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The work traces a general procedure for the design of a flight simulation tool still representative of the major flight physics of
a parachute-payload system along decelerated trajectories. An example of limited complexity simulation models for a payload
decelerated by one or more parachutes is given, including details and implementation features usually omitted as the focus of
the research in this field is typically on the investigation of mission design issues, rather than addressing general implementation
guidelines for the development of a reconfigurable simulation tool. The dynamics of the system are modeled through a simple
multibody model that represents the expected behavior of an entry vehicle during the terminal deceleration phase. The simulators
are designed according to a comprehensive vision that enforces the simplification of the coupling mechanism between the payload
and the parachute, with an adequate level of physical insight still available. The results presented for a realistic case study define the
sensitivity of the simulation outputs to the functional complexity of the mathematical model. Far from being an absolute address
for the software designer, this paper tries to contribute to the area of interest with some technical considerations and clarifications.

1. Introduction

The purpose of a parachute is to decelerate and provide
stability to a payload in flight. The aerodynamic and stability
characteristics of the parachute system are governed by the
geometry of the parachute as such careful consideration is
paid to this in the design process. The effects of deployment
and opening force are critical in the safe operation of the
parachute and the integrity of the payload. The opening char-
acteristics also feature heavily in the selection of geometry
and other parameters in the design process.

Parachutes for aerospace applications [1–4] are in general
symmetric about the canopy axis. This axis passes through
the center of the canopy and the confluence point of the
suspension lines. The canopy is the cloth surface that inflates
to provide the desired lift, drag, and stability. The suspension
lines transmit the retarding force from the canopy to the
payload either directly or through a riser attached below the
confluence point of the suspension lines. The deceleration
force may be distributed on the payload over more than one
mechanical joint linked to the riser by a set of short hardly
extensible strips (bridles).

There are a number of different kinds of parachutes that
have been designed for various applications. The different
applications parachutes are typically used for pilot, drogue,
deceleration, descent, extraction, supersonic drogue and
stabilization, flight termination, and landing.

The dynamics of parachutes are complex and difficult
to model accurately. During both the inflation process and
the terminal descent stage, the dynamics of a parachute are
governed by a coupling between the structural dynamics of
the parachute system and the surrounding fluid flow. Both
of these dynamic systems must be addressed as a coupled
system to gain a proper representation of the dynamic system
as a whole.

When the parachute is in a steady state, the air flowing
around the decelerator will separate at some location on
the canopy. The shedding of the vortices from the canopy
can affect the stability and cause a periodic motion of both
parachute and payload. The wake from a porous parachute
consists of air that flowed around the canopy and air that
flowed through the canopy. A payload body in the speed
range of parachute usage sheds a very turbulent wake. Part
of the flow that is entering the parachute is therefore of a
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disturbed nature and should be considered regarding the
aerodynamic performance of the parachute. For many types
of parachutes, this change in oncoming airflow can be
quite significant during the time required for the parachute
to inflate. The implication of a rapid deceleration is that
second-order effects are likely to be present.

To summarize, calculation of parachute deployment,
inflation, and deceleration requires the numerical solution
to the equations of motion for a viscous, turbulent, separated
airflow. The parachute is also a flexible body having dynamic
behavior coupled with the behavior of the flow, which passes
through and around it. From the above description it is
obvious that a full-time dependent solution of this system is
far from being easily feasible. To make a mathematical model
that is feasible, simplifications must be made, as long as the
model can be validated satisfactorily by experiment or by
comparison with reference data.

The overall behavior of parachutes is related to var-
ious parameters: added masses, filling time, parachute
shape (inflated canopy elongation), porosity, suspension line
length, reefing, clustering, snatch loads at deployment, and
aero-mechanical and inflation instability. In the past, most
of these effects could be generally modeled in an imprecise
way by simulation tools. A comprehensive computational
technique is presented in [5–7] for carrying out three-
dimensional simulations of parachute fluid-structure inter-
actions, and this technique is applied to simulations of
airdrop performance and control phenomena in terminal
descent. The technique uses a stabilized space-time for-
mulation of the time-dependent, three-dimensional Navier-
Stokes equations of incompressible flows for the fluid
dynamics part. A finite-element formulation derived from
the principle of virtual work is used for the parachute
structural dynamics. The parachute is represented as a cable-
membrane tension structure. Coupling of the fluid dynamics
with the structural dynamics is implemented over the fluid-
structure interface, which is the parachute canopy surface.

According to the different missions, several types of
payloads have been used in combination with aero-
dynamic decelerators: paratroops, equipment, hardware,
materiel, weapons, missiles, aircraft, unmanned aerial vehi-
cles, aerospace lifting, and nonlifting spacecraft. The present
analysis is focused on aerospace applications for planetary
and atmospheric entry vehicles, where the payload is typi-
cally a blunt body. The purpose of a blunt body is primarily
to provide a large source of drag to facilitate a deceleration.
Applications of blunt bodies can be seen with both manned
reentry and planetary exploration missions. An outline of
aerodynamic decelerators for robotic planetary exploration
missions is given in [8]. In the development programs of
such blunt bodies and also in subsequent studies, it has been
shown that they may be dynamically unstable in all or part of
the sub-, trans-, super-, and in some cases hypersonic speed
regimes.

Blunt bodies for which there exist examples can be
classified into two categories, large angle cones and capsules
[3]. An example of large angle cone that has performed actual
missions is the Viking probe. It should be noted that in the
two Viking missions confirmed the dynamic instability upon

entry into the Martian atmosphere. The examples of capsules
are well-known ones due to the intense space activities from
the former USSR and the USA. The capsules that were
developed for manned flights in this period were Mercury,
Gemini, Apollo and Soyuz, which are still considered a
reference for performing missions to this day. As was the
case with the large angle cones, there were found to be speed
ranges over which the capsules were unstable [9].

