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PAR-Aware Large-Scale Multi-User
MIMO-OFDM Downlink

Christoph StudernMember, IEEE and Erik G. LarssonSenior Member, IEEE

Abstract—We investigate an orthogonal frequency-division of large-scale MIMO systems will require the use of low-
multiplexing (OFDM)-based downlink transmission scheme cost and low-power radio-frequency (RF) components. T® thi
for large-scale multi-user (MU) multiple-input multiple-output end, reference [7] proposed a novel MU precoding scheme for

(MIMO) wireless systems. The use of OFDM causes a high peak-f flat ch | hich reli i hst
to-average (power) ratio (PAR), which necessitates expensiaad requency-iat channeis, which réfiés on per-anienna an

power-inefficient radio-frequency (RF) components at the base €nvelope (CE) transmission to enable efficient impleméntat
station. In this paper, we present a novel downlink transmission using non-linear RF components. Moreover, the CE precoder
scheme, which exploits the massive degrees-of-freedom availableyf [7] forces the peak-to-average (power) ratio (PAR) tatyni
in large-scale MU-MIMO-OFDM systems to achieve low PAR. \hich is not necessarily optimal as in practice there is wwa

Specifically, we propose to jointly perform MU precoding, OFDM
modulation, and PAR reduction by solving a convex optimization a trade-off between PAR, error-rate performance, and power

problem. We develop a corresponding fast iterative truncation amplifier efficiency.
algorithm (FITRA) and show numerical results to demonstrate
tremendous PAR-reduction capabilities. The significantly reduced . . . o
linearity requirements eventually enable the use of low-cost RF  Practical wireless channels typically exhibit frequency-
components for the large-scale MU-MIMO-OFDM downlink. selective fading and a low-PAR precoding solution suitable
Index Terms—Multi-user wireless communication, multiple- 0T Such channels would be desirable. Preferably, the isolut
input multiple-output (MIMO), orthogonal frequency-division ~ should be such that the complexity required in each (mobile)
multiplexing (OFDM), peak-to-average (power) ratio (PAR) re- terminal is small (due to stringent area and power congggin
duction, precoding, convex optimization. whereas heavier processing could be afforded at the BS.
Orthogonal frequency-division multiplexing (OFDM) [8] &
|. INTRODUCTION attractive and well-established way of dealing with frague
ARGE-SCALE multiple-input multiple-output (MIMO) selective channels. In addition to simplifying the equatian
wireless communication is a promising means to megt the receiver, OFDM also facilitates per-tone power and bi
the growing demands for higher throughput and improvegliocation, scheduling in the frequency domain, and spectr
quality-of-service of next-generation multi-user (MU)reless  shaping. However, OFDM is known to suffer from a high
communication systems [2]. The vision is that a large numbppaR [9], which necessitates the use of linear RF components
of antennas at the base-station (BS) would serve a laigeg., power amplifiers) to avoid out-of-band radiation and
number of users concurrently and in the same frequency basignal distortions. Unfortunately, linear RF components, a
but with the number of BS antennas being much larger than general, more costly and less power efficient than their
the number of users [3], say a hundred antennas serving fgh-linear counterparts, which would eventually result in
users. Large-scale MIMO systems also have the potentialdgorbitant costs for large-scale BS implementations fgavin
reduce the operational power consumption at the transmitfgindreds of antennas. Therefore, it is of paramount impoeta
and enable the use of low-complexity schemes for suppi@ssis reduce the PAR of OFDM-based large-scale MU-MIMO
MU interference (MUI). All these properties render larg@de  systems to facilitate corresponding low-cost and low-powe
MIMO a promising technology for next-generation wirelesgs implementations.
communication systems.
While the theoretical aspects of large-scale MU-MIMO sys- o _ i
tems have gained significant attention in the research cemmu 0 combat the challenging linearity requirements of OFDM,
nity, e.g., [2][6], much less is known about practical sams- & plet.hora of_PAR—reductlon schemes have_ been proposed
sion schemes. As pointed out in [7], practical implemeateti O Point-to-point single-antenna and MIMO wireless sysse
e.g., [10]-[16]. For MU-MIMO systems, however, a straight-

_Part of this paper W_iII be presented at the 9th I_nternati(S}ahposium on forward adaptation of these schemes is non-trivial, mainly
Wireless Cor_nmu_nlcatlon Systems (ISWCS), Paris, France, A@jsa [_1]. because MU svstems require the removal of MUI using a pre-
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A. Contributions overview of (linear) MU precoding schemes and, finally, we

In this paper, we develop a novel downlink transmissiopmmarize the fundamental PAR issues arising in OFDM-
scheme for large-scale MU-MIMO-OFDM wireless system&@ased communication systems.
which only affects the signal processing at the BS while
leaving the processing required at each terminal untouchéd System Model

