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PARABOLIC TRANSMISSION PROBLEMS ACROSS
IRREGULAR LAYERS

MARIA ROSARIA LANCIA

We study second order transmission problems across either a fractal
surface or across the corresponding pre-fractal surface. Existence unique-
ness and regularity results for the strict solution in both cases are proved.
The asymptotic behaviour of the solutions of the approximating problems
is also investigated.

1. Introduction

There is a huge literature on transmission problems across interfaces which are
usually assumed to be regular or Lipschitz surfaces; a good reference is the book
of Dautray and Lions [4]. Here, we focus our attention on the so-called second
order transmission problems which, in electrostatics and magnetostatics, model
the heat transfer through an infinitely conductive layer (in this regard see the
paper by Pham Huy and Sanchez Palencia [31] and the references listed in).
It’s to be pointed out that also in “hydraulic fracturing” – a technique used in
order to increase the flow of oil from a reservoir into a producing oil well –
the model problem is a transmission problem (see [2]). In all these cases the
model problem is a parabolic boundary value problem involving a transmission
condition on the layer of order two.
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In many applications, such as boundary value problems of absorption or
irrigation type (see [3]), the surface effects are enhanced with respect to the
surrounding volume; in this context, fractal boundaries and fractal layers may
provide new interesting settings as we describe in the present paper.

As far as we know, the rigorous study of transmission problems–in the el-
liptic case– across irregular layers of fractal type is recent and has been treated
firstly in [16], [17] and [27].

In this paper we describe a constructive approach to second order fractal
transmission problems for parabolic operators ( details and proofs are contained
in a joint paper with P. Vernole [19]). In these problems the fractal layer S
of Koch type is obtained in the limit of polyhedral (prefractal) surfaces Sh ,by
self-similar iteration at small scales. From an analytic point of view, the main
problem to be studied is the convergence of the solutions obtained with the
prefractal layers when the geometry becomes fractal. The main difficulty in
this study is the jump of the geometric dimension of the layer, which is two for
all the prefractal approximations and intermediate between two and three for
the limit layer. In other words, while the approximating layers have finite two-
dimensional area, the limit layer is non rectifiable with infinite area. We first
consider the elliptic case. We describe the variational approach consisting in
proving the convergence of suitable energy forms in the Mosco’s sense and we
also describe some extensions to the heat equation by relying on the convergence
of the related semigroups. In order to obtain these convergence properties, we
have to introduce some renormalization factors.

More precisely, we consider a ”cylindrical” fractal surface S of the type
S = F × I where F is the Koch snowflake and I is the unit interval [0,1]. Fractal
surfaces are usually non self-similar sets hence, for this type of sets, in the
construction of the energy form, it is not possible to rely on the by-now well-
established ”classical” approaches due to Goldestein (see [7]) and Kusuoka (see
[15]) which are deeply based on the self-similarity of the underlying set. Here,
in the construction of the energy form, we shall take advantage of the underlying
geometry of S and the structure of the energy functional (on S) will reflect it. A
semigroup approach will be adopted to study the evolution problem both in the
fractal and prefractal case and it will turn crucial in the study of the asymptotics
of the approximating problems Ph when h goes to infinity i.e. in the study of the
convergence of the approximating solutions to the solution of the limit problem
P.

In this analysis, we will point out how the jump of the geometric dimension
– which is 2 in the prefractal case and a number D f ∈ (2,3) in the fractal case –
plays a role in the study of the asymptotic behaviour.

The model problem, in the fractal case, can be formally stated as:
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(P)



ut(t,P)−∆u(t,P) = f (t,P) in [0,T ]×Qi, i = 1,2 j)
−c0∆Su(t,P) =

[
∂u(t,P)

∂n

]
on [0,T ]×S, j j)

u(t,P) = 0 on [0,T ]×∂Q, j j j)
u1(t,P) = u2(t,P) on [0,T ]× S, jv)
u(t,P) = 0 on [0,T ]× ∂S v)
u(0,P) = 0 on Q v j),

where Q is the parallelepiped Q = (−1,1)2 × (0,1), S denotes a ”cylindrical”
fractal layer in Q (see Section 1) dividing Q in two subsets Q1 and Q2, ui denotes
the restriction of u to Qi, [u] = u1−u2 denotes the jump of u across S, ∆S denotes
the Laplace operator defined on the layer S (see (7) in Section 3),

