

No. CCLS-07-01

Title: The report series template

Authors: Wei Chu and Ansaf Salleb-Aouissi

Copyright Center for Computational Learning Systems - CCLS

Columbia University

T
E

C
H

N
IC

A
L

 R
E

P
O

R
T

No. CCLS-11-04

Title: PARABLE: A PArallel RAndom-partition Based

HierarchicaL ClustEring Algorithm for the MapReduce

Framework

Authors: Shen Wang and Haimonti Dutta

Copyright Center for Computational Learning Systems - CCLS

Columbia University

http://www.ccls.columbia.edu

T
E

C
H

N
IC

A
L

 R
E

P
O

R
T

PARABLE: A PArallel RAndom-partition Based

HierarchicaL ClustEring Algorithm for the

MapReduce Framework

Shen Wang and Haimonti Dutta
The Center for Computational Learning Systems (CCLS),

Columbia University, New York, NY 10115.
{FelixSWang, haimonti}@ccls.columbia.edu

Abstract. Large datasets, of the order of peta- and tera- bytes, are be-
coming prevalent in many scientific domains including astronomy, phys-
ical sciences, bioinformatics and medicine. To effectively store, query
and analyze these gigantic repositories, parallel and distributed architec-
tures have become popular. Apache Hadoop is one such framework for
supporting data-intensive applications. It provides an open source im-
plementation of the MapReduce programming paradigm which can be
used to build scalable algorithms for pattern analysis and data mining.
In this paper, we present a PArallel, RAndom-partition Based hierarchi-
caL clustEring algorithm (PARABLE) for the MapReduce framework.
It proceeds in two main steps – local hierarchical clustering on nodes
using mappers and reducers and integration of results by a novel den-
drogram alignment technique. Empirical results on two large data sets
(High Energy Particle Physics and Intrusion Detection) from the KDD-
Cup competition on a large cluster indicates that significant scalability
benefits can be obtained by using the parallel hierarchical clustering al-
gorithm in addition to maintaining good cluster quality.

1 Introduction

Large datasets are ubiquitous and efficient knowledge discovery from them usu-
ally involves usage of significant compute power, storage capacity and high
speed communication. Several astronomy and physical science projects such as
CERN’s1 Large Hadron Collider (LHC) [1], Sloan Digital Sky Survey (SDSS2,
bioinformatics projects, gene and protein archives3), meteorological and envi-
ronmental surveys4 are already producing peta- and tera-bytes of data which
requires to be stored, queried and analyzed.

To meet the challenges posed by such large datasets, scalable and efficient
data mining algorithms need to be designed. MapReduce ([2]) is a programming

1 Conseil Europen pour la Recherche Nuclaire - European Organization for Nuclear
Research

2 http://www.sdss.org
3 http://www.rcsb.org/pdb/Welcome.do and http://www.expasy.org/sprot/
4 http://www.ncdc.noaa.gov/oa/wmo/wdcamet.html

paradigm which allows large datasets to be broken down into small chunks and
processed in parallel on multiple cluster nodes. In this paper, we present a paral-
lel, random-partition based hierarchical clustering algorithm for the MapReduce
framework. The algorithm contains two main components – a divide-and-conquer
phase and a global integration phase. In the divide-and-conquer phase, the data
is randomly split into several smaller partitions by the mapper. Each partition
is forwarded to a reducer on which a sequential hierarchical clustering algorithm
is run. The clustering results from the reducer are stored on local machines. In
the global integration phase, the local clustering of all the data points are used
to suggest a final solution. A key contribution of our work is dendrogram align-

ment which provides a mechanism to merge local dendrograms consistently to
form a global one. This alignment also enables comparison of the performance
of the parallel hierarchical algorithm against centralized counterparts. To the
best of our knowledge, this is the first work that describes a random-partition
based parallel hierarchical clustering algorithm for the MapReduce framework
that also provides a mechanism to obtain a global dendrogram from the parallel
implementation.

This paper is organized as follows: Section 2 presents related literature; Sec-
tion 3 provides an overview of Apache Hadoop and the MapReduce framework;
Section 4 reviews agglomerative hierarchical clustering; Section 5 introduces the
PArallel RAndom-partition Based HierarchicaL ClustEring (PARABLE) Al-
gorithm and analyzes its complexity; Section 6 presents metrics for evaluation;
Section 7 presents empirical results on clustering two datasets on a large cluster
and Section 8 concludes the paper.