The key idea of the proposed scheme is to exploit the excessyve consider an OFDM-based MU-MIMO downlink sce-
of degrees-of-freedom (DoF) offered by equipping the Bgario as depicted in Fig. 1. The BS is assumed to have a
with a large number of antennas andjtintly perform MU sjgnificantly larger number of transmit antenn&sthan the
EreCOding, OFDMﬁmdUlation, anCLRR redUCtion, referred to numberM < N of independent terminals (users); each ter-
as PMP in the remainder of the paper. Our contributions cgfinal is equipped with a single antenna only. The signalorect
be summarized as follows: s € OM contains information for each of the users, where
o We formulate PMP as a convex optimization problemy = 1,... W indexes the OFDM toned}/ corresponds to
which jointly performs MU precoding, OFDM modula-the total number of OFDM tone§) represents the set of scalar
tion, and PAR reduction at the BS. complex-valued constellations, afg,|,, € O corresponds to
« We develop and analyze a novel optimization algorithnihe symbol at tonew to be transmitted to usem.! We
referred to as fast iterative truncation algorithm (FITRA)ormalize the symbols to SatiSW{l[Sw]mF} = 1/M. To
which is able to find the solution to PMP efficientlyshape the spectrum of the transmitted signals, OFDM systems
for the (typically large) dimensions arising in large-gcaltypically specify certain unused tones (e.g., at both erfidisen
MU-MIMO-OFDM systems. spectrum [8]). Hence, we s&t, = 0,1 for w € 7¢ whereT
« We present numerical simulation results to demontesignates the set of tones used for data transmission.
strate the capabilities of the proposed MU-MIMO-OFDM In order to remove MUI, the signal vectors,, Yw
downlink transmission scheme. Specifically, we analyzge passed through a precoder, which generatesvec-
the trade-offs between PAR, error-rate performance, atsts x,, € CV according to a given precoding scheme (see
out-of-band radiation, and we present a comparison wigection 11-B). Since precoding causes the transmit power

conventional precoding schemes. P =" |xu|> to depend on the signais,, Vw and the
channel state, we normalize the precoded vectrsvw prior
B. Notation to transmission as

Lowercase boldface letters stand for column vectors and Ry = %0/ ZW %, w =1 W (1)
uppercase boldface letters designate matrices. For a ma- v v w=1Teliz LR
trix A, we denote its transpose, conjugate transpose, amidich ensures unit transmit power. We emphasize that this
largest singular value ba”, A7, andomax(A), respectively; normalization is an essential step in practice (i.e., totmee
AT = AH (AAH)*l stands for the pseudo-inverse Afand regulatory power constraints). To simplify the preseotati
the entry in thekth row and(th column is[A]; .. The M x M  however, the normalization is omitted in the description of
identity matrix is denoted b¥,,, the M x N all-zeros matrix the precoders to follow (but normalization employed in all
by Oy« n, and Fy, refers to theM x M discrete Fourier simulation results shown in Section V). Hence, in what folo
transform (DFT) matrix. Théith entry of a vectom is desig- x., andx,, are treated interchangeably.
nated by[a],; the Euclidean (of,) norm is denoted byjal|,, The (normalized) vectors,,, Yw are then re-ordered (from
lall., = maxgl|[a];| stands for the/,.-norm, and the/s- user orientation to transmit-antenna orientation) adogrdo
norm [21] is defined aga| . = max{|R{a}| ., |S{a}|} the following one-to-one mapping:
with R{a} and I{a} representing the real and imaginary
part of a, respectively. Sets are designated by upper-case
calligraphic letters; the cardinality and complement oé thHere, the IW-dimensional vectora, corresponds to the
set 7 is |T| and T¢, respectively. Forzr € R we define (frequency-domain) signal to be transmitted from thth

[X1~--Xw]=[a1--~aN]T. 2)

[z]" = max{z,0}. antenna. The time-domain samples are obtained by applying
the inverse DFT (IDFT) according ta,, = F a, followed
C. Outline of the Paper by parallel-to-serial (P/S) conversion. Prior to modwatand

The remainder of the paper is organized as follows. sdkansmission over the wir_eless channel, a cyclic. prefix (GP)
tion Il introduces the system model and summarizes importz#fided to the (time-domain) samples, Vn to avoid ISI [8].
PAR-reduction concepts. The proposed downlink transmis- 10 Simplify the exposition, we specify the input-output
sion scheme is detailed in Section Il and the fast iteratijglation of the wireless channel in the frequency domairy.onl
truncation algorithm (FITRA) is developed in Section IvConcretely, we consider
Simulation results are presented in Section V and we coeclud Vo = HoXp + 0y, w=1,..., W, 3)
in Section VI.

1For the sake of simplicity of exposition, we employ the same Edlasion
Il. PRELIMINARIES for all users. An extension to the general case where differenstellations
. . . . ag used by different users is straightforward.
We start by introducing the system model that is considere We assume perfect synchronization and a CP that is longer tth&n

in the remainder of the paper. We then provide a briefaximum excess delay of the frequency-selective channel.
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Fig. 1. Large-scale MU-MIMO-OFDM downlink (left: BS wittV transmit antennas; righft/ independent single-antenna terminals). The proposed ddwnl
transmission scheme, referred to as PMP, combines MU preco@iRBM modulation, and PAR reduction (highlighted by the dashox in the BS).

