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PARABOLIC AND HYPERBOLIC CONTOURS
FOR COMPUTING THE BROMWICH INTEGRAL

J. A. C. WEIDEMAN AND L. N. TREFETHEN

Abstract. Some of the most effective methods for the numerical inversion
of the Laplace transform are based on the approximation of the Bromwich
contour integral. The accuracy of these methods often hinges on a good choice
of contour, and several such contours have been proposed in the literature.
Here we analyze two recently proposed contours, namely a parabola and a
hyperbola. Using a representative model problem, we determine estimates
for the optimal parameters that define these contours. An application to a
fractional diffusion equation is presented.

1. Introduction

Since the advent of modern numerical analysis the numerical inversion of the
Laplace transform has been an active area of research. Recently, however, a marked
increase in activity has occurred, partly in connection with the solution of lin-
ear fractional differential equations. These equations describe phenomena such as
anomalous diffusion in fields like mathematical finance and mathematical biology,
two areas of applied mathematics that are particularly active at the present time.
This renewed interest brought variations on old themes, and in this paper we ana-
lyze some of these new developments.

The methods for inverting the Laplace transform that we shall consider are all
based on numerical integration of the Bromwich complex contour integral

(1.1) f(t) =
1

2πi

∫ σ+i∞

σ−i∞
eztF (z) dz, σ > σ0.

Here F (z) is the transform that needs to be inverted, σ0 is the convergence abscissa,
and σ > σ0. This means that all the singularities of F (z) lie in the open half-plane
Re z < σ.

As it stands, the integral (1.1) is not well-suited for numerical integration. First,
the exponential factor is highly oscillatory on the Bromwich line, z = σ + iy,
−∞ < y < ∞. Second, the transform F (z) typically decays slowly as |y| → ∞.
Integrals that are both oscillatory and slowly decaying on unbounded domains are
often hard to compute.
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Figure 1. The contours (1.2) and (1.3). The hyperbolic contour
encloses the shaded sectorial region whenever α < π/2−δ; cf. (1.4).

One strategy for circumventing the slow decay is due to Talbot [10], who sug-
gested that the Bromwich line be deformed into a contour that begins and ends in
the left half-plane, such that Re z → −∞ at each end. On such a contour, the ex-
ponential factor in (1.1) forces a rapid decay of the integrand as Re z → −∞. This
makes the integral well suited for approximation by the trapezoidal or midpoint
rules [5]. Owing to Cauchy’s theorem, such a deformation of contour is permis-
sible as long as no singularities are traversed in the process, and provided that
|F (z)| → 0 uniformly in Re z ≤ σ0 as |z| → ∞. (It should be clear, however, that
this technique cannot be applied to all transforms. For example, if the singularities
of F (z) have an unbounded imaginary part, Talbot’s method may fail.)

Talbot’s original contour has a cotangent shape, and is rather complicated to
analyze; see [7], [10], [14]. Two simpler types of contours have been proposed
recently, namely parabolas [1] and hyperbolas [2], [6], [9]; see Figure 1. The parabola
is parameterized by

(1.2) z = µ
(
iu + 1

)2

, −∞ < u < ∞.

(In fact, a more general parabola was used in [1], but we shall argue that for the
model problem discussed here, it is sufficient to consider this form of the contour.)
We consider the hyperbola in the form used in [2], namely

(1.3) z = µ
(
1 + sin

(
iu − α

))
, −∞ < u < ∞.

In Section 4 we verify that this is indeed a hyperbola, with asymptotes

(1.4) y = ± cot(α)(µ − x), z = x + iy.

In both cases the positive parameter µ controls the width of the contour. The
hyperbola contains the additional free parameter α, which determines its asymp-
totic angle. In this respect the hyperbola is superior to both the parabola and
Talbot’s contour—it allows for singularities with an unbounded imaginary part,
provided they lie in a sectorial region around the negative real axis; see Figure 1.
(Note that the contours shown in Figure 1 are schematic and not intended to be
optimal. Actual optimal contours can be seen in Figures 2 and 5 below.)
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On either of the contours (1.2), (1.3) the Bromwich integral (1.1) becomes

(1.5) f(t) =
1

2πi

∫ ∞

−∞
ez(u)tF

(
z(u)

)
z′(u) du.