[
∂u
∂n

]
= ∂u1

∂n1
+

∂u2

∂n2
the jump of the normal derivatives across S, to be intended in a suitable

sense, and f (t,P) is a given function in Cθ ([0,T ];L2(Q)), θ ∈ (0,1). Condition
j j) is the so-called second order transmission condition. In view of numerical
approximations (see [18]), we will study the approximating problems (Ph) –
with layer the pre-fractal interface Sh approximating S– and their asymptotic
behavior as h→∞, with the idea that the asymptotic limit problem is indeed the
transmission problem (P). Problem (Ph) can be formally written as follows

(Ph)



ut(t,P)−∆u(t,P) = f (t,P) in [0,T ]×Qi
h, i = 1,2 j)

−∆Shu(t,P) =
[

∂u(t,P)
∂n

]
on [0,T ]×Sh, j j)

u(t,P) = 0 on [0,T ]×∂Q, j j j)
u1(t,P) = u2(t,P) on [0,T ]× Sh, jv)
u(t,P) = 0 on [0,T ]× ∂Sh v)
u(0,P) = 0 on Q v j),

where Q is the parallelepiped as above, Sh denotes a ”polyhedral ” layer in Q
(see Section 1) dividing Q in two subsets Q1

h and Q2
h, ui denotes the restriction of

u to Qi
h, [u] = u1−u2 denotes the jump of u across Sh, ∆Sh denotes the piecewise-

tangential Laplacian defined on the layer Sh (see Section 6.2)
[

∂u
∂n

]
= ∂u1

∂n1
+ ∂u2

∂n2

the jump of the normal derivatives across Sh.

2. Geometry

Let Q denote a bounded open set in R3; in our basic model Q denotes the par-
allelepiped Q = (−1,1)2× (0,1) and S denotes a “cylindrical” layer in Q of the
type S = F × I, where I = [0,1] and F is the so-called Koch snowflake (it can
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be regarded as the union of three Koch curves Ki) . We assume that S is located
in a median position inside Q and divides Q in two sub-domains Q1 and Q2 (see
Figure 1).

We give a point P∈ S the cartesian coordinates P = (x,y), where x = (x1,x2)
are the coordinates of the orthogonal projection of P on the plane containing F
and y is the coordinate of the orthogonal projection of P on the y–line containing
the interval I: P = (x,y) ∈ S, x = (x1,x2) ∈ F , y ∈ I.
One can define in a natural way, a finite Borel measure m supported on S as the
product measure

dm = dµF ×dy (1)

where dy denotes the one-dimensional Lebesgue measure on I. The measure m
has the property that there exists two positive constants c1, c2

c1rd ≤ m(B(P,r)∩S)≤ c2rd , ∀P ∈ S (2)

where d = d f + 1 = log12
log3 and where B(P,r) denotes the Euclidean ball in R3.

As m is supported on S, it is not ambiguous to write in (2) m(B(P,r)) in place
of m(B(P,r)∩S). In the terminology of the following subsection we say that S
is a d–set with d = d f +1.

By Sh we denote the pre-fractal layer of the type Sh = Fh × I, h = 1,2, . . .,
Fh is the piecewise linear pre-fractal approximation of F at the step h. Sh is a
surface of polyhedral type. Sh divides Q in two sub-domains Qi

h, i = 1,2.
We give a point P ∈ Sh the Cartesian coordinates P = (x,y), where x =

(x1,x2) are the coordinates of the orthogonal projection of P on the plane con-
taining Fh and y is the coordinate of the orthogonal projection P on the y–line
containing the interval I.

3. Energy forms and semigroups associated

3.1. The Energy form E

We define the energy forms ES on the fractal layer S = F × I by setting

ES[u] = σ
1
∫

I

∫
F
Lx[u](dx)dy+σ

2
∫

F

∫
I
|Dyu|2dyµF(dx) (3)

where σ1 and σ2 are positive constants. Here Dy(·) denotes the derivative in the
y direction, Lx(·, ·)(dx) denotes the measure–valued Lagrangian (of the energy
form EF of F with domain D(F)) now acting on u(x,y) and v(x,y) as function
of x ∈ F for a.e. y ∈ I; µF(dx) is the Hausdorff measure acting on each section
F of S for a.e. y ∈ I with d f = log4

log3 .
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The energy, on F , has the following integral representation (see Definition
4.5 of [5])

EF(u,v) =
∫

F
dLF(u,v) (4)

u,v ∈D(F) where D(F), which is a Hilbert space with norm

(‖u‖2
L2(F,µF ) +EF(u,u))

1
2

has been characterized in terms of the domains of the energy forms on Ki (see
[5] Theorem 4.6).