2 Related Work

2.1 Clustering using the MapReduce framework

Several MapReduce-based clustering algorithms have been proposed – Zhao et.
al. [3] present a parallel K-means algorithm where the data is partitioned among
multiple processors which can read the previous iteration’s cluster centers and
assign instances to respective clusters. Ngazimbi [4] provides a case-study of
clustering Netflix movie data using K-Means, Greedy Agglomerative and Ex-
pectation Maximization algorithms in the MapReduce framework. Sun et. al. [5]
use hierarchical clustering for grouping internet users by mining a huge volume of
web-access logs. Their method uses two optimization techniques – batch updat-
ing to reduce computational time and communication costs among cluster nodes
and co-occurence based feature selection to decrease the dimension of the feature
vectors and eliminate noisy features. Papadimitriou et. al. [6] implemented a dis-
tributed Co-Clustering algorithm called DisCo for applications in text mining,
collaborative filtering, bio-informatics and graph mining. MapReduce is used
both for distributed data pre-processing and clustering.

2.2 Parallel and Distributed Hierarchical Clustering Algorithms

Hierarchical clustering has been studied extensively in distributed and parallel
data mining communities. Rasmussen et. al. [7] provide a parallel implementa-
tion of the single link and minimum variance hierarchical clustering algorithms
on SIMD processors. Their algorithms do not decrease the O(n2) time require-
ment of the serial implementation, but a constant speed-up factor is obtained.
Olson [8] describes an O(n) time algorithm for hierarchical clustering using sin-
gle, average and complete link and centroid, median and minimum variance
metrics on an n node Concurrent Read, Concurrent Write Parallel Random Ac-
cess Machine (CRCW PRAM) and an O(nlogn) algorithm of a n

logn
butterfly

network or trees. Zhaopeng, Kenli, Degui and Lei [9] propose a parallel Paral-
lel Random Access Machine (EREW) deterministic algorithm for hierarchical
clustering, which is based on complete graph and Euclidean minimum span-
ning tree algorithms. It can cluster n objects with O(p) processors in O(n2/p)
time. Sanguthevar [10] considered hierarchical clustering algorithm on both the
PRAM and the Arrays with Reconfigurable Optical Buses (AROB) models and
give algorithms with worst-case guarantees as well as algorithms with expected
performance better than existing algorithm. performance. Manoranjan, Simona
and Peter [11] presentd pPOP, the parallel version of POP, that is implemented
on a shared memory multiprocessor architecture. Extensive theoretical analysis
and experimental results are presented and show that pPOP gives close to lin-
ear speedup and outperforms the existing parallel algorithms signicantly both
in CPU time and memory requirements. Tian, Raghu and Miron [12] develop
the BIRCH clustering method for very large databases. To ensure accuracy and
efficiency, BIRCH defines clustering feature (CF) which summarizes the infor-
mation in a cluster. The dataset can then be represented by a B+ tree, called CF
tree, which supports insertion of new data points. Sudipto, Rajeev and Kyuseok
[13] developed the ROCK clustering algorithm where a similarity function mea-
sures closeness between data points and neighbors are defined as a pair of points
that have similarity greater than a threshold. If two points share many neigh-
bors (relative to the expected number of neighbors), they are put into one single
cluster. George, Eui-Hong and Vipin [14] develop the CHAMELEON clustering
algorithm that measures the similarity of two clusters based on a dynamic model
that facilitates discovery of natural and homogeneous clusters.

Johnson and Kargupta [15] develop a distributed hierarchical clustering al-
gorithm on heterogeneously distributed data. Samatova et. al. [16] develop a
method for merging hierarchical clusterings from homogeneously distributed,
real-valued data. Each site produces a dendogram based on local data, then
transmits it to a central site. To reduce communication costs,they do not send a
complete description of each cluster in a dendogram. Instead an approximation
of each cluster is sent consisting of various descriptive statistics e.g. number of
points in the cluster, average square Euclidean distance from each point in the
cluster to the centroid. Hui, Jun, Li and Yan [17] proved an algorithm for com-
bining Map Reduce framework and the neuron initialization method of VPSOM
(vector pressing Self Organizing Model) algorithm. This algorithm is used for

text clustering. However, in their paper, no detail about how the local results on
each computing site are merged together to help make a global decision, which
is not a trivial task at all.

3 MapReduce and Hadoop Framework

Apache Hadoop ([18]) inspired by Google Map-Reduce ([2]) and Google File
System ([19]), is a framework for supporting data intensive applications on a
cluster. It has an open source MapReduce implementation that has been used
both by industry and academia to develop tools and architectures for supporting
Data Intensive Scalable Computing ([20]) using Hadoop.