The flow field that is associated with the capsule config-
uration is highly complex. For almost the entire speed range
that the capsules operate over, the flow remains attached on
the forward face. At the point of maximum diameter, the
flow is accelerated such that the boundary layer rapidly grows
to the point of separation. After the maximum diameter,
the flow then remains separated and turbulent. This flow
is unstable and coupled with an unsteady near wake the
dynamic instability associated with capsules is produced
[11].

As dynamic instability exists for blunt bodies over various
speed ranges, to complete missions successfully, there is then
a requirement for some kind of accurate stability assessment
with a potential impact on both stability augmentation (if
any reaction control system is implemented) and mission
design (parachute deployment sequence). This issue applies
for probes and capsules as thrusters and parachutes are the
unique available sources of additional damping.

The measurement of stability derivatives for probes and
capsules was a concern of designers since the origin of space
flight [9], as analytical methods did not provide (at least in
the past) adequate estimation of these relevant parameters.
The wind tunnel experimental techniques considered are
free oscillation, forced oscillation, free flight tests, and even
ballistic range experiments. It should be noted that wind
tunnel experiments are not without limitations, so there
remains a strong desire to make available numerical data, for
the purposes of both finding solutions and comparing with
experimental results.

2. Background on Parachute-Payload
Modeling and Simulation

Several studies analyze the descent and landing trajectories of
parachute-payload systems. Generally, these analyses consist
of performing a simulation (typically a 3–6 DOFs rigid
body model is adopted) of the atmospheric entry phase to
predict deceleration peaks, descent attitudes, and terminal
conditions. In addition, a stochastic dispersion analysis
(Monte Carlo or similar) is usually performed to assess
the impact of off-nominal conditions that may arise to
determine the robustness of the mission design.

A two-dimensional parachute model is presented in [12]
to compute the various characteristics of the steady descent
of a parachute system. A three degree-of-freedom analysis
is presented and validated in [13] giving the longitudinal
motion of a typical vehicle during the recovery phase. The
parachute and the payload are supposed to be rigid and
interconnected by an elastic riser. Aerodynamic loads act-
ing on the two subsystems are considered. Computer
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results showed good agreement with test results in terms
of oscillation amplitude and frequency, riser force, and
parachute wrapup about the vehicle for the simulation of
a pad-abort situation. The three-dimensional motion of a
freely descending parachute is studied in [14] with a five
degree-of-freedom analysis (roll motion is neglected). Exact
expressions are given for the longitudinal and lateral small
disturbance stability of the gliding motion of parachutes. The
analysis confirms that large longitudinal disturbance of most
parachutes will result in a large pitching motion, whereas
a large lateral disturbance will usually cause a large angle
vertical coning motion (coning mode). The longitudinal
mode damps out very quickly in the stable case. The three-
dimensional motion of a nonrigid parachute and payload
system is studied in [15]. Both the parachute and the payload
are assumed to have five degrees of freedom (roll about
axis of symmetry is again neglected). They are coupled
together by a fixed-length connector. The general nonlinear
equations are linearized using small perturbation theory. The
evaluation of the stability of an unstable payload decelerated
by a parachute is performed. The authors observed that
increasing riser length and parachute weight promotes sys-
tem instability. A nine degree-of-freedom computer program
was developed in [16] for the simulation of the trajectory
and the dynamic behavior of a rotating parachute system.
An accurate mathematical model of the joint between the
load and the parachute was found to be necessary to predict
the dynamic behavior of a rotating decelerated system. A
computer model based on a six degree-of-freedom analysis
is described in [17] and compared with drop test data. The
payload is rigidly connected, the aerodynamic forces on
canopy and payload are determined by the instantaneous
angle of attack of the impinging airflow, the apparent
masses are constant, but they depend on the direction of
the acceleration. Full nonlinear equations of motion for
the axisymmetric parachute have been obtained in [18]. In
particular, the correct form of the added mass tensor for
a rigid axisymmetric parachute in ideal flow has been im-
plemented in a six degree-of-freedom computer model
[19], and the results indicate that added mass effects are
significant. In particular, the component of added mass
along the axis of symmetry has a strong effect on parachute
dynamic stability. However, design and testing experience
shows that dynamic stability of the parachute is a second
order design problem [3] for high-performance decelerators
that usually have both high static and dynamic stability due
to the porosity of the canopy. Many works, including recent
models developed and validated by means of drop tests,
consider the bridles as rigid elements [20, 21].

3. The Mathematical Model of the
Payload-Parachute System

A first mathematical representation of a parachute-payload
system (designated as SM1) is defined according to a very
comprehensive approach that enforces the simplification
of the coupling mechanism between the payload and the
parachute, with an adequate level of physical insight still

available in terms of sensitivity of system performance met-
rics to design parametric changes. In modeling a payload-
parachute system, two bodies and one device have been used.
They are the parachute canopy and the payload, which are
then connected by a single riser. In reality the parachute
canopy is connected to the payload by suspension lines, a
riser section, and then a set of bridles. In the simulation only
the riser and the bridles are modeled in terms of a dynamic
response (suspension lines are neglected). However, in terms
of connection points only the riser has been modeled. The
riser is assumed to have flexible connections at both ends and
provides stiffness above a certain threshold distance and zero
stiffness below this distance (slack conditions).