where y,, denotes thewth receive vectorH, € CM*N C. Peak-to-Average Ratio (PAR)
represents the MIMO channel matrix associated with the the |DFT required at the transmitter causes the OFDM
wth OFDM t(_)ne, gndnw is an M-vector c_Jf i.i.d. complex signalsa,,, VYn to exhibit a large dynamic range [8]. Such
Gaussian noise with zero-mean and variadég per entry. sjgnals are susceptible to non-linear distortions (eaguration
The average receive signal-to-noise-ratio (SNR) is defimed o, clipping) typically induced by real-world RF components
SNR = 1/N,. Finally, each of theM user terminals per- Tq avoid unwanted out-of-band radiation and signal diiinst
forms OFDM demodulation to obtain the received (frequen%ﬂogether, linear RF components and PAR-reduction sceeme
domain) signalgy.)m, w=1,..., W (see Fig. 1). are key to successfully deploy OFDM in practical systems.
1) PAR Definition: The dynamic range of the transmitted
OFDM signals is typically characterized through the peak-t
average (power) ratio (PAR). Since many real-world RF4thai
In order to avoid MUI, precoding must be employed at thignplementations process and modulate the real and imaginar
BS. To this end, we assume the channel matiidgs vw to be  part independently, we define the PAR at thih transmit
known perfectly at the transmit-sideLinear precoding now antenna ds

B. MU Precoding Schemes

amounts to transmittinge,, = G,,s,,, WhereG,, € CNV*M W[ 12
is a suitable precoding matrix. One of the most prominent PAR, = 7”2” 4)
precoding schemes is least-squares (LS) precoding (carline [anll

zero-forcing precoding), which corresponds @&, = HJ. As a consequence of standard vector-norm relations, (4) sat
Since H,HJ, = I, transmittingx,, = Hjs, perfectly isfies1 < PAR,, < 2IW. Here, the upper bound corresponds
removes all MUI, i.e., it transforms (3) intd/ independent to the worst-case PAR and is achieved for signals having only
single-stream systems, = s,, + n,,. Note that LS precoding a single (real or imaginary) non-zero entry. The lower bound
is equivalent to transmitting the solution, to the following corresponds to the best case and is realized by transmitrgect
convex optimization problem: whose (real and imaginary) entries have constant modulus.
To minimize distortion due to hardware non-linearitiese th
transmit signals should have a PAR that is close to one; this
) o can either be achieved by CE transmission [7] or by using
This formulation inspired us to state the MU'M'MO'OFDMsophiSticated PAR-reduction schemes.
downlink transmission scheme proposed in Section Il as a2) PAR-Reduction Schemes for OFDNProminent PAR-
convex optimization problem. reduction schemes for single-antenna communication sys-
Several other linear precoding schemes have been pigms are selected mapping (SM) [10], partial transmit se-
posed in the literature, such as matched-filter (MF) prewpdi quences [11], active constellation extension (ACE) [12id a
minimum-mean square-error (MMSE) precoding [17], or moigne reservation (TR) [13], [15]. PAR-reduction schemes fo
sophisticated non-linear schemes, such as dirty-paper C%int—to—point MIMO systems mostly rely on SM or ACE and
ing [_22]. In the rema_inder of_ the paper, we will occasionallygye peen described in, e.g., [14], [16]. For the MU-MIMO
consider MF precoding, which corresponds @, = HJ. gownlink, a method relying on Tomlinson-Harashima precod-
Since H,H[] is, in general, not a diagonal matrix, MFing and lattice reduction has been introduced recently @; [1

is normally unable to remove the MUI. Nevertheless, Mnis method, however, requires dedicated signal-procgssi
precoding was shown in [6] to be competitive for large-scale
MIMO in some operating regimes and in [3] to perfectly “Note that alternative PAR definitions exist in the literatue.g., using
remove MUI in the larae-antenna limit. i.e.. whéf — oo. the £oo-norm in the nommatqr instead of thleg-norm (andW instead _of
emove MU € large-ante » 1.€., Whe — oo 2W). Nevertheless, the relatiof||an |2, < [lan|% < [|an||%, shown in
[21, Eqg. 12] ensures that reducing the PAR as defined in (4)ralduces an
3In large-scale MU-MIMO systems, channel-state informatibtha trans-  £.-norm-based PAR definition (and vice versa). Moreover, treomp and
mitter would probably be acquired through pilot-based trajrin the uplink algorithms presented in this paper can, for example, be fotstita directly
and by exploiting reciprocity of the wireless channel [A].[ reduce ar/s.-norm-based PAR.

(LS) minimize||x||, subject tos,, = H,x.
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algorithms at both ends of the wireless link (e.g., modulconsequently, the PAR-levels of (P-INF) and of LS precoding
reduction in the receiver). In contrast, the transmissthreme satisfy

developed next aims at reducing the PAR dmly exploiting . NIEs|?

the excess of transmit antennas available at the BS. This  paR, = NI < I SHoo — PAR

approach has the key advantage of beiramsparentto the ||>'<||§ B \|HTs||§

fecei‘,’ef& i'?" it does noF require any special signatgssing which implies that the PAR associated with (P-INF) cannot be
aIgonth_ms in the (mobile) termmalg. He_n(_:e, the proposqgrger than that of LS precoding. We confirm this observation
precoding scheme can be deployed in existing MIMO-OFDM “section v, where the proposed downlink transmission

system.s for which channel-state information is availabkhe scheme is shown to achieve substantially lower PAR than for
transmitter, such as IEEE 802.11n [20]. LS precoding.
2) Benefits of Large-Scale MIMOTo characterize the
I1l. D OWNLINK TRANSMISSION SCHEME benefit of having a large number of transmit antennas at the
The main idea of the downlink transmission scheme dBS on the PAR when using (P-INF), we first restate a key
veloped next is tojointly perform MU precoding, OFDM result from [23].
modulation, and PAR reduction, by exploiting the DoF avail- Proposition 1 ([23, Prop. 1]):Let H have full (column)
able in large-scale MU-MIMO systems. To convey the basf@nk and1 < M < N. Generally, the solutiorx to (P-INF)
idea and to characterize its fundamental properties, we staas N — M + 1 entries with magnitude equal {p|| . The
by considering a simplified MIMO system. We then present/ — 1 remaining entries might have smaller magnitude.
the MU-MIMO-OFDM downlink transmission scheme in full With this result, we are able to derive the following upper
detail and conclude by discussing possible extensions. ~ bound on the PAR on the soluticato (P-INF):

