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Papillomaviruses Causing Cancer: Evasion From
Host-Cell Control in Early Events in Carcinogenesis
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During the past 20 years, several types of human papilloma-
viruses (HPVs) have been identified that cause specific types
of cancers. The etiology of cancer of the cervix has been
linked to several types of HPV, with a high preponderance of
HPV16. The role of these virus infections has been estab-
lished 1) by the regular presence of HPV DNA in the respec-
tive tumor biopsy specimens, 2) by the demonstration of
viral oncogene expression (E6 and E7) in tumor material, 3)
by the identification of transforming properties of these
genes, 4) by the requirement for E6 and E7 expression for
maintaining the malignant phenotype of cervical carcinoma
cell lines, 5) by the interaction of viral oncoproteins with
growth-regulating host-cell proteins, and 6) by epidemiologic
studies pointing to these HPV infections as the major risk
factor for cervical cancer development. In addition to cancer
of the cervix, a major proportion of anal, perianal, vulvar,
and penile cancers appears to be linked to the same HPV
infections. In addition, close to 20% of oropharyngeal can-
cers contain DNA from the same types of HPV. Recent evi-
dence also points to a possible role of other HPV infections in
squamous cell carcinomas of the skin. This review covers
recent developments in understanding molecular mecha-
nisms of HPV carcinogenesis, mainly discussing functions of
viral oncoproteins and the regulation of viral oncogenes by
host-cell factors. Modifications in host-cell genes, most likely
engaged in the control of HPV gene expression in prolifer-
ating cells, emerge as important events in HPV-mediated
carcinogenesis. [J Natl Cancer Inst 2000;92:690–8]

INTRODUCTION

Human papillomaviruses (HPVs) reveal a remarkable plural-
ity of different genotypes. Until now, 85 HPV types have been
identified and fully sequenced; more than 120 putative novel
types have been partially characterized [(1); de Villiers EM:
personal communication]. Thus far, all identified types appear to
be strictly epitheliotropic: They infect epithelial cells either of
the skin or of the anogenital and oropharyngeal mucosa. No
evidence for HPV infections has yet been found in the gastric,
ileojejunal, or colon mucosa.

The reasons for the enormous diversity of types as well as for
the restriction of viral propagation to external skin or specific
internal mucosal sites are presently unknown. The possibility
exists, however, that both of these observations are interrelated:
The replication of viral DNA and the subsequent particle for-
mation in external differentiated epithelial cells of skin, anogeni-
tal, and oral mucosa may expose these infections less to immu-
nologic interference. The absence of immunologic interactions
could be the major reason for reduced evolutionary restraints,

permitting the adaptation of new HPV variants to different types
of differentiated epithelia(2). We currently do not know the
basis for the apparent absence of HPV infections in internal
organs and within the gastrointestinal epithelia, although the
latter, in particular, must be frequently exposed to papillomavi-
rus particles because of the consumption of contaminated food.

Structural properties of these viruses and viral gene functions
have been reviewed repeatedly(3,4)and will not be discussed in
detail here. It is, however, of interest to recall the different
biologic activities of individual HPV types. Only a limited num-
ber of the approximately 40 types infecting the anogenital tract
is found in anogenital cancer biopsy specimens. Specifically,
these types possess cell-immortalizing and cell-transforming
properties. In addition, close to 20% of oropharyngeal cancers
contain DNA from the same types of HPV. The main represen-
tatives are HPV types 16, 18, 31, 33, 39, 45, 52, 58, and 69. They
can be considered as high-risk types, while HPV types only
rarely detected in malignant lesions, such as the two main types
found in genital warts (condylomata acuminata), HPV6 and
HPV11, are considered as low-risk types(5). In recent years,
functional differences between oncoproteins of these virus sub-
groups have been intensively studied and provided some clues
for the molecular mechanisms of HPV-induced cell immortal-
ization and carcinogenesis. The availability of different types of
infection within the same virus family represents one reason that
HPV infections permit, at present, probably the most advanced
insight into mechanisms of virus-induced carcinogenesis.

FUNCTIONS OF VIRAL ONCOPROTEINS AND THEIR

INTERACTIONS WITH CELLULAR PROTEINS

HPV genomes code for at least six different early and two late
proteins. The structure of the genome and characteristic proper-
ties of individual viral proteins have been reviewed previously
(3). High-risk HPVs code for at least three proteins with growth-
stimulating and transforming properties (E5, E6, and E7).