The payload is considered as a rigid body with six degrees
of freedom. The forces and the moments that act on the
body are provided by its aerodynamics, by the weight, by the
inertial actions, and, finally, by the force applied by the riser
in the suspension point. The parachute canopy acts as a rigid
body and, by the action of aerodynamic drag, strains the riser
which then transmits a force to the payload. Figure 1 shows
the general philosophy used in modeling the system.

In terms of a dynamic response, the riser is modeled as
having linear stiffness and damping, where the force at any
given point in time is given by

FR = klrε + cε̇. (1)

Note that k is stiffness, lr is riser length, ε and ε̇ are strain and
strain rate, respectively, and c is the damping coefficient. The
above equation is implemented in the code to calculate the
force present in the riser at any point. The equivalent stiffness
of the bridles and riser is given by the following equation:

k =
nb · krkb

kr + nb · kb
, (2)

where nb is the number of bridles, kr is riser stiffness and kb
is single bridle stiffness. After calculation of the equivalent
stiffness, the damping coefficient c can be calculated by the
following formulation (mP is the parachute mass and ξ is the
damping ratio):

c = 2ξmP

√

k

mP
. (3)

The values for strain and strain rate are computed by the
difference in displacement and velocity of each end of the
riser, that is, as the displacement and the velocity of the
payload and that of the parachute canopy. Also note that
where this calculation occurs a check is in place for the
condition where the riser is slack:

ε =
sc − sp − l0

lr
,

ε̇ = Vc −Vp,

(4)

where ε and ε̇ are, respectively, strain and strain rate, sc and
sp are, respectively, payload and parachute displacement, lr is
the riser length, and Vc and Vp are, respectively, the payload
and parachute velocity. From these two calculations, the force
in the riser can be derived by application of (1).
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Figure 1: Flow chart of the simulation model.

The performance of the parachute has been modeled
using an approximation for the added mass ma. When
a parachute passes through the air, it drags some of the
surrounding with it this means that this air must be
accelerated from rest up to the speed of the parachute. The
parachute will also accelerate some of the air immediately in
front and behind. The energy that is required to facilitate
this acceleration is taken from the kinetic energy of the
parachute-payload system. These fluid inertia effects are
taken into account in the equation of motion. The idea is
that the mass has a component added to take into account
the extra mass associated with the accelerated air. This can be
seen below, where the change in momentum of the parachute
system is equal to the sum of the drag force and gravitational
force component:

d

dt
[M∗V] = −

1

2
ρV 2CDSP + mP sin γ, (5)

M∗
= ma + mP . (6)

After combining (5) and (6) and then rearranging, the fol-
lowing expression for system acceleration (or deceleration)
can be used:

(mP + ma)
dV

dt
= −

1

2
ρV 2CDSP −V

dma

dt
+ mPg · sin γ. (7)

However, for (7) to be useful, an expression or knowledge of
ma(t) must be available. Shown below is an expression for
added mass, similar to that for apparent mass, that has been
used widely:

ma = kaρ
4

3
πR3. (8)

The value of ka, a constant, can be found in various ways [1,
3]. Klimas calculated values of ka for porous hemispherical
ribbon parachutes. In the present case, added mass is
calculated by using a slight variation. In the previously
presented method, the volume of a hemisphere is used,

whereas in the model used in the simulation the volume of
an ellipsoid is used. Hence, added mass has been calculated
using the following expression:

ma = nPkaρ
4

3
πR2h, (9)

where nP is the number of parachutes, ka is the added mass
coefficient, R is the inflated radius, and h is the inflated
height. The integer nP for the number of parachutes is
necessary because a cluster of multiple parachutes is being
modeled as one parachute of equivalent size. The added
mass remains constant throughout inflation, so the values for
parachute radius and height are constant, whereas in reality
they are of course changing quite significantly through the
inflation process. The added mass coefficient is given by:

ka = 1.068
(

1− 1.465p − 0.25975p2 + 1.2626p3
)

, (10)

where p is the parachute porosity (see [3, 22] for further
details concerning the effect of porosity on added masses).
This coefficient remains constant through inflation. The
porosity for both drogue and main parachutes is set at a value
of 20% (p = 0.2).

The significance of fluid inertial effects is relevant. As
an example, opening times and loads increase with altitude.
The reason for this can be seen when it is considered that at
increasing altitude the true airspeed will increase for constant
indicated airspeed, as such the inertial effects of the air are
greater. After comparison with flight test data, the added
mass approximation tends to overestimate the deceleration
that will occur. From a design point of view, this means that
results obtained from the added mass approximation can
be viewed as conservative. So while the concept of added
mass is only an approximation, the effects of fluid inertia
in transient parachute aerodynamics are significant enough
to be included in modeling. At present this method of
accounting for the inertial effects of air is the most practical
tool available to be used in the transient phase of parachute
operation.
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The parachute as previously stated is modeled as a sep-
arate body (rigid canopy). The deceleration of this body is
therefore calculated by extension of (7) including the riser
tension force:

dV

dt
= V̇P =

Fr −DP −mPg sin γ

(mP + ma)
, (11)

where a is acceleration, Fr is the riser force, DP is the
parachute drag, mP is the mass of the parachute, ma is the
added mass, and γ is the flight path angle. The drag force
provided by the parachute is calculated using the following
simple expression:

DP =
1

2
ρV 2

PCDSP · η, (12)

where ρ is air density, VP is parachute velocity, CD is the
canopy drag coefficient, SP is the canopy projected area,
and η is an efficiency factor used to account for payload
wake effects (η = 0.7 ÷ 0.75 for the drogue parachute and
η = 1 for the main parachute). The product CDSP (drag
area) of a parachute depends on its type, inflated shape,
size, Reynolds’ number, Mach’s number, Froude’s number,
material elasticity, and porosity.

