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PARACOMMUTATORS—BOUNDEDNESS
AND SCHATTEN-VON NEUMANN PROPERTIES

SVANTE JANSON AND JAAK PEETRE

ABSTRACT. A very general class of operators, acting on functions in L2(Kd),
is introduced. The name "paracommutator" has been chosen because of the
similarity with the paramultiplication of Bony and also because paracommuta-
tors comprise as a special case commutators of Calderón-Zygmund operators,
as well as many other interesting examples (Hankel and Toeplitz operators
etc.). The main results, extending previous results by Peller and others, ex-
press boundedness and Schatten-von Neumann properties of a paracommuta-
tor in terms of its symbol.

0. Introduction. In this paper we study the following type of operators (called
paracommutator s) :

(0.1) fTm^(2ir)-df   b(Z-r,)A(Z,r,)f(r()dr,.
Jr*

Detailed motivation for this will be given in the next section. Let us however notice
right away that paracommutators contain Hankel and Toeplitz operators as special
cases, and besides that many other operators as well. The word paracommuta-
tor itself is coined by analogy with Bony's notion of paramultiplication (see Bony
(1981); cf. Strichartz (1982) for a more "popular" account). Note also that (0.1)
can be rewritten as

(0.2) Tbf(x) = (27r)-2d /    /   eW+MtrfkÜfWdtdr,

where <?(£, n) = A(£ + r),r]). Hence these operators are bilinear pseudodifferential
operators (see Coifman and Meyer (1978)).

Our philosophy, indicated in the notation, is that A is a fixed function on Rd xRd
and that / varies over L2(Hd), while the function b (the symbol) is more variable
than A but not as variable as /. For instance, if A(Ç,ri) = 1, then T¡, is just a
multiplication operator, T0/ = bf. Thus, in the general case, a paracommutator
can be viewed as a multiplication operator perturbed by a Schur multiplier A on
the Fourier side.

In some connections, when we consider several choices of A simultaneously, the
above notation is inadequate and we will then denote the paracommutator by T0(A).
A further extension of the notation is introduced in §5.

We will address ourselves to the following problems: Given A, for which functions
b is T0 a bounded operator in L2(Rd)? When does T¿, belong to the Schatten-
von Neumann class Sp of compact operators (1 < p < oo)? We will also consider:
When is T(, compact?
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For Hankel operators, results of this type are associated with the names Ne-
hari, Hartman, Peller, Rochberg, Semmes etc. (see Nikol'skiï (1986, Appendix 4),
Power (1982), Sarason (1978)). Our results formally contain those of most of our
predecessors in this special case.

Recall that S2 is the class of Hilbert-Schmidt operators and that Si is the trace
class (= the nuclear operators); we refer e.g. to Simon (1979) or McCarthy (1967)
for the definition and properties of Sp. We let S,*, denote the class of all bounded
linear operators on L2.

We will not consider Sp, 0 < p < 1, but refer to Peng (1986) and Timotin
(1985) for similar results in that case.

We now explain the plan of the paper. §1 contains the above and several other
examples of paraproducts. The questions above have been studied for most of our
examples and one of our objectives is to give a unified treatment of them. In some
cases the present proofs indeed turn out to be simpler than the earlier ones.

§§2 and 3 contain various preliminaries. Especially in the latter, we have assem-
bled those—rather dull—results about Schur multipliers which we are going to use
in this paper.

The class of all operators of the form (0.1) is presumably too large to be of much
interest, hence we will impose various restrictions on A. We will mainly study
functions A that are bounded and in a suitable sense vanish on the "diagonal"
{(Ç,il) '■ £ = n)- hi §4 we present systematically the various assumptions (labelled
A0-A8) on A used in the paper.

The main results are stated in §5 and the reader is urged to familiarize himself
with the contents of that section at an early stage, and afterwards perhaps look
at §4 too. Under some conditions we prove that T& is bounded iff b G BMO, and,
provided A also vanishes at a sufficiently high order at the diagonal, that Tt, G Sp
iff b G Bp (1 < p < oo). However, if A furthermore vanishes along the "axes"
{(£,0)} and {(0, r¡)}, we may instead obtain T0 bounded iff b G B^. These results
seem to contain all previous "trace ideal" and boundedness criteria. As a contrast
we also briefly discuss a case when A does not vanish on the diagonal. In that case
Tfc is bounded iff b G L°° and is never compact (except when it vanishes). Obviously
this may be conceived as a generalization of the standard Toeplitz result (see e.g.
Nikol'skiï (1986, Appendix 4)).

In §6 we apply the theorems to the examples in §1. This gives both old and new
results and (which maybe is more important) it illustrates the use of our results
and conditions.

§§7-13 contain proofs of the theorems stated in §5 as well as some additional
results.

§14 is devoted to some additional examples of paracommutators. These can only
partly be treated by the methods in this paper and we show how results in the
range 2 < p < oo can be obtained for some of them by an entirely different method.

We will not (except in Remark 7.2) consider the action of paracommutators on
spaces other than L2, although we expect that it is possible to find general re-
sults. Such problems for specific examples of paracommutators have been studied
by many authors (see for example Calderón (1965) (bounded commutators in Lp),
Coifman, Rochberg and Weiss (1976) (bounded commutators in Lp), Uchiyama
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PARACOMMUTATORS 469

(1978) (bounded and compact commutators in Lp), Janson (1978) (bounded com-
mutators between Lp-spaces and into Orlicz spaces), Janson, Peetre and Semmes
(1984) (bounded Hankel operators in various spaces), Peller (1984) (nuclear Han-
kel operators between Z/p-spaces)).

Instead of Tb we may study the corresponding sesquilinear form

(0.3) (Tbf,g) = (27T)-d JJ'b(^-ri)A(tv)Kv)W)d^dr,
or the bilinear form

(0.4) (27T)-d Jj 6(e + v)A(t:, v)fiOÙ(ri) dÇ dr,.
(In (0.4) we have substituted A(Ç,r)) —7 A(Ç, — r¡); hence the diagonal corresponds
to {(£,??) : £ + r¡ = 0}.) In particular (0.4) suggests that one ultimately should
consider analogous multilinear forms (see Peetre (1985a)).

Our calculations will be formal and we will ignore the technical problem of
assigning a meaning to the integrals (0.1)-(0.4). A careful definition has to impose
conditions on / (g) and perhaps on b, and then take an appropriate limit. Note
that in all the examples below A G C°°((Rd\{0}) x (Rd\{0})), hence (0.3) is well
defined if / and g are test functions with compact supports disjoint from the origin
and b is any tempered distribution. Furthermore, when our conditions are satisfied,
the proofs in §7 that Tb is bounded implicitly yield definitions of the operators using
decompositions of Rd.

A preliminary mention of some of the theorems of this paper was given by one
of the authors at the NATO Advanced Study Institute on Operators and Function
Theory in Lancaster, July 1984 (Peetre (1985a)) and then again on the occasion
of the XlXth Nordic Congress of Mathematicians in Reykjavik, August 1984.

1. Examples.
1. Products. If A(Z,r¡) = 1, then Tbf = (2Tr)-db * f and thus Tbf = bf.

Obviously Tb is bounded on L2(Rd) -o- b G L°°. Furthermore, Tb is never compact
unless 6 = 0.

2. Toeplitz operators. Let H2 = H2(R) = {/ G L2(R): supp/ C [0,oo)}. Let
P denote the orthogonal projection of I? onto H2. The Toeplitz operator with
symbol b is the operator / —► P(bf), f G H2. Obviously, we may just as well study
/ —► P(bPf) as an operator L2 —► L2. This is Tb as defined in (0.1) with d — 1 and
(1.1) ¿(£,,7) = /(c;>0and,7>0).
(Here and in the sequel, /(•••) denotes the indicator function which is 1 when the
condition in the parenthesis holds and 0 otherwise.)

In this case, it is well known that Tb is bounded iff b G L°°, and that Tb is never
compact unless 6 = 0. The theory of Toeplitz operators (usually studied on the
unit circle) is well developed (see e.g. Douglas (1972), Nikol'skiï (1986), Sarason
(1978)).

3. Hankel operators. With the same notation as in the preceding example,
P = I — P is the orthogonal projection onto H , and Hb, the Hankel operator with
symbol b, is defined as the operator / —► P(bf), f G H2. This is essentially the
same as / —► P(bPf), f G L2, which is the paracommutator Tb with d — 1 and

(1.2) A(Ç, 17) = /(£ < 0 and n > 0).
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General references are e.g. Power (1982) and Nikol'skiï (1986).
By Nehari's theorem, Hb is bounded iff Pb G BMO. (Note that HPb = 0, thus

only the anti-analytic part Pb is important.) Furthermore, Hb G Sp iff 7b G Bpp
(0 < p < oo) (see Peller (1980), (1982), Coifman and Rochberg (1980), Rochberg
(1982), Semmes (1984)).

4. Commutators of singular integral transforms. Let K denote a Calderón-
Zygmund transform, i.e. the principal value convolution with a kernel that is
homogeneous of degree —d and, for simplicity, C°° outside the origin (see e.g.
Stein (1970)). The commutator of K and multiplication by b is

[b,K]f = b(Kf)-K(bf).
Since Kf(Ç) = m(f)/(£), where the multiplier m is homogeneous of degree 0 and
C°° outside the origin,

[MÍ/ = (27r)_<i(¿ *Kf-m(b* /))

= (27r)-d J 6(£ - r,)(m(r,) - m(0)/(f?) dn.

Thus the commutator is Tb with

(1.3) A^,n)=m(n)-m(0.
When d = 1, K is a scalar multiple of the Hubert transform which has kernel l/irx
and multiplier — zsign£. For commutators with the Hubert transform we obtain

A(C,r¡) = isign*;-¿sign»7
1 ' ' = 2t7(£ > 0 > ij) - 2iI(Í < 0 < n).
This is almost the same as in Example 3; in particular it follows from (1.4) and

(1.2), since Pb{c\) = 0 for f > 0, that

(1.5) [Pb, K\ = -2iHpb = 2iHb.
In fact, the commutator [b, K] decomposes, apart from constant factors, into the
two Hankel operators Hpb and H-pb (see e.g. Rochberg (1982) for details).

When d > 2, the commutator is bounded on L2 iff b G BMO (see Coifman,
Rochberg and Weiss (1976), Uchiyama (1978) and Janson (1978)). Janson and
Wolff (1982) proved that [b,K\ G Sp iff b G Bp/p, provided p > d, while [b,K]
never belongs to Sp when p < d, unless it vanishes.

Note that [b,K] is a (singular) integral operator with kernel (b(x)-b(y))k(x — y),
where k is the kernel of K. In particular, if d — 1, the kernel is a constant times
the difference quotient (b(x) — b(y))/(x — y).

5. Higher commutators. We may also study the second commutator [[6, Ä"], Ä"]
where K is as in Example (1.4), and more generally, the ./Vth order commutator
[... [b,K],...,K) (N > 1), which is Tb with
(1.6) A{t,n) = {m{ri)-m{t))N.
Furthermore, it is possible to use different Calderón-Zygmund transforms;
[... [b, Ki],..., KN] is given by (with mj = Kj)

N

(1.7) ^^-riKw-^fâ)-
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Provided a certain nondegeneracy condition is satisfied, Tb is bounded iff b G BMO,
and Tb G Sp iff b G Bp/p and P > d/N (1 < p < oo) (see Janson and Peetre (1984)).

6. Higher-dimensional Hankel and Toeplitz operators. The commutators of Ex-
ample 4 may be regarded as generalizations of Hankel operators to Rd. Another,
more straightforward, generalization is obtained as follows.

Let Ti and Y2 be two closed cones in Rd, i.e. tYj = Yj for every t > 0, j = 1,2.
Let Pj denote the orthogonal projection of L2 onto the set of functions whose Fourier
transforms are supported in r¿, and study the operator / —> P2(bf): PiL2 —♦ P2L2,
or equivalently / —► P2(bPif) on L2. This is the paracommutator defined by

(1.8) A(Ç,11)= 1(1; GY2 and r,GYi).

