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PARABOLIC HARNACK INEQUALITY FOR THE MIXTURE OF
BROWNIAN MOTION AND STABLE PROCESS

RENMING SONG* AND ZORAN VONDRACEK™**
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Abstract. Let X be a mixture of independent Brownian motion and symmetric stable
process. In this paper we establish sharp bounds for transition density of X, and prove a
parabolic Harnack inequality for nonnegative parabolic functions of X.

1. Introduction. Let W = (W; : ¢t > 0) be a Brownian motion in Euclidean d-space
RY andletY = (Y, : t > 0) be a rotationally invariant «-stable process in RY, where
0 < o < 2. Suppose that W and Y are independent and define the process X = (X; : t > 0)
by X; = W; 4 Y;. The law of X started from x € R4 will be denoted by P*. We will call the
process X the mixture of the Brownian motion W and the stable process Y. Although X is a
Lévy process with explicitly known generator and Lévy measure, until recently not much was
known about the Green function and transition density of this process. The main difficulty in
studying the process is the fact that it runs on two different scales. By realizing the process
X as a subordinate Brownian motion and using Tauberian theorems, the asymptotic behaviors
of the Green function of X near zero and infinity were established in [7]. These asymptotics
were used in proving an elliptic Harnack inequality for the nonnegative harmonic functions of
X. The study of elliptic Harnack inequality for purely discontinuous processes was initiated
only recently by Bass and Levin in [1] whose approach was also used in [7].

Parabolic Harnack inequality for nonnegative parabolic functions of purely discontinu-
ous symmetric Markov processes was established by Chen and Kumagai in [4] based on the
ideas developed in [2]. The processes they studied have a scaling property that was essentially
used in their argument. In a work in progress Chen and Kumagai were able to extend the par-
abolic Harnack inequality to a more general class of purely discontinuous symmetric Markov
processes including sums of independent stable processes with different scales. Their work
so far does not include the process X described in the paragraph above.

The goal of this paper is to establish a parabolic Harnack inequality for the nonnegative
parabolic functions of the process X. In order to do this, we first establish sharp upper and
lower bounds for the transition density of X. Although our proof of these bounds is elementary
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and does not extend to general Markov processes which have both a continuous component
and a discontinuous component, these bounds can serve as guidelines for the general case.

The content of this paper is organized as follows. The upper and lower bounds on the
density of X are established in Section 2. In Section 3 we establish a lower bound for the
transition density of the process X killed upon exiting a ball, and in Section 4 we prove the
parabolic Harnack inequality.

2. Bounds for transition densities of the mixture. Let p®(z, x) be the transition
density of W, and p("‘)(t, x) the transition density of Y. Then

2 4 |x|?
p@ (. x) = @mny™/ exp(— 47) :

while it follows from [3] that there are positive constants C1, C» such that for all # > 0 and
X € Rd,

(1) Cimin(r~4% 1|x|747%) < p@ (1, x) < Comin(t~%, t]x|7979).

The transition density p(z, x) of X is given by

pt, x) = /d PP, x —y)p D, y)dy.
R
The purpose of this section is to obtain sharp bounds on p(¢, x). In order to do this, we will
need to compare p(z) (¢, x) and p(o‘)(t, X).

LEMMA 2.1. Lety > 0.
(i) There exists a positive constant ¢ > 0 such that for all x € R* and all t > 0
satisfying |x| < 1 < t, it holds that

2
14/ < 412 exp( - ﬁ) .
i

(i) Forallx € RY and allt € (0, 1), it holds that

2
4/ > td/zexp< - ﬁ) ,
yt

(iii) There exists a positive constant ¢ > 0 such that for allt > 0 and all |x| > 1, it
holds that

2
) 142 exp< — %) < ct|x| 747,
%

PROOF. We omit the easy proofs of (i) and (ii), and only give a proof of (iii).
For fixed x # 0, define f : (0, co) — (0, o) by
f@) =17 exp(=1x P/ (1) .
Then f(0+) = f(4o00) = 0. Further,

() = fOr2(=d/2+ Di + x*/y).
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This derivative is zero for
x|
d/2+y’
ositive for ¢ < 1y, and negative for ¢t > fg. Thus f attains its maximum value at 7y, and
p g
—d/2-1
x| ) / exp( @2+ 1)y)
d/2+ 1)y % |x |2
=((d/2+ Dy)"* exp(—=d/2 = 1) |x| 7% = c|x| 772,
It follows that for all t > 0
—d)2

) =

maXf=f(t0)=(

172 exp(—|x|?/(y1)) < tf(t) < telx| ™72 = etlx| x| < ct|x| 7
since |x| > 1. O

REMARK 2.2. Note that the proof of (iii) shows that for [x| < 1 there does not exist a
positive constant ¢ independent of x such that (2) holds. Clearly, the reverse inequality cannot
be true either.

Now we will establish upper bounds for p(z, x).
LEMMA 2.3. There exists a positive constant ¢ such that fort > |x|%,
p(t,x) < ep@t,x).