In (11) the third term on the numerator is the gravitation
force component. The denominator is then the addition of
the mass of the parachute and the added air mass.

Due to the complexity involved with the filling process,
filling time cannot be calculated by a purely analytical
method. The alternative once again lies with an empirical
approach that is validated by flight test. Knacke defined the
following empirical relation for filling time:

t f =
8D0

V 0.9
S

, (13)

where D0 is nominal diameter and VS is velocity at line
stretch. It should be noted here that (13) is dimensionally
incorrect. This means that the actual physics of the system
are not properly represented. While (13) has been shown to
provide reasonable answers, care should always be taken in
using such an equation so that it is not being used outside
the intended range of conditions.

An underlying assumption used in the modeling of the
parachute canopy is that it remains aligned with the velocity
vector at all times. This corresponds to neglecting the lift and
moment coefficients of the parachute.

The second major assumption made used in the par-
achute canopy model is that the added mass remains con-
stant throughout inflation and parachute operation.

Whilst in the model the value of added mass is kept
constant at the value for the fully inflated parachute (conser-
vative approach for the estimation of deceleration peak), the
value for drag area is ramped up as the parachute inflates. It
is this feature of the model that provides a simulation of the
inflation process. Inflation modeling is done by ramping the
value of the drag area, CDSP , this being the multiplication
of the drag coefficient and the projected area. The effective

DP

mP

m

mPg

FR

FR

k

c

Length

γ

V

mg

Figure 2: Layout of the suspension system (parachute-payload
configuration).

drag area is time-scheduled according to the planned reefing
stages and can be described by the following expressions:

(CDSP)t = (CDSP)0 ·

⎡

⎣

i−1∑

k=1

τk + τi

(

t − ti
t f i

)ni
⎤

⎦,

for t ∈
[

ti ÷ t f i
]

,

(CDSP)t = (CDSP)0 ·

i∑

k=1

τk, for t ∈
[

t f i ÷ ti+1

]

,

(14)

where reefing starting time is ti, duration t f i, and ratio τk.
The power for the growth, ni, has been set at 2 for the initial
stages and at 2.5 for the final stage, for both drogue and main
parachutes (the exponents are selected to fit the available
flight test data). Selection of these values is justified by a
better prediction of peak loads. This value of CDSP is then
substituted into the equation for parachute drag.

The final assumption made is with the clustered
parachutes. In the simulation one parachute of equivalent
size has been used, with a cluster efficiency factor applied.

In Figure 2, the forces acting on both the parachute
and payload can be seen (with the exception of the body
aerodynamic forces and moments).

The forces and moments acting on the payload are
calculated as the relevant contributions are added. The
equations are

X =
1

2
ρVS

(

VCX + CXqqd
)

− FR cosα cosβ,

Y =
1

2
ρVS(VCY + CYrrd)− FR sinβ,
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Z =
1

2
ρVS

(

VCZ + CZqqd
)

− FR sinα cosβ,

L =
1

2
ρVSd

(

VCl + Clppd
)

− FR sinβ
(

zcg − zp
)

d

− FR sinα cosβ
(

ycg − yp
)

d,

M =
1

2
ρVSd

(

VCM + CMqqd
)

+ FR cosα cosβ
(

zcg − zp
)

d

+ FR sinα cosβ
(

xcg − xp
)

d,

N =
1

2
ρVSd(VCN + CNrrd)− FR sinβ

(

xcg − xp
)

d

− FR cosα cosβ
(

ycg − yp
)

d,

(15)

where X , Y , and Z are the body forces, FR is the riser force
(tension), L, M, and N are the body moments, V is velocity,
d is payload diameter, S is reference surface area, p is roll
rate, q is pitch rate, r is yaw rate, α is angle of attack, β is
angle of sideslip, and xp, yp, and zp are the parachute-payload
attachment coordinates. All coordinates are normalized with
a reference length.

In the above-presented model, there are a number of
featured that need to be discussed. The aerodynamic data
for the payload—which the simulation uses as input—are
given in the longitudinal plane only. In order to calculate
the correct coefficient, the center of gravity must be shifted
accordingly. This is done using the following equations:

CM = CM − CZ

(

xcg − xref

)

− CX

(

zcg − zref

)

,

CMq = CMq − CZq

(

xcg − xref

)

− CXq

(

zcg − zref

)

,
(16)

where CM is the moment coefficient, CZ is the force
coefficient in the Z direction, CX is the force coefficient in
the X direction, CMq is the moment coefficient due to pitch
rate, CZq is the force coefficient in the Z direction due to
pitch rate, CXq is the force coefficient in the X direction due
to pitch rate, xcg and zcg are the x and z locations of the
payload center of gravity, and finally xref and zref are the x
and z locations of the reference data center of gravity. The
coordinates are normalized with a reference length, that is,
for axis-symmetric bodies the payload diameter d.

The lateral-directional coefficients are obtained assuming
the geometric symmetry of the payload. In taking this
approach, the aerodynamic response to angle of attack and
angle of sideslip have been decoupled. The implications
of this decoupling are that there are no aerodynamic roll
moments (L = 0), no sideslip effects in the longitudinal
plane, and finally no angle of attack effects in the lateral
plane. It should also be noted that, since the body is axis-
symmetric, total angle of attack would need to be considered
for aerodynamic coefficients interpolation, as implemented
in [23].