In the following we will omit the subscript F , the Lagrangian measure will
be simply denoted by L(u,v) and we will set L[u] = L(u,u), an analogous no-
tation will be adopted for the energies.

The form ES is defined for u ∈D(S) where D(S) is the closure in the intrin-
sic norm

‖u‖D(S) = (ES[u]+‖u‖2
L2(S,m))

1
2 (5)

of the set
C0(S)∩L2(0,1;D(F))∩H1

0 (0,1;L2(F)) (6)

where L2(F) = L2(F,µF(dx)).
In the following we shall also use the form ES(u,v) which is obtained from

ES[u] by the polarization identity.
It can be proved as in Proposition 3.1 of [27], that:

Proposition 1. In the previous notations and assumptions the form ES with
domain D(S) is a regular Dirichlet form in L2(S,m) and the space D(S) is a
Hilbert space under the intrinsic norm (5).

For the definition and properties of regular Dirichlet forms we refer to [6].
We now define the Laplace operator on S. As (ES,D(S)) is a closed, bilinear
form on L2(S,m), there exists (see Chap. 6, Theorem 2.1 in [14]) a unique
self–adjoint, non positive operator ∆S on L2(S,m)—with domain D(∆S)⊆D(S)
dense in L2(S,m)—such that

ES(u,v) =−
∫

S
(∆Su)vdm, u ∈D(∆S),v ∈D(S). (7)

Let (D(S))′ denote the dual of the space D(S). We now introduce the Laplace
operator on the fractal S as a variational operator from D(S)→ (D(S))′ by

ES(z,w) =−〈∆Sz,w〉(D(S))′,D(S) (8)
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for z ∈ D(S) and for all w ∈ D(S), where 〈·, ·〉(D(S))′,D(S) is the duality pairing
between (D(S))′ and D(S). We use the same symbol ∆S to define the Laplace
operator both as a self-adjoint operator in (7) and as a variational operator in
(8). It will be clear from the context to which case we refer.

Consider now the space of functions u : Q → R

V (Q,S) =
{

u ∈ H1
0 (Q) : u|S ∈D(S)

}
. (9)

The space V (Q,S) is non trivial, see Proposition 3.3 of [17]. We now intro-
duce the energy form

E[u] =
∫

Q
|Du|2dQ+ c0ES[u|S] (10)

defined on the domain V (Q,S).
In the following, by E(u,v), we will denote the corresponding bilinear form

E(u,v) =
∫

Q
DuDvdQ+ coES(u|S,v|S) (11)

defined on V (Q,S)×V (Q,S).
As in Theorem 3.2 of [27], it can be proved

Proposition 2. The form E defined in (10) is a regular Dirichlet form in L2(Q)
and the space V (Q,S) is a Hilbert space equipped with the scalar product

(u,v)V (Q,S) = E(u,v). (12)

We denote by ‖u‖V (Q,S) the norm in V (Q,S), associated with (12)), that is

‖u‖V (Q,S) =
(

c0ES[u|S]+
∫

Q
|Du|2dQ

) 1
2

. (13)

As in Proposition (3.6) and (3.1) in [17], it can be proved

Proposition 3. The space D(S) is embedded in B2,2
β ,0, β = d f

2 .

Proposition 4. The space D(S) is embedded in B2,2
α , α < 1.

3.1.1. Resolvent and semigroup associated to the energy form E

As (E,V (Q,S)) is a closed bilinear form on L2(Q) with domain V (Q,S) dense
in L2(Q) there exists (see chap. 6 Theorem 2.1 in [14]) a unique self-adjoint
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non positive operator A on L2(Q) with domain D(A)⊆V (Q,S) dense in L2(Q)
such that

E(u,v) =−
∫

Q
AuvdQ, u ∈D(A),v ∈V (Q,S) (14)

Moreover in Theorem 13.1 of [6] it is proved that to each closed symmetric form
E a family of linear operators {Gα ,α > 0} can be associated with the property

E(Gαu,v)+α(u,v) = (u,v), u ∈ L2(Q) and v ∈V (Q,S)

and this family is a strongly continuous resolvent with generator A, which also
generates a strongly continuous semigroup {T (t)}t≥0.