E5 Protein

The E5 protein is expressed in productive infections and may
fulfill a function in the early expansion of an infected cell clone.
The open reading frame coding for E5 is frequently deleted in
cervical carcinoma cells(6), indicating the absence of an essen-
tial role of this gene in maintaining the malignant phenotype of
cervical cancer cells. E5 represents a hydrophobic protein, pref-
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erentially found in the Golgi apparatus and in the plasma mem-
brane(7). It complexes with a variety of other transmembrane
proteins, like epidermal growth factor receptor, platelet-derived
growth factorb receptor, and colony-stimulating factor-1 recep-
tor (8), as studied particularly in cells infected by bovine pap-
illomaviruses. E5 also binds to proteins of the gap–junction
complex, such as the membrane-bound protein adenosine tri-
phosphatase (ATPase)(9,10).The HPV16 E5 protein possesses
weak transforming activity and induces a protein kinase C
(PKC)-mediated and, in addition, a receptor tyrosine kinase-
mediated, PKC-independent, activation of membrane-associated
protein kinases(11,12). Its transient induction in mouse 3T3
cells or immortalized human keratinocytes results in suppression
of the cyclin-dependent kinase inhibitor p21CIP1 and in the in-
duction of c-jun expression(13). However, at present, the con-
tribution of E5 to naturally occurring infections is still poorly
understood.

E6 Protein

More data are available relating to the function of the two
other oncoproteins, E6 and E7. Their binding properties and
functional characteristics are shown in Tables 1 and 2, respec-
tively. Both proteins are consistently expressed in HPV-carrying
anogenital malignant tumors(6) and are able to immortalize a
wide variety of human cell types cooperatively(14,15).Of in-
terest, even the individual genes may immortalize human cells,
such as mammary epithelial cells or different types of human
keratinocytes [reviewed in(16)].

A number of interactions have been reported between high-
risk E6 and host-cell proteins that provide some clues for the
understanding of viral oncoprotein functions. The initial obser-
vation of E6 binding to the cellular protein p53(17)mediated by
the E6-associated protein (E6-AP) protein ligase(18) turned out
to be particularly important. It emerges as one of the prime
causes for chromosomal instability of high-risk HPV-containing

cells (19–21),with resulting mutational consequences for HPV-
positive cells. The presence of E6 also enhances the integration
of foreign DNA into the host-cell genome(22). Elimination of
p53 is, however, not a requirement for immortalization by E6
(23).

Other consequences are presently emerging from the
E6/E6-AP interaction: Potentially important is the recent obser-
vation of E6-AP-mediated ubiquitination and degradation of the
src family tyrosine kinase Blk(24). It is conceivable that the
presence of E6 partially blocks this degradation and thereby
stabilizes the respective kinase and stimulates mitotic activity
(24).This could explain, in part, growth-stimulatory functions of
the E6 protein of high-risk HPVs. In addition, however, E6
reveals a remarkable pleiotropism in binding further host-cell
proteins: It interacts with the calcium-binding protein ERC 55
(25), with the focal adhesion protein paxillin(26,27),with the
human homologue of theDrosophiladiscs large tumor suppres-
sor protein(28), and with a novel putative GAP protein E6TP1
(29). These interactions may lead to substantial functional con-
sequences for E6-expressing cells, although they are, at present,
not fully understood. This underlines the multifunctionality of
the E6 protein. E6 also binds to the interferon regulatory factor
3 and inhibits the induction of interferonb messenger RNA
(mRNA) following Sendai virus infection(30).This inhibition is
not mediated by ubiquitination or degradation.

An interesting observation has been initially reported by
Reznikoff et al.(31) revealing the regular absence of the p16INK4

protein in uroepithelial cells immortalized by HPV16 E6. This
has also been found in cervical keratinocytes immortalized by
infection with amphotropic retroviruses expressing the E6 gene

Table 1.Binding of cellular proteins by the high-risk human papillomavirus
oncoproteins E6 and E7

Viral
oncoprotein Cellular-binding protein

Investigator(s), y
(reference No.)