The body axis system has been adopted, and this system
can be seen in Figure 3. The system of differential equations
that describes the parachute-payload system can be broken

+X

+CL

Vα

β

Center

of gravity

+CN

+Z

+CM

+Y

⊕

Figure 3: The reference frame and the aerodynamic angles for the
payload.

into sections, six rigid body equations of motion, four qua-
ternion equations, three position equations, and the velocity
and displacement of the parachute.

The system written in residual form can be seen below:

r1 = u̇−

((

X + mgCBE(1, 3)
)

m
− qw + rv

)

,

r2 = v̇ −

((

Y + mgCBE(2, 3)
)

m
− ru + pw

)

,

r3 = ẇ −

((

Z + mgCBE(3, 3)
)

m
+ qu− pv

)

,

r4 = IXX ṗ − IXY q̇ − IXZ ṙ − IXZ pq + (IZZ − IYY )qr

+ IXY pr +
(

r2
− q2

)

IYZ − L,

r5 = IYY q̇ − IXY ṗ − IYZ ṙ − IYZ pq + (IXX − IZZ)pr

− IXYqr +
(

p2
− r2

)

IXZ −M,

r6 = IZZ ṙ − IXZ ṗ − IYZ q̇ + IXZqr + (IYY − IXX)pq

− IYZ pr +
(

q2
− p2

)

IXY −N ,

r7 = ė0 +
1

2

(

e1p + e2q + e3r
)

,

r8 = ė1 −
1

2

(

e0p − e3q + e2r
)

,

r9 = ė2 −
1

2

(

e3p + e0q − e1r
)

,

r10 = ė3 +
1

2

(

e2p − e1q − e0r
)

,

r11 = ẋ − CBE(1, 1)u− CBE(1, 2)v − CBE(1, 3)w,

r12 = ẏ − CBE(2, 1)u− CBE(2, 2)v − CBE(2, 3)w,

r13 = ḣ + CBE(3, 1)u + CBE(3, 2)v + CBE(3, 3)w,

r14 = ṡp −Vp

r15 = V̇p −

(

Fr −Dp −mpg sin γ
)

(

mp + ma

) ,

(17)
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where u, v, and w are the body axis velocities in the X , Y ,
and Z directions, respectively, p, q, and r are the roll rate,
pitch rate, and yaw rate in body axis, e0 through to e3 are the
quaternion values for orientation, γ is the flight path angle,
x, y, and h give the position in the Earth fixed axis, sp is the
absolute displacement of the parachute canopy, and finally
Vp is the parachute canopy total velocity.

The magnitude of the velocity vector, that is, the airspeed,
is found from the three body-axis velocities:

V =

√

u2 + v2 + w2. (18)

The derivative of the velocity vector is then calculated by

V̇ =
(uu̇ + vv̇ + wẇ)

V
. (19)

The angle of attack is calculated by

α = tan−1

(∣
∣
∣
∣

w

u

∣
∣
∣
∣

)

. (20)

The angle of sideslip is calculated by

β = sin−1
(∣
∣
∣
∣

v

V

∣
∣
∣
∣

)

. (21)

Note that the angles of attack and sideslip are put into
the correct phase after this calculation, since the inverse
trigonometric function will only ever return values between
±90◦.

The conversion from the Euler angles to quaternion
values is computed by the following set of equations:

e0 = cos

(
ψ

2

)

· cos

(
θ

2

)

· cos

(
φ

2

)

+ sin

(
ψ

2

)

· sin

(
θ
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(22)

The transformation matrix that relates from Earth fixed to
body axis is calculated using quaternion values:

CBE

=

⎡

⎢
⎣

e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 + e0e1)

2(e0e2 + e1e3) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

⎤

⎥
⎦.

(23)

The flight path angle is calculated using a sequence of C
transformation matrices. There exists a problem in extract-
ing the flight path angle as it approaches 90◦, in that there
exists a singularity in the inverse sine function. To get around
this problem, a third axis system has been introduced that is
rotated 90◦ in pitch with respect to the wind axis. The flight
path angle is then given by the following:

CWB = C1(0) · C2(α) · C3

(

−β
)

,

CBW = C−1
WB,

CGW = C1(0) · C2(90◦) · C3(0),

CWE = CWB · CBE,

CGE = CGW ·GWE,

γ = sin−1(−CGE(1, 3))− 90◦.

(24)

The coordinates of the payload along the trajectory are
calculated from

s =
√

x2 + y2 + (h− h0)2, (25)

where h0 is the initial altitude.
The atmospheric profile (density and speed of sound)

is approximated with a cubic curve fit of the reference
atmosphere.

A second simulation model (designated as SM2) was
defined, implemented, and validated in [23]. The major
differences with respect to the less complex SM1 model are

(i) the aerodynamics of the bodies are defined in terms
of total angle of attack due to the geometrical
symmetry of payload and parachute;

(ii) the dynamics of the parachute are modeled with a
full-state rigid body six degree-of-freedom represen-
tation;

(iii) the added masses of the parachute are defined
by a tensor including rotational inertial properties
[18, 19];

(iv) the aerodynamics of the parachute include lift and
damping coefficients;

(v) the suspension system is represented by a more real-
istic layout with distributed elements and suspension
links whose strain is estimated with an iterative
numerical method;

(vi) the effects of atmospheric turbulence and asymme-
tries (either geometrical or inertial unbalance) can be
included.

