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PARABOLIC HIGGS BUNDLES AND TEICHMÜLLER SPACES

FOR PUNCTURED SURFACES

INDRANIL BISWAS, PABLO ARÉS-GASTESI, AND SURESH GOVINDARAJAN

Abstract. In this paper we study the relation between parabolic Higgs vector
bundles and irreducible representations of the fundamental group of punctured
Riemann surfaces established by Simpson. We generalize a result of Hitchin,
identifying those parabolic Higgs bundles that correspond to Fuchsian repre-
sentations. We also study the Higgs bundles that give representations whose
image is contained, after conjugation, in SL(k, R). We compute the real di-
mension of one of the components of this space of representations, which in
the absence of punctures is the generalized Teichmüller space introduced by
Hitchin, and which in the case of k = 2 is the usual Teichmüller space of the
punctured surface.

1. Introduction

In the well-known paper [3], Hitchin introduced Higgs bundles, and established
a one-to-one correspondence between equivalence classes of irreducible GL(2,C)
representations of the fundamental group of a compact Riemann surface and iso-
morphism classes of rank two stable Higgs of degree zero. In [8], Simpson defined
parabolic Higgs bundles, which generalized Hitchin’s correspondence to the case of
punctured Riemann surfaces (see also [7]). Here, by a punctured Riemann surface
we mean the complement of finitely many points in a compact surface. More pre-
cisely, Simpson identified what he calls filtered local systems with parabolic Higgs
bundles.

In [4], Hitchin identified the Higgs bundles corresponding to the Fuchsian repre-
sentations. Our main aim here is to generalize his results to the case of punctured
Riemann surfaces.

Before giving more details, we describe the result of Hitchin on Fuchsian repre-
sentations. Let X be a compact Riemann surface of genus g ≥ 2, and let L be a
line bundle on X such that L2 = KX , that is L is a square root of the canonical
bundle of X . Define

E := L∗ ⊕ L

which is a rank 2 vector bundle on X . For a ∈ H0(X,K2), let

θ(a) :=

(
0 1
a 0

)
∈ H0

(
X,End(E)⊗K

)
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be the Higgs field. Hitchin proved that the conjugacy classes of Fuchsian represen-
tations of π1(X) (homomorphisms of π1(X) into PSL(2,R) such that the quotient
of the action on the upper half plane is a compact Riemann surface of genus g)
correspond to the Higgs bundles of the form (E, θ(a)) defined above. Moreover, the
Higgs bundle (E, θ(0)) corresponds to the Fuchsian representation for the Riemann
surface X itself.

Consider now a punctured Riemann surface X = X̄ − {p1, . . . , pn}, where X̄ is
a compact surface of genus g, and p1, . . . , pn are n > 0 distinct points of X̄. Let
D denote the divisor given by these points, i.e. D = {p1, . . . , pn}. We will further
assume that 2g− 2 + n > 0, which is equivalent to the condition that the universal
covering space of X is (conformally equivalent to) the upper half plane. Consider
the vector bundle

E := (L⊗OX̄(D))∗ ⊕ L

and give parabolic weight 1/2 to the fiber Epi , 1 ≤ i ≤ n. (The line bundle L, as
before, satisfies L2 = KX̄ .) For any a ∈ H0(X̄,K2

X̄
⊗OX̄(D)) let

θ(a) :=

(
0 1
a 0

)
∈ H0

(
X̄, End(E)⊗KX̄ ⊗OX̄(D)

)
be the parabolic Higgs field on the parabolic bundle E.

We prove that under the identification between filtered local systems and par-
abolic Higgs bundles, Fuchsian representations of n-punctured Riemann surfaces
are in one-one correspondence with parabolic Higgs bundles of the type (E, θ(a))
defined above. Moreover, the parabolic Higgs bundle (E, θ(0)) corresponds to the
Fuchsian representation of the punctured surface X itself. Thus this is a direct gen-
eralization of the result of Hitchin on Fuchsian representations of compact Riemann
surfaces to the punctured case.