For the reader’s convenience we recall here the main properties of the semi-
group {T (t)}t≥0.

Proposition 5. Let {T (t)}t≥0 be the semigroup generated by the operator A
associated to the energy form in (14). Then {T (t)}t≥0 is an analytic contraction
semigroup in L2(Q).

The contraction property follows from Lumer Phillips Theorem on dissipative
operators (Chap.1 Theorem 4.3 in [30]). As the form E is coercive in V(Q,S)
the analyticity follows from Theorem 6.A Chap.4 in [32].

3.2. The energy forms ESh

By Q we denote the parallelepiped as defined in Section 2 and by Sh we denote
the pre-fractal layer of the type Sh = Fh × I, h = 1,2, . . ., Fh is the pre-fractal
approximation of F at the step h. Sh divides Q in two sub-domains Qi

h, i = 1,2.
We give a point P ∈ Sh the Cartesian coordinates P = (x,y), where x = (x1,x2)
are the coordinates of the orthogonal projection of P on the plane containing Fh
and y is the coordinate of the orthogonal projection of P on the y–line containing
the interval I.
We first construct the energy forms ESh on the pre–fractal layers Sh = Fh × I,
h ∈ N. By ` we denote the natural arc–length coordinate on each edge of Fh
and we introduce the coordinates x1 = x1(`), x2 = x2(`), y = y on every affine
“face” S( j)

h of Sh. By d` we denote the one–dimensional measure given by the
arc–length ` and by dσ the surface measure on each face S( j)

h of Sh, that is
dσ = d`dy. We define ESh [u] by setting

ESh [u] = ∑
j

(∫
S( j)

h

(
σ

1
h|D`u|2 +σ

2
h|Dyu|2

)
dσ

)
(15)

where σ1
h, σ2

h are positive constants and u ∈H1(Sh), the Sobolev space of func-
tions on the piece–wise affine set Sh (see Section 2.1). By Fubini theorem, we
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can write this functional in the form

ESh [u] = σ
1
h

∫
I

(∫
Fh

|D`u|2d`

)
dy+σ

2
h

∫
Fh

(∫
I
|Dyu|2dy

)
d`. (16)

We denote the corresponding bilinear form by ESh(u,v).
Consider now the space of functions u : Q → R

V (Q,Sh) =
{

u ∈ H1
0 (Q) : u|Sh ∈ H1

0 (Sh)
}

, (17)

it is not trivial as it contains D(Q) (the smooth functions with compact support
on Q).
Consider now the energy form

E(h)[u] =
∫

Q
|Du|2dQ+ESh [u|Sh ] (18)

defined on the domain V (Q,Sh).
By E(h)(u,v) we will denote the corresponding bilinear form

E(h)(u,v) =
∫

Q
DuDv dQ+ESh(u|Sh ,v|Sh) (19)

defined on V (Q,Sh)×V (Q,Sh).

Theorem 6. The form E(h), defined in (18), with domain V (Q,Sh) is a regular
Dirichlet form in L2(Q) and the space V (Q,Sh) is a Hilbert space equipped with
the scalar product

(u,v)V (Q,Sh) = E(h)(u,v).

For the proof see Theorem 4.1 in [17].
We denote by ‖u‖V (Q,Sh) the corresponding energy norm in V (Q,Sh), that is

‖u‖V (Q,Sh) =
(∫

Q
|Du|2dQ+ESh [u|Sh ]

) 1
2

. (20)

3.2.1. Resolvents and associated semigroups

Proceeding as in Section(3.1.1) we denote by {Gh
α ,α > 0}, Ah and {Th(t)}t≥0

the resolvents, the generators and the semigroups associated to E(h), for every
h ∈ N respectively.
As in proposition (5) it can be proved that:

Proposition 7. Let {Th(t)}t≥0 be the semigroup generated by the operator Ah
associated to the energy form in (19). Then {Th(t)}t≥0 is an analytic contraction
semigroup in L2(Q).
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4. The convergence of forms and semigroups

In this Section we study the convergence of the approximating energy forms
E(h) to the fractal energy E. In this asymptotic behaviour the factors σ1

h and σ2
h

have a key role and can be regarded as a sort of renormalization factors of the
approximating energies. These factors take into account the non rectifiability of
the curve F and hence the irregularity of the surface S and in particular the effect
of the d−dimensional length intrinsic to the curve F , for details see [19]. The
convergence of functionals is here intended in the sense of the M-convergence
which we define below.