4. Software Implementation

The simulation software is written in Fortran language.
This program simulates the dynamics of the parachute-
payload system (time domain integration). The user is
offered predefined initial conditions from reference flight
conditions or the option of trimming the payload at any
desired altitude and using those generated initial conditions.
The inertial properties of the payload (mass, moments
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Figure 4: The experimental setup [10].

of inertia, and position of the center of gravity) and the
parachute characteristics (size, mass, opening, and staging
sequences) are defined for a selected altitude ranges (mission
table lookup).

The solver used in the simulation program is DASSL (dif-
ferential algebraic system solver) originally developed by
Petzold [24–26] for the solution of systems of differen-
tial algebraic equations (DAEs). This routine is based on
backward differentiation formulas (BDFs). The solution
algorithm then attempts to make the residual r(t) equal to
zero at each time step:

r(t) = f (ẋ, x, t) = ẋ − f ′(x, t). (26)

Equation (26) also shows that it is very simple to modify
existing explicit ODE (ordinary differential equation) sys-
tems to be used with an implicit formulation. With DAE
solvers [27], the equations of motion can be implemented
directly in the form of residuals. Therefore, no symbolic
expansions are needed to identify acceleration terms, and
no ad-hoc algorithms need to be used to determine the
vector of derivatives at every time step. The DAE solver may
automatically adjust the order of the integration formula
and the integration step size to achieve the desired accuracy,
whereas typical solvers have fixed order, fixed step size, and
no automatic accuracy control.

The initial conditions for the payload (with or without
decelerator deployed) may be computed for a given initial
altitude h0, returning the quasi-trim values for V velocity, α
angle of attack, β angle of sideslip, θ pitch angle, and γ flight
path angle (stabilized fall). Note that it has been decided
to leave roll as the untrimmed equation. The purpose is to
solve a system of n simultaneous nonlinear equations in n
unknowns. It solves the problem f (x) = 0 where x is a

vector with components x(1), . . . , x(n) and f is a vector of
nonlinear functions. Each equation is of the form:

fk(x(1), . . . , x(n)) = 0, for k = 1, . . . ,n. (27)

The algorithm used for the solution is based on an iterative
method, which is a variation of Newton’s method using
Gaussian elimination in a manner similar to the Gauss-
Seidel process. Convergence is roughly quadratic. All partial
derivatives required by the algorithm are approximated by
first difference quotients. The convergence behavior of this
code is affected by the ordering of the equations, and
it is advantageous to place linear and mildly nonlinear
equations first in the sequence. The convergence is started
from statically stable conditions (initial payload tumbling
is avoided). Numerical integration was performed assuming
a time step of 0.001 s with an absolute and relative error
tolerance of 10−7. Longitudinal and directional planes are
considered separately. The system of equations for the
longitudinal plane is defined as follows:

f1 =M, f2 = X −mg sin θ, f3 = Z + mg cos θ,

f4 = θ − γ − α,
(28)

where

M =
1

2
ρV 2SdCM + FR cosα

(

zcg − zp
)

d

+ FR sinα
(

xcg − xp
)

d,

X =
1

2
ρV 2SCX − FR cosα,

Z =
1

2
ρV 2SCZ − FR · sinα.

(29)

5. Results

The reference mission described in [23] was used to evaluate
the two simulation models. The data available from the
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Figure 5: The simulation of the trajectory profile for the parachute-payload system.

reference flight tests [28, 29] are used for the validation
of the simulation of capsule terminal reentry dynamics.
The capsule is substantially a 70%-scaled version (diam-
eter is 2.8 m) of the original Apollo Command Module
decelerated by a single conical ribbon drogue parachute
(nominal diameter 5.8 m) inflated in two reefing stages

and a cluster of three main polyconical slotted parachutes
(nominal diameter 22.9 m) inflated in three reefing stages.
The sequence of inflation (see Table 1) and the parachute
drag profile are time-scheduled according to the planned
reefing stages and inflation times. Note that staging is
obtained through parachute reefing (i.e., through restricted
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Figure 6: The loads acting on the riser and the decelerator (drogue and main parachute).

canopy deployment) with the purpose of limiting peak loads
and deployment shocks. A detailed description of parachute
deployment sequences for aerospace applications is given in
[2, 3].

The aerodynamic data for the payload—which the sim-
ulation uses as input—were obtained with wind tunnel
static and forced oscillation tests performed at Politecnico di

Torino [10]. The wind tunnel is a closed-loop tunnel with a
cylindrical working section of 3 m diameter by 5 m length.
The model reproduces the scaled geometry of the NASA
Apollo Command Module (model diameter is 340 mm). The
longitudinal loads on the scaled vehicle (axial force, normal
force, and pitching moment) are measured by an internal
3-component balance fit within the capsule model. Body
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Table 1: The parachute deployment sequence.

Sequence Time (s) Altitude (m)

Mortar firing (Pilot Jettison) 0.00 13994

Back cover separation — 13666

Drogue snatch/1st stage inflation 3.34 13430

Drogue 2nd stage
inflation/disreef

9.34 12546

Drogue bridles cut — 6461

Main snatch/1st stage inflation 82.30 6364

Main 2nd stage inflation 88.30 6092

Main 3rd stage inflation/disreef 94.55 5950

Main bridle 1 cut — 5360

axes are adopted for the reduction of experimental results
centered in the actual reference center of gravity. The angle
of attack is set to 180◦ when the spherical base (thermal
shield) is exposed to the wind. The model is supported
(see Figure 4) by a vertical strut that can rotate over the
complete range of angle of attack (α = ±180◦). Positioning
is performed by a step-motor that is controlled by a driving
unit interfaced to the data acquisition PC. The stability
derivatives are evaluated according to the small amplitude
direct forced oscillation technique [30]. The oscillation is
generated by the step-motor (∆θ = 1◦ − 5◦) and f = 0.5–
5 Hz. The position of the driving shaft is acquired by means
of a digital encoder. The measurement repeatability for the
averaged static coefficients is σ ≈ ±0.1% estimated over
the full range while the measurement repeatability for the

longitudinal stability derivatives (measured from frequency
response) is σ ≈ ±1%.