Approximation by the trapezoidal rule, with uniform node spacing h, yields the
approximation fh;N (t) ≈ f(t), where

(1.6) fh;N (t) =
h

2πi

N∑
k=−N

ez(uk)t F
(
z(uk)

)
z′(uk), uk ≡ kh.

In this formula there are some free parameters, notably the geometric parameter µ
and the node spacing h. The hyperbola contains the additional parameter α. Our
main objective in this article is to derive estimates for these parameters that will
ensure, for given t and N , a small error

Eh;N (t) = f(t) − fh;N (t).

Of course, the accuracy of the method is closely related to the singularities of the
transform F (z), but analyzing all possible singularity distributions is impractical.
To make the analysis manageable, we shall focus on a model problem, namely

(1.7) eλt =
1

2πi

∫ σ+i∞

σ−i∞

ezt

z − λ
dz, λ < 0.

That is, we are primarily concerned with singularities on the negative real axis, a
choice motivated by the solution of parabolic PDEs. When solving such PDEs, the
analogous formula is

(1.8) exp(At) u0 =
1

2πi

∫ σ+i∞

σ−i∞
ezt

(
(zI − A)−1u0

)
dz,

where A is typically a J × J symmetric negative definite matrix approximation to
the Laplacian, and u0 is a J×1 vector representing the initial condition. The scalar
λ in (1.7) represents a typical eigenvalue of A.

The outline of the paper is as follows. In the next section, we recall a basic er-
ror estimate for trapezoidal approximations. This estimate is applied in Section 3
(parabola) and Section 4 (hyperbola) to derive formulas for the optimal parameters
µ, h, and α, as well as estimates of the corresponding convergence rates. An appli-
cation to a time-fractional diffusion equation is presented in Section 5. Comparisons
with related methods for inverting the Laplace transform are made in Section 6.

2. Error estimates

Our error analysis is based on well-known error estimates for the trapezoidal rule
on the real line. Consider, in analogy with (1.5)–(1.6), the absolutely convergent
integral

I =
∫ ∞

−∞
g(u) du,

and its infinite and finite trapezoidal approximations

Ih = h
∞∑

k=−∞
g(kh), Ih;N = h

N∑
k=−N

g(kh).
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The quantity DE = |I − Ih| is often referred to as the discretization error, whereas
TE = |Ih − Ih;N | is the truncation error.

Estimating the discretization error is a well-known exercise in numerical anal-
ysis. Proofs are typically based on the residue theorem or the theory of Fourier
transforms, and examples of each technique can be found, respectively, in [5] and
[8, p. 345]. The only difference here is that we shall take our function g(u) to be
complex-valued, so its singularities need not be symmetric with respect to the real
axis as is usually the case. Nevertheless, the standard proofs remain essentially the
same, and therefore we omit the proof of the following theorem.

Theorem 2.1. Let w = u + iv, with u and v real. Suppose g(w) is analytic in the
strip −d < v < c, for some c > 0, d > 0, with g(w) → 0 uniformly as |w| → ∞
in that strip. Suppose further that for some M+ > 0, M− > 0 the function g(w)
satisfies ∫ ∞

−∞
|g(u + ir)| du ≤ M+,

∫ ∞

−∞
|g(u − is)| du ≤ M−,

for all 0 < r < c, 0 < s < d. Then

|I − Ih| ≤ DE+ + DE−,

where

DE+ =
M+

e2πc/h − 1
, DE− =

M−
e2πd/h − 1

.

Remark 2.2. In the literature the function g is typically real-valued, c = d, M+ =
M− = M , say, and the error estimate reduces to the more familiar

|I − Ih| ≤
2M

e2πc/h − 1
.

Remark 2.3. In Section 3 we encounter the situation c < ∞ but d = ∞. In this
case

(2.1) DE+ = O
(
e−2πc/h

)
, DE− = O

(
M−(d)e−2πd/h

)
, h → 0.

To derive a good estimate for DE−, an optimal value of d should be determined by
balancing the growth of M−(d) with the decay of e−2πd/h as d → ∞.

As for the truncation error, if one assumes that g(u) decays rapidly as u → ±∞,
the truncation error can be approximated by the magnitude of the last term retained
in the trapezoidal sum. That is, for fixed h,

(2.2) TE = O
(
|g(hN)|

)
, N → ∞.

