufficient to

fully transform mouse and primary human fibroblast

cells [133,134], BPV-4 E5 contributes to the transformed

phenotype of primary cells by conferring anchorage

independent growth, growth in low serum, focus forma-

tion and increased cell motility but only in the presence

of the other viral oncoproteins, resembling in this

respect 16E5 (Table 1) [127,135,136]. For both proteins

the hydrophobic domain, the hydrophilic residues at

position 17 and the hydrophilic C-terminal tail are criti-

cal for their transforming activities [135,137].

BPV-1 E5 induces tumourigenic cell transformation by

strongly and specifically binding to its cellular target,

Platelet Derived Growth Factor Receptor b receptor

(PDGFb-R) tyrosine kinase in a ligand-independent

manner [138-141]. The PDGFb-R is a transmembrane

protein which is normally activated by binding of its

ligand PDGF. BPV-1 E5 can bind as a dimer to two

monomers of the PDGFb-R [140,142,143], inducing

receptor dimerisation which in turn causes trans-phos-

phyorylation of specific tyrosine kinase residues within

the cytoplasmic domain of the receptor resulting in

mitogenic signalling [144]. Studies using PDGFb-R

kinase inhibitors show that maintenance of transforma-

tion by BPV-1 E5 requires sustained PDGFb-R activa-

tion [145,146].

BPV-1 E5 interacts with the PDGFb-R via its trans-

membrane domain [141,142,147], unlike the natural

ligand PDGF which binds the receptor via its ligand

binding domain Extensive characterisation of E5 demon-

strates that there are essentially four residues important

for PDGFb-R binding and activation. These are the

transmembrane glutamine (Gln17) important for both

dimerisation of E5 and for its interaction with PDGFb-

R; the aspartic acid (Asp 33) residue at the juxtamem-

brane region which provides a negative charge required

for receptor interaction and two terminal cysteine resi-

dues (Cys37, Cys39) essential for homodimerisation of

E5 [125,137,145,148,149]. Interestingly, these four resi-

dues are conserved among the E5 proteins of fibropapil-

lomaviruses [150] whereas other residues within the

transmembrane region are less well conserved. Muta-

genesis studies have demonstrated that BPV-1 E5 can
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tolerate a surprising number of mutations and that the

maintenance of the hydrophobic nature of E5 and the

conserved residues is enough to confer transforming

activity [151-155].

Mutational analyses of the receptor itself have identi-

fied key residues important for function. The PDGFb-R

is as single span type I transmembrane receptor with

three domains: an amino terminal domain which binds

its receptor, a short membrane spanning region and an

intracellular kinase domain. Two residues appear to be

important for E5 interaction and transformation activity:

a threonine 513 in the transmembrane domain is

required for H bonding with Gln17 residue of the E5

protein and lysine at 499 in the juxtamembrane region

with Asp33 in the E5 protein [156-158]. An important

feature of BPV-1 E5 mediated PDGFb-R activation is

that activation occurs independently of PDGF since E5

can constitutively activate PDGFb-R deletion mutants

that lack the extracellular ligand-binding domain

[141,159].

The interaction between BPV-1 E5 and PDGFb-R is

highly specific. At physiological levels, E5 is able to

interact with PDGFb-R but not with other tyrosine

kinase receptors including insulin receptors, basic fibro-

blast growth factor receptor or insulin-like growth factor

receptors, however at higher levels E5 can interact with

additional receptors [140,144]. E5 cannot bind the

PDGF a receptor, a closely related receptor to the

PDGFb-R whilst both of these receptors can be activated

by PDGF [140-144]. The specificity is thought to be

conferred by the transmembrane domain [159].