MapReduce is a distributed computing framework for large datasets and
has two computation phases – map and reduce. In the map phase, a dataset is
partitioned into disjoint parts and distributed to workers called mappers. The
mappers implement compute-intensive tasks (such as clustering) on local data.
The power of MapReduce stems from the fact that many map tasks can run in
parallel. The output of the map phase is of the form < key, value > pairs which
are passed to the second phase of MapReduce called the reduce phase. The
workers in reduce phase (called reducers) then partition, process and sort the
< key, value > pairs received from the Map phase according to the key value
and make final output. For a complex computation task, several MapReduce
phase pairs may be involved.
The architecture that we use for developing the Parallel Hierarchical Cluster-
ing Algorithm comprises two main parts: (1) Data Storage, using the Hadoop
Distributed File System (HDFS). (2) Computation, utilizing MapReduce pro-
gramming paradigm to meet the computation needs of the clustering algorithm.
Figure 1 shows the above components in our cluster. Specifically, these include:
(1) The Hadoop Distributed File System (HDFS) Namespace: The Na-
menode maintains the file system namespace and records any changes made to
it. It also keeps track of the number of replicas of a file that should be main-
tained in the HDFS typically called the replication factor. (2) The Master
/ Slaves of HDFS: A master server manages the file system namespace and
regulates access to files by clients. In addition, there are a number of HDFS
Slaves, usually one per node, which manage the data associated with that node.
They serve read and write requests from the users and are also responsible for
block creation, deletion and replication upon instruction from the NameNode.
(3) Data Access to MapReduce Master: The HDFS file system will be ac-
cessed by a MapReduce (MR) master. The input files to the MR Master can be
processed in parallel by different machines in cluster. (4) The Map Assigner
on MapReduce Master: It stores data structures such as the current state
(idle, in-progress or completed) of each map task in the cluster. It is also respon-
sible for pinging the map-workers occasionally. If no response is received from the
worker, it assumes that the process has failed and re-schedules the job. (5) The
Intermediate processor: The intermediate < key, value > pairs produced by
map function are buffered in the local memory of machines. This information

Fig. 1. The architecture of a Cluster illustrating the Map, Reduce and Intermediate
operations along with the Hadoop Distributed File System (HDFS).

is sent to the MR Master which then informs the Reduce Assigner. (6) The
Reduce Assigner on MapReduce Master: This takes in the location of the
intermediate files produced from a Map operation and assigns reduce jobs to
the respective machines. (7) The Output: The output of a Reduce function is
appended to a final output file. When all the map and reduce tasks are over, the
MR Master wakes up the user program.

Having described the MapReduce and Hadoop frameworks, we proceed in the
next sections to provide a brief review of agglomerative hierarchical clustering
and our PARABLE algorithm.

4 A Brief Review Of Agglomerative Hierarchical

Clustering

The agglomerative hierarchical clustering algorithm proceeds in four steps: (1)
At the start of the algorithm, each data point is taken as an individual cluster
and the distance between every pair of clusters is calculated. (2) The two clusters
with the shortest distance are merged into one single cluster. (3) The distance
between the newly merged cluster and the other clusters are calculated and the
distance matrix is updated accordingly. (4) If more than one cluster still exists,
goto step 2.

There are a number of methods for determining the distance between clusters
and the metrics can be classified as follows [21]: 1. Graph based methods:
These methods use a graph of points in each cluster to determine inter-cluster
distance. (a) Single link: The distance between any two clusters is the minimum
distance between any two points such that one of the points is in each cluster. (b)
Average Link: The distance between any two clusters is the average distance
between each pair of points such that each pair has a point in each cluster.
(c) Complete Link: The distance between any two clusters is the maximum
distance between two points such that one of the points is in each of the cluster.
2. Geometric Methods: These methods define a cluster center for each cluster
and use them to determine the distance between clusters. (a) Centroid: The
cluster center is the centroid of the points in the cluster and euclidean distance
is used as distance between cluster centroids. (b) Median: The cluster centroid
is the unweighted average of all the centers of the two clusters agglomerated to
form it. (c) Maximum Variance: The distance between two clusters is the
increase in sum of squared distances from each point to the center of the cluster
caused by agglomerating the clusters.

In step 3, the time to compute the distance between each pair of points is
O(n2) where n is the number of data points. In step 4, only the distances between
the newly merged cluster and other clusters need to be calculated, so the time
is O(n) (for single link metric, the time cost is constant because the shortest
distance between the new cluster and other clusters is just the shorter distance
of the distances between two merged clusters and their nearest neighbors). Since
each time two clusters merge, the number of remaining clusters decreases by 1,
and there are at most n iterations. Therefore, the total time required by the
algorithm to converge is O(n2).