The reentry profile is correctly reproduced by the two
simulators—as presented in Figure 5—and the trajectory,
shaped by the parachute opening sequence, is matched by
both SM1 and SM2 models. The trend of the load factor
exhibits a set of marked peaks given by the staging of both
main and drogue parachute. The SM1 results exhibit an
oscillatory behavior in the second part of the parachute
deployment phase, induced by the oscillatory behavior of the
payload, not found for SM2 model results. Note that low-
altitude flight test data are affected by the asymmetry of the
suspension system induced by the cut of one of the bridles of
the main parachutes (see Table 1).

The ability of the SM1 model to estimate the riser and
parachute loading is outlined in Figure 6. The trend of
forces is coherent with the deceleration profile presented in
Figure 5. The offset between the force acting on the canopy
and the riser is well marked for the main clustered parachute,
modeled as an equivalent single decelerator. This offset is
due to the mutual influence of the added masses (inertia-
induced delays) and the elongation of the riser. The effect
of the elasticity of the main cable is also visible in terms of
damped oscillatory strain, triggered by the bouncing of the
payload (and by its attitude dynamics) after each inflation
phase (staged reefing).

The projected trajectory is compared in Figure 7. Accu-
rate trajectory coordinates were not available from flight test
data. The profiles (mirrored for the purpose of checking
their symmetry) are very similar in the vertical plane.
Nevertheless, a slightly different path is found comparing the
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Figure 8: The simulation of the angles of attack and sideslip for the payload.

traces for the lateral-directional plane. This is the impact of
the aerodynamic model adopted for the payload, which for
the SM1 case decouples and superimposes the effects for the
longitudinal and the lateral-directional planes. The use of
total angle of attack for the interpolation and reconstruction
of payload aerodynamic coefficients (as in SM2 model)
provides a more accurate fit.

The aerodynamic angles of the payload are plotted in
Figure 8. The major discrepancy between the two models
is the level of dynamic stability of the modal response
(short-period dynamics). This can be explained with the
extreme sensitivity of the aerodynamic coefficients to center
of gravity location and angle of attack (see Figures 9 and
10). Remind that the center of gravity location is updated
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Table 2: The index of similarity for the pitch rate spectral response.

Flight test⇒ SM1 Flight test⇒ SM2

Drogue parachute Drogue parachute

I1 I2 I3 I1 I2 I3

1.392 1.005 0.989 0.645 1.145 1.110

Main parachute Main parachute

I1 I2 I3 I1 I2 I3

0.578 1.022 1.029 0.463 1.088 1.098
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Figure 9: The aerodynamic coefficients of the payload (pitching
moment static stability) [10].
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Figure 10: The aerodynamic coefficients of the payload (pitching
moment dynamic stability) [10].

during the descent, accounting for covers, deployment bags,
and parachutes release. As a matter of fact, minor parametric
changes (α, xcg , and zcg) shift the attitude for the rotational
equilibrium of the payload and alter its dynamic stability.
This point is also a concern for the validation of simulation
models by comparison with flight test data [23], in which a
transition between different equilibrium states and levels of
dynamic stability can be externally forced by the atmospheric
perturbations, exciting the combined parachute-payload
system. Another contributing element is the dynamics of the
parachute that in the higher fidelity model (SM2) allows
for attitude changes decoupled from the suspended body,

providing a more realistic behavior of the parachute-payload
system. Differently, the parachute trajectory in the SM1
model is aligned instantly with the velocity vector (flight
path) of the payload. Furthermore, a multilink suspension
system (as modeled in SM2 implementation) induces a
stronger steering effect on the payload.

In order to verify the modal response, at least for
the longitudinal short-period natural frequency, the pitch
rate spectral response for the two simulation models is
compared with the elaboration of available flight logs in
Figures 11 and 12 (note that from flight test reports gyro
signal measurements are very noisy after drogue release). The
comparison of the spectral data is based on the crosscheck
of the index of similarity (see Table 2), defined according to
(30), where Ai is the amplitude for the given frequency ωi:

s0 =

N∑

i=1

Ai,

s1 =

N∑

i=1

Ai · ωi −→

σ1 =
s0

N

σ2 =
s1

s0

σ3 =

√
s2

s0

−→

I1 =
σa1
σb1

I2 =
σa2
σb2

I3 =
σa3
σb3

︸ ︷︷ ︸

a→ b

s2 =

N∑

i=1

Ai · ω
2
i .

(30)

The results show that the range for natural frequency of
the short period response is matched by both simulation
models as demonstrated by the fact that I2 and I3 are
close to unity. Other than that, the averaged amplitude of
the spectral response is less precisely reproduced by the
simulation models, as experimental data represent a modal
response that is overexcited by atmospheric disturbances
and suspension system asymmetries, mainly at parachute
deployment.