E6 p53 Werness et al., 1990(17)
E6-associated protein Scheffner et al., 1993(18)
ERC55 Chen et al., 1995(25)
hDLG Kiyono et al., 1997(28)
Paxillin Tong and Howley, 1997(26)

Vande Pol et al., 1998(27)
Interferon regulatory factor 3 Ronco et al., 1998(30)
Bak Thomas and Banks, 1999(35)
E6TP1 Gao et al., 1999(29)

E7 Retinoblastoma protein (Rb) Dyson et al., 1989(39)
Rb-related pocket proteins Dyson et al., 1992(40)
E2F/cyclin A complex Arroyo et al., 1993(51)
Histone H1 kinase Davies et al., 1993(46)
TATA box-binding protein Massimi et al., 1996(68)
Cyclin E McIntyre et al., 1996(50)
Subunit 4 (S4) adenosine

triphosphatase
Berezutskaya and Bagche,

1997 (49)
c-jun Nead et al., 1998(54)
hTid-1 Schilling et al., 1998(48)
Mi2 (histone deacetylase

complex)
Brehm et al., 1999(45)

M2-pyruvate kinase Zwerschke et al., 1999(47)
p48 Barnard and McMillan,

1999 (64)

Table 2. Identified functions of the high-risk human papillomavirus
oncoproteins E6 and E7

Viral
oncoprotein Identified function

Investigator(s), y
(reference No.)

E6 • Cell immortalization
• Binding of E6-associated

protein results in degradation
of specific host cell proteins
(p53)

• Antiapoptotic effect

• Chromosomal destabilization
• Enhancement of foreign DNA

integration and mutagenicity
• Activation of telomerase

• Blockade of interferon
functions (?)

Band et al., 1990(122)
Werness et al., 1990(17),

Scheffner et al., 1993
(18)

Werness et al., 1990(17),
Thomas and Banks,
1998 (34)

White et al., 1994(19)
Kessis et al., 1996(22),

Havre et al., 1995(21)
Klingelhutz et al., 1996

(36)
Ronco et al., 1998(30)

E7 • Cell immortalization

• Activation of cyclins E and A

• Inactivation of retinoblastoma
protein-related pocket proteins

• Induction of apoptosis

• Inhibition of cyclin-dependent
kinase inhibitors

• Enhancement of foreign DNA
integration and mutagenicity

• Degradation of tyrosine kinase
Blk (?)

Münger and Phelps, 1993
(121)

Arroyo et al., 1993(51),
Zerfass et al., 1995

Dyson et al., 1989, 1992
(39,40)

Puthenveettil et al., 1996
(59)

Jones et al., 1997(57),
Funk et al., 1997(56)

Kessis et al., 1996(22),
Reznikoff et al.,
1996(31)

Oda et al., 1999(24)
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(Whitaker N, zur Hausen H: unpublished data). These data sug-
gest a counteracting function of p16INK4 to E6. In high-risk HPV
infections, E6/E7 protein-synthesizing cells even reveal an in-
crease in p16INK4 production(32), pointing to an E7 property
overriding the inhibitory function of p16INK4. In this case, cyclin
D–cdk4 complexes are disrupted and replaced by cyclin
D–p16INK4 complexes(33).

Two additional functions of E6 obviously influence its role as
oncoprotein: Its antiapoptotic effect could be initially deduced
from the E6-mediated degradation of p53(17).E6 also mediates
the degradation of another proapoptotic protein, Bak, a member
of the Bcl-2 family(34,35).Furthermore, E6 activates host-cell
telomerase(36). This might be associated with a loss of alleles
in chromosomes 3p and 10p and thus represents a late event in
the steps toward immortalization(37).

It appears, at present, that the two most prominent functions
of E6 can be summarized as follows: because of its mutagenic
and antiapoptotic effect, E6 (in high-risk HPV-genome-carrying
cells) appears to act as an important factor in tumor progression,
acting through an endogenous pathway. Because of its binding
to p53, it overcomes the G1/S checkpoint control in DNA-
damaged cells. In addition, via different pathways, expression of
the E6 oncoprotein may lead to immortalization of specific hu-
man cells. Immortalization by E6 results in a large number of
modifications in the respective host cells, among them the acti-
vation of host-cell telomerase.