During the merging step, only the nearest neighbor of each cluster needs to
be examined, hence only the distance to the nearest cluster needs to be stored.
The overall space complexity of agglomerative hierarchical clustering is O(n).

5 The PARABLE Algorithm

ThePArallelRAndom-partitionBased HierarchicaL clustEring algorithm (PARA-
BLE) randomly splits the large data set into several smaller partitions on the

mapper. Each partition is distributed to a reducer on which the sequential hi-
erarchical clustering algorithm is executed. After this local clustering step, the
dendrograms obtained at each reducer are aligned together. The pseudo code
for PARABLE is presented in Algorithm 1 and the dendrogram alignment is
presented in Algorithm 2.

Algorithm 1 PArallel RAndom Partion-Based HierarchicaL ClustEring Algo-
rithm (PARABLE)

1: INPUT: Number of data points: N , Number of partitions: M , Number of cycles:
T

2: {On each mapper}
3: Calculate the number of data points in each partition. Let Sm be the initial number

of data points each mth partition can still accept. If NmodM �= 0, the last partition
takes the remainder.

4: Read the data from data file.
5: Each data is put in the value part of the < key, value > pair.
6: A random integer partition index i is picked from 1, 2, 3, ...,M and assigned to the

key part of the < key, value > pair. The probability of the partition index m is
picked proportional to Sm.

7: Flush the < key, value > pair to reducer.
8: {On each reducer}
9: Collect the < key, value > pair records fed by the mapper.
10: Perform Local clustering on the data. Due to the MapReduce design, each individ-

ual reduce task works only on all the records that share the same key. Therefore,
the local clustering algorithm is indeed applied within each partition.

11: Write the dendrogram of the local clusters to Local Dendrogram File (LDF).
12: {Controller}
13: Read the local dendrograms from LDF.
14: Make a copy of the first dendrogram as the dendrogram template for alignment.
15: for each dendrogram except the first do
16: align the dendrogram with the dendrogram template using the recursive algo-

rithm described in algorithm 3.
17: end for

18: According to the cutting criterion, cut the template dendrogram into clusters and
label them.

19: for each subroot C of the clusters in template dendrogram do

20: for each dendrogram D do

21: locate the branch in D that is aligned with C
22: label all the data points on the leaves of D with label of C
23: end for

24: end for

Algorithm 2 Recursive dendrogram aligning algorithm

1: function align(Dendrogram D1, Dendrogram D2)
2: if similarity(D1.leftChild,D2.leftChild)+similarity(D1.rightChild,D2.rightChild)

< similarity(D1.rightChild,D2.leftChild)+similarity(D1.leftChild,D2.rightChild)
then

3: Switch D2’s two children
4: end if

5: align(D1.leftChild, D2.leftChild)
6: align(D1.rightChild, D2.rightChild)

5.1 Technical Details

In this section, we discuss the MapReduce implementation of the local and global
clustering steps. Assume that there are N data points divided into M partitions
in each MapReduce phase.

Mapper task: Since the total number of data points is N and there are M
partitions, the number of data points assigned in each partition is calculated as
np = N/M and passed as a parameter to the mapper. If N mod M �= 0, then
the last partition takes all the remaining points. Let Sm,m = 1, 2, 3, · · · ,M be
the number of data points the mth partition can accept. The initial value of
Sm is set to np. Each mapper takes a data point one at a time and provides
it with a < key, value > pair. The data is put as the value while a random
integer i, picked from 1, 2, 3, ...,M is assigned as key. This is also the index
of the partition the data point will be placed. The probability of the partition
indexm is proportional to Sm, which ensures that at the end, the number of data
points in each partition is consistent with n and the work load of all the local
clustering tasks is even. Finally, all the < key, value > pair records are collected
and sent to the reducers. The records are sorted and grouped according to key
before being sent to the reducer. The design of MapReduce makes sure that all
the records with the same key are sent to the same reducer.

Reducer task: In each reduce task, the reducer only deals with the< key, value >
pairs sharing the same key. It simply applies the sequential hierarchical cluster-
ing algorithm on the data it has. The locally generated dendrograms are stored
for future use.

Dendrogram Alignment: In the MapReduce phase, each reducer generates
a dendrogram. The dendrogram, a binary tree organized by linkage length, is
built on a local subset of data. To obtain a global cluster assignment across all
mappers and reducers, dendrogram integration needs to be implemented. Such
an integration is non-trivial because insertion and deletion of a single data point
changes the structure of the dendrogram. Our approach is to align them by
“stacking” them one on top of another by using a recursive algorithm described
in Algorithm 2. Example 1 provides an illustration of the technique.