In section 3, we generalize the above results to the case of representations of
the fundamental group of the surface X into PSL(k,R), for k > 2. More precisely,
we consider a parabolic bundle Wk, obtained by tensoring the (k− 1)th symmetric
product of the vector bundle E defined above with an appropriate power of OX̄(D).
The Higgs fields we consider are generalizations of the 2-dimensional case, namely
they are of the form

θ(a2, . . . , ak−1) :=


0 1 · · · 0

0 0 1
...

... 1
ak · · · a2 0

 ,

where aj is a section of the line bundle Kj ⊗ OX̄((j − 1)D). As in section 2,
we have that the pair (Wk, θ(a2, . . . , ak)) is a stable parabolic Higgs bundle of
parabolic degree 0. It is not difficult to see that the parabolic dual of Wk is naturally
isomorphic to the parabolic bundle Wk itself. Moreover, the identification between
Wk and its parabolic dual takes θ(a2, . . . , ak)) to itself. This implies that the
holonomy of the flat connections corresponding to these parabolic Higgs bundles
are contained in a split real form of SL(k,C), which is isomorphic to SL(k,R).
We prove that one particular component of the space of representations of π1(X)
into SL(k,R), with fixed conjugacy class of monodromy around the punctures, has
real dimension equal to 2(k2 − 1)(g − 1) + k(k − 1)n. Observe that for k = 2,
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this dimension is 2(3g − 3 + n), which is precisely the real dimension of T n
g , the

Teichmüller space of compact surfaces of genus g with n punctures. It is therefore
natural, following [4], to call the above component the Teichmüller component of
the corresponding space of representations. Further study of this space is perhaps
worthwhile.

2. Higgs bundles for Fuchsian representations

Let X̄ be a compact Riemann surface of genus g, and let

D := {p1, p2, . . . , pn}
be n distinct points on X̄. Define X := X̄−D to be the punctured Riemann surface
given by the complement of the divisor D. We will assume that 2g − 2 + n > 0,
that is, the surface X supports a metric of constant curvature (−4).

The degree of the holomorphic cotangent bundle K, of X̄ is 2g − 2. Therefore,
there is a line bundle L on X̄ such that L2 = K. Fix such a line bundle L. Note
that any two of the 4g possible choices of L differ by a line bundle of order 2.

Using L we will construct a parabolic Higgs bundle on X̄, as follows. Let ξ =
OX̄(D) denote the line bundle on X̄ given by the divisor D. Define

E := (L ⊗ ξ)∗ ⊕ L(2.1)

to be the rank 2 vector bundle on X̄. To define a parabolic structure on E (we will
follow the definition of parabolic Higgs bundle given in [8]), on each point pi ∈ D,
1 ≤ i ≤ n, we consider the trivial flag

Epi ⊃ 0,

and give parabolic weight 1/2 to Epi . This gives a parabolic structure on E.
Note that

Hom(L,L∗ ⊗ ξ∗)⊗K ⊗ ξ = O ⊂ End(E)⊗K ⊗ ξ.(2.2)

Let 1 denote the section of O given by the constant function 1. So from (2.2) we
have

θ :=

(
0 1
0 0

)
∈ H0

(
X̄, End(E)⊗K ⊗ ξ

)
.(2.3)

Lemma 2.1. The parabolic Higgs bundle (E, θ) is a parabolic stable Higgs bundle
of parabolic degree zero.

Proof. From the definition of parabolic degree (see [6, definition 1.11] or [8]) we
immediately conclude that the parabolic degree of E is zero.

To see that (E, θ) is stable, first note that there is only one subbundle of E
which is invariant under θ, namely the summand (L ⊗ ξ)∗ in (2.1). (A subbundle
F ⊂ E is called invariant under θ if θ(F ) ⊂ F ⊗K ⊗ ξ.) The degree of (L⊗ ξ)∗ is
1− g − n. So the parabolic degree of (L⊗ ξ)∗, for the induced parabolic structure,
is 1− g − n/2.

But, from our assumption, namely that 2g− 2+n > 0, we have 1− g−n/2 < 0.
So (E, θ) is parabolic stable.