)

N1 N
A. Basic Idea and Fundamental Properties PARp.nF = %2 = N-M+1 Q)

re, the following inequality is an immediate consequence

To convey the main idea of the proposed precoding methqje
Proposition 1, i.e., we have

let us consider an OFDM-free (narrow-band, flat-channe
MU-MIMO system with the real-valued input-output relation

y = Hx +n and anM x N channel matrix satisfying 5 =I5, + > I

M < N. To eliminate MUI, the transmit-vector must satisfy x xe

the precoding constraist= Hx, which ensures that = s+n > Z”X”ic — (N - M+ 1),
when transmitting the vectat. Since M < N, the equation ¥

s = Hx is underdeterminedthis implies that there are, in
general, infinitely many solutions satisfying the precoding
constraint. Our hope is now to find a suitable vectdnaving
a small dynamic range (or low PAR).

A straightforward approach that reduces the dynamic ran
is to transmit the solutionk of the following optimization

where X' is the set of indices associated with the— M + 1
entries ofx for which |[x];| = [|x|| .. It is now key to realize
that for a constant number of usévs and in the large-antenna
limit N — oo, the bound (5) implies thaPARp N — 1.
H%nce, for systems having a significantly larger number of
transmit antennas than users—as is the case for typical large

problem: scale MU-MIMO systems [2], [3], [5], [6]—a precoder that
(P-DYN) miniﬁmjze a—f implements (P-INF) is able to achieve a PAR that is arblirari
sub]éct to s=Hz, 8 < |[&]i] < a,Vi. close to unity. This means that in the large-antenna limit of

N — oo, (P-INF) yields constant-envelope signals, while

Unfortunately, the second constraiit< |[x];| < «, Vi causes being able to perfectly eliminate the MUI.

this problem to be non-convex and hence, finding the solution

of (P-DYN) with efficient algorithms seems to be difficult. g jgint Precoding, Modulation, and PAR Reduction (PMP)
1) Convex RelaxationTo arrive at an optimization problem

: - The application of (P-INF) to each time-domain sample
that reduces the dynamic range and can be solved efficiently, .
we relax(P-DYN). Specifically,3 < |[]:| < « is replaced by after OFDM modulation would reduce the PAR but, unfor-

I[K]:| < a, which leads to the followingonvexoptimization tunately: wouldno longerallow the equalization of ISI using
} conventional OFDM demodulation. In fact, such a straightfo
problem: . ;
ward PAR-reduction approach would necessitate the deploy-
(P-INF) minimize|x||,  subject tos = Hx. ment of sophisticated equalization schemes in each tefmina
N o _ To enable the use of conventional OFDM demodulation in the
Intuitively, as (P-INF) minimizes the magnitude of the k8§ receiver, we next formulate the convex optimization prohle
entry ofx, we can expect that its soluticnexhibits low PAR. which jointly performs MU precoding, OFDM modulation,
In fact, (P-INF) has potentially smaller PAR than a transmind PAR reduction.
vector resulting from LS precoding. To show this, we note we start by specifying the necessary constraints. In oaler t

that [|x||,, < [[H's||__, wherex is the minimizer of (P-INF) remove MUI, the followingprecoding constraintsnust hold:
and Hfs corresponds to the LS-precoded vector. SikEss

is the /,-norm minimizer, we have|H's|, < ||, and, Sw = HyXy, weT. (6)
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To ensure certain desirable spectral properties of themmén develop an efficient algorithm for the large dimensions dace
ted OFDM signals, the inactive OFDM tones (indexed/¥) in large-scale MU-MIMO-OFDM systems (see Section V),
must satisfy the followingshaping constraints we state a relaxed version of (PMP) in Lagrangian form as

Onx1 = Xu, wE T, 7) (PMP-L) minimize A|[a]| + |[b — Ca][; ,

PAR reduction is achieved similarly to (P-INF), with the mai where A > 0 is a regularization parameter. Note that (PMP-
difference that we want to minimize thég-norm of the |_) is an /z-norm regu|arized LS pr0b|em and allows one
time-domainsamplesa,,, Vn. In order to simplify notation, to trade fidelity to the constraints with the amount of PAR
we define the (linear) mapping between the time-domaiBduction (similarly to the paramete); the associated trade-
samplesa,, Vn, and thewth (frequency-domain) transmitoffs are investigated in Section V-D. Note that the alganith

vectorx,, asx,, = fu(ai,...,ay), where the linear function developed in Section IV operates on real-valued variables.
fw(-) applies the DFT according ta, = Fwa,, ¥n and To this end, (PMP) and (PMP-L) must be transformed into
performs the re-ordering defined in (2). equivalentreal-valued problems. This transformation, how-

With (6) and (7), we are able to formulate the downlinkever, is straightforward and we omit the details due to space
transmission scheme as a convex optimization problem: |imitations.