We say this is a generalized Hankel operator if ri n Y2 = {0}, and a generalized
Toeplitz operator if int(ri) n int(r2) + 0-

7. The Calderón commutators. Calderón (1965) studied the commutators

on L2(R),

where K is the Hubert transform (see Example 4). (Both operators have been
called "the Calderón commutator" in the literature.) The first commutator is the
paracommutator given by, cf. (1.4),

A(Ç,ri) = (isignt¡-i sign r))in
= 2|f/|(/(í>0>»/)+/(í<0<»7)).

Obviously, it is bounded on L2 iff [b, K] maps the Sobolev space H~l into L2. The
second commutator is, since the multiplier corresponding to Kd/dx is -isign(£)ic;
= |f |, the paracommutator given by

(1-10) A(l;,r,) = \r1\-\tl\.
(This is a singular integral operator with kernel -tr-1 (b(x) — b(y))/(x — y)2.) Hence
the difference of the two commutators is Tb with

(1-11) A(e,r7) = (c;-ry)sign(0,
which is seen to equal / —► K((db/dx)f). Thus this difference is bounded on L2 iff
db/dx G L°°.

Calderón (1965) proved that this condition is sufficient for the two commutators
to be bounded. Coifman and Meyer (1980) proved that [b, K]d/dx is bounded when
db/dx G BMO.

8. Commutators with fractional integration or differentiation. Similarly we can
treat commutators between a multiplication and any multiplier transform. For
example, if Is is defined as in (2.6) below, then [b, Is] is Tb with

(i-") A(f,t7) = |i7r-iei-s.
Note that the special case d = 1, s = -1 gives (1.10), i.e. a Calderón commutator.

Murray (1985) has shown that when d — 1 and -1 < s < 0, [b, Is] is bounded on
L2 iff Pb G BMO. She remarks that this could also be obtained from the theorem
by David and Journé (1984), which also applies when d > 1. The Sp-results that
we obtain (in §6) seem to be new.

[b,K]
dx

and b,K
dx
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9. Paraproducts. The name "paraproduct" denotes an idea rather than a unique
definition; several versions exist and can be used for the same purposes. The name
was coined by Bony (1981), who used paraproducts as a tool in the study of sin-
gularities of solutions of semilinear partial differential equations; the paraproducts
help to "linearize" the problem (see e.g. the article by Strichartz (1982)).

Earlier examples of paraproducts are studied in Calderón (1965) and Coifman
and Meyer (1978) (see also Peetre (1976)).

One version is the paracommutator (0.1) with A G C°°(R2d\{0}), A homoge-
neous of degree 0, A = 0 in neighborhoods of the diagonal {(£, £)} and the axis
{{0,r¡)}, and A — 1 in a neighborhood of the axis {(£, 0)} (omitting (0,0) each
time). For example, we may take

(1.13) A{t■—(»)

or

(1-14) A(t,v) = V>(r^-1)Wt-mJ
where <p G C°°(0, oo), <p = 1 on (0,6) and <p — 0 on (1 - 6, oo) for some 6 > 0, or

(i-«) A{*'v)=v(rw)
where <p G C¡?(0, oo) and <p - 1 on (1 - 6,1 + 6).

Coifman and Meyer (1978) studied e.g. operators of the type
/■OO

(1.16) Tbf=        (1>t*b)(<pt*f)dt/t
Jo

where <pj G S(Rd), i>(0) = 0 and <pt(t) = <p(tt), MO = #£)•
A simple calculation shows that this is the paracommutator given by

(1.17) A(t,v)= f
Jo

rp(t(t-ri))<p(tri)dt/t.

If tp and rp are radial and have compact supports with supp^> C {£: \t\ < 1} and
supp^i C {t- \t\ > 1}, ^ = 1 in a neighborhood of 0, and /0°° tj)(tt)dt/t = 1, then
(1.17) yields a kernel of the type (1.14), i.e.   (1.16) defines a paraproduct of the
above type.

A related version of the paraproduct is

(1.18) Tbf=       J2      bó^
j,k:k<j-N

where b = X^oo bj and / = Xi^oo /* are dyadic decompositions as in (2.5) below
and N is a sufficiently large positive integer. This is the paracommutator with

(1.19) A(t,v)=    J2   Ù(t-v)Mri),
k<j-N

where i¡)k is as in (2.2). This A is not truly homogeneous, but it satisfies A(2t, 2n) =
A(t,r)).
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Coifman and Meyer (1978, Theorem 33, p. 144) proved that Tb (defined by
(1.16)) is bounded if b G BMO. Peng (1984) proved the converse and that Tb G Sp
iñbGBp/p (Kp<oo).

10. A smooth. Suppose that A G C°°(R2d\{0}), and that, for each multi-index
a and some constants Ca,

(1.20) \DaA(t,r,)\<Ga([t\ + \ri\r^.
The paraproducts in the preceding example are included in this. In fact, it is easy
to see that (1.20) holds for every A that is C°° outside the origin and satisfies
A(rt, rn) — A(t, r¡) for some fixed r > 1 (in particular, if A is homogeneous of de-
gree 0), a case studied by Timotin (1984). Coifman and Meyer (1978, Proposition
2, p. 154) proved that if A satisfies (1.20), then Tb is bounded for b G L°°, and if
furthermore A(t, t) = 0, then Tb is bounded for b G BMO.

We obtain converses and additional results in §6.

2.   Preliminaries and some notation. C, and sometimes Cj etc., denote
positive constants, changing from formula to formula.

A dyadic decomposition of Rd\{0} will be important, and for k G Z we define

(2 1) A* = {£eRd: 2*<|f|<2fc+1},

K = {t: 2*-1 < \t\ < 2fc+2} = Afc_! U Afc U Afc+1.

The Besov space can be defined as follows; we refer to Peetre (1976) or Bergh and
Löfström (1976) for further details. (We consider only the homogeneous Besov
spaces.) Let ^ be a test function with support in some "annulus" {£: r < \t\ < R}
such that inf{|V»(c;)|: t S Ao} > 0, and define tl>k by

(2.2) ùk(t)=î>vl-kt),      fcez.
(Thus i>k is nonzero on Ak.) The Besov space B^q (—oo <s<oo, l<p<oo,
1 < q < oo) is defined as {b G S7: {2fcs||^fc * ¿»Hl»}-«, € /«}. The norm in B^ is
defined in the natural way. Different choices of tp give the same space and equivalent
norms.

We will only be interested in the "diagonal" case q = p, and we write B* for
B$>. Thus

(2-3) bGBsp^{2ks\\t¡)k*b\\LV}Glp.

B^q = {b: supfc \[tpk * b\\Loo < oo} is the real variable version of the Bloch space.
It is sometimes convenient to add the additional requirement

oo

(2.4) £>*(*) = 1. t¿0.
— oo

A distribution b then has the dyadic decomposition (modulo polynomials)
oo

(2.5) b = ^2bk,    with bk=i¡>k* b.
—oo

Definitions of the space BMO can be found a.e. in the literature. Note that L°° c
BMO C jB°) with strict inclusions.
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Fractional integration (and differentiation) is defined by

(2.6) iIaf)Ait) = \trsf(t),        -oo<s<oo.
Is is an isomorphism of Bp onto Bp+S for every s, t and p.

Let U and V be two subsets of Rd. We write k G SP(U x V) if k is a function
(distribution) on U x V such that the linear operator f —* fv k(t, r])f(r¡) defines an
operator L2(V) —► L2(U) that belongs to Sp, and we denote the 5p-norm of that
operator by ||fc||sp(ryxv). h1 particular, H/cHs^ is the operator norm. (We omit U
and V from the notation when no confusion may arise.)

The problems posed in the introduction may be reformulated (using the
Plancherel theorem): When does b(t - v)A(t,v) <= Sp(Rd x Rd)?

For future reference, we state the simple result for Example 1.

LEMMA 2.1.   (2w)-d\\b(t-ri)\[SooiRäxR<1) = \\b\\LOo(Rä).    D

It is obvious that HfcHs^xVi) ^ llfcllsp((7xv) whenever Ui cU,Vi C V. For
p = oo, we have the following elementary converse results.

LEMMA 2.2.   If{U„}J° and{Vn}j° are partitions of U andV respectively, then

H£,v)Y2xvn(0xv„iv) D= 8UPl|W||Soo(r/nXVB)-
Soo(£/xV) "

In the next lemma G is an arbitrary group (written additively).  We will later
use the cases G = Z and G = Zd.

LEMMA 2.3.   Suppose that {Un}n€G and {Vn}n€G are partitions of U and V
respectively.  Suppose that ||fc||s00(t/mxv„) ^ a(m ~ n) for some a G ^(G).   Then

Sœ(UxV) < E„a(n)-

PROOF (assuming for simplicity that G is countable). By Lemma 2.2,

ll*lko<£ H^v)^2xun+m(0xvn(v) J2a(m).

3. Schur multipliers. The following subalgebra of L°° plays an important
role in the theorems and proofs in this paper.

DEFINITION. M(U x V) denotes the set of all tp G L°°(U x V) that admit the
representation

(3.1) <P(t,v)= /   oc(t,x)ß(r),x)dp(x)
Jx

for some cr-finite measure space (X, p.) and measurable functions a onU x X and
^onVxX with

(3.2) /   \\a(;x)\\LociU)\\ß(;X)\\Lc0{y)dp(x) < 00.

It is easily seen that we may restrict p to finite measures, or let /ibea complex
measure (taking d\p\ in (3.2)), and that we may demand a G L°°(U x X), ß G
L°°(V x X) and replace (3.2) by

(3.3) IHIl»(iaxX)I|/9||l-(vxjc)IHI < oo-
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M(U x V) is a Banach algebra with the norm given by the minimum of the left-hand
side of (3.2) (or (3.3)) over all representations. (The product property follows by

/ ai(t,xi)ßi(r),xi)dßi(xi) / a2(t,x2)ß2(r),x2)dp2(x2)

= / a(t,x)ß(r),x)d(pi x p2)(x)

with x = (xi,x2), a(t,x) ^oti(t,xi)a2(t,x2), ß(i],x) = ßi(v,xi)ß2(r),x2).)
REMARK 3.1. M(U x V) contains the tensor product L°° (U) ® L°° (V) (which

is obtained if p above is restricted to discrete measures), but M is, except in trivial
cases, strictly larger. A simple example in the discrete case is given by {6mn} which
belongs to M(Z x Z) by the argument in Lemma 3.3 below, but not to l°° ® l°°
because the corresponding operator I1 —► /°°, viz. the identity mapping, is not
compact.

Peller (1985) has shown that M(U x V) is the algebra of bounded Schur multi-
pliers, i.e.

<p G M(U xV)<* \\<pk\\3l{UxV) < C\\k\\Sl(uxv)
■& \\<pk\\Soo(uxv) < C\\k\\Soo{UxV).

(The discrete case is studied by Bennett (1977) and Haagerup (personal commu-
nication).)

We will only need the easy part:

LEMMA 3.1.   If<pGM(U x V) andkGSp(U xV), then

\\<pk\\sr < \\<p\\M\\k\\sf,        l<p<oo.

PROOF. Fix x G X, let K: L2(V) —► L2(U) denote the operator corresponding
to fc and let Ma,Mß denote the bounded operators f(t) —► a(t,x)f(t), g(r¡) -*
ß(n,x)g(n) on L2(U) and L2(V), respectively. Then

\\a(t,x)ß(r,,x)k(t,v)\\sp(uxv) = ||AfŒArAf^||Sp < ||MQ|| ||if||sp||A^||

= \\a(-,z)\\L°°(u)\\k\\sP(UxV)\\ß(-,z)\U°<>(V)-
Now integrate over X, using (3.1).    D

Alternatively we could use interpolation between p = 1 and p — oo.