PROOF. Forally € RY, p(“)(t, y) < Cot=4/% Fort > |x|%, we have that p("‘)(t, x) >
Cit~9/%, Hence,

p(t, x) =/ PP, x —y)p @, y)dy
Rd

< Gy~ f PP x =)y = (C2f COPV @, x). O
R
LEMMA 2.4. There exists a positive constant ¢ such that fort > |x|?,
p(t,x) < cp(z) (t,x).
PROOF.

p(t,x)—/ PP, x —y)p @, y)dy

@
_ Pt x — y) @
=p(, X)/ (t, y)dy
p(z)([

— 2, x)/ exp(—(|x|2 — |x - y|2)>p(°‘)(t, y)dy
R4 4t

<p@ . x) /Rd exp(lx[*/(40) p@ (¢, y)dy

= p@(t. x) exp(|x[*/(40) < '/ pP (1, x). O
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LEMMA 2.5. Let pP(t,x) := (4mt)~4? exp{—|x|>/(161)}. There exists a positive
constant ¢ such that for all |x| < 1 and all t < |x|?,

p(t, x) < Cmax(pP(z, x), p®(t,x)).

PROOF.

pit,x) = / PPt x — ) p @1, y)dy
Rd

1/ 1/ 1/2 1/2 1/2
/y<'2" o <pyl<E Sy y=xl>lxl2 Jyl= L ly—xl<lx]/2

=hLh+h+h+1s.

(i) For|y| < t/%/2and t'/? < |x| < 1, it holds that 2|y| < /% < r1/2 < |x|. Hence
Ix — y| > |x|/2, and so exp{—|x — y|>/(41)} < exp{—|x|*/(161)}. Clearly, p@(t,y) <
Cot~4/% Therefore,

It < Co(dmt)™ 7 exp(—|x|*/(161))1 =/ / o

t
yl< -

=c1(dmt)" P exp(—|x|?/(161)) .
(i) For |y| < t'/2/2 we have that 2|y| < 1'/2 < |x|, and so again |[x — y| > |x]|/2.
Clearly, p("‘)(t, y) < C2t|y|_d_°‘. Therefore,

I < Ca(dm)~ 2 exp(—[x/(161)) / ty[~=*dy

d <pyi<tf
172
-
= c2 (40~ exp(—Ix*/(160)r f R
/e
2
= c3(4n )~ exp(—|x /(1601 (114~ — (1% 7%)
= c3(4mt) 2 exp(—|x?/(160) (1 — 1'%

< c3(dmr) "4 exp{—|x|?/(161)} .
(iii) Similarly as in (ii),

Iy < Ca(4n )2 exp(—|x[?/(161)) f Y tly| = dy

\y\z%, ly—x|>|x|/2
5C2(4m)*d/2exp(—|x|2/(16t))t/ o

lyl=5-
= ca(dm) ™ exp(—IxI?/ (1601 (/)™
< Cs(47‘[l‘)7d/2 exp(—|x|2/(16t))7

Iy~ “dy

since r17%/2 < 1 fort < 1.
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(iv) For |y — x| < |x|/2, we have |y| > |x|/2, and hence |y|~¢4~% < 24+e|x|~d—«,
Further, since 1 < |x|*> < |x|* for |x| < I, it holds that |x|~¢~% < (1/C}) p““ (¢, x). Thus

<G / o PO, x — yyrlydy
Iy[=5=, ly—x|<|x]/2

<cs / . PO, x — yyilx|4=%dy
lyl=5= ly—xI<|x|/2

< cet x| 77 / PP x =y < ep @, x).
R
From the estimates above it follows that

p(t,x) < csp@(t, x) + c7p @ (1, x) < comax(p@ (1, x), p@ (1, x)). O

LEMMA 2.6. There exists a positive constant ¢ such that for all t < |x|* and |x| > 1,
it holds that

pt,x) < ep®t, x).

PROOF.

p(t,x) =/ PP, x —y)p @@, y)dy
Rd

lx—yl=lx]/2 lx—y|>lx|/2,|y|=1/ lx=y|>|x|/2, |yl <t1/e

=h+Dhb+1.
(i) For |x — y| < |x|/2 we have |y| > |x|/2. Hence p@(z,y) < Catly|™™* <
C20F x| 79=% = ¢1pt|x| 747, Also, p@ (¢, x) > Cit]x|~¢~%. Therefore,
I < ciot]x| 7 / PP (t,x — y)dy
lx—y|<lx|/2
<ciot|x| 7Y < enp®@r, x).
(i) For |x — y| > |x|/2 we have exp{—|x — y|2/(4t)} < exp(—|x|2/(16t)). Also,

p@(r,y) < Cat|y|~@~%. Therefore,

I < Ca(4m) ™2 exp(—|x[?/(161)) HlyI == dy
Ix—yl=lx]/2,y|=1/e

< Ca(dm )™ exp(—|x|*/(161))t f ly|~4~*dy

ly|>t1/
< cip(dm) ™ exp(—|x|?/(160))t (1/*) ™
=ci13(dnt) ™ exp(—|x|?/(161)) < c1ap®@ (1, x),

where in the last inequality we used Lemma 2.1 (iii).
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(iii) For |x — y| > |x|/2 we have exp(—|x — y|?/(41)) < exp{—|x|%/(161)}. Also,
p@(t,y) < Cat~%/ Therefore,