E7 Protein

Similar to the functions of E6, E7 oncoprotein functions are
also pleiotropic. Its carboxyl-terminal zinc-binding domain can
be functionally replaced by the homologous sequences of the E6
protein (38), indicating the relationship between the two pro-
teins. A key observation for an important function of E7 was the
demonstration of its binding to pRb(39) and retinoblastoma
protein (Rb)-related pocket proteins(40).This binding results in
phosphorylation of these proteins, in their enhanced degradation
by ubiquination(41), and in the release of transcription factors
of the E2F family, activating transcription of genes regulating
cell proliferation(42,43).Under certain conditions, this binding
is apparently not an essential component for immortalizing prop-
erties of E7(44). Mutations in the zinc finger domain of E7,
which is dispensable for Rb binding, abolish its transformation
functions (45). This region binds a protein of the nucleosome
remodeling deacetylase histone deacetylase complex, Mi2b,
pointing to a possible engagement of E7 in targeting deacetyla-
tion pathways(43). The binding of E7 to the histone H1 kinase
at the G2/M phase of the cell cycle is apparently also not related
to Rb binding(46). Kinase binding-deficient mutants were de-
scribed as transformation defective. Another interesting interac-
tion of E7 has recently been reported to be the glycolytic enzyme
M2 pyruvate kinase, modulating the activity of this enzyme(47).
The functional importance of additional E7–host-cell protein
interactions, like hTid-1, a homologue of theDrosophila tumor
suppressor protein Tid56(48) and the subunit 4 (signal anchor)
ATPase(49), remains to be determined.

E7 proteins of high-risk HPVs are found in cyclin E(50) and
in cyclin A (51) complexes. These complexes exhibit kinase
activity. The activation of cyclin E, followed by the activation of
cyclin A, is mediated by E7 sequences required for transforma-

tion (52). An interaction of the E7 gene product has also been
noted with the AP-1 family of transcription factors that are trans-
activated by E7(53). The E7-induced S-phase entry is not ac-
companied by cyclin D activation, probably because of the for-
mation of cyclin D/p16INK4 complexes in high-risk HPV-
infected cells(33). The binding of E7 to c-jun(54) and to the
TATA box-binding protein(55) points to further interactions
with transcription factors.

An important function of E7 proteins is the inactivation of the
cyclin-dependent kinase inhibitors p21CIP-1 (56,57)and p27KIP-1

(58).This interaction uncouples cdk activity from cdk inhibitors
and should be a major factor in growth stimulation of HPV-
infected cells.

In contrast to the E6 protein, the E7 protein sensitizes p53-
reactive cells to apoptosis(59–61).In cells with p53 mutations,
E7 expression exerts an antiapoptotic effect(62). It is interesting
to note, in this respect, that the growth arrest in damaged kera-
tinocytes caused by p53 induction is bypassed by HPV16 E7
(63). Similar to E6, the E7 protein inhibits interferon signaling
pathways by binding to the interferon regulatory protein p48
(64).

High-risk HPV E7 expression enhances the integration of
foreign DNA into host-cell DNA(22), results in increased mu-
tagenesis(19,31), and enhances the mutagenicity of chemical
carcinogens(62). The mechanism underlying this function is
presently poorly understood.

Similar to E6 expression, E7 expression disrupts the G1/S
transition, possibly by the altered regulation of cyclin E(66).
Phosphorylation of E7 by casein kinase II, analogous to phos-
phorylation of the adenovirus E1a complex, enhances some of
these functions(67,68).High-risk HPV E7, in contrast to E6,
does not activate cellular telomerase(69), although E7-
immortalized cells partially restore their telomere length.

Thus, E7 is a potent inhibitor of some cyclin-dependent ki-
nase inhibitors, it inactivates Rb-related pocket proteins, it en-
hances mutagenic events in E7-expressing cells, despite its prop-
erty to sensitize cells to apoptosis, it is able to immortalize
various types of human cells. It will be interesting to analyze
E7-immortalized cell clones for modifications in the p53 gene.

Although E6 and E7 proteins may immortalize various types
of human cells independently, their cooperative interaction leads
to substantially enhanced immortalization efficiency. The partial
inactivation of p53-mediated checkpoint control by E6, its an-
tiapoptotic effect, the bypass of p16INK4-controlled inhibition of
E6 functions by E7, and the functional inactivation of the cyclin-
dependent kinase inhibitors p21CIP-1 and p27KIP-1 by E7 are
probably the key events in this cooperation.