From the proof of Lemma 2.1 it follows that (E, θ) constructed above is parabolic
stable if and only if 2g− 2 +n > 0. We will show later that this corresponds to the
fact that X admits a complete metric of constant negative curvature if and only if
2g − 2 + n > 0.
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From the main theorem of [8, pg. 755] we know that there is a tame harmonic
metric on the vector bundle E. (See the Synopsis of that paper for the definition
of tame harmonic metric.)

It is well-known that there is a unique complete Kähler metric on X , known as
the Poincaré metric, such that its curvature is (−4).

Both the line bundles L and (L⊗ ξ)∗ are equipped with metrics induced by the
tame harmonic metric on E. So

Hom(L, (L⊗ ξ)∗) = L−2 ⊗ ξ∗ = TX̄ ⊗ ξ∗

is equipped with an induced metric. The restriction to X of the line bundle ξ, and
hence ξ∗, on X̄ has a canonical trivialization. Therefore we have a hermitian metric
on TX the tangent bundle of X . We will denote this hermitian metric on TX by H .
Note that H is singular at D, i.e. it does not induce a hermitian metric on TX̄ .

Lemma 2.2. The hermitian metric H on the holomorphic tangent bundle on X
obtained above is the Poincaré metric.

Proof. We recall the Hermitian-Yang-Mills equation which gives the harmonic met-
ric on E [8]. This equation was first introduced in [3].

Let ∇ denote the holomorphic hermitian connection on the restriction of E to X
for the harmonic metric. Then the Hermitian-Yang-Mills equation of the curvature
of ∇ is the following:

K(∇) := ∇2 = − [θ, θ∗].(2.4)

If the decomposition (2.1) is orthogonal with respect to the metric, then [θ, θ∗] is
a 2-form with values in the diagonal endomorphisms of E (diagonal for the decom-
position (2.1)). Using this, the equation (2.4) reduces to the following equation on
X

FH = −2H̄,(2.5)

where H is a hermitian metric on TX and H̄ is the (1, 1)-form on X given by H ,
i.e. the Kähler 2-form for the metric H .

A metric H ′ on TX induces a metric on L. Since the line bundle ξ has a natural
trivialization over X , the metric H ′ also induces a metric on (L⊗ξ)∗, and therefore
also on E. If H ′ satisfies the equation (2.5) then the metric on E obtained this way
satisfies (2.4). Now from the uniqueness of the solution of (2.4) ([8]) we have that
any such metric on E is obtained from the solution of (2.5) in the above fashion.

From the computation in Example (1.5) of [3, pg. 66], we conclude that the
Kähler metric H on X has Gaussian curvature (−4).

So in order to complete the proof of the lemma we must show that the Kähler
metric on X is complete.

Recall the asymptotic behavior of the harmonic metric near the punctures given
in Section 7 of [8]. First of all, observe that the fiber of K ⊗ ξ at any pi ∈ D is
canonically isomorphic to C. So the fiber (End(E)⊗K⊗ξ)pi is actually End(Epi).
The evaluation of the section θ at pi as an element of End(Epi) is defined to be the
residue of θ at pi. Thus for the Higgs field θ, the residue at each pi is

N :=

(
0 1
0 0

)
.

In [8, pg. 755], Simpson studies parabolic Higgs bundles with residue N as above.
Consider the displayed equation on page 758 of [8], which describes the asymptotic
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behavior of the corresponding harmonic metric. Using the fact that the parabolic
weight of Epi is 1/2 we conclude that for the metric on L induced by the tame
harmonic metric on E, both ai and ni in the equation on page 758 of [8] are 1/2.
(We also use the fact that, in the notation of [8, pg. 755], L ⊂ W1 and L is not
contained in W0.) In other words, in a suitable trivialization of L on an open set
containing a puncture pi ∈ D, and with holomorphic coordinate z around pi, the
hermitian metric on L obtained by restricting the harmonic metric on E is

r1/2|log(r)|1/2,
where r = |z|.

Similarly, for (L ⊗ ξ)∗, the ai and ni in the equation [8, pg. 758] are 1/2 and
−1/2 respectively.