4.1. The M-convergence of forms

We recall, for the sake of completeness, the definition of M-convergence of
forms introduced by Mosco in [25].

We extend the form E defined in (10) and E(h) defined in (18) on the whole
space L2(Q) by defining

E[u] = +∞ for every u ∈ L2(Q)\V (Q,S)

and
E(h)[u] = +∞ for every u ∈ L2(Q)\V (Q,Sh).

Definition 1. A sequence of form
{

E(h)
}

M-converges to a form E in L2(Q) if
(a) for every {vh} converging weakly to u in L2(Q)

lim E(h)[vh]≥ E[u], as h → ∞

(b) for every u ∈ L2(Q) there exists {wh} converging strongly to u in L2(Q)
such that

lim E(h)[wh]≤ E[u], as h → ∞. (21)

According to Definition 2.3.1 in [26], we say that

Definition 2. The sequence of forms
{

E(h)
}

is asymptotically compact in L2(Q)
if every sequence {uh} with

lim E(h)[uh]+
∫

Q
|uh|2dQ < ∞ (22)

has a subsequence strongly convergent in L2(Q).

Proposition 8. The sequence of forms (18) is asymptotically compact in L2(Q).
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Remark 1. We point out that, as the sequence of forms (18) is asymptoti-
cally compact in L2(Q), M-convergence is equivalent to the Γ-convergence (see
Lemma 2.3.2 in [26]), thus we can take in (a) vh strongly converging to u in
L2(Q).

We can now state the main theorem of this section:

Theorem 9. Let σ1
h = σ1c0(3d f−1)h and σ2

h = σ2c0(31−d f )h, then the sequence
of forms

{
E(h)

}
defined in (18) M-converges in the space L2(Q) to the form E

defined in (10).

The proof is long and delicate (for details see Theorem 3.5 in [19]). It takes
into account the fact that the set S is the cartesian product of F and the unit
interval I; it is deduced by using an analogous 2-dimensional result (see Theo-
rem 4.1 in [20]) and by using some technical tools such as trace and extension
theorems for Besov spaces on d-sets and on arbitrary closed sets (see [11], [12]
and [33]) and classical arguments as Fatou’s lemma and convergence results.

4.2. Convergence of semigroups and resolvents

From Theorem 9 we deduce the following.

Proposition 10. Let E(h) and E be the energy forms defined in (18) and (10)
and G(h)

α and Gα the resolvents associated to E(h) and E respectively. If
{

E(h)
}

is M-convergent to E, then for every α > 0 the sequence
{

Gh
α

}
converges to

the operator Gα in the strong operator topology of L2(Q).

The proof follows from Theorem 2.4.1 part (i) in [26]. As a consequence
of the well known Trotter-Kato Theorem, which characterizes the convergence
of semigroups in terms of convergence of the related resolvents, the following
theorem holds:

Theorem 11. Let E(h) and E be as in Corollary 10 then the sequence of semi-
groups {Th(t)} associated with the form E(h) converges in L2(Q) to the semi-
group T (t) associated with the form E in the strong operator topology of L2(Q)
uniformly on every interval [0, t1].

The proof easily follows from Proposition 10 and Theorem 4.2 Chapter 3 in
[30].

5. Evolution problems and convergence of the solutions

We study the solvability of the Cauchy problems:
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(P)
{ du(t)

dt = Au(t)+ f (t), 0 ≤ t ≤ T
u(0) = 0

(23)

and for every h ∈ N

(Ph)
{ duh(t)

dt = Ah uh(t)+ f (t), 0 ≤ t ≤ T
uh(0) = 0

(24)

where A : D(A)⊂ L2(Q)→ L2(Q) and Ah : D(Ah)⊂ L2(Q)→ L2(Q) are the
generators associated respectively to the energy form E and the energy forms
E(h) introduced in (10) and (18), of the previous sections, T is a fixed positive
real number, and f is a given function in a suitable Banach space.

In the following we shall make use of functions with values in Hilbert spaces
(see [24]).
A “strict” solution of problem (P) is a function

u ∈C1([0,T ]; L2(Q))∩ C([0,T ]; D(A)) (25)

du(t)
dt

= Au(t)+ f (t), for every t ∈ [0,T ] and u(0) = 0.