I3 < Co(4mt) ™2 exp(—|x[*/(161)) 1=/ gy

|yl<tl/e

<c15@mn) " exp(=Ix1>/(160) < e16p (1, ) ,
where in the last inequality we used Lemma 2.1 (iii).
From the estimates above it follows that p(z, x) < c;7p @ (¢, x). O

REMARK 2.7. Suppose thatt < |x|¥ and |x| > R, where 0 < R < 1. Then p(z, x) <
cR*™2p@ (¢, x), where the constant ¢ does not depend on R. This can be proved by changing
the estimates for /> and I3, by using a modification of Lemma 2.1 (iii).

Next we establish lower bounds for p(z, x).
LEMMA 2.8. Let ﬁ(z) (t,x) = (471t)_d/2 exp(—|x|2/t). There exists a positive con-
stant ¢ such that for all t < |x|*,
p(t,x) > cpP@, x).

PROOF. For |y| < |x| we have that |y — x| < 2|x|, and hence exp(—|x — y|2/(4t)) >
exp(—|x|2/t). Therefore,

p(t, x) > / PP, x —y)p@t, y)dy
B(O.|x])

> (4rt) "% exp(—|x[*/1) p @, y)dy
B(0,]x])

= (4z0) ™ exp(—Ix|*/1) £ (1, 1) dy
B(0,]x])

= (dmt) P exp(—|x|*/1) P, uydu
B(O,t*l/“\x\)

> (4rt)~ Y exp(—|x|*/1) / PO, u)du
B(0,1)

= c1(dmt) " exp(—|x|*/1). O

LEMMA 2.9. There exists a positive constant ¢ such that for every x € R? and every
y € B(x, |x|/2), it holds that

P, y)
—— >c
Pt x)
PROOF. This result can be easily proved by looking at the following four cases. Case
It > |x|% ¢t > |y|% Case 2: t < |x|*,t < |y|% Case 3: t > |x|* t < |y|* and Case 4:
t < x|t > |y|¥ We omit the details. O
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LEMMA 2.10. There exists a positive constant ¢ such that for all t < |x|?,

pt,x) = cp ™, x).

PROOF.
p(t.x) = / PO )PPt x — y)dy
_ @ O, y) 2O x —
= p . / st x = dy

> c1p®(t, x) ,,(2) (t,x — y)dy
B(x,Ix|/2)

=c1p@(t, x) PP, y)dy
B(0,]x1/2)

= c1p(°‘)(t, x) p(z)(l, w)du
B(0,112|x]/2)

> c1p (1, x) PP, wydu = cp (1, x),
B(0,1/2)

where the third line follows from Lemma 2.9. O

LEMMA 2.11. There exists a positive constant ¢ such that forallt > 1 and all |x|* < t
we have

p(t,x) > cp @, x).

PROOF. For |x|% < t, p@(t,x) < Cot= /% If |y — x| < 1'%, then |y| < |x — y|
+ x| < 2V If |y| < 1%, then p@(r,y) = Cit~¥/« If 1'% < |y| < 2t'/%, then
p@O(t,y) = Cit]y|~4 % > C12747%1=4/%_ Therefore,

p(t,x) > / pPt, x —y)pt, y)dy
lx—y|<tl/e
zcy‘d/"‘/ PP, x — y)dy
|x—yl=<tl/«
=63t*d/°‘/ PP, y)dy = C3t*d/°‘/ p (1, u)du
ly|<tl/e ly|<t=1/21/a

> ¢34/ / PP, wydu = c4t™* > csp @1, x) . a
[y[=1

LEMMA 2.12. There exists a positive constant ¢ such that for all |x|* <t < 1 it holds
that

p(t,x) > cp(z)(t, X).

PROOF. If |y| < t1/% then p® (¢, y) > C1174/%. Also, |x — y| < |x| + |y| < 21/
implying exp(—|x —y[?/(41)) = exp(—41*/* /(41)) = exp(—1*/*~") = ™! since 17/*7! < 1
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fort < 1. Therefore,

pmx)z/‘ PP, x — y)p@ @, y)dy
Iyl<t!/e
> Cm e / PP, x —y)dy
lyl<t1/e

> C1t~ (4 r)~42e] / dy

|y|<tl/e
= c(dmt) "2 > co(dmt) ™% exp(—|x|?/(41))
=cep@(t, x). a

By collecting the results from previous lemmas, we obtain the lower and upper bounds
for the transition density p(¢, x). In order to briefly state the result, we define

PP, x), <t <x¢<1,
5(2) (@) 2
max t,x), t,x)), t<|x|<1,
a1t x) = | MEGD @0, pOC ) 1<
Pt x), x|*<r <1,
p @, x), t>1lor|x|>1,
and
pA(t,x), x> <t < |x|* <1,
() = | MO0, PO ), < xP <L,
=0 0y, x|*<r<1,
p@(t, x), t>1lor|x|>1.