Most of the studies on BPV E5 and PDGFb-R activa-

tion have been performed in vitro. Borzacchiello et al

(2006) have shown that BPV-2 E5 interacts with and

activates the PDGFb-R in vivo in bovine urinary bladder

cancers (Figure 3). Moreover, the binding of E5 to

PDGFb-R induces the activation of different signal

transduction pathways: PDGFb-R and phosphoinositide

3 kinase (PI3K) physically interact as do PDGFb-R and

the Grb2-Sos complex. PI3K-Akt and Grb2-Sos-Ras sig-

nals are all potentiated in cancer, but, as in in vitro

models, the levels of Erk and Mek proteins are not sig-

nificantly overexpressed [160-162] (Figure 4). BPV E5 is

able to activate c-src, a non receptor tyr kinase, but not

the closely related c-Fyn and PI3K [163]. The activation

of the latter is necessary but not sufficient to induce cell

transformation independently of PDGFb-R signalling

[163,164]. Unlike BPV-1 E5, BPV-4 E5 induces transfor-

mation of established cells independently from the con-

stitutive activation of tyrosine kinase growth receptors

(Table 1) [165]. Cell transformation by BPV-4 E5 (either

of established cells by itself or of primary cells in co-

operation with other viral oncoproteins) is achieved

through transactivation of the cyclin A gene promoter,

increased cyclin A expression and cyclin A-associated

kinase activity, and inhibition of the negative regulator

of cell cycle, p27Kip1 [135,166-168]. Mutational analyses

of BPV-4 E5 have demonstrate that, as is the case for

BPV-1 E5, the residue at position 17 and the hydrophilic

C-terminal tail are critical for its transforming activities

[135]. Thus both mutation of Asp 17 and deletion of

the C-terminus hydrophilic domain completely abrogate

cell transformation and E5 ability to activate the cyclin

A pathway [135].

Down-regulation of MHC expression

The down-regulation of surface MHC I and retention of

the MHC I complex in the GA were first shown in cells

expressing BPV-4 E5 [169] and then confirmed for

other E5 proteins both from BPV and HPV. BPV E5

interferes with MHC I biosynthesis at multiple steps:

transcriptional inhibition of the MHC class I heavy

chain gene, degradation of the heavy chain and physical

interaction with any residual heavy chain [169,170].

Only the physical interaction with heavy chain is shared

with 16E5 [99]. Moreover, in the case of BPV-4 E5 the

down-regulation of surface MHC I is irreversible, as

interferon cannot restore the transport of the MHC I

complex to the cell surface [128], while this is not the

case for 16E5. This may reflect the fact that E5 is a

“stronger” protein in BPV than in HPV.

In any event, the finding of MHC down-regulation by

E5 has proved of great importance since it defined a

new biological activity shared by both BPV and HPV E5

(Table 1), which allows the infected cell not to be effec-

tively recognised by cytotoxic CTL [106].

BPV E5: other biological activities

BPV E5 interacts with the 16 kDa protein, a component

of the V-ATPase [147,171]. In the case of BPV-1 E5,

this protein association exists as a tri-component com-

plex, which contains also PDGFb-R molecules. Muta-

tional analyses have demonstrated that glutamic acid

143 in the transmembrane domain of the 16 kDa pro-

tein and glutamine 17 in the transmembrane domain of

BPV-1 E5 are essential for E5-16 kDa stable association

[172]. The binding of the E5 with 16 kDa perturbs the

correct assembly of V-ATPase and H+ pumping, with

persistent alkalinization of the GA and endosomal vesi-

cles [103] and may lead, directly or indirectly, to a

marked loss of cell-cell communication through down-

regulation of gap junctions (Table 1) [101,173], render-

ing the transformed cells more insensitive to homeo-

static growth control signals from adjacent normal cells.

However, in the case of HPV-16 inhibition of gap junc-

tion intercellular communication has been attributed to

the interaction of E5 with connexin 43 [84]. E5-expres-

sing bovine urinary bladder tumours show activated
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calpain 3, suggesting a possible involvement of this pro-

tein in urothelial carcinogenesis [174].