Example 1: Consider two dendrograms a (Fig. 2 (a)) and b (Fig. 2 (b)) that
need to be aligned. Assume a is the template dendrogram – this means dendro-
gram b is aligned to a and all structure changes will happen on b only. First, the

Fig. 2. An illustrative example for dendrogram alignment.

roots of these two dendrograms (nodes of depth 1) are aligned to each other.
Then, nodes at depth 2 need to be aligned. There are two choices. The first
choice is to align a2 with b2 and a3 with b3 while the other choice is oppo-
site, which aligns a2 with b3 and a3 with b2. The decision is made by comparing
similarity(a2, b2)+similarity(a3, b3) with similarity(a2, b3)+similarity(a3, b2)
and taking the one with higher similarity value. In this case, we will find it more
reasonable to align a2 with b3 and a3 with b2. Therefore, b2 and b3 are switched
and dendrogram b is transformed to dendrogram c as shown in Fig. 2(c). Then,
for each pair of nodes that have been aligned in two dendrograms, say a2 and c2,
we repeat the same procedure to align c2’s two children with a2’s two children.
This procedure is repeated recursively until it reaches a depth deep enough for
labeling.

The description of a subtree in the dendrogram as well as the definition of the
similarity function are very important in this procedure. We adapt the CF vec-
tor introduced by BIRCH [12] for this work. It is defined as CF = (N,LS, SS)
where N is the number of data points in the subtree, LS is the linear sum of
the N data points, and SS is the square sum of the N data points.

Definition: Similarity(a,b) between two dendrograms in PARABLE is defined
as

Similarity(a, b) = (LSa · LSb + SSa · SSb)/(Na ·Nb). (1)

The alignment procedure is reasonable when the dendrograms to be aligned have
similar structure. This is the case in PARABLE since dendrograms collected
from local clustering are generated from randomly sampled subsets of the whole
dataset. If each subset contains many samples, it can be safely assumed that these
dendrograms have similar structure, especially for the top levels. The structures
of these dendrograms may differ more and more as the depth increases. However,
assuming that the number of clusters is usually much smaller than the number
data points, it suffices to ensure that the top levels of the dendrograms are
aligned well.

Cluster Labeling: The cluster labeling comprises of two steps – the first
step involves cutting the template dendrogram into subtrees, similar to what the
sequential hierarchical clustering algorithm does during labeling. Each subtree is
given a cluster label. Then for the root ai of each subtree i, the algorithm finds
out all the nodes in other dendrograms that were aligned with it in the alignment
step. Each of these nodes is also a root of a subtree in its own dendrogram and the
algorithm will label all the data points belonging to this subtree with the same
cluster label as ai. Intuitively, this is like “stacking” all the aligned dendrograms
together with the template dendrogram being put on top. Then a knife is used
to cut the template dendrogram into pieces. After the template dendrogram is
cut, the knife does not stop but cuts all the way to the bottom of the stack. By
doing this, the entire stack is cut into several smaller stacks, and data points in
each small stack are given the same cluster label.

Fig. 3. An illustrative example for shallow leaf nodes boundary case of dendrogram
alignment.

There is one boundary condition that needs to be addressed. As shown in
Fig. 3, some of the dendrograms may have leaf nodes with very small depth. This
is usually caused by outliers in the dataset. If the roots of subtrees obtained from
dendrogram cutting are below these leaf nodes, then these leaf nodes are not
going to be labeled in the cluster labeling step since the nodes on the template
dendrogram, with which these leaf nodes were aligned, are not given any cluster
label. For example, in Fig. 3, b1 is a leaf node which is aligned with a1. If later
on, it is decided that a2 and a3 are labeled with different cluster indices, then the
label of b1 is undecided. In this case, we calculate the centroids of each cluster
according to all the labeled data points. Then, all these shallow leaf nodes are
revisited. Each of them will be assigned the label of the cluster which has the
closest centroid to it.