So the metric on Hom(L, (L⊗ ξ)∗) is (log|(r)|)−1. Recall the earlier remark that
ξ∗ has a natural trivialization on X . The section of ξ∗ on X has a pole of order
1 at the points of D, when it is considered as a meromorphic section of ξ∗ on X̄.
This implies that the hermitian metric on T = L−2 is

r−1|log(r)|−1.(2.6)

But this is the expression of the Poincaré metric of the punctured disk in C. Thus,
from the completeness of the Poincaré metric we conclude that the Kähler metric
on X induced by H is indeed complete. This completes the proof of the lemma.

From the decomposition (2.1) it follows that

Hom(L∗ ⊗ ξ∗, L)⊗K ⊗ ξ = K2 ⊗ ξ2 ⊂ End(E)⊗K ⊗ ξ.(2.7)

Note that the line bundle ξ has a natural section given by the constant function 1,
which we will denote by 1ξ. We may embed H0(X̄,K2⊗ ξ) into H0(X̄,K2⊗ ξ2) by
the homomorphism s 7−→ s⊗ 1ξ. So using (2.7) we have a natural homomorphism

ρ : H0(X̄,K2 ⊗ ξ) −→ H0(X̄, End(E)⊗K ⊗ ξ).(2.8)

Note that the image of ρ is contained in the image of the inclusion

H0(X̄, End(E)⊗K) −→ H0(X̄, End(E)⊗K ⊗ ξ).

With a slight abuse of notation, for any a ∈ H0(X̄,K2 ⊗ ξ), the corresponding
element in H0(X̄, End(E)⊗K) will also be denoted by ρ(a).

The following theorem is a generalization of theorem (11.2) of [3] to the case of
punctured Riemann surfaces.

Theorem 2.3. For any a ∈ H0(X̄,K2 ⊗ ξ), the Higgs structure

θa := θ + ρ(a) =

(
0 1
0 0

)
+ ρ(a)

on the parabolic bundles E (defined in (2.1)) makes (E, θa) a parabolic stable Higgs
bundle of parabolic degree zero.

Let Ha denote the harmonic metric (given by the main theorem of [8]) on the
restriction of E to X, and let h denote the Kähler metric on X induced by the tame
harmonic metric Ha as in Lemma 2.2. Then the following holds :

1. The section of the 2nd symmetric power of the complex tangent bundle

ha := a+ h+ ā+ aā/h ∈ Ω0(X,S2(T ∗R ⊗ C))

is a Riemannian metric on X.
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2. The metric ha is a complete Riemannian metric of constant Gaussian curva-
ture (−4). The Riemann surface structure on X given by the metric ha is a
Riemann surface with punctures, i.e. there are no holes. (A Riemann surface
with a hole is a complement of a disk in a compact Riemann surface.)

3. Associating to any a ∈ H0(X̄,K2 ⊗ ξ) the complex structure on the C∞

surface X given by the metric ha, the map obtained from H0(X̄,K2 ⊗ ξ) to
the Teichmüller space T n

g of surfaces of genus g and n punctures, is actually
a bijection.

Proof. To prove that (E, θa) is stable we use a trick of [4]. For µ > 0, define an
automorphism of E by

T :=

(
1 0
0 µ

)
.

The parabolic Higgs bundle (E, θa) is isomorphic to (E, T−1 ◦ θa ◦ T ), and hence
(E, T−1 ◦θa ◦T ) is parabolic stable if and only if (E, θa) is so. Since µ 6= 0, we have
(E, T−1 ◦ θa ◦ T ) is parabolic stable if and only if (E, 1

µT
−1 ◦ θa ◦ T ) is parabolic

stable. Now

1

µ
T−1 ◦ θa ◦ T =

(
0 1
0 0

)
+ ρ(a)/µ = θa/µ.

But from the openness of the stability condition we have that, since (E, θ) is stable
[Lemma 2.1], there is a non-empty open set U in H0(X̄,K2 ⊗ ξ) containing the
origin such that for any a ∈ U , the parabolic Higgs bundle (E, θa) is parabolic
stable. Taking µ to be sufficiently large so that θa/µ ∈ U , we conclude that any
(E, θa) is parabolic stable.

The vector bundle E is equipped with the harmonic metric Ha, and K has a
metric induced by ha. Using these metrics we construct a hermitian metric on
End(E) ⊗K. Since ρ(a) ∈ H0(X̄, End(E) ⊗K), we may take its pointwise norm
with respect to this metric.