LEMMA 3.2. If k G Soo(U x V) defines a compact operator on L2 and tp g
M(U x V), then <pk defines a compact operator.

PROOF. There exist kn G S2(U x V) with kn —► k in Soo as n —► oo. Conse-
quently, tpkn G S2 and ipkn —* <pk in Soo •    E

The remainder of this section is devoted to methods of showing that certain
functions belong to M. Note first that (by taking p as a point mass in (3.1))

(3.4) \\f(t)9(v)\\M(uxv) = II/IIl~(£oIMIl~(v),
in particular, g = 1 yields

(3.5) \\f{t)\\M(UxV)=\\f\\L-(U).
The Fourier representation is often an efficient tool to show that functions belong
to M.
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LEMMA 3.3.   IfbGL1(Rd) then

b(t - r,) G M(RdxRd)    and    \[b(t - r,)[\M < \\b\\Li.

Proof. b(t-v) = f e-iÇxéiixb(x)dx.   a
The same argument applies to other groups as well; in the next lemma we im-

plicitly use it for the multiplicative group R+.

LEMMA 3.4.   If<pGC^(0,oo), then<p(\ri\/\t\)GM(RdxRd).

PROOF. Let i¡)(t) = (p(e*). Then tp G C£°(R) and

<p (M) =^(log\r,\-log[t\) = ±.J<#0<*M-*M\)ftt)dt

= ¿/ier¿tir/N(í)^- o
LEMMA 3.5.   If s > 0 and 6 > 0, then there exists F with ||-F,||m(riíxR<') = «5s

such thatF(t,r¡) = (\v\/\t\)s when \n\ < 6\t\.

PROOF. If s = 0 take F = 1. Otherwise, let

^(i) =e-«l*-lo8«l    and    £>(¿)=V(logí)=min(Y^   ' (j)') '        l > °"

a 3.4,

(I)
We obtain, as in Lemma 3.4,

Now take

<¿IWIlHr«) = i-
M(R<*xRd)        Z7r

LEMMA  3.6.   If 6 < (2d+l)   1  and -co < s < oo, then there exists G G
M(Rd x Rd) such that G(t,v) = i\t\/\t ~ <l\)s when \r¡\ < 6\t\.

PROOF. Let F be the function given by Lemma 3.5 with s = 1, and let

H(t,v) = 21£l^F(t,v)-F(t,v)2-

Thus
II^IIaí(r-xr-) < M\F\\m + \\F\\2M = (2d + 6)6 < 1.

Since (1 — z)~sl2 is an analytic function in the unit disc and M is a Banach algebra,
(1 - H)~sl2 G M. This is the sought function, because, when \n[ < 6\t[,

'¿í lei M i*i   viel/
\t\2-2t-r, + \r,\2

\t\2

The full Fourier transform in R2d also is useful.

-(W D
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LEMMA 3.7. If Daf G L2(Rd X Rd) for every multi-index a with \a\ < d+ 1,
then f G M(Rd x Rd) and \\f\\M <CJ2\a\<d+i ll^/IU*-

Proof.
f(t,v) = (2ir)-2d JJei^eiy'r>f(x,y)dxdy.

Hence, by standard estimates,

II/IIm<II/IIlmr")<c E W^fWv-   D
a<d+l

(The proof actually shows that Bdl(R2d) C M(Rd x Rd).)
By localization, we obtain e.g.

LEMMA 3.8.   IffGCd+1(B(to,2r)xB(to,2r)), then

||/||M(B(io,r)xfl(€o,r)) < C     SUP     fH SUP \Daf(t,V)\.
\a\<d+l t,veB(to,2r)

PROOF. By homogeneity and translation invariance it suffices to consider to = 0
and r = 1. Let <p G C0x{R2d) have support in 5(0,2) x 5(0,2) and be 1 on
B(0,1) x 5(0,1). Then, by Lemma 3.7,

||/||aí(s(o,i)xb(o,i)) < II/^IIm(r"xr<') <C   sup   \[Da(f<p)\\L2
\a\<d+l

<Ci    sup      sup    [Daf(t,r¡)[.    D
i*i<*n iei,i«?i<2

LEMMA 3.9.   If f G Cd+1(Àj x Âfc), then

||/||m(a,xao<C      sup       sup \t\lal\v\m\D1D0f(t,v)\.
\a\ + \ß\<d+l çeÀ,

veÀk

PROOF. By homogeneity it suffices to consider j = k = 0. The result then
follows from Lemma 3.7 by considering f{t, r¡)ip(t)ip(r)), where ip G Co°(A0) with
V> = 1 on A0.     □

Taylor's formula yields the following version of Lemma 3.8.

LEMMA 3.10. Suppose that k > 1 and m > max.(d+l, k). Suppose further that
r < \to\ and f € Cm(B(to,2r) x B(to,2r)) with Daf(to, to) = 0 when \a\ <k-l.
Then

M(B(io,r)xB(<-0,r))<C      SUp      r|a| SUp \Daf(t,v)\
fc<|a|<m £,v€B(£0,2r)

<c(^-)    sup        sup       \to\M\Daf(t,r,)\.    □
\|Ç0|/     \a\<m £,ri€B(£o,2r)

Finally, we give results corresponding to Lemmas 2.2 and 2.3.

LEMMA 3.11.  If {Un}f and {Vn}j° are partitions of U and V respectively,
then

oo

f{t,ri)J2xunit)Xvniv) = sup||/||M([7„xvtt).
M(UxV)
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PROOF. Let g(t,r,) = f(t,v) ET Xun(t)xvn(v)- It is obvious that

II/IIm(C/„xV„) = IMlM(t/„xVn) < IM|/Vf((/xV).
Conversely, suppose that ||/||aí([/„xv„) < 1 for every n. Then there exist represen-
tations f(t,v) = fXn (*n(t,x)ßn('n,x)dpn(x), where pn(Xn) = 1 and

Han|U°°((7„xX„),   ||/?n|U°°(VnxXn) < 1-

Let (X,p) — Y]^ (Xn, pn) and define, with x = (xn)î°>

a(t,x,t) = e2*intan(t,xn),        t&Un,

ß(ri,x,t)=e-2"intßn(v,xn),        rjGVn.

Then fx f^ a(t, x, t)ß(r\, x, t) dp(x) dt = g{t, -7), whence

Hilk<INlL-ll/5||Lc-IHI^i.   a
Let G be a group as in Lemma 2.3.

LEMMA 3.12. Suppose that {Un}neG and {Vn}neG are partitions ofU andV
respectively. Suppose further that ||/||Ai(iymxvn) < o("î _ n) for some a G /1(G).
Then f G M(U x V), with ||/||M < Eg a(n)-

PROOF. As for Lemma 2.3, using Lemma 3.11 (and an extended version thereof
when G is uncountable, a case does not appear in our applications).     D

4. Assumptions on A. For easy reference, we list here in five groups nine
conditions on A that in various combinations will be used in the theorems below.

Homogeneity.
AO. There exists an r > 1 such that A(rt,rrj) = A(t,r)).
In fact, Examples 1-6 satisfy this condition for all r > 0. The slightly weaker

version that we use, following Timotin (1984), allows e.g. a dyadic structure on A
as in (1.18).

While this homogeneity assumption simplifies some of the results, it is not es-
sential and we will also give results without it.

Boundedness.
Al. \\A\\M{AjXAk) < C for all j,k G Z.
In some theorems we need a stronger assumption near the axes.
A2. There exist Ai,A2 G M(Rd x Rd) and 6 > 0 such that

A(t,v) = Ai(t,ri)       for  |r?| < S\t\,
A(t,r,) = A2(t,r¡)       for  [t\ < 6[n[.

REMARK 4.1. Both Al and A2 are satisfied if A G M(Rd x Rd) as in Examples
1-6, but that hypothesis would be unnecessarily restrictive.

REMARK 4.2. In Theorems 5.2 and 7.2 we use a stronger version of Al (which
implies A2). However, this stronger version requires A to vanish at the axes and is
too restrictive for our main applications.

Zero on the diagonal.
A3. There exist 7 > 0 and 6 > 0 such that if 5 = 5(£o, r) with r < 6\to\, then

UWmíbxb) < C(r/\to\V.
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While the value of 6 is uninteresting (if Al holds and A3 holds for some 6 > 0,
then A3 holds for every ¡5 < 1), the value of 7 is of utmost importance and we
often use the notation A3(^y) (always assuming 7 > 0). We use A3(oo) to signify
that A3(7) holds for all 7 > 0. Since M C L°°, the condition A3 implies that, if
|£ —rç| < 6\t\, \A(t, r¡)\ < C\t\~"l\t-rl\'1. Hence 7 can be interpreted as a measure
of the order of the zero of A at the diagonal (cf. also Lemma 3.10 and the examples
in §6, and note that A3 fails to hold for the Toeplitz operators).

Conditions A1-A3 are the only ones needed to obtain "direct results," i.e. suffi-
cient conditions for Tb G Sp. In order to obtain converse results, we need conditions
saying that A is not too small.

Nondegeneracy.
A4. There exists no t ^0 such that A(t + r¡, n) = 0 for a.e. n.
A4 says that Tb really depends on b(t) for every t i1 0, and is obviously necessary

for any converse result. The next condition concerns A close to the axis ■n = 0.
A5. For every £0 / 0 there exist S > 0 and n0 G Rd such that, with U =

{t: \t/\t\ - to/\to\\ < 6 and \t\ > [to\] and V = B(Vo,ë[to\), 1/A(t,r,) G
M(U x V).

A4 and A5 will be used in the homogeneous case (A0 holds). In that case
A5=>A4. Furthermore, for every t > 1 of the form rk,

l^fo.rSo)! = \A(tto,r)o)\ > \\A-l\\-M\Uxvy

Hence A0 + A5 implies that A(t, r¡) does not converge to 0 as n —► 0.
In the nonhomogeneous case we need the following uniform version of A5.
A6. There exist Ci and C2 such that A5 holds with 6 independent of to, \Vo\ <

Ci[to\ and P'^Ia/íc/xV) < C2.
We do not know any simple uniform version of A4 that works for our purposes.

We will instead use the following much stronger condition.
A7. There exist ¿1 and 62 with 0 < <5X < 62 and Ai G M(Rd x Rd) such that

A(t,r1)-1=Ai(t,v)for6i<\r,[/\t[<62.
Note that if A7 holds with 61 = 0, then A6 (and thus A5) holds (we may take

6 = 62 and n0 — 0).
Not zero at the diagonal.
A8. There exists a sequence {£„} such that, with Bn = B(tn,n),

ll^_1||A#(BnxBB)<C, n = l,2,....

Obviously, A8 contradicts A3. If A0 is satisfied, it is sufficient that A-1 G M(BxB)
for some ball 5.

REMARK 4.3. Some of these conditions (e.g. A5), are highly asymmetric in t
and »? and consequently the theorems which result from them (e.g. Theorem 5.3)
will be asymmetric too. Since any result that holds for A(t,r)) has to hold for
A(n, t) as well (take the adjoint of Tb and exchange b for b(—x) and the parameters
s and t (see §5) for each other), this is a defect and should ultimately be remedied
for.

To help the reader to get a quicker grasp of all the various assumptions we
schematically summarize them once more in the form of a table (s = symmetric,
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as = asymmetric):

A0S        homogeneity A4
Al8l      u      a a A5asA2sf      boundedness Aßas nondegeneracy (not too small)

A79 r
A3(7)8    vanishing on the diagonal A8S        nonvanishing on the diagonal

5. Main results. The results will be proved for the more general operator
defined by

(5.1)       (3?/ne) = (^yjkt-riwt^tnrifmdr,.
Here s and t are two real parameters. (In §8 we will also consider complex s and
t.) Although Tbst(A) equals Tb(A(t, V^t^lvl*), the present notation gives added
technical convenience.