5.2 Analysis

The dataset has M partitions with approximately N
M

data points in each parti-
tion. Assume there are n mappers/reducers involved in the computation, then

it takes the mappers O(N
n
) time to separate the dataset into partitions and the

reducers O((N
M
)2 · M

n
) time to implement the local clustering. For the dendro-

gram alignment, the total number of the nodes that need to be aligned is at
most 2(N − 1) – each node in all the dendrograms is visited at most once dur-
ing alignment. The time required for dendrogram alignment is O(N). Thus, the

total time complexity of PARABLE is O(N2

Mn
) + O(N). For the message com-

plexity, each data point is passed from mappers to reducers once, which yields
O(N) message complexity. After the reducing stage finishes, the dendrograms
are collected by the central site for dendrogram alignments. There are 2(N − 1)
nodes of dendrograms passed, which contains the CF vector as well as the node
wrappers. The CF has dimension a little larger than 2 times the dimension of
the data while the wrappers takes constant space for each node. Therefore, the
total message complexity of PARABLE is O(N).

6 Metrics for Evaluation

The performance of PARABLE is evaluated with respect to a centralized hier-
archical clustering algorithm. The implementation of the centralized algorithm
assumes that the data sets partitioned among mappers can be collected and
stored in one single repository5 and a hierarchical clustering algorithm can be
run on the entire data set at once. To compare performance of the parallel and
centralized algorithms, one could “inspect” the clusters found in either case and
locate interesting patterns – the composition of clusters from one dendrogram
can be compared with those of another. However, manual inspection is labor
and time intensive. Fowlkes and Mallows [22] propose a method of comparing
two hierarchical clusters by giving a numerical measure to the degree of simi-
larity between then. We adapt this metric for our work. Assume that there are
two dendrograms D1 and D2 built on n data points by running PARABLE and
the centralized algorithm. The dendrograms can be cut into k = 2, · · ·n − 1
clusters which corresponds to setting a value of the cluster strength and deter-
mining the cluster assignments of the dendrogram at that strength. For each
value of k, we may label clusters for D1 and D2 arbitrarily from 1 to k and
form the matrix M = [mij], i = 1, 2, · · · k, j = 1, 2, · · · k where mij is the num-
ber of elements in common between the ith cluster of D1 and jth cluster of D2.
The similarity of the dendrograms can then be represented by Bk = Tk√

PkQk

,

where Tk =
�k

i=1

�k

j=1
m2

ij − n; let mi∗ =
�k

j=1
mij , m∗j =

�k

i=1
mij and

m∗∗ = n =
�k

i=1

�k

j=1
mij . Then, we define Pk =

�
i = 1km2

i∗ − n and

Qk =
�

j = 1km2

∗j − n. Bk is calculated for every value of k and an intuition
of the similarity between the clusters is obtained by examining the plot of Bk

versus k; usually 0 ≤ Bk ≤ 1 for each k – when Bk = 1 the two dendrograms
are exactly identical and when Bk = 0 every pair of objects that are assigned to
the same cluster in D1 are assigned to a different one in D2.

5 This is a strong assumption since in most cases one may end up with memory
restrictions. The hypothetical scenario is created for evaluation purposes only.

7 Empirical Evaluation

In this section, we demonstrate the performance of the PARABLE algorithm
on real world datasets. The first data set is the high energy particle dataset
as presented in the ACM KDD Cup competition6 in 2004. It has 50,000 data
points, each with 78 dimensions. The second dataset is the network intrusion
detection dataset provided in the ACM KDD Cup competition in 1999. The full
dataset contains over 4 million data points with 41 dimensions. We only use
part of it since it is already large enough to show the performance improvement
of PARABLE. The in-house cluster available to us for experimentation had 25
nodes, 8-core processors each with 24 GB RAM, 1 TB RAID connected via a
fiber channel. Apache Hadoop (version 0.21.0) was set-up on this cluster.

7.1 Clustering quality

PARABLE is an approximate hierarchical clustering algorithm since MapReduce
does not allow communication between nodes during map and reduce cycle. In
this section, we compare the PARABLE hierarchical clustering result with the
result of sequential hierarchical clustering algorithm with the evaluation metrics
mentioned in section 6.

Fig. 4 show the plots of Bk vs. k, in which k is the number of clusters that the
dendrogram of sequential hierarchical algorithm and the aligned dendrograms of
PARABLE are cut into. The plots illustrate that the alignment is quite effective
since the value of Bk is very close to 1 (it is actually precisely 1 when k is small)
even when the number of clusters is increased up to 100. It also implies that
the structure of the dendrograms obtained from the centralized algorithm and
PARABLE are very similar to one another.

The plots in Fig. 4 are stair shaped, drop suddenly and then increase grad-
ually afterwards. The potential reason for that is in the PARABLE aligned
dendrograms, two sibling subtrees may have some erroneously clustered data
points. As long as the two sibling subtrees are labeled as the same cluster, the
error in clustering these two subtrees are not accounted for in the Bk value.
However, when the linkage between these two siblings is cut such that they fall
into different clusters, these erroneously clustered data points reduce the value
of Bk. However, as the sibling subtrees are cut into more fine-grained clusters,
some of the erroneously clustered data points form their own clusters, which may
not be wrongly clustered any more. This explains why the Bk bounces back to
a higher value gradually after the sudden drop.