THEOREM 2.13. There exists a positive constant C3 such that
C3'q1(t,x) < p(t,x) < C3q2(t, %).

3. Lower bounds for transition densities of the killed process. In this section we
will establish a lower bound for the transition density of the process X killed upon exiting a
ball of radius R. Let p(z, x, y) := p(t, y — x). We first need the following lemma.

LEMMA 3.1. There exists a constant C4 > 0 such that for every R > 0, every x € R?

and everyt > 0,
Cyt

3 P*(z <)< —"
3) (B(x,R)_)_Rz/\Ra
where tp(x gy = inf{s > 0; X; ¢ B(x, R)}.

This result for R € (0, 1] appears as Lemma 2.1 in [8]. By a slight modification of the
proof, the result follows for R > 1 as well.

Let R > 0, B = B(0, R), and let 7 denote the first exit time of X from B. Let X2
denote the process X killed upon exiting B. The transition density of X is given by

pB(t,x,y)=p,x,y) —rBt,x,y), x,yeB,
where
rB(t,x,y) = E[p(t — 18, Xep, V) Lis1p)] -
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LEMMA 3.2. There exist constants Cs > 0 and Cq € (0, 1/10) such that:
(i) ForeveryR >0, forallx,y € B(0,2R/3) andall0 < t < 1 satisfying |x —y|* <
t < C¢(R* A R%) it holds that

pB, x,y) = Cst™9/2.

(i) Forevery R > 1, forall x,y € B(0,2R/3) and all t > 1 satisfying |x — y|* <

t < CqRY it holds that
PPt x.y) = Cst .

(iii) Forevery R > 1, forall x,y € B(0,2R/3) and all t > 1 satisfying |x — y|* >t

andt < CeR“ it holds that
pP(t,x,y) = CstR™47.

PROOF. We first find an upper bound for 72 (¢, x, y). Suppose that 0 < R < 1. Note
that by combining Lemma 2.6 with Remark 2.7, if |y — z| > R/3 andt < |y — z|?, then
p(t,2,y) < c(R/3H*?p@(t,2,y) < cCa(R/3)* 1]z — y|77*. Let x, y € B(0,2R/3)
and choose t < RZ/IO. Then |X;; —y| > R/3andt < RZ/IO < |Xep — ylz, soon {t > tg}

p(t = Tp, Xoy, ) < cC2R/3* (1 — )| Xy — y|7/7¢
<cCa(R/3)**t(R/3)™ 4™ < yR™ 421
Note further that for x € B(0,2R/3) it holds that P*(zrp < t) < P*(tp,r/3) < 1) <
Cat/(R/3)? by Lemma 3.1. Therefore, for all x, y € B(0,2R/3) and all t < R2/10,

PP, x, y) =EX[p(t — 5, Xupy ¥) Lisp)]
<R 4HP(t > 1)
<9 1R 721 C4tR™% = cot> R4,

Suppose now that R > 1. If 1 > |y —z| > R/3 > 1/3,andt < |y — z|%, it holds
by Remark 2.7 that p(z, y,z) < c¢(1/3)*2p@(t,y,2). If | > |y —z| > R/3 > 1/3, and
t > |y —z|% then by Lemma 2.3, p(t, y, z) < cp®(t, v, 7). If |y — z| > 1, then the estimate
p(t,y,2) < cp®(t,y, z) follows from Theorem 2.13. Therefore, whenever |y — z| > R/3
it holds that for all # > 0, p(z, y,z) < cp@(t, y,2) < cCat|y — z| 7% < cCat(R/3)~%~ 4.
Letx,y € B(0,2R/3). Thenon {t > tp}

p(t — tp, Xvy, ¥) < cCat (R)3)™7% < c3R™47%.
Again by Lemma 3.1, P* (g < t) < P*(tp(x,r/3) <) < C4t/(R/3)“. It follows that

rP(t,x, y) =E*[p(t — 18, Xty ¥) L)
<3 R™TUPY(t > 1p)
<9c3R™ 7% C4t R = cyt? R4

(i) Suppose firstthat0 <t < land R € (0, 1]. Forallx, y € R? such that [x—yl <1,
we have by Theorem 2.13 that p(z, x, y) > csﬁ(z)(t, y—x). Therefore, for x, y € B(0,2R/3)
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and |x — y|? <t < R?/10 it follows that
- = c7t

p(t.x,y) > cs(@me)y~2em K/ 5 et y=d/2 —d/2,

It follows that for x, y € B(0,2R/3) and |x — y|?> <t < R%/10
PP, x,y)=pt,x,y) —rB(t, x,y)
> C7fd/2 _ 62t2R7d74
=C7t—d/2(1 _ C_Zt(d+4)/2R—d—4) > Ty-dp
c7 2

provided that 1 — (c3/c7)t@+*/2R=4=% > 1/2. This last condition is satisfied if

. 2/(d+4)
t< <—> R* = csR%.
2co
1. The same argument as above shows that for

Suppose now that 0 < # < 1 and R >
< RY%/10 it holds that p(¢, x,y) > c7t~4/%, and

x,y € B(0,2R/3) and |x — y|> < ¢

consequently
pB(tvxv }’) :p(tvxv y) - I’B(t,x, y)
> ept =412 _ oy A2
=C7t—d/2<1 _ C_Zt(d+4)/2R—d—2a> > Gy-dp
c7
provided that 1 — (c3/c7)t@+*/2R=d=22 - 1/2_ This last condition is satisfied if