As the first step to prove the statement (1) we will calculate the behavior of
||ρ(a)|| near the punctures. Since ρ(a) ∈ H0(X̄, End(E)⊗K), we have

residue (θa) = residue (θ) = N.

So the two hermitian metricsH0 (corresponding to a = 0) andHa on E are mutually
bounded, i.e. C1.H0 ≤ Ha ≤ C2.H0 for some constants C1 and C2. (Recall that
the metric in Lemma 2.2 was induced by H0.) From this it is easy to check that
around any puncture pi, the norm ||ρ(a)|| is bounded by r|log(r)|3/2. This implies
that ||ρ(a)|| converges to zero as we approach a puncture.

Arguing as in (11.2) of [3], if ha is not a metric then

1 − ||ρ(a)|| ≤ 0

at some point x ∈ X . Since ||ρ(a)|| converges to zero as we approach a puncture,
the infimum of the function 1 − ||ρ(a)|| on X must be attained somewhere, say at
x0 ∈ X .

Let ∆ denote the Laplacian operator acting on smooth functions on X . Since
the operator L := −∆ − 4||ρ(a)||2 is uniformly elliptic on X , we may apply [5,
Section VI.3., Proposition 3.3] for the operator L and the point x0. We conclude
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that either 1 − ||ρ(a)|| > 0 or 1 − ||ρ(a)|| is a constant function. This proves that
ha is a Riemannian metric on X .

From the computation in the proof of Theorem (11.3)(ii) of [3, pg. 120], we
conclude that ha is a metric of curvature (−4).

To complete the proof of the statement (2) we must show that ha is complete and
it has finite volume. (If the volume of the Poincaré metric on a Riemann surface
is finite then the Riemann surface is a complement of finite number of points in
a compact Riemann surface. In particular, the Riemann surface can not have any
holes.)

The above established fact that the metrics H0 and Ha on E are mutually
bounded, together with Lemma 2.2 imply that the Riemannian metric ha and the
Poincaré metric on X are mutually bounded. Since the Poincaré metric is complete
and of finite volume, the same must hold for ha.

To prove the statement (3) we have to show that the map from the vector space
H0(X̄,K2 ⊗ ξ) to the Teichmüller space T n

g obtained in (2) is surjective. This will
follow from Section 3 where we will prove that the image is both open and closed,
and hence it must be surjective as T n

g is connected.
However we may also use the argument in [3, Theorem (11.2)(iii)] to prove state-

ment (3). Let h0 denote the Poincaré metric on X . Indeed, to make the argument
work all we need to show is the following generalization of the Eells-Sampson the-
orem to punctured Riemann surfaces: given a complete Riemannian metric h of
constant curvature (−4) and finite volume on the C∞ surface X , there is a unique
diffeomorphism f , of X homotopic to the identity map, such that f is a harmonic
map from (X,h0) to (X,h). This follows from the generalization of the theorem of
Corlette, [2], to the non-compact case as mentioned in [8, pg. 754].

Let (V,∇) be the flat rank two vector bundle given by the Fuchsian represen-
tation for the Riemann surface (X, g). Let H be the harmonic metric on V given
by the main theorem of [8] (pg. 755) for the flat bundle (V,∇) on the Riemann
surface (X,h0). In other words, H gives a section, denoted by s, of the associated
fiber bundle with fiber SL(2,R)/SO(2) = H, where H is the upper half plane. This
section s gives the harmonic map f mentioned above. This completes the proof of
the theorem.

The vector space H0(X̄,K2 ⊗ ξ) has a natural complex structure. So does the
Teichmüller space T n

g . The identification of H0(X̄,K2 ⊗ ξ) with T n
g given by

Theorem 2.11 does not preserve the complex structures. Indeed, T n
g is known to be

biholomorphic to a bounded domain in C3g−3+n. Since any bounded holomorphic
function on an affine space must be constant, the identification in Theorem 2.11 is
never holomorphic.