..... a D. Extensions of PMP

(PMP) subject to s, = Hy, f,(a1,...,an), weT o ,
~ - . The basic ideas behind PMP can be extended to several
Onx1 = fuw(@i,...,ay), weTe. other scenarios. Corresponding examples are outlineden th

The vectorsa,,, Vn which minimize (PMP) correspond tonext paragraphs.
the time-domain OFDM samples to be transmitted from eachl) Emulating Other Linear PrecodersBy replacing the
antenna. Following the reasoning of Section IlI-A, we expe@recoding constraints in (6) by
these vectors to have low PAR (see Section V for correspond- H,P,sy, =H,x,, weT (8)
ing simulation results). In what follows, PMP refers to the ' '
general method of jointly performing precoding, modulatio whereP,, is an N x M precoding matrix of choice, one can
and PAR reduction, whereas (PMP) refers to the actual opyieneralize PMP to a variety of linear precoders. We empbasiz
mization problem stated above. that this generalization allows one to trade MUI removahwit
noise enhancement and could be used to take into account
C. Relaxation of (PMP) imperfect _channel-state information at the transmittey,, dy
using a minimum mean-square error precoder (see, e.g), [17]
The high dimensionality of PMP) for large-scale MIMO  2) peak-Power Constrained Optimizatiomnstead of nor-
systems necessitates corresponding efficient optimizale malizing the power of the transmitted vectors as in (1), one
gorithms. To this end, we relax the constraints of (PMP) t@ay want to impose a predefined upper bouPgh. on the
arrive at an optimization problem that can be solved effityen transmit power already in the optimization problem. To this
using the algorithm developed in Section IV. end, an additional constraint of the forft||5 < Py, could
To simplify the notation, we aggregate all time-domaipe added to (PMP), which ensures that—if a feasible solu-
vectors ina = [a] --- a5 ]” and rewrite the constraints oftion exists—the transmit power does not exceegh. This
(PMP) as asinglelinear system of equations. Specifically, botfzonstraint maintains the convexity of (PMP) but requires th
constraints in (PMP) can be rewritten bs= Ca, where the development of a novel algorithm, as the algorithm propased
vectorb is a concatenation of,,, w € 7 and|T7*| all-zeros Section IV is unable to consider such peak-power consgaint
vectors of dimensionV; the matrix C implements the right-  3) Combining PMP with Tone-Reservation (TRt [15],
hand-side of the constraints (6) and (7), i.e., also indutie the authors proposed to combine Kashin representations [23
inverse Fourier transformfsWe can now re-state (PMP) in[24] with TR to reduce the PAR in OFDM-based communica-
more compact form as tion systems. The underlying idea is to obtain a time-domain
signal that exhibits low PAR by exploiting the DoF offered by
TR. We emphasize that PMP can easily be combined with TR,
In practice, it is desirable to relax the constraint= Ca. by removing certain precoding constraints (6). S p_ecifycall
only a subset7; C 7 is used for data transmission; the

Firstly, from an implementation point-of-view, relaxingpet L . : .
constraints in (PMP) enables us to develop an efficient algroe—maInlng tones7;; are reserved for PAR reduction. This

. . : . pproach offers additional DoF and is, therefore, expetded
rithm (see Section 1V). Secondly, in the medium-to-low SMiféurther improve the PAR-reduction capabilities of PMP.

regime, the effect of thermal noise at the receiver is com- - RV y i
parable to that of MUI and out-of-band interference. Hence 4) Application to Point-to-Point MIMO System3he pro

relaxing the equatio — Ca to HB 65” < 1 does not pbsed transmission scheme can be used for point-to-point
= - , <

sianificantly dearade the performance for small values. Gio MIMO systems for which channel-state information is avail-
9 y deg P €8. able at the transmitter, e.g., IEEE 802.11n [20]. In such

5Fothe sake of simplicity of exposition, the actual struatwfetails of the systems, _MUI does not need to be remoyed as the MIMO
matrix C are omitted. detector is able to separate the transmitted data streams;

(PMP) minimize |[al|;. subject tob = Ca.
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precoding matrice®,,, Yw, as opposed to in a MU-MIMO defined as [27]

1 2
- : . . 5 X~ (y—LVh(y)) ; (9)
i.e., to simultaneously perform precoding, modulationd an 2

hence, there is potentially more flexibility in the choicetioé vectorxy. The main ingredient of ISTA is the proximal map
scenario, which requires the removal of MUI. I
5) Application to Single-Carrier System$he idea of PMP, pr(y) = arg min{g(x)+
PAR reduction, can also be adapted for single-carrier {argghich constitutes the main iteration step defined as:
scale MIMO systems exhibiting I1SI. To this end, one might

want to replace the constraints in (P-INF)by xi =pr(xk-1), k=1..., K.
SR [ Hi Ouen - Oy [T % ] Here, K denotes the maximgm number of iteration;. We
0 0 - emphasize that (9) has a simple closed-form solution for