Note further that T§* = J-*TbI-*, with Is defined by (2.6). Hence T¿* is
bounded on L2 iff Tb: H~* -* Hs, where Ha is the Sobolev space IS(L2) = Ba.

The following theorem combines Theorems 8.1, 9.1 and 9.2.

THEOREM 5.1. Suppose that A satisfies AO, Al, A3(7), A4 (or Al, A3(7), A7).
Suppose further that 1 < p < co, s + t+d/p < 7 and s,t > max(—d/2, -d/p). Then

T6si G Sp «■ b G B;+t+d/p.    D

Taking s = t = 0 we obtain

COROLLARY 5.1. Suppose that A satisfies AO, Al, A3(7), A4 (or Al,A3(7),
A7). Ifp > 1 and d/7 < p < 00, then TbGSp<*bG 5d/p.    D

We show in §11 that, in general, the condition s +1 + d/p < 7 is necessary for
Theorem 5.1 to hold. In fact, in typical cases Tbst G Sp with s +1 + d/p > 7 only if
Tb8i = 0. In particular, the conclusion of Corollary 5.1 fails in general for p < of/7
(see e.g. Example 4 (with 7 = 1) for d > 2 (Janson and Wolff (1982))).

The corollary also may fail for p = 00, although Theorems 7.2, 9.1 and 9.2 imply
the following more restrictive result.

THEOREM 5.2. Suppose that A satisfies A0,A3,A4 (or A3,A7) and further-
more the following sharpening of Al :

00

(5.2) \\A\\M(AjxAk)<a.(j-k),    with    ^a(n)<co.
—00

Then
TbGSco&bG B^.

More generally, ifO < s < 7, then Tfcs0 G Soo **• T$a G S«, «■ b G 5^.    D

Assumption (5.2) says that A vanishes in a specific way at the axes. This is not
true in most of our examples; for them we have (by Theorems 7.3, 10.1 and 10.2)
a different complement to Corollary 5.1.
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THEOREM 5.3. Suppose that A satisfies AO, Al, A2, A3, A5 (or Al, A2, A3,
A6, A7). Then

Tb is bounded obG BMO.
More generally, ifO < s < 7,

Tb°is bounded on L2 &■ Tb is bounded L2 —► Hs
&bGls(BMO) o rsb GBMO.    D

The corresponding result for T60t holds by duality provided A5 and A6 are re-
placed by their mirror images (cf. Remark 4.3).

When A does not vanish on the diagonal, as in the Toeplitz case, we obtain (by
Theorems 7.4, 12.1 and 12.2) quite different results.

THEOREM 5.4.  Suppose that A satisfies Al, A2, A8. Then

Tb is bounded o b G L°°,        Tb is compact o b = 0.    D

6. The examples revisited. In this section we apply the results in §5 (and
occasionally additional results from later sections) to the examples in §1, using the
lemmas of §3 to verify conditions A0-A8 defined in §4.

Examples 1 (product) and 2 (Toeplitz) satisfy AO, Al, A2 and A8. Theorem 5.4
yields well-known results.

Example 3 (Hankel) satisfies AO, Al and A2. Furthermore, since A(t, r¡) vanishes
when t and r) have the same sign, A3(oo) holds. However, A4 and A5 are not
satisfied, which corresponds to the fact that the analytic part of b does not affect
Tb at all and hence may be arbitrary. Although thus the theorems in §5 are not
directly applicable, partial results follow from the implications proved in §7, and the
complete results (Hb G Soo iff Pb G BMO and Hb G Sp iff Pb G Bp/p (1 < p < 00),
see §1) follow easily using Example 4 below.

Example 4 (commutators) satisfies AO, Al, A2, A3(l), A4, A5. Al and A2 hold
by Remark 4.1, and A3 follows by (with 5 = B(to,r))

(6.1)
\\A{t,ri)\\M(BxB) = \\m(v) - m(to) - (m(t) - w(£o))||m(bxb)

< \\m(r¡) - m(to)\\L°°(B) + \\m(t) ~ m(to)\\L°°(B) < Cr/\to\,

while A5 follows by taking 770 with m(r)0) ^ m(to) and choosing S such that

||(m(»7o) - m(to)) - A(t, v)\\m(uxv)
(6.2) < ||m(f) - m(to)\\L°°(U) + \\m(v) - w(»/o)I|l<»(v)

<C6 < \m(r]0) - m(to)\,

which implies that A is invertible in M(U x V).
When d > 2, A3(l) is best possible; A3(7) does not hold for any 7 > 1. Theorem

5.3 and Corollary 5.1 give the results [b,K] É S„ # i e BMO and [b,K] G Sp
o b G Bp (d < p < 00) stated in §1. Recall that it is impossible to obtain
[b, K] G Sp with p < d (except when [b, K] = 0); this follows by Theorem 11.1.

When d — 1, A(t,r}) vanishes when t an(l V have the same sign, and A3(oo)
holds. Thus we obtain [b, K] G S^ «• b G BMO and [b, K] G Sp 0 b G 5¿/p
(1 < p < 00), which imply the corresponding results for Hankel operators using
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(1.5). Theorem 5.3 yields also that [b,K] maps L2 into Hs iff b G 7s(BMO), and
thus that the Hankel operator Hb maps L2 into Hs iff Pb G Ia (BMO) (0 < s < co).
This confirms a conjecture by Vladimir Peller (personal communication).

Example 5 (higher commutators) satisfies AO, Al, A2, A3(iV) and, except in
degenerate cases, A4 and A5.   This follows by the corresponding conditions for
Example 4 and the fact that M is a Banach algebra.   For example, by (6.1), if
B = B{to,r),
(6.3)

N
~](mj(r)) - mj(t))

N

< II HKfa) - ™Á0)\\m(BxB) < C(r/\to\)N.
M(BxB) 1

We recover the results stated in §1.
Example 6 (higher-dimensional Hankel and Toeplitz) satisfies AO, Al and A2.

In the Toeplitz case, i.e. if int(ri) D int(r2) / 0, A8 holds and thus Theorem 5.4
shows that Tb is bounded iff 6 € L°° and that Tb never is compact.

In the Hankel case, i.e. if ri f~l Y2 = {0}, A(t, r¡) vanishes in a neighborhood of
the diagonal, whence A3(oo) holds. However, A5 never holds and A4 holds only if
Yi - Y2 = Rd, a rather peculiar case, which nevertheless is possible (let e.g. d = 2
and Yi = {(ti, &): |&| < j|6|}, r3 = {iti, &): \ti\ < J|6|». In particular, A4
does not hold if the cones Yi and Y2 are convex. Consequently, Theorem 5.1 and
Corollary 5.1 apply only in exceptional cases and Theorem 5.3 does not apply at
all. (Nor does Theorems 5.2 and 5.4.)

Theorems 7.3 and 8.1 yield the implications b G BMO => Tb G S^ and b G
Bp => Tb G Sp (1 < p < co), but we have no results in the converse direction.
In the one-dimensional case (Example 3) it was possible to obtain converses by
extending the operator (Example 4) and projecting the symbol, but that method
fails in higher dimensions as is seen by the following example. Let d — 2 and
Ti = {(Çi,6): ti <0,t2< 0}, T2 - -ri. Then

(6.4)
\\Tb\\2S2= fí\(2n)-db(t-v)A(t,v)\2dtdV = (2n)-2d f   f   \b(t - r,)\2 dÇ dr,

J J Jri Jr2
/•oo    /-oo

= (2TT)-2d /       \b(tl,t2)\2tlt2dtldt2.
Jo    Jo

This is not equivalent to

ll^ll
r /*oo     /»OO

\Kt)?\t?dt= /     \b(ti,t2)\2(tl + tl)dtidt2
Jt2 Jo    Jo

andTbGS2 ^P2bGB\.
In the next examples A does not have the right homogeneity. This is compen-

sated for by introducing powers of t, f\ or t — it-
Example 7 (Calderón commutators). The commutator [b, K) d/dx equals Tb with

A given by (1.9); hence it equals T01 with

(6.5) A(t,v) = 2I(t >0>v) + 2I(t <0<n).

It is easily seen that A defined by (6.5) satisfies AO, Al, A2, A3(co), A4, A5. Hence,
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by Theorem 5.3 and symmetry, [b,K)d/dx = T601 is bounded ode I1 (BMO) o
I~lb G BMO o db/dx G BMO. By Theorem 5.1,

[b, K]d/dx gSp   iff   6 e 5¿+1/p       (1 < p < co).

The commutator [b, Kd/dx] equals Tb with A given by (1.10), and we rewrite it as
Tdb/dx with

(6.6) A(t, n) = iiit - n))-\\ri\ - \t\) = i^jzzy-

This A satisfies AO, Al, A2, A8. (Al and A2 may e.g. be shown by the argument
for Example 10 below, applied to the quadrants separately.) Consequently, by
Theorem 5.4, [b,Kd/dx] is bounded iff db/dx G L°°, and this commutator is never
compact.

Example 8 (fractional integration commutators). Let us first consider the case
s < 0, i.e. commutators with fractional differentiation. For convenience, we change
the notation to [b, I~s], s > 0. This equals, by (1.12) and (2.6), the paracommutator
T/-.6 with

(6-7) A{t,V)J*^W\e-vi
While it is possible to prove directly that, if 0 < s < 1, A satisfies Al, A2 and
A3(l — s), it is simpler and more instructive to decompose the operator into two
parts as follows. Let <p G Cq°(0, co) with ip(t) = 1 in a neighborhood of 1, and
define

Ms-ier
ie-»?is(6-8) Ai(t,r,)=(l-v(^)^

(,9) *«..>-..($)($-')•

It is easily seen that

(6.10) [b,ra}=Tr-.b(Ai) + Tba0(A2)

and, by Lemmas 3.4 and 3.1, [b,I'a] G Sp iff both Ti-.b{Ai) and Tf(A2) G Sp.
We treat the two pieces separately.

It follows from Lemmas 3.4, 3.5 and 3.6 that Ai satisfies A0, Al, A2, A3(co),
A4 and A5 (A7 holds with 6i = 0). Thus, by Theorem 5.3 and Corollary 5.1,

Ti-b(Ai) GSoo<* rsb G BMO «*• b G Is(BMO)

and
Ti-.b(Ai) GSP<* rab G Bd'p &bG Bap+d/p        (l<p< oo).

Similarly, by Lemmas 3.4 and 3.10, A2 satisfies A0, Al, A3(l), A4. Since A2
vanishes on Aj x Ak when \j - k\ is large, (5.2) holds and Theorems 5.1 and 5.2
show that, provided s + d/p < 1,

(6.11) ifiAa) G Sp «■ b G Bap+d/p       (l<p<oo).
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Theorem 11.1 shows that if Tb°(A2) G Sp and s + d/p > 1, or s + d/p — 1 and
p < co, then b is polynomial and it follows that 6 is a constant and Tb°(A2) — 0.
Summarizing, we have found (cf. Murray (1985))

6e/s(BMO),    0<s<l,
[b, I  s] is bounded

I, b constant, s > 1,

,.  r-„     0   tJ v       Í be Bs+d/p,    0 < s < 1 - d/p,
[b,I  s]GSp(d<p<oo)*>\

( b constant,      1 — d/p < s,
[b, I~s] G Sp (1 < p < d) o b constant,        s > 0.

The only remaining case is p = co, s = 1, i.e. the problem: When is [b, I-1]
bounded? The answer for d = 1 (db/dx G L°°) was obtained in Example 7; the
referee has remarked that the same result (db/dxi G L°°, i.e. b Lipschitz) holds
for d > 2 too, see Coifman, Mclntosh and Meyer (1982, Theorem IX) for the
sufficiency. We obtain less complete results for s < 0. The decomposition (6.10) is
still valid and we obtain by Theorem 5.2 that (6.11) holds provided s < 1 — d/p,
and that Tb°(A2) G Sp only when b is constant for s > 1 - d/p. However, Ai is
not bounded near the axes and our theorems are not applicable to it. Instead we
employ a different decomposition. Let tp G C°°(0, oo) with ip = 1 on (0,1) and
^ = 0on (2, oo), and define

(6.12) A3(t,v)

^)-o-*d))((ir-)-
Then
(6.14) [b, J"s] = T°a(A3) + Tfcs0(A4).