2/(d+4)
‘< (2_) RAAH20/(@+) _ ) p2(d+20)/(d+4)
2

Note that o < 2(d + 2«)/(d + 4). Therefore, if 1 < coRY, then t < cgR2(@+2)/(d+4 apd
—d/2

consequently pB(z, x, y) > (c7/2)t

Choose c;1 = min(1/10, cg, cg9). Then we have proved that for every R > 0, for all
x,y € B(0,2R/3) and all 0 < ¢ < 1 satisfying |x — y|> < ¢ < c11(R? A R%) it holds that

PPt xy) = L2,

2
(i) Let R > 1 and x,y € B(0,2R/3). Suppose that [x — y|* < t. By Theorem
y|—d—a) > Clzl_d/a. By

213, p(t,x,y) = C;'p@(t,x,y) = C3'Comin(r=4/*, t|x
combining with the upper bound for r2(z, x, v), it follows that
pBa,x,y)=plt,x,y) =B, x,y)
= Clzl‘_d/a — C4l‘2R_d_20‘
= L.lzt—d/ol<1 C_4td/ot+2R—d—2a> > Cﬁt—d/oz
c12
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provided that 1 — (c4/c12)t4/*T2R=4=2¢ = 1/2. This last condition is satisfied if
a/(d+2a)
t < <C£> R% = c13R*.
2c4
(iii) LetR > landx,y € B(0,2R/3). Suppose that |[x — y|* > . Again by Theorem
213, p(t,x,y) = C3'p@@t,x,y) > C3'Crmin(r=4/* t]x — y|74%) = C;'Cat|x —
ylfd*“ > et R4, By combining with the upper bound for B, x, y), it follows that
PP x.y)=pt,x,y)—rP, x,y)
Z Cl4tR—d—Dl _ C4t2R—2a—d

C.
> Cl4tR_d_a(l — —4tR_a)
cl4

&
> ﬁtR*d*a
2

provided that 1 — (c4/c14)t R~ > 1/2. This is satisfied if

Cl4
t < —RY =c15R*.
2cy4

We finish the proof of the lemma by choosing C5 = min(cs5/2, c12/2, c14/2) and C¢ =
min(cy1, €13, €15)- 0

Let N = [2/C¢] where Cg is the constant from Lemma 3.2, and | -| denotes the smallest
integer function. The proof of the next result follows the proof of Theorem 2.7 in [5].

PROPOSITION 3.3. Let$ € (0, 1). There exists a constant C7 = C7(8) > 0 such that
forall0 < R < 2N/8)V/* allx,y € B(0, R/2) and all0 < t < R*> A R* it holds that

PE(tx.y) = G2/

PROOF. LetR < (2N/5)1/°‘, x,y € B(O,R/2) and ¢ < RZ A RY, Suppose first that
t < |x — y|? and define k = [4N|x — y|?>/(81)]. Then k > 3N /8 > 4/(Cs8), and therefore
t/k < (Ced1)/2 < (1/2)Ce8(R* A RY) < C¢(R* A R*). Moreover,

l/aqa
Ceé CeS| (2N Ced N
—G(RZARU)SL - Si_il’
4 4 1) 2 6

implying that#/k < 1. Forl =1,2,...,k —1]let
[
zl—x—i—%(y—x).

From k > 2N|x — y|?/(8¢) it follows that |x — y|? < 8kt/(2N). Therefore

Ix — vl 5 KN s [t
lz1 —z1-1] = <4z =,/==4/7-
k 2k 2N Y k
k lB s \/7
CNaNVE)

=1

Define

S =
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5 (1 5 1
— |- < ./—+/CsR? < C4R < —R,
V2N[_V2N 6 =%"=70

implying that foreveryl =1,2,...,k — 1,

s [t
B(zl,,/ﬁ\/;) C B(0,2R/3).

For i € B(z1, «/5/@N)/1/K) and ¢y € B(zi—1, VSJCNINITR), 1 =2,3, ...,k — 1, we
have that [} — &1 < & — 2l + |z — =1l + |21 — G—1] < 33/8/QN)Jt/k < J/t]k.