§ H H <o 0y X . . o
? _2 _1 M 2 ¢1-norm regularized LS, leading to a low-complexity first-

order algorithm, i.e., an algorithm requiring matrix-varct

Sp = Hp, Hp., - H; Xp multiplications and simple shrinkage operations only. sThi
S$pi1 Oyxy Hp -~ H, Xp+1 | property renders ISTA an attrac@g solution for PMP, as the
: . . . . : involved matrice<C and its adjointC™ exhibit a structure that
é' : : ' iy &' enables fast matrix-vector multiplication (see SectidrCl).
L Pe L Omxn Omxny -+ Hp J L 7@ 2) Fast Version of ISTA:As detailed in [27], ISTA ex-

T 1T hibits sub-linear convergence, i.€:(x;.) — F(x*) ~ O(1/k),

and minimize the&’s:-norm of the vectoik = [x7 --- Q] , ; . . .
which contains the PAR-reduced time-domain samples to Blerex” designates the optimal solution (). In order to

transmitted. The channel matricd$, are associated to the/MProve the convergence rate, a fast version of ISTA, reterr
delay (or tap)t = 1,...,D, the information symbols are to as FISTA, was developed in [27]. The main idea of FISTA

denoted by,, ¢ = 1,...,Q, andQ > D refers to the number is to evaluate the proximal map (9) with a (linear) combioati

of transmitted information symbols per block. Alternatjveo of the previous two p_()intsxk_—lv?k#) instead ofx;._, only
PMP, the CE precoding scheme developed in [7] can also (5&€ [27] for the details), wh2|ch improves the convergeate r
used with the constraints given above. A detailed investiga © F(xx) — F(x*) ~ O(1/k*) and builds the foundation of
of both transmission schemes is, however, left for futurekwo the algorithm for solving (PMP-L) described next.

B. Fast Iterative Truncation Algorithm (FITRA)

A common approach to solve optimization problems of the To simplify the derivation of the first-order algorithm for

form (PMP) and (PMP-L) is to use interior-point methods [25F°VINg (PMP-L), we describe the algorithm for solving the
Such methods, however, often result in prohibitively high@drangian variant of (P-INF) defined as follows:
computational complexity for the problem sizes faced igdar (P-INF-L) minimize A[|X||__ + [|s — HX]|3.

scale MIMO systems. Hence, to enable practical implementa- x

tion, more efficient algorithms are of paramount importanc€irst, we must compute the (smallest) Lipschitz constant
While a large number of computationally efficient algorithmgor the functionh(x) = ||s — Hx||§ and then, evaluate the
for the ¢,-norm regularized LS problem have been developgmoximal map (9) for the functiong(x) = A||x|| ., andh(x).

in the compressive-sensing and sparse-signal recovenadit 1) FITRA: The (smallest) Lipschitz constant of the gradient
ture, e.g., [26], efficient solvers for the,-norm regularized Vh(x) corresponds td. = 202,,,(H), which can, for example,
LS problem (PMP-L), however, seem to be missing. be calculated efficiently using the power method [28]. To
compute the proximal map (9) for (P-INF-L), we define the
auxiliary vector

IV. FAST ITERATIVE TRUNCATION ALGORITHM

A. Summary of ISTA/FISTA

In this section, we summarize the framework developed w=y— th(y) =y - EHT(Hy —X)
in [27] for ¢,-norm-based LS, which builds the basis of the L L
algorithm derived in Section IV-B for solving (PMP-L). which enables us to re-write the proximal map in more
1) ISTA: The goal of the iterative soft-thresholding algo€ompact form as

rithm (ISTA) developed in [27] is to compute the soluti@n ) ~ L. )
to real-valued convex optimization problems of the form PL(y) = argimm {)‘HXHOO + §||X - W|2} . (10)
(P) minimize F(x) = g(x) + h(x), Unfortunately, (10) does—in contrast te-norm regularized

LS—not have a simple closed-form solution for (P-INF-L).
whereg(x) is a real-valued continuous convex function that ifjevertheless, standard algebraic manipulations enabl® us
possibly non-smooth anti(x) is a smooth convex function, evaluate the proximal map efficiently using the followingotw
which is continuously differentiable with the Lipschitz reo step approach: First, we compute
stantL. The resulting algorithms are initialized by an arbitrary

N
. . L a2
SNote that the exact structure of the Toeplitz matrix depentshe pre- Q= arg mn {)\a + 9 Z (H[WM — @ ) }a (11)
and post-ambles of the used block-transmission scheme. @ i=1
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Algorithm 1 Fast lterative Truncation Algorithm (FITRA) V. SIMULATION RESULTS
1: initialize Xg ¢ Onx1, Y1 < Xo, t1 ¢ 1, L + ZO%aX(H)
2.for k=1,...,K do
3 w<yr— 2H'(Hy, — )

4

o — arg&min{)\d + % Ef\il ([HWM - 54]+)2}

In this section, we demonstrate the efficacy of the proposed
joint precoding, modulation, and PAR reduction approacid, a
provide a comparison to conventional MU precoding schemes.

5. X ¢ trunc,(w) A. Simulation Parameters

. 1 p . . . .