Since A3 and A4 satisfy A0, Al, A3(l), Theorem 5.1 shows that if

max(—(i/2, —d/p) < s < 1 — d/p

and b € Bp+d/p then T0s(A3) and T£°(A4) G Sp, and thus [b,ra] G Sp. Conse-
quently, changing the sign again,

[b, Ia]GSp(d<p<oo)obG Bd/P~a,        0 < s < min(d/p, d/2),

{b constant,     0 < s < d/p — 1,
b G Bd/p-s,    d/p-l<s< min(d/p, d/2).

For s > min(d/p, d/2) we obtain only the partial result that b G 5P'P_S is necessary.
For p = 00 this may be improved to ft € J-s(BMO), because of Theorem 10.2
applied to T¡sb(Ai). The referee, however, has pointed out that these conditions
cannot be sufficient (even for boundedness) when s > d/p.

Example 9 (paraproducts) satisfies A0, Al, A2, A3(oo), A4, A5 (for all versions
given in §1). Hence we obtain the results Tb bounded iff b G BMO and Tb G Sp
iff 6 G Bp     (1 < p < co). However, this is only in part a true application of our
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theory since we use the result that Tb is bounded for b G BMO in the proof of
Theorem 7.3.

Example 10 (A smooth) does not have to satisfy AO, but the estimates (1.20)
have the right homogeneity. Al follows immediately by Lemma 3.9. In order to
prove A2, we define

(6.15) Ao(t,ri) = A(t,r1)-A{t,0).

By (1.20)

\t\Q\D^Aoit,v)\ < \t\a\ri\sup\VvD^A0{t,v')\ < CM Ifl"1,
v'

and, if \ß\ > 0,

\t\°\r,\0\DÎD0Ao(Z,ri)\ = ma\ri\ß\D^D^A{t,v)\ < Caß[r,f\t\-ß.
Hence, by Lemma 3.9,

(6.16) Po||M(AiXAt) < <?2*"'    forj>fc.

Lemma 3.12 yields

Ao(t, V) £ **i (e)XAfc (v) € M(Rd x Rd),
j>k

and A2 follows with Ai(t,r)) = A(t,0) + A0{t,ri)Iiit,ri) € \Jj>kAj x Ak), and
A2 obtained by symmetry.

If furthermore A(£,0)-1 e L°°, i.e. inf |.4(£,0)| > 0, then (6.16) and Lemma 3.12
shows that if N is large enough, then A(t, 0)+A0(t, r))I((t, r¡) G U-,>fc+jv A? x Ak)
is invertible in M(Rd x Rd), whence A7 holds with 61 = 0, and thus A6 holds too.

If / is zero with multiplicity k on the diagonal, i.e. Daf(t, t) = 0 for |a| < k — 1,
then Lemma 3.10 shows that A3(fc) is satisfied. On the other hand, A8 holds iff
f(t, t) does not converge to 0 as |£| —> 00 (because of Lemma 3.8).

Theorems 7.4 and 7.3 yield the results by Coifman and Meyer (1978)

(6.17) b G L°° => Tb bounded,

(6.18) if A(t, t) = 0,    then b G BMO => Tb bounded.

Furthermore, Theorem 7.2 yields (by (6.16))

(6.19) ifA(t,0)=A(t,t)=A(0,t)=0,    then b G 5^ => Tb bounded.

We obtain also by Theorems 12.1, 10.2, 9.1, 9.2,

(6.20) if lim sup [A(t, t) I > 0,    then Tb bounded => b G L°°,

(6.21) if inf \A(t, 0)| > 0,    then Tb bounded => b G BMO,

(6.22) if A7 (or A0+A4) holds,    then Tb bounded =* 6 G 5^,.

Similar results for Sp are left for the reader.
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7. Boundedness.

(7.1) \\b(t-v)A(t,ri)\t\s\v\t\\sao(AJxAk)<[

LEMMA  7.1.   Suppose that A satisfies Al and A3(7) and that s + t < 7.   //
||B»+i < 1, then

C2ati~k\    j<k,
C2t(k-i>,    j>k.

PROOF. By symmetry, it suffices to consider j < k. We consider two cases
separately.

(i) j < k — 2. Let x¡) be a test function with support in {£: \ < \t\ < 8}
that equals 1 on Ao, and define ipk by (2.2). Since t € Aj and n g Ak implies
\t\ < 2i+1 < 2k~1 and thus 2k~1 < \t - r¡\ < 2k+2, Lemma 2.1 and the definition
of 5£+< yield

wkt - '?)iisoo(AJxAt) = initie - v)kt - ^Hs^a^a*)
(7-2) =\\ipk~ïb{t-r,)\[Soo{A.xAk)

<(27r)d||Vfc*6||L=c(R<¡)<C2-(s+t)fc.

Further, by Al,

(7.3)
\\A{t,r))\t\S\v\t\\M(A,xAk) <\\A(t,V)\\M(AixAk)\\\t\S\\L^(Aj)\\\v\t\\L«'(Ak)

< C2sj2tk.

Hence (7.1) follows by Lemma 3.1.
(ii) j = k - 1 or j = k. Let ip be a test function with support in Ao such

that (2.4) holds. Fix I < k and suppose that 2l~k < 6(4 + 2d)-1, where 6 is the
constant in A3. Let Qn be the cube with center 2ln and side 2l for n G Zd. Thus
{Qn} is a partition of Rd into cubes. Note that if m, n G Zd and \m — n\ > 4 + d,
then ipi(t - rj) = 0 for t S Qm, rj G Qn- Furthermore, if \m - n\ < 4 + d and
Qn n Afc t¿ 0, let to e Qn n A*. Then Qm,Qn C B(to, (4 + 2d)2') and thus, by
A3,

(7-4) \\A\M{QmxQn) < C (1I1)" < C2('"fc)\

whence Lemmas 3.1 and 2.1 yield

,- ,, ÛM - V)b(t - »?M(í,»/)lls0o(OmxoB) < C72('-*^||^ * %-
[      ' < C2d-kh-l(a+t)

Consequently, since {Q„}n€z<< is a partition of Rd and {Qn D Afc}neZd a partition
of Afc, Lemma 2.3 applies with a(n) = C2l<'»-,-*>-*'» for |n| < 4 + d and a(n) = 0
for |n| > 4 + d and we obtain

(7.6) \[Mt - ri)b(t - v)A(t,r,)\\s„(R<xAk) < 02«^—«>-*,
provided I — k is small enough.

On the other hand, for every j, Al and Lemmas 3.1 and 2.1 yield

(7.7) \\Mt - r,)b(t - ri)A(C,r,)\\SBBlukjX¿k) < C\\û * 6|U»(R-) < C2-«a+tl
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Since í>¡(t - f?) = 0 on Aj x Ak when I > k + 3, we obtain by (7.6) and (7.7)

(7.8)
fc+2

ii*(e-»?)A(e,»7)iisao(AixAlk)< £ iiA(e-i?)ft(e-'íM(e,i/)iis»(AíxAlk)
¡=-oo

and (7.1) follows.    D

THEOREM 7.1. Suppose that A satisfies Al and A3(7) and that s > 0, t > 0
and s + r < 7. T/ien

(7.9) lï7ril<«B^'-
PROOF. An immediate consequence of Lemmas 7.1 and 2.3.    G
This theorem does not apply when s or í equals 0, and in particular not to

Tb itself.   However, with stronger assumptions on A the theorem extends.   The
appropriate condition is analogous to A3 and implies that A vanishes at the axis:
A(E,0)«jifa,0)«0.

THEOREM 7.2. Suppose that A satisfies A3(7) and the following sharpening of
Al:

(7.10) \\A\\tnAjXth)<aU-k)
with

00

(7.11) ^o(n)< 00.
—00

If s > 0, t > 0 and s + t < 7, then

(7.12) l|ï?*||<C||&||BSo+,.
PROOF. Lemma 7.1 and its proof yield

(7.13) \\b(t-v)A(t,v)\t\s\v\t\\s00(AixAk)<C\\b\\B,Jta(j-k).

Hence Lemma 2.3 applies.    □
REMARK 7.1. More generally, (7.12) holds whenever A3(7) and (7.10) hold,

s + t < 7 and J2T 2_sna(-n) + ¿f 2-tna(n) < 00.
In most cases of interest, A does not vanish at the axes as prescribed in Theorem

7.2. As a substitute we prove the following BMO result, which is sharp in many
applications. We may assume that t = 0, since the case s = 0 is the same by
symmetry (and the case s > 0, t > 0 is covered by Theorem 7.1). We take both
the decomposition technique and a crucial special case from Coifman and Meyer
(1978).

REMARK 7.2. Another substitute, in which L2 is abandoned and replaced by
a pair of Besov spaces, follows immediately from Lemma 7.1: If A satisfies Al and
A3 and b G B^, then Tb maps S^1 into 5§°°. For Hankel operators (Example 3),
this (and a converse) is Janson, Peetre and Seemes (1984, Theorem 1).
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THEOREM 7.3. Suppose that A satisfies Al, A2 and A3(7) and thatO < s < 7.
Then

(7.14) ||r;°|| < CII&II/./bmo) = C||/-s6||bmo.
PROOF. Let 6,Ai,A2 be as in condition A2. We may assume that 6 < (2d+l)-1.

Choose <p G Crj°(R) with support in (-6,6) and <p = 1 on (0,6/2). Then .4 =
A3 + A4 +A5, where

(7.15) A3(t,v) = <P (j||) ¿tf,»,) = p (j||) Ajie.iy),

(7.16) A4(t,ri) = V (j|) A(e)t7) = <P (J|) Aa (&•?),

-*(»)(7.17) A5(t,rl) = Tp[j^)A(t,rl),    where tf(t) - 1 - p(t) - <p(l/t).

We study the three pieces separately, thus treating the three problematic sets, viz.
the diagonal and the axes, one at a time.

Since ip € Co°(0,00), Lemma 3.4 implies that A5 satisfies Al and A3(7). Fur-
thermore, A5(t,r¡) = 0 on Aj x A^ when \j — k[ is large enough (> 2 — 2log¿>).
Consequently, Theorem 7.2 yields

(7.18) \\Tba0(A6)\\SaB < C\\b\\B¡o < C1||6||/.(bmo)-

Next, let G G M(Rd X Rd) be the function constructed in Lemma 3.6. Then

(7.19) b(t - r,)A3(t,v)\t\" = \t - r)[sb{t - r,)G(t - vM\v\/\t\)Ai(t,v)-
Furthermore, let Aq be as in (1.17) and satisfying (1.14) (the different <p have
different meanings) (see §1, Example 9). Then, provided 6 is chosen small enough,

(7.20) p{\rt\/\t\) = p(\v\/\t\)A6(t,v) = (1 - rP{\v\/\t\))Ae(t,r,)-
Consequently, with ß = I~sb,

(7.21) b(t - r,)A3(t,r,)[t\s = ß(t ~ ri)A6(t,r,)(l - ^(\ri\/\t\))G(t,v)Ai(t,v).

Thus, by Lemma 3.2 and Coifman and Meyer (1978, Theorem 33, p. 144),

m°(A3)\\Soo < ||1 - ^IWiei/llMllGllMPillMllWe)!!^
1 '    ' <C||/3||bmo = C||6||/5(bmo).