In the next section, we shall determine optimal parameters for the parabolic
contour (1.2), by asymptotically matching DE+, DE−, and TE. This gives two
equations from which the two free parameters, µ and h, can be determined.

3. The parabola

Consider the conformal map

(3.1) z = µ
(
iw + 1

)2

,

which reduces to (1.2) when w is real. Let c > 0 and consider the line

(3.2) w = u + ic, −∞ < u < ∞.
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Its image under the map (3.1) is

(3.3) z = µ
((

1 − c)2 − u2
)

+ 2 i µ u
(
1 − c

)
.

According to the theory of Section 2, we need to find a strip of analyticity as wide
as possible, i.e., we would like to maximize c.

As c is increased from 0, the parabola (3.3) closes and degenerates into the
negative real axis when c reaches the value 1. In Theorem 2.1 we therefore let c = 1
and according to the first formula in (2.1) the associated error is given by

(3.4) DE+ = O
(
e−2π/h

)
, h → 0.

Turning to the lower half-plane, we consider for d > 0,

w = u − id, z = µ
((

1 + d)2 − u2
)

+ 2 i µ u
(
1 + d

)
, −∞ < u < ∞.

As d increases from 0, the parabola widens and moves to the right. At the same
time, the factor ezt grows and contributes a factor eµ(1+d)2t to the quantity M−(d)
in (2.1); therefore

DE− = O
(
eµ(1+d)2t−2πd/h

)
,

for all d > 0. Define
p(d) = µ(1 + d)2t − 2πd/h;

then the best choice of d is determined by setting p′(d) = 0. This yields

(3.5) d =
π

µth
− 1

(which is positive for h sufficiently small). With this d the best estimate of DE−
becomes

(3.6) DE− = O
(
e−π2/(µth2)+2π/h

)
, h → 0.

Turning to the truncation error, we use (2.2) to estimate

(3.7) TE = O
(
eµt(1−(hN)2)

)
, N → ∞.

Asymptotically balancing DE+, DE−, and TE yields the two equations

(3.8) −2π

h
= − π2

µth2
+

2π

h
= µt(1 − (hN)2).

Solving them, one obtains expressions for the optimal parameters:

(3.9) h∗ =
3
N

, µ∗ =
π

12
N

t
.

The corresponding convergence rate is geometric, namely

(3.10) EN = O
(
e−2πN/3

)
≈ O

(
8.12−N

)
, N → ∞.

Figure 2 shows the optimal strip of analyticity in the case N = 12 and t = 1.
The lines w+ and w− in the figure represent w = u + i and w = u − di. Their
images in the z-plane are denoted by z+ and z−.

To test the validity of (3.9), we have implemented the method (1.6) on the model
problem (1.7). In Figure 3 we show a contour plot of the numerically computed
(absolute) error, in the (µ, h) parameter plane. Darker shades represent higher
accuracy.
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Figure 2. The strip of analyticity in the w-plane for the parabolic
contour, and its image in the z-plane. This represents the optimal
configuration in the case N = 12 and t = 1.
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Figure 3. Contour plot of log10 |f(t) − fh;N (t)|, where the test
problem is defined by (1.7), with λ = 0, t = 1. Here the parabolic
contour is used, with N = 12. The cross represents the parameter
estimates (3.9).

Figure 3 lends credibility to our error model. In the lower part of the figure (i.e.,
small h) the truncation error, TE, dominates. In the northwest section of the figure
the error DE+ dominates; note that this error is independent of µ and hence the
plot shows horizontal contour lines in this area. In the north and northeast sections
of the plot the error DE− dominates. The white cross marks the spot defined by
(µ∗, h∗), and is seen to be close to the actual optimal point.

It is important to note that the parameter estimates (3.9) depend on t. This
means that for each new value of t the transform F (z) will be sampled on a different
contour. For a scalar problem such as (1.7) this is not a major issue, but for a
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matrix problem such as (1.8) this could be inefficient. Ideally one would like to
fix parameters and then use a single contour for various values of t. In the case of
the classic Talbot contour and its hyperbolic variant, suggestions for finding such
a contour were put forward, respectively, in [7] and [3]. In the case of the parabola
we argue as follows.