6 tri1 < 5(1 th\/k_llJr 4t3) Unless explicitly stated otherwise, all simulation resuite
T Yhe1 & Xk P (X — Xpo1) for a MU-MIMO-OFDM system havingV = 100 antennas
8: end for at the BS and serving/ = 10 single-antenna terminals. We
o: return xy employ OFDM withT/ = 128 tones and use a spectral map

as specified in the 40 MHz-mode of IEEE 802.11n [20)e

consider coded transmission, i.e., for each user, we indepe
for which general-purpose scalar optimization algorithsugh dently encode 216 information bits using a convolutionaleco
as the bisection method [29], can be used. Then, we apftate-/2, generator polynomialslB3, 171,], and constraint
element-wise truncation (clipping) of to the interval—«a, o] length 7), apply random interleaving (across OFDM tones),
according topr(x) = trunc,(w). The truncation operator and map the coded bits to a 16-QAM constellation (using

applied to the scalar € R is defined as Gray labeling).
To implement (PMP-L), we use FITRA as detailed in Al-
truncy () = min{max{z, —a}, +a}. gorithm 1 with a maximum number ok = 2000 iterations

) i ) ) ) and a regularization parameter af = 0.25. In addition to
The resulting first-order algorithm, including the methodgs gng ME precoding, we also consider the performance of
proposed in [27] to improve the convergence rate (compargd)aseline precoding and PAR-reduction method. To this end,
Fo IS‘_I'A), is detgiled in Al_gorithm 1 and referred to as thetfag,q employ LS precoding followed by truncation (clipping)
iterative truncation algorithm (FITRA). of the entries of the time-domain sampl&s, Vn. We use a
2) Convergence RateThe following proposition is an clipping strategy where one can specify a target PAR, which
immediate consequence of the convergence results {§lthen used to compute a clipping level for which the PAR
ISTA/FISTA in [27, Thm. 4.4] and characterizes the convein (4) of the resulting time-domain samples is no more than

gence rate of FITRA analytically. the chosen target PAR.
Proposition 2: The convergence rate of FITRA (as detailed The precoded and normalized vectors are then transmitted
in Algorithm 1) satisfies over a frequency-selective channel modeled as a tap-defy |
2 with T' = 4 taps. The time-domain channel matridds, ¢t =
F(xp) — F(x*) < M, 1,...,T, that constitute the impulse response of the channel,
(k+1) have i.i.d. circularly symmetric Gaussian distributedriest

wherex* denotes the solution to (P-INF-L¥; is the FITRA with zero mean and unit variance. To detect the transmitted
estimate at iteratiort, x, the initial value at iteratiork — 0, nformation bits, each usem performs soft-output demod-
and F(x) = Allx||. + ||S—Hx||2 ulation of the received symbols/ .}, w = 1,...,W and

- [e%S) 2"

We emphasize that continuation strategies, e.g., [30], p%[_)plles a soft-input Viterbi decoder.

tentially reduce the computational complexity of FITRAgth
investigation of such methods is left for future work. B. Performance Measures

To compare the PAR characteristics of different precoding
C. Related Work schemes, we use the complementary cumulative distribution

function (CCDF) defined as
An algorithm to compute an approximation to (P-INF) re-

lying an iterative truncation procedure similar to FITRAsva CCDHPAR) = P{PAR,, > PAR}.
proposed in [24]. The main differences between these anR,-e furthermore define the

. . ; . “PAR performance” as the maxi-
rithms are as follows: The algorithm in [24] requires the M3 im PAR levelPAR” that is met fgr 99% of all transmitted

trix H to be a tight frame and relies on a constant (and P'&EDM symbols, i.e., given byCCDF(PAR®) — 1%. The
defined) truncat|o_n_ parameter, which dependﬁoa_nd cannot error-rate performance is measured by the average (across
be computed efficiently. In the present application, howev sers) symbol-error rate (SER); a symbol is said to be irrerro
the ch | lization: thi ires 1o ch the tri tl? at least one of the information bits per received OFDM

€ channefl realization, this requires to chose the trumta symbol is decoded in error. The “SNR operating point” cor-

parameter in [24] heuristically and hence, convergencdeneftre?locmdS to the minimum SNR required to achieve 1% SER.

meth_od IS no Ior_19er guaran_teed. FITRA, n contrast, doe_s "B order to characterize the amount of signal power that is
require the matriXH to be a tight frame, avoids manual tuning

of the t”jmcation parameter, and is guaranteed to converge t7We solely considef7| = 108 data-carrying tones; the tones reserved for
the solution of (P-INF-L). pilot symbols in IEEE 802.11n [20] are ignored in all simulago
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Fig. 2. Timel/frequency representation for different présgdschemes. The target PAR for LS+clip4giB and A = 0.25 for PMP relying on FITRA.

(a) Time-domain signals (PAR: LS 10.4dB, LS+clip = 4.0dB, MF = 10.1dB, and PMP= 1.9dB). Note that PMP generates a time-domain signal of
substantially smaller PAR than LS and MF. (b) Frequency-dors@jnals (OBR: LS= —co dB, LS+clip= —11.9dB, MF = —co dB, and PMP= —52.9 dB).
Note that LS, MF, and PMP preserve the spectral properti8sclip suffers from substantial OBR (visible at both endsha spectrum).
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Fig. 3. PAR and SER performance for various precoding scheffes.target PAR for LS+clip is 4dB and = 0.25 for PMP relying on FITRA. (a)

PAR performance (the curves of LS and MF overlap). Note thaPRiffectively reduces the PAR compared to LS and MF precodb)gSymbol error-rate
(SER) performance. Note that the signal normalization cauisi#s SNR-performance loss for PMP compared to LS precoding. d$® ¢f MF is caused by
residual MUI; the loss of LS+clip is caused by normalizatiow aesidual MUI.

transmitted outside the active tongs we define the out-of- LS precoding followed by clipping (denoted by “LS+clip”
band (power) ratio (OBR) as follows: in the following). Fig. 2(a) shows the real part of a time-
T 2 domain signala; for all precoding schemes (the imaginary
OBR — ‘ |Zwe7’c”xw”2

5 part behaves similarly). Clearly, PMP results in time-doma
T 2 werxwll signals having a significantly smaller PAR than that of LS

Note that for LS and MF precoding, we ha@BR = 0, as and MF; for LS+clip the target PAR correspondsitdB. The

they operate independently on each of thetones; for PMP frequency-domain results shown in Fig. 2(b) confirm that LS,

or LS followed by clipping, we hav®BR > 0 in general.