Targeting HPV-16 E5 for cervical treatment

16E5 activates many different cellular pathways involved

mostly in the early stage of cervical carcinogenesis

[175]. Different studies have pointed out the possibility

of E5 targeting for CaCx therapy. In animal studies,

16E5 delivered by an adenovirus vector reduces the

growth of tumours and the E5 vaccine induces protec-

tion against tumours through CD8+ cytotoxic T cells

(CTLs) [176]. The same research group has further

Figure 3 BPV E5 and PDGFb-receptor co-precipitate and co-localize in bovine urinary bladder carcinoma. A. Co-immunoprecipitation of

the PDGFb-receptor with E5 antiserum. Tissue lysates were immunoprecipitated with the anti E5 antibody and the immunoblot was analyzed

with the anti- PDGFb-receptor antibody. Lanes 1-3 are BPV-2 positive bovine urinary bladder cancer samples, T1, T2, T3. Lane 4 is BPV-2 DNA

positive normal bovine bladder mucosa, N1. B. Coimmunoprecipitation of the E5 oncoprotein with the PDGFb-receptor antiserum. The arrow

indicates the E5 oncoprotein and its estimated kDa weight. In a parallel blot, the same amount of lysate was probed with an antibody to b-actin

to control for the quantity of protein (bottom panel) C. Colocalization (yellow) of PDGFb-receptor (red) and E5 (green) in bovine neoplastic

urothelium. The white arrows indicate a juxtanuclear position of E5 and PDGFb-receptor (reproduced with permission from Borzacchiello et al.,

Oncogene 2006).
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demonstrated that the stimulating epitope was an E5

peptide (aminoacids 25-33) and vaccination with this

peptide carrying CpG oligonucleotides reduced tumour

growth [177]. 16E5 modulates different cellular path-

ways and the targeting of these relevant pathways may

lead in a near future to a possible therapeutic approach.

In addition, E5 is more consistently expressed in the

early stage of viral infection and in precancerous lesions

[178], and therefore E5 or E5 altered pathways could be

targeted to cure the infection and to prevent precancer-

ous lesions from progressing into invasive cancers. 16E5

interacts with many different pathways including upre-

gulation of growth factor signalling, induction of inflam-

matory cell signalling, angiogenesis and antiapoptosis

(Figure 2). Furthermore E5 participates in malignant

transformation by supplementing (added value) the roles

of E6 and E7. All these E5-induced signalling pathways

(Figure 2) or E5 itself can be addressed by therapies

already utilised against the other HPV oncogenes such

as radioimmunotherapy, oncolytic adenoviruses [179],

gene silencing using short interfering RNA (siRNA)

[180] and others, which have been originally used to tar-

get the E5-upregulated pathways. EGF-R, COX-2 or ET1

inhibitors should be useful in controlling E5 activity in

the precancerous lesions as well as other small mole-

cules interfering with downstream molecules. Finally, E5

may be considered a viroporin, like the VP4 of SV40

[181] and, therefore, susceptible of therapy by com-

pounds that affect similar structures produced by other

viruses. Indeed amantidine, amiloride, long-alkyl-chain

iminosugar derivatives and new compounds seem to

affect, to various extent, the activity of the 16E5 protein

in vitro (A. Macdonald, personal communication, 11

DNA TV Meeting, Trieste, Italy, 2011)

Conclusions
The main activities of E5 can be resumed as follows:

Although E6 and E7 provide the primary transforming

activities of HR HPVs, E5 can augment their function

and contribute to tumour progression:

Figure 4 Model of cellular events during cell transformation mediated by BPV-1 E5. E5 binds to the transmembrane domain of PDGFb-R

and induces receptor dimerisation and autophosphorylation. The activated receptor can recruit p85-PI3K that activates the AKT and JNK

pathway. PDGFbR stimulation of a PI3K-AKTpathway leads to increased expression of cyclin D3. Recruitment of Sos1-GRB2 complex to p-PDGFbR

may activate Ras, although the downstream MAPK pathway is not activated; therefore Ras may activate PI3-K pathway. The SHP2-p66Shc

complex bound to the activated PDGFb-R may be recruited and inactivates p190BRhoGAP, resulting in activation of a Rho family GTPase, Rho A

and its downstream effector ROCK inducing focus formation. E5 is able to interact with c-src in late endosomal and trans-Golgi compartment,

thus resulting in c-src constitutively activation. E5 interacts with the C-terminus of MHC I heavy chain and causes the retention of MHC I in the

Golgi apparatus, thus preventing its transport to the cell surface. E5 perturbs the physiological activity of the V-ATPase by inhibiting the correct

assembly of V-ATPase and H+ pumping, thus inducing persistent alkalinization of the Golgi and endosomes vescicles.
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When expressed alone, HPV E5 has weak transform-

ing activity.