In another experiment, we deliberately aligned the dendrograms badly by ei-
ther randomly making alignment decisions or make reverse alignments (align
nodes with lower similarity function value together). These “control” cases
helped validate our experiments and show what would happen if no dendrogram
alignment was used. Fig. 5(a) shows the result of the high energy particle dataset.
For the random alignment, Bk is about 0.3 while reverse alignment achieves only

6 http://www.sigkdd.org/kddcup/

about 0.2. Fig. 5(b) shows the result for network intrusion dataset. This result
is not that different from good alignment result. The potential reason is that
the network intrusion dataset is an extremely biased dataset and very few of the
network activities are actually labeled as intrusions.

7.2 Efficiency and Scalability

In this section, we evaluate the efficiency and scalability of PARABLE. We eval-
uate how the number of partitions, mappers/reducers and data points influence
the time complexity of the algorithm.

First, we vary the number of partitions that the dataset is split into, keeping
the number of mappers/reducers (hence the computing power) and the total
number of data points constant. For the high energy particle data set, 20 map-
pers/reducers are used to cluster 5× 104 data points. For the network intrusion
data set, 25 mappers/reducers are used to cluster 1×105 data points. The result
is shown in Fig. 6. The speed up is obvious when the number of partitions is
relatively small. However, when the number of partitions gets large, the total
time is dominated by non-computing tasks such as the time spent on messaging,
I/O and MapReduce job setup overhead – this reduces the speed-up somewhat
for large number of partitions.

Next, we adjust the number of mappers and reducers while keeping the num-
ber of data points and partitions constant. In this experiment, 5×104 data points
are sampled from the high energy particle dataset and 1 × 105 data points are
sampled from the network intrusion dataset. These data points are separated
into 40 and 100 partitions, respectively. The result is shown in Fig. 7. The time
required by the algorithm to terminate decreases when more mappers and re-
ducers are added. It is worth to notice that the sequential hierarchical clustering
algorithm takes more than 10 hours to finish the same work load.

Finally, we present PARABLE’s scalability with respect to dataset size. In
Fig. 8(a), 104 to 5 × 104 data points are sampled from high energy particle
dataset for clustering. These data points are split into 25 partitions and 25
mappers/reducers are involved in the computation. In Fig. 8(b), 6 × 104 to
1.4× 105 data points are sampled from network intrusion dataset for clustering.
These data points are split into 100 partitions and 25 mappers/reducers are
involved in the computation. It is observed that the time complexity increases
as the number of data points increases.

8 Conclusion and Future Work

Tera- and peta- byte sized data sets are becoming increasingly popular in recent
years. The phenomenal growth of data and the need to extract useful informa-
tion from it motivates the development of scalable algorithms for data mining
and knowledge discovery. In this paper, we present a novel parallel random-
partition based hierarchical clustering algorithm that solves the problem using
a divide-and-conquer approach – first, the algorithm randomly splits a large

data set into smaller partitions and distributes it amongst available nodes; then
a sequential hierarchical clustering algorithm is applied to each partition. A
novel dendrogram alignment scheme allows the local clusters to be merged into
a global model. The algorithm is implemented on an Apache Hadoop frame-
work using the MapReduce programming paradigm. Empirical results on two
large data sets from the ACM KDD Cup competition suggests that the PAral-
lel RAndom-partition Based hierarchicaL clustEring algorithm (PARABLE) has
significantly better scalability than centralized solutions in addition to maintain-
ing good quality of clustering. Future work involves implementation of multiple
levels of local clustering and making the dendrogram alignment algorithm have
sub-linear time complexity.

Acknowledgment

Funding for this work is provided by National Science Foundation award, IIS–
0916186.

References

1. Large Hadron Collider (LHC). http://lcg.web.cern.ch/LCG/.
2. J. Dean and S. Ghemawat “Mapreduce: Simplified data processing on large

clusters. ” In Proceedings of the OSDI Conference, 2004.
3. W. Zhao, H. Ma and Q. He “Parallel K-means Clustering Based on MapRe-

duce” In Proceedings on Cloud Computing, LNCS, Vol 5931, Pgs 674 –
679, 2009.