A4 is treated similarly using Lemmas 3.5, 3.6 and

Ht-ri)A4(t,v)\t\s

(,23,     .K-^f-^d)/,.«.,,^)-^)-
= ß(t - V)A6(V, t)(l-ï> (||)) A2(t, V)F(V, t)G(v, t).    □

The final theorem in this group does not require A3, and thus applies to Toeplitz-
type operators.
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THEOREM 7.4.   Suppose that A satisfies Al and A2. Then

(7.24) ||Ï6||<C||6||Lcc.

PROOF. We proceed as in the proof of Theorem 7.3, and make the same decom-
position A = A3 + A4 + A5. The argument above yields

(7.25) \\Tb(A3)[\Soo + \\Tb(A4)\\Soo < CH&Hbmo < C|l%-

Furthermore, since A$ satisfies Al and vanishes on Aj x Ak when \j — k\ is large,
Lemma 3.12 yields A5 G M(Rd x Rd) and thus

(7.26) ||r6(A5)||s00<||A5||Ai||Â(e-»/)l|s0<)=C7||6||L-.    □

8. 5p-direct results.

THEOREM 8.1. Suppose that A satisfies Al and A3(f). Suppose further that
1 <p < oo, s + t + d/p < 7 and s,t > max(-d/2, —d/p). Then

(8.1) l|ri*||sp<C||6||B.+,+-/p.

The case p = oo is Theorem 7.1. We treat also the cases p = 1 and p = 2
separately.

LEMMA 8.1. Suppose that A satisfies Al and A3(7). Suppose further that
s,t> -d/2 and s + t + d < 7. Ifsuppb C 5(0, R), then

(8.2) IIT^IU, <CÄ»+'+<l||&|Ui.

PROOF. By homogeneity, we may assume that R = 1. Assume further that
||6||i,i = 1. Let Qn denote the cube with center n and side 1, and let Qn denote the
concentric cube with side 3 for n G Zd. Thus, if supp/ C Qn, then supp(T6st/)A C
Qn. If \n[ > Zd/6, then ll^llMiônxQn) < C|nl"1 by A3, and thus, using Lemmas
3.1 and 3.3,

m-v)A(t,v)\t\a\v\tXQM\\sl(K"xR'')
= \\b(t-rl)A(t,rl)\t\a\v\t\\sl{QnXQn)

(8.3) < [\b(t - v)\\MiK<xH<)\\A\\Ml<)nXQn)\\ lerM'IUrônX«,.)
£CM-,iiieriiiïiA(ô-xo.)
= C|n|-»|| \t\s\\LHQn]\\ WUlhq») < Ci\n\-^a+K

This is good for n large. When n is small, we use the standard dyadic decomposi-
tion. By Lemmas 3.1 and 3.3 and Al,

iwe-^e^ierM'ik^xA*)
(8.4) <C|||€Hi7|*||Sl(A,xA.)

= c\\ leni^tA,)!! |i7|*IIl»(ao - Ci2^a+d/2hk^+d/2\
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Put E = lj|„|<3d/i Qn and É = lj|„|<3d/i Qn- Since EcÉc IJ^ Afc for some
TV < co, it follows that

(8.5)
Si(ExE)

wHt - vw&TiMnrirxEwwsiiR'xTi')
= \\b(t-v)A(t,v)\t\s\v\t\\Sl{ÈxE)

N N

b^-n)A(t,v)\t\a\v\tJ2x^(0T,XAkiv)
—oo —oo

< EEH^-vM&vM'WWsa*****) < c-
—oo —oo

By (8.5) and (8.3),

(8.6) \[b(t-v)A(t,v)\t\9\v\t\\si<C + C    ¿2    |n|-^+t = C.    □
|n|>3d/6

If 6 G Ba+t+d, and b = J^bk is a dyadic decomposition as in (2.5), then Lemma
8.1 yields
(8.7) \\Jf ||Sl < EM* <C^2fc(a+í+d)||6fc||L1 =C||6||Bj+,+<.

* k
REMARK 8.1. The argument above is a standard method to prove that a linear

mapping T into a Banach space E is bounded on 5f ; if homogeneity of the right
order applies, it suffices to show ||T(,||£; < C||ft||i,i when suppft lies in a fixed
ball (or annulus). In fact, if further translation invariance holds, as in this case,
then it suffices that T6o € E for a single suitable function bo, because 5f is the
minimal translation and dilation invariant Banach space that contains bo, and thus
5? C {b: Tb G E} (see e.g. Peetre (1985a), (1985b) for further remarks on
minimal spaces).

The computations for 52 are, as usual, simple, and we can use simpler assump-
tions on A than Al and A3. Note that condition (8.8) below is unsymmetric only
in appearance in view of the boundedness of A.

LEMMA 8.2.  Suppose that A is bounded and

(8-8) \A(t,v)\<c(^^y.
Ifs,t> -d/2 and s + t + d/2 < 7, then
(8.9) ||Tlft||s2<C||6|L.+.+<i/2.

Proof.

(8.10)

|lflll2= (2n)-2dJJ\b(t-v)A(t,v)\t\s\v\t\2dvdt

= (27T)-2d J \b(t)\2 J \A(t + V, r?)|2|£ + ,7|2sM2t dr,dt

<c||6(0|3|minfl,(j|j)    ]\t + v\2"\v\Mdvdt

= CiJ \b(t)\2\t\2s+2t+ddt = C2\\b\\2B,+t+d/2.   D
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Completion of the proof of Theorem 8.1. We use interpolation between the al-
ready proved cases p = l,2,co. For 2 < p < co we may argue as follows. First,
extend the definition (5.1) of Tbl to arbitrary complex s and i. It is clear that

(8.11) imriiSp = iiif-^iisp,
because the factors |f |,Ims and |r7|tImt correspond to unitary operators. Let so and
to be real numbers such that so + to + d/2 < 7, so > —d/2, fo > —d/2, and let si
and t\ be two real numbers such that si + £1 < 7, si > 0, ii > 0. For 0 < Rez < 1
put s(z) = so(l - z) + siz, t(z) = io(l - z) + tiz, l/p(z) = Re(l - z)/2 + Rez/co,
and
(8.12) T(z)b = Tab{z)'t(z).

Then {T(z)} is an analytic family of linear operators (mapping functions into oper-
ators), and by interpolation T(z) maps .BP(z)ReS(2)+Ret(*)+d/p(z) into Sp(z) because
this is so if Re z = 0 (Lemma 8.2) and if Re z — 1 (Theorem 7.1). Choosing z real,
0 < z < 1, and rewriting s — s(z), t = t(z), p = p(z), we have s +1 + d/p < 7,
s > —d/p, t > —d/p. Conversely, any p G (2,00) and any pair s, t subject to these
inequalities can be recaptured in this way with appropriate choices of z, so, to, si,

The case 1 < p < 2 is similar.    D

9. Converse results: Besov spaces. We prove converses to Theorem 8.1,
under appropriate conditions on A, by duality (cf. Peller (1980)). We therefore
consider besides the kernel A, a second kernel Ai. The main step is contained in
the following lemma.

LEMMA 9.1. Suppose that 1 < p < 00, s and t real, 1/p + 1/q = 1, 71 >
si +ti + d/q and Si,t\ > max(-d/2, —d/q). Suppose further that Ax satisfies Al
and A3(7i) and let

(9.1)     w(t) = Ifl—t-i-t.-* j A(t + r,,v)Ai{t + r,,V)\t + v\s+SlM'+tl dr,.

Then

(9.2) iimIbp+'+^ ̂ erais,-
PROOF. Theorem 8.1 gives

(9-3) \\Taitl{Ai)\\Sq < C|M|fl.I+,1+,/,.

Furthermore, with o = s + si+t + ti+d and ß(t) = b(t)w(t),

(2n)2dTr(T§t(A)TaiU(A1)t)

(9.4)

= JJ ¿if - v)W:rv)A(t, v)Ä^tÄ!)\t\s+Sl \v\t+tl dtdV

= JJb(t)W)A(t + V,ri)Ai(t + V,v)\t + ri\s+ai\v\t+tl dtdn

= / b(t)W)\t\aHt) dt = J(i-aßr(t)W)dt = (2*)d(r°ß, g).
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Consequently,

\(r°ß,g)\ = C\T)r(Tba\A)T^{Ai)n\<C[\Tba\A)[[sJ[T^(Ai)\\Sq
( • } <q|Tf(¿)||Sp|M|B,1+11+d/,.

Since g is arbitrary and (5£)* — 5~" (with a standard modification if q = co),
this implies

(9.6) H/9IL.+.+-/P = ||r*j9|L-.,-.,-«/, < C\[Tbat(A)[\Sp.    Op
Let M(Bp) denote the algebra of Fourier multipliers on Ba, i.e. {w: b —* (wb)A is
a bounded operator in Bp}.

REMARK 9.1. It is easy to see that M(Ba) is independent of s, and that w G
M(Bp) iff wtj)k are Fourier multipliers on Lp, uniformly in k, where %pk is as in (2.2).
In other words, M(Ba) may be viewed as a "Besov space" based on the space of
multipliers on Lp (cf. Peetre (1976)).

In order to obtain the sought implication from Lemma 9.1, we need to know that
w-1 G M(Bp 'p). In the homogeneous case, we can use the following Tauberian
result.

LEMMA 9.2. Suppose that w G M(Ba) for some s and that w(rt) = w(t) for
some r > 1. Ifw(t) ^ 0 for t ^ 0, then w'1 G M(Bp) for all t,p, 1 < p < co.

PROOF. L1 = {/: / G L1 (Rd)} is a Banach algebra (without unit) with maximal
ideal space Rd. Let A = {£: 1 < \t[ < 8r} and let I = {f G L1: f(t) = 0 on A}.
J is a closed ideal in L1 and L1 /I = {/|a: f G L1} is a Banach algebra (with unit)
whose maximal ideal space equals I.

Choose tp G Cq° with support in a larger annulus such that <p = 1 on A. Then
tp G Bf, whence w<p G Ba and w<p G L1. Thus w\& = w<p\& G L1 /I. Since w ^ 0
on the maximal ideal space A, w_1|a € L1 /I, i.e. there exists h G L1 with h = w-1
on A.

Suppose that tip is a test fonction supported in A0 that satisfies (2.4), with Vfc
defined by (2.2). Let ß G Blp and b = w^ß. If Àk C A, then

tpk*b = t/)kw~xß = h%f>kß = h * ipk * ß,

and thus

(9.7) \\Tpk*b\\LP<\\h\\Li[\xl;k*ß\\L,.

By homogeneity (each A* C r°A for some j), (9.7) holds for every k.   Hence
IHIbp<C||/?IIbp.   □

THEOREM 9.1. Suppose that A satisfies AO, Al, A3, A4. Then, for all real s
and t, and 1 < p < oo,

(9-8) ll*llB;+.+-/p<C||T6rt||Sp.

PROOF. Choose si and ii such that si,ti > 0 and s + si, t + ti > 0. Choose
s' = t' such that -d/2 < s' < f/2 - d/2 and s' < 0. Let s[ = s + si - s' and
t\ = t + ti — t'. Find an integer k such that (2k — 1)7 > max(si + t\ + d, s', -I-1\).
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Let Ai(t,r¡) = A(t,t])kA(t,v)k *• Then Ai satisfies Al and A3((2fc - 1)7). Let
p' = 1, ef = 00. Lemma 9.1, applied to p',s',t',..., and Theorem 8.1 yield

(9.9) \\bw\\ê..+t.+d < CWT^'Ws, < C||6||fl..+«»+d.Di Di

Thus w G M(Ba +t +d). w is homogeneous by AO and w > 0 by A4. Hence
Lemmas 9.2 and9.1, this time applied top,s,t,... (which gives the same w because
s + si = s' + s[ and t + ti = t' + t[), yield

(9.10) ||6||b;+.+-/p<C'||H|ô.+,+-/, <Ci||7^*||Sp.    D

In the nonhomogeneous case, the Banach algebra argument in the proof of
Lemma 9.2 shows only that w_1 locally is in L1, but not the required uniform
norm estimates. Such estimates can be obtained from smoothness conditions on w,
and thus from smoothness conditions on A. We will, however, not pursue this, but
prove instead the following result.