By examining the error estimates (3.4), (3.6), and (3.7), one observes that only
the latter two depend on t. The discretization error DE− increases with t, whereas
the truncation error TE decreases with t. If we wish to maintain a small absolute
error on an interval t0 ≤ t ≤ t1, say, we therefore require in place of (3.8) that

(3.11) −2π

h
= − π2

µt1h
2

+
2π

h
= µt0(1 − (hN)2).

The solution of these two equations is

(3.12) h∗ =
√

8Λ + 1
N

, µ∗ =
π

4
√

8Λ + 1
N

t1
,

where we have defined

Λ =
t1
t0

.

The corresponding convergence rate is again geometric, but with decreasing decay
rate as Λ increases from 1:

(3.13) EN = O
(
e−

(
2π/

√
8Λ+1

)
N

)
, N → ∞.

Note that these parameter and error estimates reduce to (3.9) and (3.10) in the
case Λ = 1.

Figure 4 represents an empirical check on the accuracy of the estimate (3.13).
We have plotted, for t0 = 1 and various Λ, the quantity

(3.14) MN = max
t0≤t≤Λt0

|f(t) − fh;N (t)|,

as a function of N . The test problem was (1.7), with λ = −1. The dash-dot
lines represent the theoretical error estimate (3.13), and agree well with the actual
convergence rate shown as the solid curves.

In Figure 4, note that the error curves eventually start to increase as N gets
larger. This is a consequence of roundoff error and characteristic of the ill-condition-
ing associated with the inversion of the Laplace transform. (These results, and those
elsewhere in the paper, were computed in MATLAB with machine precision about
2.2 × 10−16.) See also Remark 4.2 below.

To conclude this section, we consider whether it might be advantageous to con-
sider a more general parabola of the form

z = σ + µ(iw + α)2.

First, the parameter α cannot improve the accuracy. This is clear from the equiv-
alent expression z = σ + µα2(iw/α + 1)2, which shows that α may be absorbed
into the parameter µ and the step-size h. Second, the parameter σ will contribute
factors of eσt to the error estimates derived above. This can only reduce the error if
σ < 0, but then the contour intersects the negative real axis. This is unacceptable
when solving problems where the precise locations of the λ’s are not known.
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Figure 4. Plot of the maximum absolute error on [t0, Λt0];
cf. (3.14). The parabolic contour is used, with parameter esti-
mates (3.12). The solid curves represent the actual errors, and the
dash-dot lines the theoretical convergence estimate (3.13).

4. The hyperbola

Next, we consider

(4.1) z = µ
(
1 + sin

(
iw − α

))
,

which is identical to (1.3) when w is real. We use essentially the same analysis as
in the previous section.

The image of the horizontal line w = u + ic is

z = µ
(
1 − sin(α + c) cosh(u)

)
+ i µ cos(α + c) sinh(u),

which can be expressed as the hyperbola
( µ − x

sin(α + c)

)2

−
( y

cos(α + c)

)2

= µ2, z = x + iy.

When c = 0 the left branch of this hyperbola is the contour of integration as shown
in Figure 1(b).

When c increases from 0, the hyperbola closes and degenerates into the negative
real axis when c reaches the value π/2 − α. The associated error expression is

DE+ = O(e−2π(π/2−α)/h), h → 0.

We examine the lower half of the w-plane by considering c < 0. When c decreases
from 0 the hyperbola widens until it reaches the limiting value c = −α, at which
point the image in the z-plane becomes a vertical line. For Theorem 2.1 to remain
valid, one cannot decrease c beyond this point, since the factor ezt then grows
unboundedly. Therefore we take c = −α, or d = α in the formula for DE− in (2.1).
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Figure 5. Same as Figure 2, but for the hyperbolic contour.

In addition, M−(d) = O(eµt), and the associated error formula is

DE− = O
(
eµt−2πα/h

)
, h → 0.

The truncation error is estimated in the usual manner as

TE = O
(
eµt(1−sin(α) cosh(hN))

)
, N → ∞.

The strip of analyticity used in deriving these estimates is shown in Figure 5.
An asymptotic balance of the three quantities DE+, DE−, and TE yields the

two equations

(4.2) −2π(π/2 − α)
h

= µt − 2πα

h
= µt

(
1 − sin(α) cosh(hN)

)
.

Considering α to be the free variable, one can solve for the parameters h and µ

(4.3) h =
A(α)
N

, µ =
4πα − π2

A(α)
N

t
,

where
A(α) = cosh−1

( 2α

(4α − π) sin α

)
.