Therefore,

Note that

t
1o —q-1l* < Z = Ce(R* AR%),

implying by Lemma 3.2(i) that pB(t/k, ¢_1, ;) > Cs(t/k)~¢/%. Hence

pB(t,x,y>=/ // PB(éaxaCI)PB(%{LQ)“'PB(%vgkI,Y)dfl dey- - dg—
BJB B
z/.../SpB(i,x,41)p3(£,§1,42>'o'p3<£,ck1,y)d§1 dey---dgg—y
NG NN A\ 42\ K
2is(es() ) =(mon(sg) ) () )

3 Cs84/2|B(0, 1)]\* 24/2N4/2 xd/2p—d/2
- 24/2Nd/2 84/21B(0, 1)

0d/2 \yd /2 2d/2 Nd/2
>exp| — klog N/2g=d/2
Cs84/2|B(0, )| )} 84/2| B(0, 1)

292N2 NAN|x — y2\
> —1 1~
= exp( Og(csadﬂw(o, 1)|> 51 )

2
X —
> C17t7d/2 exp|l — @ .
c17t

Assume now that # > |x —y|? and define k = |[4N/§|. Then againk > 3N /8 > 4/(Ce8)
implying 7/k < Cgt < Ce(R> A R%) and t/k < 1. The same argument as above gives the
following estimate

dj2 k' ndj2prd/2
PPz, > (22 PIBO. DIN" 2PN i ape
- 2d/2pNd/2 5‘1/2|B(0, D]

(c55d/2|3(0, 1)|>2N 2d/2 /2

QN)/2=d/2

2d/2pNd/2 5d/2|B(0, D]
_v2
:clgt_d/z > Clgt_d/2 exp( — u) . O
c1gt

The claim follows by taking C7 = min(cy7, c1g).
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PROPOSITION 3.4. Let$ € (0,1). There exists a constant Cg = Cg(8) > 0 such that

forall R > 2N/8)V/*, all x,y € B(0, R/2) and all t satisfying SR® <t < R* it holds that
PPt x.y) = Car™ /.

PROOF. Let R > (2N/8)!/* and 8R* < t < R“. First note that SR* > 2N, implying
t > 2N. Define k = N. Then clearly t/k = t/N > 1. Also, since N > 1/Cg, we have that
t/k < Cgt < C¢R".

Suppose that u, v € B(0, R/2). If [u — v|¥ < t/k, then by Lemma 3.2(ii) it follows that
P —d/a
PRk, u,v) > Cs<z> > Cst— /e

If [u — v|* > t/k, then by Lemma 3.2(iii) it follows that pB(t/k, u, v) > Cs (t/k)R~4—2,
But since R < t, we have that R < (¢/8)!/%, implying

[\ (@) sl+d/a
pEt/k, u,v) ZCSE(E) =C5de/a=cl9fd/a-

Hence, for any u, v € B(0, R/2) it holds that pB(t/k, u,v) > c19t~4/% Define

Note that B(0, t'/%/k) c B(0, R/2) since t < R®. Hence

t
pB(t,x,y)=ff...f PB(E,X,§1)PB(£,§1,§2>'"PB<£,§k—l,}’>d§1d§2'"dé'k—l
BJB B
(! (! B!
Z/.../p z,x,gl p z,a,iz e p E,é'k—l,y dode - -dik—
S

o) ) ()Y (o))

— |B(0, 1)|k71Cllcgkdk(l/olfl)‘l’dt*d/ol — CZOt*d/O! ,

where ¢y depends on §. Choose Cg = ¢7p. O
COROLLARY 3.5. Leté € (0, 1). There exists a constant Cg = Co(8) > 0 such that
forall R > 0,all x,y € B(0, R/2) and all t € (§(R* A R%), R* A RY) it holds that

Co

B

pot,x,y) > =

PROOF. Suppose first that R < 1. By Proposition 3.3,
PB(I, x,y) > C7t_d/ze_|"_y‘2/(c7’) .

We use that [x — y|?>/t < 1/8 and t=4/> > R~ to obtain the estimate with ¢2; =
C7exp(—1/(C78)). If 1 < R < (2N/8)"/*, then again by Proposition 3.3,

PP, x,y) > C7,fd/2ef|xfy\2/<c7r> .
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Now we use the estimate

|x—y|2 RZ 1 /2N 2—a)/a
— < — <= =cx,
‘ SRY 5( 5 )

and r < RY < R, to obtain that
pB(t,x,y) = Cre™2/CTR™ = ¢3R7?.
Finally, let R > (2N /8)!/¢. Then by Proposition 3.4 it holds that
pE(t.x.y) = Cgt™/* > CyR™ .

The proof is finished by choosing C9 = min(c31, ¢22, Cg). O

4. Parabolic Harnack inequality. In this section we are going to prove the parabolic
Harnack inequality following closely the approach from [4]. Let us first introduce the space-
time process Z; = (Tp + s, X5). The law of the space-time process starting from (¢, x) €
[0, 00) x R will be denoted by P*-¥).

DEFINITION 4.1. Let (f,x) € [0, 00) X R and let r1,r2 > 0. We say that a nonneg-
ative function ¢ : [0, 00) X R4 — [0, 00) is parabolic in [t,t + r1] x B(x, rp) if for any
[s1,s2] C[t, 2 +r1) and B(y,r) C B(y,r) C B(x, rp) we have

q(s,2) = ESG(Zuy, ) non)) s (5,2) € ls1,52) X By, ),

where (s, 5,)x B(y,r) = inf{s ; Zs ¢ [51,52) x B(y,r)}.
Fort > 0,x € RY and R > 0, define

O@t,x,R)=1[t,t +(R* AR*)] x B(x, R).