In transgenic mouse models, 16E5 expression in the

skin produces epithelial hyperproliferation with sponta-

neous tumour formation, whereas in estrogen-treated

mice, expression of E5 alone can induce cancers [182],

suggesting a role for E5 as a true oncoprotein.

The presence in HPV 16-positive cervical tumours of

viral episomes in addition to viral integrants leads to the

hypothesis that there are multiple pathways to HPV

induced tumourigenesis see above. Beside the basic

hypothesis of high-level expression of E6 and E7 conse-

quent to the abrogation of the repressive effects of E2

due to the loss of the E2 gene during integration,

another pathway can be active in cells that still maintain

viral episomes, in which E5 would augment the activity

of E6 and E7. The expression of E5 is increased on dif-

ferentiation to promote proliferation of differentiated

cells and productive viral replication.

The localization of HPV E5 to the endoplasmic reticu-

lum suggests its activity may be related to the trafficking

of cytoplasmic membrane proteins through this cellular

compartment, in particular of growth factor receptors

and of molecules involved in immune control.

There are multiple documented intracellular binding

targets for 16E5 such as the EGF receptor family mem-

ber ErbB4 [77], the 16-kDa subunit of the vacuolar H
+-ATPase [39,55], the heavy chain of HLA type I [104],

calnexin [51], the zinc transporter ZnT-1, the EVER1

and EVER2 transmembrane channel-like proteins

[115,117] the nuclear import receptor family member

KNb3 [45], BAP31 and A4 [44,52] (Figure 2).

However the role of 16E5 in carcinogenesis seems to

be limited to the early stages of cervical carcinogenesis

because the E5 gene is frequently deleted when the

HPV genome is integrated during malignant progression

[28,68,183]. Nevertheless, the expression of 16E5 as

detected by immunohistochemistry, was reported in

approximately 80, 90 and 60% of HPV 16-infected

LSILs, high-grade SILs and cervical carcinomas, respec-

tively [28]. Furthermore data from a limited number of

patients were presented at the 1st International Work-

shop on E5 Oncogene [184] suggesting that E5 expres-

sion may lead to a worse response to treatment with

taxanes (Venuti, unpublished data). Therefore, targeting

E5 which is frequently expressed in earlier stages of

malignant transformation may be a rational approach

for preventing premalignant lesions from progressing

into invasive cervical cancers [175]. The recent success-

ful eradication of HPV-induced tumours in mice by

anti-E5 vaccination [176] indicates that E5 can be used

in immunotherapy. The neutralization of E5 or of E5-

induced signalling pathways, therefore, whether immu-

nological or chemical, could be advantageous

particularly in HPV infections and pre-cancerous lesions

where there are no treatments available.
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class II; HLA: human leukocyte antigen; CTL: cytotoxic T Lymphocyte; EGF-R:

epidermal growth factor receptor; NK: natural killer; MAPK: mitogen-activated

protein kinase; PKC: protein kinase C; ETA: endothelin receptor; ET-1:

endothelin-1; CKI: cyclin-dependent protein kinase inhibitors; TRAIL: Tumor

necrosis factor-related apoptosis-inducing ligand; DISC: Death-Inducing

Signalling Complex; FasL: Tumor necrosis factor ligand superfamily member;

COX-2: cyclooxygenase 2; PGE2: Prostaglandin E2 receptor; XBP-1: X-box-

binding protein 1; IRE: Serine/threonine-protein kinase/endoribonuclease

IRE1; IFN: interferon; CREB: Cyclic AMP-responsive element-binding protein;

PDGFβ-R: Platelet Derived Growth Factor Receptor β subunit receptor; PI3K:

phosphoinositide3 kinase; V-ATPase: vacuolar H+-ATPase.
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