Remark. The parabolic dual of the parabolic bundle E is E∗ ⊗ ξ∗ with trivial
parabolic flag and parabolic weight 1/2 at the parabolic points pi, 1 ≤ i ≤ n.
So the parabolic dual of E is E itself. Any parabolic Higgs bundle (E, θa) (as in
Theorem 2.3) is naturally isomorphic to the parabolic Higgs bundle (E∗, θ∗a), where
E∗ is the parabolic dual of E. This implies that the holonomy of the flat connection
on X corresponding to the Higgs bundle (E, θa) is contained (after conjugation)
in SL(2,R). This of course is also implied by Theorem 2.3 since the image of a
Fuchsian representation is contained in PSL(2,R).
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3. Higgs bundles for SL(k,R) representations

Recall the vector bundle E of section 2, which was defined to be E = (L⊗ξ)∗⊕L,
where L is a (fixed) square root of the canonical bundle K, and ξ = OX̄(D). The
(k−1)th symmetric product of C2 produces an embedding of SL(2,R) into SL(k,R),
via action on homogeneous polynomials of degree k. Let Vk denote the vector bundle
given by the (k − 1)th symmetric product of E, that is Vk := Sk−1(E). At each
point pi ∈ D we have the trivial flag (Vk)pi ⊃ 0, 1 ≤ pi ≤ n, with weight equal to
k−1
2 . In order to construct a parabolic bundle, we need to reduce the weight to a

number in the interval [0, 1). We do this by tensoring Vk with ξm(k), where m(k)
is equal to k

2 − 1, if k is even, or k−1
2 , if k is odd. We will denote the vector bundle

Vk ⊗ ξm(k) by Wk. At each point pi ∈ D, we take the trivial flag (Wk)pi ⊃ 0 of
Wk, with weight equal to 1

2 , if k is even, or 0, if k is odd. (This parabolic bundle is
the (k − 1)th parabolic symmetric power of the parabolic bundle E; see [1] for the
general definition of parabolic symmetric power.)

Considering 1 as the section of O given by the constant function 1, we can define

θ(0, . . . , 0) :=


0 1 · · · 0

0 0 1
...

... 1
0 0 · · · 0

 ,(3.1)

which represents an element of H0
(
X̄, End(W )⊗K ⊗ ξ).

Lemma 3.1. The pair (Wk, θ(0, . . . , 0)) is a parabolic stable Higgs bundle of par-
abolic degree zero.

Proof. If k is even, we have that the parabolic degree of Wk is

degree of Wk + parabolic weight of Wk = −kn
2

+
kn

2
= 0.

In the case of odd k, it is easy to see that the degree (as a vector bundle) of Wk

is 0, and since the weight is equal to 0, we get that the parabolic degree of Wk is
zero.

The invariant proper subbundles of 3.1 are of the form

L1−k ⊗ ξ−k/2 ⊕ L3−k ⊗ ξ1−k/2 ⊕ . . .⊕ L2m+1−k ⊗ ξm−k/2

(0 ≤ m ≤ k − 1) if k is even; or

L1−k ⊗ ξ(1−k)/2 ⊕ L3−k ⊗ ξ1+(1−k)/2 ⊕ . . .⊕ L2m+1−k ⊗ ξm+(1−k)/2

(0 ≤ m ≤ k− 1) if k is odd. It is not difficult to see that all these subbundles have
negative parabolic degree.

Using the natural section 1ξ of ξ, we embed the spaces H0(X̄,Kj ⊗ ξj−1),
j = 2, . . . , k, into H0(X̄, End(Wk) ⊗ K ⊗ ξ). By an abuse of notation, if aj ∈
H0(X̄,Kj ⊗ ξj−1), we understand the above embedding as producing an element

θ(a2, . . . , ak−1) :=


0 1 · · · 0

0 0 1
...

... 1
ak · · · a2 0

(3.2)
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of H0(X̄, End(Wk) ⊗ K ⊗ ξ). Now, by the arguments of Hitchin, based on the
openness of the stability of parabolic Higgs bundles, we get that (Wk, θ(a2, . . . , ak))
is a stable parabolic Higgs bundle of parabolic degree 0. Using these special Higgs
bundles, one can obtain some information about the space of representations of the
fundamental group of X into SL(k,R). More precisely, our result is as follows.