C. Summary of PMP Properties

MF, and PMP maintain the spectral constraints. For LS+clip,
however, the OBR is-11.9dB, which is a result of ignor-
ing the spectral constraints (see the non-zero OFDM tones

Figures 2 and 3 summarize the key characteristics of P POth ends of the spectrum in Fig. 2(b)). Fig. 3(a) shows
and compare its PAR-reduction capabilities and errorpate e PAR-performance characteristics for all considered -
formance to those of LS and MF precoding, as well as 189 schemes. One can immediately see that PMP reduces the
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Fig. 4. SNR, PAR, and OBR performance trade-offs of PMP. Thabrrs next to the trade-off curve for FITRA correspond to ggutarization parameter
used in (PMP-L). The LS+clip curves are parametrized by thgetaPAR in dB. (a) PAR/SNR trade-off (parts of the FITRA ceswoverlap). (b) OBR/SNR
trade-off (all curves labeled wittk" correspond to FITRA).

PAR by more than1dB compared to LS and MF precodingregime, LS+clip results in substantial out-of-band irgeghce;
(at CCDF(PAR) = 1%); as expected, LS+clip achievésiB this important drawback is a result of ignoring the shaping
PAR deterministically. In order to maintain a constant érait constraints (7). In particular, we can observe from Fig.)4(b
power, the signals resulting from PMP require a stronger ndhat reducing the PAR for LS+clip quickly results in signifi-
malization (roughlyl dB) than the signals from LS precoding;cant OBR, which renders this scheme useless in practice. By
this behavior causes the SNR-performance loss comparedvay of contrast, the OBR of PMP is significantly lower and
LS (see Fig. 3(b)). The performance loss of MF and LS+cligegrades gracefully when lowering the PAR. Furthermore, we
is mainly caused by residual MUI. see that reducing the maximum number of FITRA iteratiihs
increases the OBR. Hence, the regularization parameter
gether with the maximum number of FITRA iteratiors
D. SNR, PAR, and OBR Trade-Offs determine the PAR, OBR, and SNR performance of PMP. We
As observed in F|g 3, PMP is able to Significantly reducmqa”y note that forK = 2000 the Computationa| Comp|ex_
the PAR but results in an SNR-performance loss comparedifp of FITRA is one-to-two orders of magnitude larger than
LS precoding. Hence, there exists a trade-off between PAR aRat of LS precoding. The underlying reason is the fact that
SER, which can be controlled by the regularization parame’qgs precoding solvegV independenprotﬂemS, whereas PMP

A of (PMP-L). Fig. 4(a) characterizes this trade-off for= 2 requires the solution to int optimization problem among
with v € {-=12,...,4}. In addition to the performance of g]| N transmit antennas.

LS and MF precoding, we show the behavior of LS+clip for
various target-PAR values. E. Impact of Antenna Configuration and Channel Taps

Fig. 4(a) shows that PMP is able to cover a large trade-e finally investigate the impact of the antenna configura-
off region that can be _tuned by thg regularization paramgon to the PAR performance of PMP and LS precoding. To
ter A of (PMP-L). In particular, for a given number of FITRAjystrate the impact of the channel model, we also vary the
iterations K = 2000,'decr'easing/\' approaches the perfor- number of non-zero channel taffse {2, 4,8}. Fig. 5 shows
mance of LS precoding—increasing reduces the PAR but that increasing the number of transmit antennas yields im-
results in a graceful degradation of the SNR operating Poinbroved PAR performance for PMP; this behavior was predicted
Hence, (PMP-L) allows one to adjust the PAR to the “”ea”té(nalytically in (5) for the (narrow-band) system considkire
properties of the RF components, while keeping the reultiection 111-A2. Increasing the number of channel tdpsiso
SNR-performance loss at a minimum. As shown in Fig. 4(&as a beneficial impact on the PAR if using PMP. An intuitive
LS+clip achieves a similar trade-off characteristic as PMP  gypjanation for this behavior is that having a large numier o
less aggressive values of the target PAR, LS+clip even seegss increases the number of DoF, which can then be exploited
to outperform PMP. _ _ by PMP to reduce the PAR. For LS precoding, however, the re-

It is important to realize that even if LS+clip outperformsyiting PAR is virtually independent of the number of chdnne
PMP in terms of the PAR/SNR trade-off in the high-PARgps9 1n summary, PMP is suitable for MU-MIMO systems

8For A > 0, a small SNR gap remains; fox = 0, however, (PMP-L) 9MF and LS+clip exhibit the same behavior; the correspondinyes are
corresponds to LS precoding and the gap vanishes. omitted in Fig. 5.
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