THEOREM 9.2. Suppose that A satisfies ATI. If s and t are real numbers and
1 < p < 00, then

(9.11) H6||B;+.+-/p<C||3]ft||Sp.

PROOF. Let 6i,62,Ai be as in A7 and let tp G Cq°(0,co) with suppys C
i6i,62)\{l} and tp not identically 0. Then, using Lemma 3.4, £>(|»?|/|£|) G
M(Rd x Rd) and satisfies AO, Al, A3(co), A4 and we obtain by Theorem 9.1
and Lemma 3.1

(9 12) l|6||Bp+1+d/p - ClWMH/KDilk = C\\Tbat(p(\V\/\t\)AiA)\\St,
<CMW\t\)\\M\\Ai\\M\\Tn\sp.    □

10. Converse results: BMO; the lost theorem. * In the preceding section
we proved in particular that (under appropriate conditions on A), Tb bounded
=► b G 5^,. While this sometimes is sharp by Theorem 7.2, it is in other cases
possible to improve this to b G BMO and to obtain a converse to Theorem 7.3.

THEOREM 10.1.  Suppose that A satisfies AO, Al, A3, A5. Then

(10.1) l|6||/.(BMO) = l|/"Sb||BMO < C||T6S0||.

PROOF. Note that A5 and A0 imply that if to # 0, k is large enough and n G V,
then (rkto + r),n) G U xV and thus A(to + r~kn,r~kn) = A(rkto + r],r}) ^ 0.
Thus A4 holds, and Theorem 9.1 yields

(10.2) ||6||BSo < enroll.
For simplicity, we assume that s = 0 and indicate the modifications when s ^ 0 at
the end of the proof. We further assume that ||T¡,|| = 1. We have to show that for
every ball 5 in Rd, there exists a constant aB such that

(10.3) f \b-aB\ <C\B\.
Jb

*Lost, not last. The proof of this theorem was found by one of the authors but then the other
author mislaid the manuscript. This delayed further progress for more than a year.
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By homogeneity, it suffices to prove (10.3) for 5 = 5(0,1). Let |£o| = 1 and let
6, r)o, U, V be as in A5. If / G L2 with supp / C V, then

\\b * f\\ù'(u) =
(10.4)

ÎA{t,v)-1HÇ-v)A(t,v)f(ri)dri
J L'(U)

< (2ir)d\\A-1\\M{UxV)\\Tb\\\\f\\LHv) <C||/|U,2.

Hence, if g G L2 with supp g C 5(0,6), we obtain by letting f(n) = g(r] — r/o),

(10.5) \\bg\\LHu_Vo) = (27r)-d||6*s||L2([;_f)o) = (27r)-d||6* f\\L,(u) < C\\g\\L*.

By compactness, we may choose a finite number of points to > • • • » £o on the unit
sphere such that the corresponding sets U^ cover {£: |£| > 1}. Then

{J{U^-V^)D{f. \t\>R}
J=l

for some large R. We fix g G L2 with |ff(x)| > 1 when |a;| < 1 and supp ¡7 C 5(0, e),
where e = mim-xN 6^\ Then

N

(10.6) \\bg\\mn<\mo,R)) < E H^Hl^c/o)-^)) < c.
1

We may assume that e < 1 and R — 2m for some m > 1. Since H^Hbo, < C
by (10.2), b = J2-oobk where suppèfe C Ak and ||6fc||L<» < C (cf. (2.5)". Put
b- = Z-Z?bk and b+ = £~_26fc. Then supp^) = suppfê * b.) C 5(0,5),
whence

(10.7) II¡?&+||l2(R<<\B(0,R)) = II^IL2(Rd\B(0,R)) < C-

On the other hand, supp gbk D 5(0, R) = 0 for k > m + 2. Thus
00

HffMU2(B(0,R)) ^   E  llsMU2(B(0,R))

(!0-8) Zll m+l
< J2\\gbk\\L'<CJ2\\bk\\L,o<Ci.

771-2 m-2

Hence, combining (10.7) and (10.8),

(10.9) \\b+[[LHB(o,i)) < I|0&+IIl»(R") = (27r)-d/2||iJ6;||L2 < C.

For ¿>_ we use the standard estimates

(10.10) ||V&fc||00<C2fc||ftfc||00<C12fc,

and thus, if |x| < 1,
771-3

(10.11) \b-(x) - 6-(0)| < J2 HVöfclloo ^ C-
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Consequently,

(10.12) f \b - 6_(0)| < [ \b- - 6-(0)| + \\b+\\LHB) < C.
J B JB

This completes the proof when s = 0.
For s j¿ 0, we define ß — I~a(b) G 5^ and use Lemma 3.6 and

ß(t -ri) = Ait^rWt - r)[/\t\Ykt - v)A(t,r))\t\a
on U x V to conclude as above that ß G BMO.    D

In the nonhomogeneous case we use the same argument and Theorem 9.2.

THEOREM IO.2.   Suppose that A satisfies A6, A7. Then

(10.13) IHI/.(bmo)< enroll,  d
REMARK 10.1. The second half of the proof above contains a result on the

space BMO which perhaps is of independent interest. It may be stated as follows:

PROPOSITION. Let b G B%£° and assume that there exist constants C and R
such that

(10.14) ll^r,IO|U2(R^B(0,fi/r))  < Od/2

for any xo G Rd and r > 0. Here gTtXo(x) — g((x — Xo)/r) and, as before, g is a
fixed function in L2 with [g(x)[ > 1 for \x\ < 1 and supp g C 5(0, e) for some e > 0.
Then b G BMO.

PROOF. In view of translation and dilation invariance, it suffices to show that
(10.3) holds for 5 = 5(0,1) with a constant that depends only on ||£>||b°, and C
and R in (10.14). This was done in (10.7)-(10.12) above (solely utilizing (10.14)
for r = 1, xq = 0).    D

The point of this proposition is that it is often exceedingly simpler to verify that
a function is in B0^ than that it is in BMO.

11. The order of the zero at the diagonal. The conditions s +1 + d/p < 7
in Theorem 5.1 and s < 7 in Theorems 5.2 and 5.3 can in general not be relaxed.
In fact, the typical case is that (choosing 7 in A3 as large as possible), Tbst never
belongs to Sp when s + t + d/p > 7 and p < co, or when s + t > 7 and p = 00
(except when Tbl = 0). More precisely we have the following result. For simplicity
we only consider the case when A is homogeneous and C°° at the diagonal.

THEOREM 11.1. Suppose that A satisfies A0 and is infinitely differentiate in
a neighborhood of the diagonal {(t,t)'-t ^ 0}. Suppose further that k > 1 is an
integer such that

(11.1) DaA(t,t)=0    for\a\<k-l
but for each to # 0 there exists ^i/0 with

(11.2) DkoA(ti,ti)¿0.
Then, ifTbst G Sp (1 < p < 00) one of the following three conditions holds:

(i) s + t + d/p < k and p < 00,
(ii) s + t < k and p = 00,
(iii) b is a polynomial.
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Before giving the proof we make some remarks. Note first that (11.1), Lemma
3.10 and homogeneity imply that A3(fc) holds, while (11.2) implies that A3(7) does
not hold for any 7 > k. Hence 7 = k is the best possible value.

An obvious technical defect in the theorem is that (iii) does not read aTbat —
0" as we have led the reader to expect. In fact, in most applications, if b is a
polynomial then either T^ — 0 or Tbl is not bounded, but that depends on the
precise definition of Tfcst. Recall that if b is a polynomial, then b is supported by
{0}, whence b(t — r¡) is supported on the diagonal where A(t,r¡) vanishes. Hence
some care is required in interpreting (0.1) or (5.1). In any case, the operator can be
written (Tbstf)A = ^2maDaf. Such an operator is bounded iff ma = 0 for |a| > 1
and m0 G L°°, and it is never compact unless it vanishes. Hence no problem should
arise when p < co, but in Example 11 below we will exhibit an operator of the type
T¿" with b a polynomial that is bounded without being zero.

Note further that for p < 00 we have obtained a dichotomy (provided all other
conditions hold): If s + t + d/p > k then Tb* G Sp is impossible by the present
theorem, and if s +1 + d/p < k = 7 then Theorem 5.1 applies. However, for p = 00
there is a gap since Theorem 11.1 allows s + t = k. In fact, in general there are
many bounded operators Tb9t with s +1 = k (see Example 8, §6 with d = 1 and
s = 1 where Tbw(A2) € $» iff db/dx G L°° (here k = 1)). This example also
implies that neither Theorem 5.2 nor 5.3 extends to s = 7.

PROOF. For simplicity we assume that A is homogeneous, i.e. AO holds for every
r > 0. The general case is similar. By the homogeneity and a compactness argument
there exists e > 0 such that if Y = {(t, r¡): \t - v\ < e|f|}> then A G C°°(Y) and

(11.3) \DaA(t,v)\<Ca\t[~a,        (t,ri)GY.

Assume that (iii) does not hold. Let to €E supp ft with £0 ¥" 0 and let ti be
such that (11.2) holds. By continuity and homogeneity there exists a cone W =
{t:\t/\t\-ti/\ti\\<6}with

(11.4) \Dk0A(t,t)\>c\t\-k,    whentGW.

Thus, if t G W and |£| is large enough, by Taylor's formula, (11.1), (11-4) and
(11.3),

(11.5)   m+e°'e)l - hw°A«> ^~wny. ¿g, K+1^+*»• ̂
>c1ierfc-c2|£|-fc-i>c3|/;rfc.

Furthermore, if 0 < r < 1/2 and ti € W, define temporarily f(t,v) =
A(t + to,v) ~A(ti + to,ti) and conclude from Lemma 3.10 (using f(ti,ti) = 0),
Taylor's formula, (11.1) and (11.3) that, provided \ti\ is large enough,

(11.6)
ll/l|Af(B(£1,r)xfl(€l,r))<C        SUP        r™ SUP \Daf(t,r,)\

l<\a\<d+l í,rjeB(€i,2r)

<Cr   sup sup \DaA(t,r])\<Cir\ti\-k.
M<d+iÉ,»,eB(€i,i-f-|€o|)

We may by (11.5) choose r small enough (independent of ti) such that the right-
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hand side of (11.6) is smaller than ±\A(ti + to, ti)\- Consequently, A(t + to, v) =
A(ti+to,ti) + fit,ri) is invertible in M(B(ti,r) x B(ti,r)) and

ill 7) \\A~1\\M(B(il+So,r)xB(£l,r)) = \\A(t + to,V)~1\\M(B(£ur)xB(£1,r))

<2|A(6 + £o,6)r1<cieii",
provided ti £ W and |£i| is large enough.

Let E = {n G Zd D W: \n[ > N}, where N is a sufficiently large constant, and
define Un = B(n + to, r) and Vn = B(n,r) for n G E. Let
(11.8)

\ 0    otherwise.
|n|s+t-fc|£rsM~t4(£,'?)~1    if t S Un, V G Vn for some n € E,
0

Since, by (11.7),

(11.9) \\Ai\\M{UnXVn) < C|fi|»+*-*|n|-|n|-*|n|* = C,
Lemma 3.11 yields Ai G M(Rd x Rd). Consequently,

Pi||M||7f||Sp > \\b(t-v)A(t,v)\t\a\v\tAi(t,r1)\\Sp

(11.10) Sp
kt-v)yE\n\3+t-kXun(t)xvM

E

= II \\b{Z - ^)l"|S+í_feHSp(i7„xV„)ll¿P(B)
= |||n|S+t-fc||íp(£;)||e(e-r?)||Sp(B(ío,7-)xB(0,r))-

Since to G suppè, b(t — r¡) does not vanish on 5(£o,»") x 5(0,r), and (11.10)
implies that {|n|s+t_fc} G lp(E). Thus p < oo and s + t - k < -d/p or p = co and
s +1 - k < 0, i.e. (i) or (ii) holds.    D

EXAMPLE 11.   Let d = 3.   Then Tbf = Afc • I2f + d3b/dxidx2dx3 ■ I3f is a
paracommutator with

(11.11) A(t,r,) = -\t - r)\2\v\~2 - iiti - m)(t2 - f?a)(& - VsM'3-
This A satisfies the conditions of Theorem 11.1 with k = 2. However, if b is
the polynomial xix2x3, then Tbf = I3f and thus T630 = Tb03 equals the identity
mapping on L2. Thus T630 € Soo although 3 + 0 > k.