For A C [0, 00) x R?, letop = inf{t >0; Z; € A}and A; = {y € RY; (s, y) € A}
The idea for the proof of the next result comes from [6].

LEMMA 4.2. Let$ € (0, 1]. There exists a constant C1yp = C10(8) > O such that for
allR > 0,any z € R, anyv € B(z, R/3)andany A C Q(0,z, R/2)N ([8(R% A RY), 00) X
RY),
|A]

POV, < 1) > Clo————— |
(oA <TR) = 10 RTRZ A RD)

where TR = T0(0,2,R)-
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PROOF. We are going to estimate the expected time that the space-time process Z
spends in A before exiting Q(0, z, R). Let X8& R denote the process X killed upon exit-
ing the ball B(z, R) and let pB®) be its transition density. Then

TR o
E(O'“)/ LA, Xs)ds=E(O'”)/ La(s, X2@R)ds
0 0
R2AR®
:/ POV (s, xBERY € A)ds
0

R2ARY
= / P (XPER e Ap)ds

R2AR™
/ / pP @R (s, v, y)dyds
RZARY) J Ay

R2ARY |A|
/ / —d ds = Cg— Rd
S(R2ARY)
where the inequality follows from Corollary 3.5 by using thats € (§(R* A R*), R A RY) and
v,y € B(z, R/2). On the other hand,

TR [e¢) TR
E(O’“)/ 14(s, Xs)dszf P(O’”)</ 14(s, X5)ds > u)du
0 0 0
R2ARY R
=/ P(O'“)(/ 1a(s, X5)ds > u>du
0 0
R2ARY R
5/ P(O’”)(/ 1a(s, X5)ds > O)du
0 0

<(R*AR*) POV (04 < 1p).
The last two displays prove the lemma. O
Define U (¢, x,r) = {t} x B(x,r).

LEMMA 4.3. Letd € (0, 1). There exists C11 = C11(8) > 0 such that for all R > 0,
anyz € R, (t,x) € Q(0,z, R/3), v € B(z, R/3),r < R/4andt > §(R* A RY),

(r/3)"+2

PO 6y x5 < To0,2.8) = Cii RAT2

PROOF. Note that
B(z,R
PO 0y < To0.21) =P (XN € B(x, 1/3)
:/ pPER @, v, y)dy = Co
B(x,r/3)

3d 3d+2
(r/d) ZCn(r/d)z 7
R Rd+

|B(x,r/3)]|
R4

=C
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which proves the corollary. Note that the first inequality above follows from Corollary 3.5,
because v, y € B(z, R/2) and t > 8(R> A R%). m]

LEMMA 4.4. There exists a constant Cia such that for any x € R, r > 0,y €
B(x, r/3) and any bounded non-negative function h on [0, 00) x R? that is supported in
[0, 00) x B(x,2r)¢,

(4) ECh(z,, X)) < CE®Y[h(z,, X1,

where T, = TQ(0,x,r)-

PROOF. A Lévy system (N, H) of the process X is given by N(x,dy) = cdy/
|x — y|9t® and H; = ¢ for some positive constant ¢. Thus the proof of the lemma is the
same as that of Lemma 4.9 in [4]. The fact that our process X has a continuous component
does not play any role since the function 4 is supported in [0, 0c0) x B(x, 2r)°. a

With these lemmas observed, the next theorem can be proved in a manner similar to that
in Proposition 4.3 in [4].

THEOREM 4.5. For every § € (0, 1/18) there exists a constant C13 = C13(5) > 0
such that for all R > 0, for every z € R% and every non-negative function q on [0, c0) x R?
that is parabolic and bounded on [0, 4(R* A R%)] x B(z, 2R),

sup q(t,y) <Ciz inf ¢(0,y).
(1,)€Q(8(R2ARY),z,R/3) YEB@&,R/3)

PROOF. Without loss of generality we may assume that
inf 0,y)=1/2.
yEB(z,R/3)q( ») /

Let v € B(z, R/3) be such that ¢(0, v) < 1. For any x € R? and ¢ > 0, consider o(t,x,r)
forr < R/4 and let 7, = 19 x,r). Suppose that C C Q‘S(t,x, r/3) := Q(t,x,r/3) N ([t +
S(r2 Ar%), 00) x RY) = [t +8(r> Ar®), t + (r/3)* A (r/3)%] x B(x, r/3). Then by Lemma
4.2,
IC]

PYY e <1,) > Clo———n—.
( C r) - lord(rz/\r“)

Note that there exists a constant cg such that cor? (r> Ar®) < |Q%(t, x, r/3)| < cal rd(r2 ard).
Hence, there exists a constant c; = ¢1(8) > 0 such that for all C C Q‘S(t, x, r/3) satisfying
|C|/1Q%(t, x,7/3)| > 2/3 we have