Proposition 3.2. The space of representations of the fundamental group of X in
SL(k,R), with fixed conjugacy class of monodromy around the punctures, has a
component of real dimension 2(k2 − 1)(g − 1) + k(k − 1)n.

Proof. By the work of Simpson [8] and Balaji Srinivasan [9], we have a one-to-one
continuous correspondence between the space M of stable parabolic Higgs bundles
of degree zero, and the space of representations of the fundamental group of X into
SL(k,C). Consider the parabolic dual of Wk, which is constructed as follows. First,
take the dual vector bundle W ∗

k of Wk. If k is odd, since the weight of the flag
is 0, we have that the parabolic dual of Wk is W ∗

k , with trivial flag at the points
pi ∈ D, and weight equal to zero. If k is even, we have a weight of − 1

2 associated
to the trivial flag of W ∗

k . Tensor W ∗
k with ξ to obtain that the parabolic dual of

Wk is W ∗
k ⊗ ξ. So we always have that the parabolic dual of the parabolic bundle

Wk is Wk itself. This implies that the image of the fundamental group under the
representation induced by (Wk, θ) lies in SL(k,R).

Since aj is a section of Kj ⊗ ξj−1, we have that the residue of the Higgs field is
invariant, i.e.

residue (θ(a2, . . . , ak−1)) = residue (θ(0, . . . , 0)) =


0 1 · · · 0

0 0 1
...

... 1
0 0 · · · 0

 .

This implies that in the above representation, the conjugacy class of the elements
corresponding to small loops around the punctures of X is invariant. By the em-
bedding of SL(2,R) into SL(k,R), we have that this is the class of the element

U =


1 1 · · · 0

0 1 1
...

... 1
0 0 · · · 1

 .(3.3)

Using a bases, {p1, . . . , pk−1}, for the set of invariant polynomials of the Lie
algebra of SL(k,C), we can construct a continuous mapping

p : M →
k⊕

j=2

H0(X̄,Kj ⊗ ξj),

given by assigning to the Higgs field (Wk,Φ) the elements (p1(Φ), . . . , pk−1(Φ)).
The Higgs fields of the form (3.2) produce a section s of p, defined over the

closed subspace
⊕k

j=2H
0(X̄,Kj ⊗ ξj−1). Therefore, we have that the image of

s is closed. One can easily compute that the dimension (over R) of the space of
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sections
⊕k

j=2 H
0(X̄,Kj ⊗ ξj−1) is equal to

k∑
j=2

2(2j − 1)(g − 1) + 2

k∑
j=2

(j − 1)n = 2(k2 − 1)(g − 1) + k(k − 1)n.

On the other hand, the dimension of the space of representations of the funda-
mental group of X into SL(k,R), with the condition that the monodromy around
the punctures lies in the above conjugacy class, can be computed as follows. The
fundamental group of X can be identified with a group of Möbius transformations
(or elements of SL(2,R)), generated by elements {c1, d1, . . . , cg, dg, e1, . . . , en}, and
with one relation of the form

∏g
j=1[cj , dj ]

∏n
j=1 ej = id, where [c, d] = cdc−1d−1

denotes the commutator of the elements c and d. In classical terms, the transfor-
mations cj’s and dj ’s are hyperbolic, that is conjugate to dilatation, while the ej ’s
are parabolic, or conjugate to translations. In terms of loops on X , we have that
the cj ’s and dj ’s can be identified with paths around the handles of X , while the
ej’s are simple loops around the punctures. The image of the elements cj and dj
depends on dim(SL(k,R))=k2 − 1 parameters. We will now compute the number
of parameters of the image of ej . Any ej can be written as ej = AUA−1, where
U is as in (3.3), and A ∈ SL(k,R)/I, with I being the commutator subgroup for
U . One can check that the dimension of I is k − 1. Thus the required number of
parameters for ej is (k2 − 1)− (k − 1) = k2 − k. Therefore, we have that the real

dimensions of
⊕k

j=2H
0(X̄,Kj ⊗ ξj−1) and the space of representations of π1(X),

with fixed conjugacy class for the monodromy elements around the punctures, are
equal. Standard arguments using the invariance of domain theorem complete the
proof.
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