Provided α is in (π/4, π/2), the above choices of h and µ provide, once again, a
geometric convergence rate as N → ∞, namely

(4.4) EN = O(e−B(α)N ), where B(α) =
π2 − 2πα

A(α)
.

The function B(α) has a unique local maximum in (π/4, π/2), say at α = α∗,
which we have computed numerically to four places as

(4.5) α∗ = 1.1721.

The corresponding optimal parameters h and µ are

(4.6) h∗ =
1.0818

N
, µ∗ = 4.4921

N

t
.

The optimal decay rate is B(α∗) = 2.3157, which predicts a convergence rate of
about

(4.7) EN = O(e−2.32N ) = O(10.2−N ), N → ∞.

This is faster convergence than the corresponding rate (3.10) that can be achieved
on the parabolic contour.
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Figure 6. Same as Figure 3, but for the hyperbolic contour, with
α = 1.1721. The cross represents the parameter estimates (4.6).

In Figure 6 we show a contour plot of the error in the (µ, h) parameter plane. As
in the case of Figure 3, the numerical results confirm the validity of the theoretical
error model to a good degree. The estimated optimal parameters (µ∗, h∗) (indicated
by the cross) are indeed close to the actual minimum point.

In the event that the solution needs to be computed in an interval [t0, t1], with
t1 = Λt0, the same analysis as in Section 3 can be used; cf. eqs. (3.11)–(3.13).
Eq. (4.2) is replaced by

(4.8) −2π(π/2 − α)
h

= µt1 −
2πα

h
= µt0

(
1 − sin(α) cosh(hN)

)
,

the solution of which is given by

(4.9) h =
A(α)
N

, µ =
4πα − π2

A(α)
N

t1
.

The definition of A(α) is now modified to

A(α) = cosh−1

(
(π − 2α)Λ + 4α − π

(4α − π) sin α

)
,

and the estimated convergence rate is given by (4.4), with

(4.10) B(α) =
π2 − 2πα

cosh−1
(

(π−2α)Λ+4α−π
(4α−π) sin α

) .

For a given Λ ≥ 1, the maximum of B(α) can be computed numerically. Results
for a few values of Λ are given in Table 1.

These numbers are tested in Figure 7. The solid curves are the actual errors,
and the dash-dot curves the estimated convergence rates O

(
e−B(α)N

)
, with B(α)

given in the final column of the table.
What if the singularities lie off the real axis, e.g., in the sectorial region shown

in Figure 1(b)? It is easy to see that the above estimates for the truncation error
TE and the discretization error DE− are unaffected by this change. To obtain an
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Table 1. Optimal parameters for the hyperbola for approxima-
tion on an interval [t0, Λt0].

Λ α hN (= A(α)) (µt1)/N B(α)
1 1.1721 1.0818 4.4921 2.3157
2 1.1431 1.5280 2.9417 1.7587
5 1.0791 2.4580 1.5013 1.2570
50 0.9381 5.5582 0.3452 0.7152

estimate for DE+, one cannot increase the value of c beyond π/2 − α − δ, for at
this point the image of the horizontal line w+ in the w-plane becomes a hyperbola
z+ in the z-plane with asymptotes parallel to the edges of the shaded sector in
Figure 1(b). The estimate for DE+ should therefore be modified to

DE+ = O(e−2π(π/2−α−δ)/h).

With the left side of (4.8) modified accordingly, one can solve as before for h and
µ:

(4.11) h =
A(α)
N

, µ =
4πα − π2 + 2πδ

A(α)
N

t1
,

where

A(α) = cosh−1

(
(π − 2α − 2δ)Λ + (4α − π + 2δ)

(4α − π + 2δ) sin α

)
.

The estimated decay rate of the error is

(4.12) B(α) =
π2 − 2πα − 2πδ

A(α)
.

For given Λ and δ, the function B(α) can be maximized to find the optimal α.
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Λ =50
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Figure 7. Same as Figure 4, but the hyperbolic contour is used,
with parameter estimates given in Table 1. Note that the horizon-
tal scale is different in the two figures.
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We point out that this analysis related to the sectorial region is based on a
worst-case scenario. It will only work well if the singularities are located essentially
everywhere on the edges of the sectorial region. If only a few singularities relatively
close to the origin are present, for example, it should be possible to increase c
beyond the value π/2 − α − δ, to obtain a better estimate of the convergence rate.
In this case the optimal parameters will depend on the singularity distribution as
well as the value of t and is best handled on a case-by-case basis. We shall not
pursue this here.