E6 AND E7 GENES ARE NECESSARY BUT NOT

SUFFICIENT FOR CELL IMMORTALIZATION AND THE

MALIGNANT PHENOTYPE

As pointed out previously, immortalization of human cells of
various origin can be achieved with either E6 or E7 oncogenes
of high-risk HPVs but more efficiently by the joint function of
both of them. Several sets of data exist pointing to the require-
ment for viral oncogene expression to maintain either the im-
mortalized or the malignant phenotype of the respective cells
[reviewed in (70)]. However, a substantial body of evidence
supports the concept that neither the individual genes nor their
cooperation is sufficient to convert normal cells into an immor-
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talized or malignant state. This can be deduced from a number of
experimental studies. Somatic cell hybridizations, initially per-
formed with simian virus 40-immortalized cells, revealed that
different immortalized clones were able to complement each
other toward senescence, in spite of ongoing SV40 T-antigen
synthesis(71–73).Similar data have been subsequently reported
for HPV-immortalized human cells(74). These studies(75,76)
emphasize that the expression of viral oncoproteins is not suf-
ficient for the immortalized state, although their conditional ex-
pression points to their necessary role in HPV-mediated cell
immortalization.

Several studies underline the importance of HPV oncoprotein
expression in malignant cervical carcinoma cells: Reversible re-
pression of E6/E7 expression in the HPV18-positive cervical
carcinoma cell line SW756 by dexamethasone blocks their ma-
lignant phenotype(74). Reintroduction of the two oncogenes
under the control of a dexamethasone-inducible promoter re-
stores malignant growth. Similarly, as initially shown by von
Knebel Doeberitz et al.(78),viral oncogene antisense constructs
selectively inhibited growth of cervical carcinoma cells harbor-
ing the respective virus(79–81).Similarly, specific ribozymes
or antisense oligonucleotides inhibit growth of HPV-containing
cervical cancer cells(82–84).

However, somatic cell hybridization studies(84) also reveal
that the expression of HPV oncoproteins is not sufficient for the
maintenance of the malignant phenotype in cervical cancer cells.
Hybrid clones derived from the fusion of different cervical car-
cinoma cell lines or immortalized by HPV16 and converted to
malignant growth by additional x-irradiation either comple-
mented each other to senescence or to nontumorigenic immor-
talized growth or retained their malignant characteristics. This
set of data points to the existence of a separate signaling cascade
blocking the progression of immortalized cells toward malignant
conversion. This signaling pathway is obviously regulated by
several cellular genes and may become interrupted during the
progression to malignant growth in different individual genes.
Thus, after somatic cell hybridization of different clones from
malignant lines, complementation may occur within this signal-
ing cascade, resulting in an immortalized, but not a malignant,
phenotype of the respective clones. Complementation toward
senescence of two different malignant cells after somatic fusion
should involve complementation within two different signaling
cascades.

In line with the requirement for specific host-cell modifica-
tions in addition to the expression of viral oncoproteins are
observations of specific chromosomal aberrations in HPV-
immortalized or in cervical carcinoma cells(86,87). A gene
locus relatively frequently modified in cervical cancer is located
in the chromosomal region 3p14.2 that harbors the fragile his-
tidine triad (FHIT) gene(88,89).Also in line with this interpre-
tation, a large-scale, population-based study(90) from Sweden
pointed to genetic links to the development of cervical cancer.
An initially intriguing observation on a role of p53 polymor-
phism for the risk of cervical cancer(90)has not been confirmed
in a number of other studies [reviewed in(92)].

As outlined previously, expression of high-risk HPV onco-
proteins may, in part, induce these genetic modifications in host-
cell DNA. Chemical and physical mutagens should also interact
cooperatively in the development of these changes. In addition,
integration of viral DNA could further contribute to specific
alterations within the host-cell DNA.

INTRACELLULAR AND INTERCELLULAR REGULATION OF

VIRAL ONCOGENE FUNCTION

Intracellular Regulation Prevents Immortalization of Cells
Infected With High-Risk HPV

Some lines of experimental studies point to the existence of
an intracellular control of viral oncoprotein function, preventing
immortalization of genetically unmodified high-risk HPV-
infected human cells: One important aspect is the demonstration
of complementation for senescence of different clones of HPV-
immortalized cells after somatic cell hybridization(74). The
continued transcription of HPV E6/E7 mRNA in cells undergo-
ing senescence corresponds to a similar situation observed in
somatic cell hybrids obtained from SV40-immortalized cells
(72,73), where senescent cells still continue to express SV40
large T antigen.