) P Yo < 1) > c1.
Define

cq 1
(6) n=3 and §=§A(C12U),

where C1 is the constant from Lemma 4.4.
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Suppose there is some point (¢, x) € Q((S(R2 A R%),z, R/3) such that ¢(¢, x) > K,
where K is a constant to be determined later. Define

<< 3 )1/(d+a) ( 3 >1/(d+2) 3.21/(@+2) )
C72 = max s s A o |
Cocloé C()C]()é (Cllg)l/(d-‘rZ)

where C1o and C1; are constants from Lemma 4.2 and Lemma 4.3 respectively. Choose

(7 r=cyRK Y+

Then an easy computation shows that

10°(0, x,7/3)] 3 rd+2 - 2.3d+2

RA(R2AR*) ~ Ci1oEK’~ RI2 ~ C11EK
Let U = {t} x B(x,r/3). Suppose that g > €K on U. Let Q = Q(0, z, R). Then by
Lemma 4.3

®)

Ci1(r/3)4+2

12 q0,v) = E®lq(Zoyre)] 2 EKPOV(oy < o) 2 €K —5—

which contradicts the choice of r in the second inequality in (8). Thus, there exists at least
one point in U at which ¢ takes a value less than £K.
We next claim that

©) E"O[q(t,, X.) : Xy, & B(x,2r)] < 1K |
where 7, = 19 x,r). If not, by Lemma 4.4, forall y € B(x, r/3),
qt,y)>E"q(t,, X+,) : X, ¢ B(x,2r)]
> CLE Il (t, Xo) © Xy, & B(x,2r)]
>Cp'nK > £K .
But this contradicts the already proven fact that there exists at least one point in U at which ¢

takes a value less than £ K. Therefore, (9) holds true.

Let A be any compact subset of

A:={(s,y) € Q°(t,x,7/3); q(s,y) = §K}.
Note that A C Q(0, z, R/2). By Lemma 4.2
1>q0,v) > E®V[g(Z,,): 04 <10] = EKPOV (04 < 19) > éKﬂ.

- A - ~ 7 RI(R2AR®)
By the first inequality in (8)

|A| - RY(R? A R%) Ul
1Q3(t, x,7/3)] — Cio|Q%(t, x,7/3)|EK ~ 3~
Since (10) holds for every compact subset A of A, it holds for A in place of A.

Let C := Q%(t, x,r/3) \ A. Thenby (10), |C|/|Q%(t, x,r/3)| = 2/3. Let

(10)

M = sup q(s,y).
(s,y)€Q(t,x,2r)
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Then
q(t,x) =E"[g(oc, Xop) : 0c < 7/]
+E"Ig(oc, Xoe) : & < 0c, Xq & B(x,2r)]
+E"Yq(oc, Xop) : T < 0c, Xy, € B(x,2r)].

The first term on the right is bounded by £ K P9 (o < 1,), the second term is according to
(9) bounded by K, and the third term is bounded by MP"*)(o¢ > 1,). Therefore,
K <q(t,x) <éKP"Y(oc < 1) +nK + MP"V(oc = 1,).
Note that by (5), P*¥) (o¢c < 1,) > c1. Hence by use of (6),
_p— Pty —n— _

K>l n—é&P (oc<rr)>1 n écl>1 2c1/3

K — PtX)(oc > 1,) - 1—1c - 1-c
where 8 = ¢1/6(1 — c1). Hence, there exists a point (1, x1) € Q(t, x,2r) C Q(O, zZ,R):
[0, 3(R2 A R*)] x B(z, R) such that ¢(t1,x1) > (1 + B)K =: K1. Notethat 0 < f; —t <
2r)2 A (2r)% and |x; — x| < 2r.

Iterate the above procedure to obtain a sequence of points {(#x, x)} in the following way.
Using above argument (with (#1, x1) and K instead of (¢, x) and K), there exists (#, x2) €
Q(t1, x1,2r1) such that g(f2, x2) > (1 + B)K; =: K;. Continue this procedure to obtain
a sequence of points {(t, xx)} such that (txy1, xk+1) € Ok, xk, 2ry) and g (tx+1, Xk+1) =
(14 BFIK; =: Kip1. Wehave that 0 < fy 1 — 1 < (2r)% A (2r)®, |Xke1 — x| < 274
Moreover, by (7),

=1+28,

e < RK; 9 < oy(1 4+ gy K@D g1/ R

Note that

D o <ok TVERRRY (1 4 gy @) =
k k

3 2n)? < Qeak VIR 3 (1 4 py A
k k

CZK—I/(d+2)R
1-(1 +’3)—1/(d+2) ’

(2C2K71/(d+2)R)2
1—(1+ Ig)—Z/(d+2) ’
(2C2K71/(d+2)R)a
1= (1 +p) 2@

> @)% < QoK TVEDRE S (14 p) Y@ =
k k

Therefore, we may choose K large enough so that (#, xi) € Q(O, z, R) for all k. This is a
contradiction because g (7, xx) > (1 + ,B)kK goes to infinity as k — oo. O
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of Theorem 4.5. We also thank Z.-Q. Chen for helpful discussion leading to Lemma 2.8.
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