4. M. Ngazimbi “Data Clustering Using Mapreduce,” In Master’s Thesis,
Boise State University, 2009.

5. T. Sun, C. Shu, F. Li, H. Yu, L. Ma and Y Fang “An Efficient Hierarchical
Clustering Method for Large Datasets with Map-Reduce” In Proceedings
of the International Conference on Parallel and Distributed Computing,
Applications and Technologies, 12:2, Pgs 494 – 499, 2009.

6. S. Papadimitriou and J. Sun “DisCo: Distributed Co-Clustering with
MapReduce” In Proceedings of ICDM, pages 512 – 521, 2008

7. E. M. Rasmussen, P. Willett “Efficiency of hierarchical agglomerative
clustering using the ICL Distributed Array Processor” In Journal of Doc-
umentation, 45 (1), 1 –24, March 1989.

8. C. F. Olson “Parallel Algorithms for Hierarchical Clustering” In Parallel
Computing, 8, pgs 1313–1325, 1993.

9. Z. Li, K. Li, D. Xiao, and L. Yang “An Adaptive Parallel Hierarchical
Clustering Algorithm”. In HPCC 2007, LNCS 4782, pp. 97107, 2007.

10. S. Rajasekara “Efficient Parallel Hierarchical Clustering Algorithms” In
IEEE Transactions On Parallel And Distributed Systems, Vol. 16, No. 6,
2005

11. M. Dash, S. Petrutiu, and P. Scheuermann “E?cient Parallel Hierarchical
Clustering”. In Euro-Par 2004, LNCS 3149, pp. 363371, 2004.

12. T. Zhang, R. Ramakrishnan and M. Livny “BIRCH: An Efficient Data
Clustering Method for Very Large Databases”. In SIGMOD, pages 103–
114, 1996.

13. S. Guha, R. Rastogi and K. Shim “ROCK: A Robust Clustering Algorithm
for Categorical Attributes”. In Information System, Vol. 25, No. 5, pp 345-
366, 2000.

14. G. Karypis, E. Han and V. Kumar “CHAMELEON: A Hierarchical Clus-
tering Algorithm Using Dynamic Modeling”. In IEEE Computer, Vol. 32,
No. 8, pp 68-75, 1999.

15. E. L. Johnson and H. Kargupta “Collective, Hierarchical Clustering from
Distributed, Heterogeneous Data” In Large-Scale Parallel Data Mining,
Pgs 221 – 244, 2000.

16. N. Samatova, G. Ostrouchov, A. Geist, and A. Melechko. “RACHET: An
Efficient Cover-Based Merging of Clustering Hierarchies from Distributed
Datasets”. In Distributed and Parallel Databases, 11(2):157–180, 2002.

17. H. Gao, J. Jiang, L. She, Y. Fu “A New Agglomerative Hierarchical Clus-
tering Algorithm Implementation based on the Map Reduce Framework”.
In International Journal of Digital Content Technology and its Applications
Volume 4, Number 3, June 2010

18. Website. http://hadoop.apache.org/core/.
19. S. Ghemawat, H. Gobioff, S. T. Leung “The google file system. ” In

Proceedings of the 19th ACM Symposium on Operating Systems Principles,
Lake George, NY.

20. DISC, Website. http://www.cs.cmu.edu/ bryant/.
21. F. Murtagh “Multidimensional Clustering Algorithms” Physica-Verlag,

1985
22. E. B. Fowlkes and C. L. Mallows AMethod for Comparing Two Hierarchical

Clusterings. In Journal of American Statistical Association, Vol 78, No 383,
pp 553 – 569.

Fig. 4. Measurement of similarity between the dendrogram generated by sequential hi-
erarchical clustering algorithm and the aligned dendrograms generated by PARABLE.
(a) shows the relation between Bk and the number of clusters for high energy particles
experiment. (b) shows the same relation for network intrusion experiment.

(a) Caption of subfigure 1

(b) Caption of subfigure 2

Fig. 5. Bk versus k for the control experiments. (a) shows the result of high energy
particles experiment. (b) shows the result of network intrusion experiment.

Fig. 6. The relation between the number of data partitions and the time complexity for
clustering a fixed data set size. (a) shows the result of high energy particles experiment.
N = 5× 104 in this experiment. (b) shows the result of network intrusion experiment.
N = 1× 105 in this experiment.

Fig. 7. The relation between the number of mappers/reducers and the time cost for
clustering a given number of data points. (a) shows the result of high energy particles
experiment. N=5 × 104 in this experiment. (b) shows the result of network intrusion
experiment. N=1× 105 in this experiment.

Fig. 8. Time cost of clustering different number of data points. (a) shows the result of
high energy particles experiment. (b) shows the result of network intrusion experiment.