The molecular mechanism of this functional impairment of
viral oncoproteins is presently still not understood. It may in-
volve modifications of viral oncoproteins, for instance, by phos-
phorylation or dephosphorylation. Phosphorylation of the E7
protein of HPV16 by casein kinase II has been described before
(67).On the other hand, it may as well involve inhibition due to
direct interactions with other host-cell proteins, like cyclin-
dependent kinase inhibitors. At least for E6-immortalized human
cells, this interpretation gains substantial support from the ob-
served consistent inactivation of p16INK4 in the proliferating
cells [(31); Whitaker N, zur Hausen H: unpublished data]. Al-
though functional inactivation of cyclin-dependent kinase in-
hibitors p21CIP-1 and p27KIP-1 by the E7 protein has been re-
ported (57–59),an excess synthesis of these kinase inhibitors
may have the opposite effect and block E7 functions.

The identification of the signaling cascade(s) involved would
clarify one important step in elevating the risk of a normal cell
toward malignant progression. The complementation studies
pointing to the existence of at least four complementation groups
suggest the participation of several host-cell genes in this control
mechanism.

Intercellular Regulation Prevents Malignant Conversion of
HPV-Immortalized Cells

Early considerations, assuming an essential role of viral on-
coproteins in carcinogenesis, postulated the existence of an in-
tracellular control of viral oncogene transcription or viral onco-
protein expression in nonmalignant cells harboring the
respective tumor virus genome(93,94).The initial assumption
of a cellular-interfering factor had to be changed subsequently
into the cellular-interfering factor concept, postulating the exis-
tence of at least two, one intracellular and another intercellular
signaling cascade, whose interruption in high-risk HPV-positive
cells results in immortalization and malignant conversion.

Evidence for the existence of an intercellular regulation of
HPV transcription originated from two experimental ap-
proaches: the repression of viral oncogene transcription in im-
mortalized cells by specific cytokines and concordant observa-
tions after heterografting HPV-immortalized cells into
immunocompromised mice.

Treatment of HPV-immortalized and malignant cells with
retinoic acid revealed a differential suppression of HPV tran-
scription in the former and also similarly a differential regulation
of the retinoic acid receptorb gene(95). However, some sup-
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pression also occurs in malignant cells. In combination with
interferona, squamous cell carcinomas of the cervix seem to
respond in systemic treatment to retinoic acid(96).

Some cytokines, however, reveal a more selective effect.
Whereas two cytokines, interleukins 6 and 17, even promote
tumorigenicity of cervical cancer cells in nude mice(97,98),
others suppress selectively HPV transcription of immortalized
cells. Transforming growth factor-b (TGF-b) effectively sup-
presses HPV early gene transcription and cell growth in immor-
talized cells(99,100),whereas, in malignant cells, viral tran-
scriptional activity remains unaltered. Resistance to growth
inhibition by TGF-b appears to be a late event in cervical car-
cinoma development(101).Interleukin 1, leukoregulin, and par-
ticularly tumor necrosis factor-a (TNF-a) represent additional
cytokines, selectively suppressing HPV transcription in HPV-
immortalized cells(102–104).

Interferons have obviously some effect on papillomavirus-
immortalized but also on malignant cells. The available data are
partially controversial, although interferonsg andb, in particu-
lar, appear to be effective(102,105).The interferona effect
seems to be more cell line specific(106) and affects less the
transcription than the level of HPV E7 protein expression(107).
An interesting observation is the recent report of a direct inter-
action of E7 with p48, the DNA-binding component of the in-
terferon-stimulated gene factor 3, blocking the interferon tran-
scription process(64).This finding, in addition to the E6 binding
of interferon regulatory factor 3 and its resulting functional in-
hibition (30),may point to an important interference mechanism
of HPV infections in modifying their intracellular and intercel-
lular regulation.

The first direct evidence for a selective suppression of HPV
transcription in immortalized cells underin vivo conditions re-
sulted fromin situ hybridization experiments after heterograft-
ing such cells into nude mice(108,109).Within 3 days, E6/E7
gene transcription was drastically reduced when compared with
in vitro cultivation of the same cells. In contrast, malignant
cervical cancer cells were not negatively affected in their tran-
scriptional activity by the same treatment. These observations
underlying the clinical studies reveal a barely detectable rate of
HPV E6/E7 gene expression in the proliferating layers of most
biopsy specimens of low-grade cervical intraepithelial neopla-
sias, whereas abundant transcripts were noted in high-grade le-
sions(109,110).Subsequent studies(111) indicated that the sup-
pression of HPV transcription could be achieved under tissue
culture conditions by the addition of murine or human macro-
phages and is most likely mediated by the excretion of TNF-a.