Remark 4.1. Results similar to those presented in Figure 7 can be found in [3], and
a few remarks on the connection to our work are in order. The hyperbolic contour
(1.3) was introduced in [2] and further analyzed in [3]. Parameter estimates derived
in the latter reference are similar, but not identical, to our estimates (4.9), namely

h =
a(θ)
N

, µ =
2πd(1 − θ)

a(θ)
N

t1
,

where

(4.13) a(θ) = cosh−1
( Λ

(1 − θ) sin α

)
.

Here d and θ are parameters that satisfy 0 < d < π/2−α (in the case of singularities
on the negative real axis), and 0 < θ < 1. No explicit formulas nor guidelines for
choosing α and d optimally were provided in [3], but optimal values for θ were
obtained numerically. Comparing the analysis of [3] with what we have done here,
the distinction is evident. In [3] the authors used a symmetric strip of analyticity
(the parameter d is, in fact, the half-width of that strip). In our analysis we
utilized the fact that a non-symmetric strip of analyticity offers an additional degree
of freedom that can be exploited. Indeed, when one compares Figure 7 to the
corresponding figure in [3], one sees that the convergence rates observed here are
significantly better.

Remark 4.2. An interesting idea pursued in [3] was to minimize the effects of ill-
conditioning by having the parameter θ depend on N . In this manner the authors
were able to obtain error curves that saturate around the numerical round-off level,
i.e., the error growth observed in Figures 4 and 7 was avoided. The explicit depen-
dence of θ on N was not determined however. We shall not pursue the matter of
conditioning here.

5. An application

One application of the type mentioned in the Introduction is the time-fractional
diffusion equation [4]

(5.1) Dβ
t u = uxx, 0 ≤ x ≤ π.

The operator Dβ
t is Caputo’s fractional derivative, defined for 0 < β < 1 by

Dβ
t f(t) =

1
Γ(1 − β)

∫ t

0

f ′(s)
(t − s)β

ds.

As β → 1, the fractional derivative approaches the ordinary derivative, and (5.1)
reduces to the standard diffusion equation ut = uxx. With 0 < β < 1, the PDE is
classified as sub-diffusive [4].
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We supplement (5.1) with boundary conditions

(5.2) u(0, t) = 0, u(π, t) = 0,

and an initial condition

(5.3) u(x, 0) = sin x.

By introducing a suitable grid and a discrete approximation to the second de-
rivative plus boundary conditions (5.2), the problem can be semi-discretized as

(5.4) Dβ
t u = A u, u(t) = u0.

For A, we shall use the Chebyshev spectral collocation second derivative matrix of
order J × J ; see [11], [15]. Below we shall use J = 16, which is sufficient to resolve
the spatial profile to within machine precision.

After taking a Laplace transform, the problem reduces to computing

(5.5) u(t) =
1

2πi

∫ σ+i∞

σ−i∞
eztF (z) dz,

where

(5.6)
(
zI − z1−βA

)
F (z) = u0.

The method (1.6) may be applied to the integral (5.5), at the cost of solving the
J × J (full) linear system (5.6) at each node z(kh) of the trapezoidal rule. Because
of symmetry, however, only N + 1 system solves rather than 2N + 1 are actually
required.

The analytical solution to the semi-discrete problem (5.4) can be expressed in
terms of the Mittag-Leffler function [4]

(5.7) u(t) = Eβ

(
Atβ

)
u0, where Eβ(z) =

∞∑
k=0

zk

Γ(βk + 1)
.

As β → 1, this reduces to u(t) = exp
(
At

)
u0, which is the matrix exponential

solution to the semi-discrete diffusion equation. On the other hand, if β = 1/2
the Mittag-Leffler function reduces to a form involving the complementary error
function, and the solution to (5.1)–(5.3) is then given by

(5.8) u(x, t) = et erfc(
√

t) sin x.

Using this as a reference solution, we intend to confirm the theory of Sections 3
and 4.

Note that the eigenvalues of A lie on the negative real axis [16]. This means that
the transform in (5.5) has branch-point singularities on that axis. Our analysis of
Sections 3–4 used only the location of the singularities, not their type, and therefore
we expect the estimates of those sections to remain valid. This is indeed the case,
as confirmed in Figure 8.