Theorem 12. Let 0 < θ < 1, f ∈Cθ ([0,T ],L2(Q)) and let

u(t) =
∫ t

0
T (t− s) f (s) ds, (26)

where T (t) is the analytic semigroup generated by A. Then u is the unique
“strict” solution of (P).
Furthermore, there exists c such that

‖u‖C1([0,T ],L2(Q)) +‖u‖C0([0,T ],D(A)) ≤ c‖ f‖Cθ ([0,T ],L2(Q)) (27)

Theorem 13. Let 0 < θ < 1, f ∈Cθ ([0,T ],L2(Q)) and let

uh(t) =
∫ t

0
Th(t− s) f (s) ds for every h ∈ N (28)

where Th(t) is the analytic semigroup generated by Ah. Then uh is the unique
“strict” solution of (Ph).
Furthermore there exists c, independent from h, such that

‖uh‖C1([0,T ],L2(Q)) +‖uh‖C0([0,T ],D(Ah)) ≤ c‖ f‖Cθ ([0,T ],L2(Q)). (29)

For the proof see Theorem 4.3.1 page 134 in [24].
Now we are interested in the behavior of the sequence {uh} when h goes to ∞

in view of the numerical approximation of these problems (see [18]).
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Theorem 14. Let u and uh be the solutions of problems (P) and (Ph) according
to Theorems (12) and (13). Let σ1

h and σ2
h be as in Theorem (9). We have:

i) {uh} converges to u in C([0,T ]; L2(Q))

ii) {duh
dt } weakly converges to du

dt in L2([0,T ]×Q)

iii) {Ahuh} weakly converges to Au in L2([0,T ]×Q)

iv) {uh} converges to u in L2([0,T ];H1
0 (Q))

For details on the proof see Theorem 5.3 in [19]. The proof of i) is deduced
from (28), (26) and Theorem 11; the proof of ii) is deduced from Theorem 9.

6. The strong formulation of the transmission problems

6.1. The case of the fractal layer

Theorem 15. Let u be the solution of problem (P). Then we have for every
fixed t ∈ [0,T ]


ut(t,P)−4u(t,P) = f (t,P) for a.e. P ∈ Qi i = 1,2
∂ui

∂ni
∈

(
(B2,2

β ,0)(S)
)′

, β = d f
2 , i = 1,2

−c0〈4Su|S,z〉(D(S))′D(S) =
〈[

∂u
∂n

]
, z

〉
(D(S))′D(S)

, for every z ∈D(S)

u(t,P) = 0 for P ∈ ∂Q
(30)

where ui is the restriction of u to Qi, ∂ui

∂ni
, i = 1,2 is the inward “normal

derivative”, to be defined in a suitable sense,
[

∂u
∂n

]
= ∂u1

∂n1
+ ∂u2

∂n2
is the jump of the

normal derivative and 4S is the fractal Laplacian defined in (8) of Section 3.1.
Moreover ∂ui

∂ni
∈C([0,T ];(B2,2

β ,0)(S)′).

The proof is complicated, it makes use of Gauss-Green formula for domains
with fractal boundaries (see [16]) and it makes use of sophisticated subspaces
of Besov spaces on S and on F ; in particular, the embedding of D(S) in B2,2

β ,0(S)

(see Proposition 3.6 in [17]). The space B2,2
β

(S) is defined as the space of func-
tions f ∈ L2(S,m) for which is finite the norm

‖ f‖B2,2
β

(S) :=
(
‖ f‖2

L2(S,m) +
∫ ∫

|P−P′|<1

| f (P)− f (P′)|2

|P−P′|2β+d dm(P)dm(P′)
)1/2
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here d = 1+d f and β = d f /2.
We point out that the definition of Besov spaces on d-sets with smoothness

index greater or equal to one is more complicated than the one given above (see
[12])). The space B2,2

β ,0(S) is a subspace of B2,2
β

(S) and it is the fractal analogue

of the Lions-Magenes space H
1
2

0,0(S), more precisely,

B2,2
β ,0(S) = {u ∈ L2(S,m)|there exists v ∈ H1

0 (Q) such that v|S = u onS}, (31)

equipped with the norm

‖u‖B2,2
β ,0(S) = inf{‖v‖H1(Q) : v ∈ H1

0 (Q), v|S = u, onS}.