The analysis of intracellular changes mediated by TNF-a
treatment selectively in HPV-immortalized but not in malignant
cells points to an important role of modifications in the AP-1
transcription complex(112). AP-1 expression during cellular
differentiation determines E6/E7 expression in stratified epithe-
lial cells (113).Whereas, in immortalized cells, the AP-1 com-
plex in the HPV promoter mainly consists of c-jun/c-jun ho-
modimers, TNF-a treatment results in a shift toward c-jun/fra I
heterodimers(112). This shift is accompanied by the suppres-
sion of HPV transcription. In malignant cells, the AP-1 compo-
sition of the AP-1 complex in the HPV promoter frequently
consists of c-jun/c-fos heterodimers. Overexpression of c-fos in
immortalized cells results in preferential c-jun/c-fos het-
erodimers and in malignant conversion of the respective clones
(112).

These data stress the important role of jun/fos heterodimer-
ization in determining independence from cellular regulatory
functions and in converting immortalized cells to a malignant
phenotype. This is emphasized by some previous observations
showing induction of tumorigenicity in primary human keratino-
cytes by cotransfecting HPV18 DNA and v-fos(114), the in-
creased transcription of E6/E7 in H-ras-mediated malignant con-
version of HPV-immortalized cells(115), and by the
requirement of c-fos for malignant progression of skin tumors
(116).The importance of AP-1 activity for the growth of HPV-
immortalized human keratinocytes is also revealed by the sup-
pression of anchorage-independent growth following expression
of dominant negative jun(117). The fra-I gene is activated by
AP-1 (118). In contrast to AP-1 in the HPV promoter, this gene
is also activated by TNF-a treatment(112) and, in addition, by
retinoic acid(119).

The emerging picture from this set of data implies an impor-
tant role of an intercellular, cytokine-mediated control of HPV
transcription in suppressing the conversion of HPV-infected hu-
man cells toward malignant growth, even at a stage that corre-
sponds to immortalization, clinically most likely represented by
low-grade intraepithelial lesions. Malignant progression obvi-
ously involves interruption of cellular genes engaged in the sig-
naling cascade controlling this pathway. Indirect evidence points
to the involvement of a gene on the short arm of chromosome 11
and of protein phosphatase 2A (PP2A) activity in this process:
Human cells containing a deletion in the short arm of chromo-
some 11 are more readily immortalized by SV40 or high-risk
HPV DNA (120).Under these conditions, one regulatory com-
ponent of PP2A, PR 55b, becomes activated, resulting in a sup-
pression of the catalytic component of the enzyme and in an
increase in HPV transcription. Similar effects are observed by
inhibiting PP2A with ocadaic acid or by introducing SV40 small
T antigen.

CONCLUSIONS

The molecular pathogenesis of cancer caused by high-risk
HPV infections is presently not fully understood. Some charac-
teristic features, however, become evident. These viruses are, in
a way, self-sufficient to induce carcinogenesis, despite the fact
that infectionper seis not sufficient to induce malignant con-
version. The induction of chromosomal instability, of mutations,
and of aneuploidy in previously noncommited proliferating
basal and suprabasal cells emerges as one driving force to induce
modifications, even in those cellular genes that, by themselves,
control viral oncogene transcription and viral oncoprotein func-
tions. The tight control of viral oncogenes and oncoproteins by
intracellular and intercellular signaling cascades, obviously only
active in proliferating but not in differentiated cells, underlines
and supports the existence of cellular-interfering factors(70).
According to our present understanding, interruption of two in-
dependent signaling cascades is responsible initially for the im-
mortalized and later for the invasive phenotype of the respective
cells, although the sequence of changes may be different in
clinical lesions in comparison to events occurring in tissue cul-
ture.

A scheme of events in the course of progression is outlined in
Fig. 1. The development of cervical cancer and subsequent me-
tastases clearly require more changes. They do involve addi-
tional modifications within the affected cell to escape cell-
mediated immune responses and additional changes facilitating
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cell detachment and the formation of distant metastases. It is
outside the scope of this review to cover these aspects.

The identification of specific types of papillomaviruses as
causative agents for important human cancers was clearly a pre-
condition for the development of new strategies in the preven-
tion and will probably also influence the therapy for these in-
fections. The ongoing clinical trials for HPV vaccines will,
hopefully, lead to an effective prevention of one of the globally
most frequent cancers in women.
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