6. Conclusions

The present work outlines a comparative analysis of two
simulation models (SM1 and SM2) of a parachute-payload
system with different levels of complexity. An example of
limited complexity reconfigurable simulation models for a
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Figure 11: The effect of model complexity on pitch rate spectral response (drogue parachute).
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Figure 12: The effect of model complexity on pitch rate spectral response (main parachute).
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payload decelerated by one or more parachutes is given,
including details and implementation features usually omit-
ted as the focus of the research in this field is typically on the
investigation of mission design issues, rather than addressing
general implementation guidelines for the development of a
reconfigurable simulation tool. The dynamics of the system
are modeled through a simple multibody model that repre-
sents the expected behavior of an entry vehicle during the
final deceleration phase by means of a system of aerodynamic
decelerators. The simulators are designed according to a
comprehensive vision that enforces the simplification of the
coupling mechanism between the payload and the parachute,
with an adequate level of physical insight still available in
terms of sensitivity of system performance metrics to design
parametric changes.

A reference mission described was used to evaluate
the two simulation models. The aerodynamic data for the
payload—which the simulation uses as input—were ob-
tained with wind tunnel static and forced oscillation tests
performed at the Politecnico di Torino.

The trajectory is reproduced by the two simulators as the
profiles, mainly shaped by the parachute opening sequence,
are matched by both SM1 and SM2 models, even if the use of
total angle of attack for the interpolation and reconstruction
of payload aerodynamic coefficients (as in SM2 model)
provides a more accurate fit. The riser and parachute loading
are estimated in a way that is coherent with the deceleration
profiles.

The major discrepancy between the two models is the
level of dynamic stability of the modal response (short-
period dynamics). This can be explained with the extreme
sensitivity of the aerodynamic coefficients to center of gravity
location and angle of attack. Another contributing element is
the dynamics of the parachute which in the higher fidelity
model (SM2) allows for attitude changes decoupled from
the suspended body, providing a more realistic behavior
of the parachute-payload system. Differently, the parachute
trajectory in the SM1 model is aligned instantly with
the velocity vector of the payload, probably a too crude
approximation if the purpose of the analysis is the attitude
dynamics of the suspended vehicle. Furthermore, a multilink
suspension system (as modeled in SM2 implementation)
induces a steering effect on the payload, neglected by the
single-point suspension of SM1 model.

The spectral results show that the range for the natural
frequency of the short-period response—as measured in
flight—is matched by both simulation models as demon-
strated by the fact that the indices of similarity I2 and I3

are close to unity. Differently, the averaged amplitude of
the spectral response is less precisely reproduced by the
simulation models, as the experimental data represent a
modal response that is over-excited by atmospheric distur-
bances and suspension system asymmetries, at parachute
deployment mainly.

As a general conclusion, the lower fidelity simulation tool
SM1 exhibits a limited advantage in terms of computational
workload, mainly providing a simplified approach for pre-
liminary trajectory estimation and parachute sizing.

Abbreviations

CG: Center of gravity
SM1: Simulation model 1
SM2: Simulation model 2.

Symbols

c: Damping coefficient
CBE: Body-to-Earth axis transformation

matrix
CBW : Body-to-wind axis transformation

matrix
CD: Parachute drag coefficient
CGW : Auxiliary transformation matrix
Cl: Roll moment coefficient
Clp: Roll moment coefficient due to roll rate
CM : Pitching moment coefficient
CMq: Pitching moment coefficient due to

pitch rate
CN : Yaw moment coefficient
CNr : Yaw moment coefficient due to yaw rate
CWB: Wind-to-Body axis transformation

matrix
CX : Force coefficient in x-axis direction
CXq: Force coefficient in x-axis direction due

to pitch rate
CY : Force coefficient in y-axis direction
CYr : Force coefficient in y-axis direction due

to yaw rate
CZ : Force coefficient in z-axis direction
CZq: Force coefficient in z-axis direction due

to pitch rate
d: Payload reference length
D0: Canopy nominal diameter
DP : Parachute drag
e0 · · · e3: Quaternion parameters
FR: Riser force (tension)
g: Acceleration of gravity
h: Canopy height
h: Altitude
li: Index of similarity
IXX : Moment of inertia
IXY : Product of inertia
IXZ : Product of inertia
IYY : Moment of inertia
IYZ : Product of inertia
IZZ : Moment of inertia
k: Stiffness
ka: Added mass coefficient
kb: Bridle stiffness
kr : Riser stiffness
L: Rolling moment
l0: Offset length
lr : Riser length
m: Payload mass
M: Pitching moment
M∗: Parachute total mass
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ma: Parachute added mass
mP : Parachute mass
N : Yawing moment
p: Canopy porosity
p: Roll rate
q: Pitch rate
r: Yaw rate
R: Canopy radius
rk: Numerical residual
s: Payload displacement
sP : Parachute displacement
SP : Parachute reference area
t: Time
u: Velocity in x body direction
v: Velocity in y body direction
V : Payload-free stream velocity
Vc: Payload velocity
VP : Parachute velocity
Vs: Parachute velocity (at line stretch)
w: Velocity in z body direction
x: North displacement (trajectory)
X : Force in x body direction
xcg : x-wise CG location
xp: x-wise suspension point location
xref: x-wise CG location (reference)
y: East displacement (trajectory)
Y : Force in y body direction
ycg : y-wise CG location
yp: y-wise suspension point location
z: Down displacement (trajectory)
Z : Force in z body direction
zcg : z-wise CG location
zp: z-wise suspension point location
zref: z-wise CG location (reference)
α: Angle of attack
β: Angle of sideslip
γ: Flight path angle
ε: Strain
ε̇: Strain rate
η: Wake penalty factor
θ: Pitch angle
ξ: Damping ratio
ρ: Air density
σ : Measurement error
φ: Roll angle
ψ: Yaw angle
ωi: Frequency.
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