We also use the duals of Besov spaces on S. These spaces, as shown in [13],
coincide with a subspace of Schwartz distributions D′(R3), which are supported
in S. They are built by means of atomic decomposition. Actually, Jonsson and
Wallin [13] proved this result in the general framework of d–sets. Here we do
not give a detailed description of the duals of Besov spaces on d–sets and we
refer to [13] for a complete discussion.

6.2. The case of the prefractal layer

Theorem 16. Let uh be the solution of problem (Ph). Then we have, for every
fixed t ∈ [0,T ],


(uh)t(t,P)−4uh(t,P) = f (t,P) for P ∈ Qi

h, a.e. i = 1,2
∂ui

h
∂ni

∈ L2(Sh), i = 1,2

−4Shuh|Sh =
[

∂uh
∂n

]
, inL2(Sh)

u(t,P) = 0 for P ∈ ∂Q
(32)

where ui
h is the restriction of uh to Qi

h,
[

∂uh
∂n

]
= ∂u1

h
∂n1

+ ∂u2
h

∂n2
is the jump of the

normal derivatives across Sh, ni, i = 1,2, being the inward normal vector and
4Sh = σ1

hD2
` + σ2

hD2
y is the piece-wise tangential Laplacian associated to the

Dirichlet form ESh . Moreover ∂ui
h

∂ni
∈C([0,T ];L2(Sh)).

Here D2
` is the piece-wise second order derivative along the sides of Fh and D2

y
the usual second order partial derivative in y.

The proof relies on some regularity results for ui
h in the polyhedral domains

Qi
h and on the use of Green’s formula for domains with Lipschitz boundary

and some trace theorems. In particular, we use weighted estimates in Sobolev
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spaces (see [28]), which take into account the singularities due to the presence
of wedges and corners (for details on the proof see Theorem 6.3 in [19] and
Section 4.2 of [17]).

We remark that there are many definitions of trace Sobolev spaces on poly-
hedral domains. If 0≤ s≤ 1 the Sobolev space Hs(Sh) defined in [1] coincides,
with equivalent norms, with the Sobolev space defined in [29] by local Lipschitz
charts. For large s the definitions of trace spaces are more complicated (see [8]);
in this paper we confine ourselves to the case which best fits our situation fol-
lowing [1].

From Theorem 16, it follows that the solution of problem (Ph) is the solution
of the following transmission problem. For every t ∈ [0,T ],

ui
t = ∆ui + f in L2(Qi

h), i = 1,2 j)
−∆Shu = [ ∂u

∂n ] in L2(Sh) j j)
u = 0 in H

1
2 (∂Q) j j j)

u1 = u2 inH1(Sh) jv)
u = 0 in H

1
2 (∂Sh) v).

Remark 2. By proceeding as in the proof of Theorem 4.4 in [17] we can claim
that for every fixed t ∈ [0,T ], u1

h ∈ Hs1(Q1
h),s1 < 8

5 ,u2
h ∈ Hs2(Q2

h),s2 < 7
4 and

u ∈C(Q).

By proceeding as in Theorem 8.2 of [21] it is possible to prove the asymp-
totic convergence of the transmission conditions.

Theorem 17. In the same assumptions of Theorem 14, we have that, for every
fixed t ∈ [0,T ], each normal derivative is weakly convergent to the correspond-
ing normal derivative on S, i.e.

( j)
∫

Sh

∂ui
h

∂ni
vdσ →< ∂ui

∂ni
,v >(B2,2

β ,0(S))′,B2,2
β ,0(S), for every v ∈ H1

0 (Q); β = d f
2 .

Moreover the both sides of the transmission condition in (32) converge to
the corresponding terms in (30) in the dual space of V (Q,S), more precisely:

( j j)
∫

Sh
[ ∂uh

∂n ]vdσ →< [ ∂u
∂n ],v >(D(S))′,D(S), for every v ∈V (Q,S).

( j j j)
∫

Sh
∆Shuhvdσ →< ∆Su,v >(D(S))′,D(S), for every v ∈V (Q,S).
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Masson, Paris, 1967.



PARABOLIC TRANSIMISSION PROBLEMS . . . 287

[30] A. Pazy, Semigroup of linear operators and applications to partial
differential equations, Applied Mathematical Sciences, 44. Springer-
Verlag, New York, 1983.

[31] H. Pham Huy - E. Sanchez-Palencia, Phènoménes des transmission á
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