In that figure, we have plotted, as a function of N , the quantity

(5.9) MN = max
t0≤t≤Λt0

‖u(x, t) − uN (x, t)‖2,

where u(x, t) is the exact solution (5.8), and uN (x, t) is the numerical solution
computed by approximating (5.5)–(5.6). The L2-norm in (5.9) is approximated
by Clenshaw-Curtis quadrature, the natural rule for the Chebyshev collocation
method. We reiterate that the errors shown in the figure come primarily from the
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Figure 8. The maximum L2-error on 0.5 ≤ t ≤ 2.5, as defined
by the quantity MN in (5.9). In (a) the parabolic contour is used
with parameter values (3.12), and in (b) the hyperbolic contour
with parameter values given in Table 1. Solid curves represent
actual errors and dash-dot lines their theoretical estimates.

Laplace transform approximation (i.e., the “time integration”); the space variable
is treated exactly for all practical purposes.

The solid curves in Figure 8 represent the computed values of MN , whereas the
dash-dot lines represent the theoretical convergence estimates (3.13) and (4.4), with
the decay rate of the latter given in Table 1. Parameter values were t0 = 0.5 and
Λ = 5.

The good agreement between theory and practice is evident in the figure, as
is the rapid convergence for both the parabola and the hyperbola. To put the
rapid convergence into perspective: Suppose one wishes to solve the problem (5.1)–
(5.3) on the interval 0.5 ≤ t ≤ 2.5 uniformly to within an L2-error of, say, 10−10.
According to the figure, this will require a value of N ≈ 21 (resp. N ≈ 16) for
the parabolic (resp. hyperbolic) contour. The required accuracy can therefore be
attained at the relatively small cost of solving 22 (resp. 17) linear systems of size
J × J , plus the asymptotically negligible cost of computing a vector sum of the
form (1.6) for selected values of t in the interval of interest.

Similar convergence curves that focused on a fixed value of t (i.e., Λ = 1) were
presented earlier in [13].

6. Conclusions

We analyzed Talbot’s method for inverting the Laplace transform on two types
of contours, one parabolic and the other hyperbolic. Optimal parameter choices for
a representative model problem were derived. The optimal convergence rates thus
derived favor the hyperbolic contour over the parabolic one.

Our analysis included the cases where the problem has to be solved at a single
value of t, as well as on an interval [t0, t1]. In addition, we considered the situation
for which the hyperbolic contour was devised, namely where the singularities lie off
the real axis but in a sectorial region about the negative real axis; cf. (4.11)–(4.12).

As an alternative to the contours analyzed here, one should mention the original
Talbot contour [10]. Optimal parameters of the type derived here were obtained
in [14]. It was also shown, however, that the convergence of the classic Talbot
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Figure 9. Same as Figures 4 and 7, but the best rational approx-
imation method of [12] is used. The error is defined by (6.1).

method can be improved dramatically by a simple modification. At present we are
investigating the optimal parameters and convergence rate that can be achieved on
this modified Talbot contour, and results will be reported elsewhere.

A second alternative, introduced in [12], is the method based on best rational
approximation to ez on the negative real axis. When computing solutions at a single
value of t, this method converges about twice as fast as the methods discussed here.
When solutions are computed on an interval t0 ≤ t ≤ Λt0, however, this method
loses its superiority as Λ gets large; see [12]. For a different illustration of the same
property, we refer to Figure 9.

In that figure, we have plotted the quantity

(6.1) MN = min
t0≤t∗≤Λt0

max
t0≤t≤Λt0

|f(t) − fh;N (t)|,

as a function of N . To make these errors commensurable with those in the rest of
the paper, we have used a rational approximation of type (2N − 1, 2N) (and not
(N − 1, N) as in [12]). In (6.1), t∗ is the point in [t0, Λt0] where coefficients of the
rational approximation are calculated; see [12] for details.

The test problem of Figure 9 was the same as the one of Figures 4 and 7.
Comparing these three figures (and keeping in mind that the horizontal scales are
all different) the superiority of the best rational approximation method is evident
when Λ = 1. It is also clear, however, that the other two methods, and in particular
the one based on the hyperbolic contour, surpass it quickly as Λ increases.
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