ACKNOWLEDGMENT. The proof above is partly based on ideas by Peng (per-
sonal communication).

12.   Toeplitz-like operators. We consider again the case when A does not
vanish on the diagonal.

THEOREM 12.1.   Suppose that A satisfies A8.  Then \\b\\L<=° < C\\Tb\\.
PROOF. With Bn as in A8 and B'n = 5(0, n),

(12 1)      "^ " ^HS~(B"XB") = l|6(£ " ^) 11 «oo (BnxBn)
<\\bi^-v)A{t,v)\\sJ\A-1\\M{BnXBn)<C\\Th\\.

Thus [ffb(t - ri)f(ri)g(t)\ < C\\Tb\\ ||/|U2||ff||L2 when / and g have support in
B'n. Since n is arbitrary, this holds for all / and g with compact support. Since
such functions are dense in L2,

(12.2) Ufo - »7)11*» <<7||r6||.
The proof is completed by Lemma 2.1.    D
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THEOREM 12.2.  Suppose that A satisfies A8. IfTb is compact, then 6 = 0.

PROOF. Fix r > O. It is possible to find a sequence {tn}i° such that the balls
B'n = B(t'n,r) are disjoint and H^llMtBi.xB;,) < C, n = 1,2,.... (We can
achieve this by induction, taking t'n as any point in B(tN, N - r)\ \Jn_1 B(t'k, 2r),
where N is such that this set is nonempty (any N > 2rn will do).) Let

(12.3) *«.,)-{ *«•""'    "f'|£U"ff-Xff"
( 0 otherwise.

Then Tb(AAi) is compact by Lemma 3.2.   Let / and g belong to L2 and have
support in 5(0,r) and define fn(t) = fit - tn), Unit) = Ùit ~ t'n)- Thus /„ and
gn have support in B'n, whence

(2n)d{Tb(AAi)fn,gn)= JJkt-v)A(t,v)Ai(t,v)fn(v)ÛO

(12.4) =//te"»/)/»(ÄÖ

=// b(t-r,)ñv)9it) = (b*f,9).

On the other hand, {/„} is a bounded sequence in L2, whence {Tb(AAi)fn} is
relatively compact. Furthermore, {gn} is bounded and converges weakly to zero.
Hence (Tb(AAi)fn,gn) —* 0 as n —> co, and (12.4) yields

(12.5) (b*f,g)=0.
Since r is arbitrary, (12.5) holds for all f,g G L2 with compact support. Conse-
quently £> = 0.    D

13. Compactness. The theorems in §§7 and 8 yield as corollaries sufficient
conditions for compactness of paracommutators. Peng (1985) has shown that,
under suitable assumptions on A, these sufficient conditions also are necessary (i.e.
that converses to the theorems below hold). See Uchiyama (1978) for the case of
commutators (our Example 4).

Let blc denote the closure of the test functions S in B3^ and let CMO denote
the closure of 5 in BMO.

THEOREM 13.1. Suppose that A satisfies Al and A3(7) and that s +1 < 7
and s,t > 0. Ifb G &£+', then Tbst is compact.

PROOF. Let C denote the set of compact operators. Choose p so large that
s + t + d/p < 7. By Theorem 8.1, the mapping b —» Tbl maps 5J+* —► 5«, and
S C Bp+t+ 'p —► Sp C C. The assertion follows because C is closed in S«,.    D

Results for the case s = t = 0 are obtained similarly using Theorems 8.1 and 7.2
or 7.3. (Similar results for Tb° are left as an exercise.)

THEOREM 13.2. Suppose that A satisfies A3 and (7.10)-(7.11). Ifb G í£o then
Tb is compact.    D

THEOREM 13.3. Suppose that A satisfies A1,A2, A3. If b G CMO then Tb is
compact.    D
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14. Supplement. We have defined paracommutators as integral operators on
the Fourier side (in the "phase" variables t, v)- But in practice one often encounters
kernels in the "configuration" space (variables x, y) of the type

(14.1) k(x,y) — a(x- y)b(ux + vy),        (u + v = l)

or linear combinations of such, e.g.

(14.2) k(x,y) — \ a(x-y)b(ux + vy)dp(u,v)
Ju+v=l

with some measure p. Let us check that such kernels indeed define paracommuta-
tors. If, quite generally, g(x) = fRd k(x,y)f(y)dy, then

g(t) = (2ir)-d f   k{t,-ri)f{r,)dr,.
Jr*

In the case of the kernel (14.1) we get

k(t, -r,) = if e'ixi+iyva(x - y)b(ux + vy) dx dy

= ff e-i^+z^+iyna(z)b(uz + y) dz dy

= ff e-i{w-uz)^'T')-i^a(z)b(w) dzdw = b(t - rj)à(vt + ur¡).

With (14.2) this gives

Ht, -Vi) = te -V¡) ¡ à(vt + un) dp(u, v)
J u+v=l

corresponding to a paracommutator with

(14.3) A(t,v)= f â(vt + ur,)dp(u,v).

EXAMPLE 12. In the case of a Calderón-Zygmund commutator [b, K] (Example
4, §1) we have p = 6(1,0) - 6(0,1) so (14.3) gives A(t, v) = m(ri) - m(t) (m = K)
in complete agreement with (1.3). Examples 7 and 8 are covered similarly. (The
higher commutators (Example 5) though require a more evolved apparatus.)

EXAMPLE 13. Coifman and Meyer (1978, Proposition 4, pp. 160 161) consid-
ered the operator

{l¡a\^) + b(x-t)-2b(x)f{x_t)dt= ¡- b(2x-y) + b(y)-2b(x)mdy
J-oo * J-oo (x   y)

and proved that it is bounded on L2 (R) when db/dx G L°°. This is an operator of
the above type with a(x) = x~2 (in the principal value sense) and p = 6(2, —1) +
6(0,1) - 2(5(1,0). Since â(t) = -n\t\, (14.3) shows that the operator (14.4) is the
paracommutator Tbf with

(14.5) A(ttn) = -*(\2n-t\ + \t\-2\ri\).
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We rewrite Tb as -27rT610(^i), with

(14.6) A1(t,v) = ~\t\-1A(t,v) = \
1, Vit < o,
1-2^/t,    0<V/t<l/2,
0, 1/2 < r,/t-

It is easy to prove (using Lemma 3.5 and a modification of the proof of Lemma 3.4)
that Ai satisfies AO, Al, A2, A3(co), A4, A5. Hence Theorem 5.3 shows that the
operator (14.4) is bounded iff J_16 G BMO, i.e. iff db/dx G BMO. Theorem 5.1
shows that it belongs to Sp iff b G 5¿+1/p (1 < p < oo).

EXAMPLE 14. Jean Bourgain (personal communication) has considered opera-
tors of the type

(14.7) j'a(x-y)b(ï±^f(y)dy,

in fact, in the special case d = 1, a(x) = 1/x.   Thus his case, by (14.3), is the
paracommutator Tbf with

(14.8) A(t,v)=â(^-)=-i7rsign(t + v)-

A8 is satisfied and Theorems 12.1 and 12.2 apply. However, Al is not satisfied
(because of the jump at {(t, v)' t = ~v}) and we do not know whether b G L°° is
sufficient to make the operator bounded.

Returning to the general operator (14.7), we may subtract an expression
(bk + Kb)/2, where K denotes convolution with a. We are led to consider ker-
nels of the form (—¿ times)

(14.9) a(x-y)(b(x)+b(y)-2b M
which we, with the formal parallel with the Weyl calculus (see e.g. Hörmander
(1979), (1985, Chapter 18)) in view, call Weyl commutators. For them (14.3)
yields (m — â)

(14.10) A(t,r)) = m(t) + m(r})-2m m-
Again, the present theory is not directly applicable, but results for a range of p
may be obtained by a different method.

Let us return to the general formula (14.2) and define

b,i(x,y)= b(ux + vy)dp(u,v).
Ju-\-v=l

For the Hilbert-Schmidt norm of the kernel k = a(x — y)b,j(x,y) and the corre-
sponding operator we then have

(14.11) \\k\\2Si= f    f    \a(x-y)\2\bß(x,y)\2dxdy.

Under suitable conditions on a and p (of the type used in the theorem below)
one can show directly that this norm is equivalent to the norm of b in 52   , as it
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should. More generally, under similar assumptions one can estimate Lp-norms and
mixed Lp-norms of the kernel in terms of the norm in Bp. This means that the
machinery in Janson and Wolff (1982) (cf. Janson and Peetre (1984)) is applicable,
and we obtain Sp results for 2 < p < oo. For example:

THEOREM 14.1. Suppose that a(x) = 0(|x|_d) and that p is a finite measure
with compact support such that f u^ dp(u, v) = 0 for j = 0,..., N—1. If 2 <p < oo
and d/N < p, then with k defined by (14.2),

(14.12) ll*lk<C||6||fli/p.
PROOF (SKETCH). If b G Ba with 0 < s < N, then \x - y\~abli(x,y) G

Lv(\x — y[~d dxdy). (This is easily proved using interpolation between p = 1 and
p = oo; cf. also Peetre (1976, Chapters 1 and 8).) Consequently, if 6 € 5P , then
\x - y\-2d/pbß(x, y) G Lp(dxdy) and thus

(14.13) \a(x - y)\*lpbp(x,y) G Lp(dxdy) = LP(LP).

(The last expression is an abbreviation of Lp(Lp(dy),dx).)
This and (14.11) complete the proof when p = 2. For 2 < p < oo we continue as

follows. Clearly \x - y['d G L°°(Llo°) and thus a(x - y) G L°°(Llo°) and

(14.14) [a(x-y)[1-2/p GL°°(Lq00),    with 1/q = 1 - 2/p.

By a Lorentz version of Holder's inequality, (14.13) and (14.14) yield, with 1/p' —
l-l/p=l/p + l/q,

(14.15) k(x, y) = a(x - y)bß(x, y) G LP(LP'°°).

By symmetry, also k(y,x) G LP(LP °°), and Janson and Wolff (1982, Lemma 2, p.
304) yields k G Spoo. We have proved that the linear mapping b —» k maps Bp'p
into Spoo, max(2, d/N) < p < oo, and an auxiliary interpolation yields (14.12).    G

Converse results can often be obtained by the results of §9, if necessary by first
modifying A, e.g. as in the next example.

EXAMPLE 15. Let Tb be the Weyl commutator (14.9) with a Calderón-Zygmund
kernel in Rd. (For d = 1, this is essentially the case studied by Bourgain.) Theorem
14.1 with N = 2, and Theorem 9.1 applied to <p{\r¡\/\t\)A{t,r,) with <p G C^(0,1)
(cf. Lemma 3.3) yield Tb G Sp iff b G Bp/p provided d/2 < p < oo and p >
2. Theorem 11.1 applies (with k = 2) and shows that p > d/2 is a necessary
requirement. However, we expect the result to be true also when d/2 < p < 2,
but our methods fail in that case. Similarly, we do not know when Tb is bounded.
(b G BMO is necessary by Theorem 10.1 applied to a suitable modification of A.)

Other instances of operators generalizing the Calderón-Zygmund commutator
[K, b], but not fitting in our framework, are the Edmonton commutators, Peetre
(1983, p. 321). The idea is to expand the product K ■ b according to the formal
rules of Í.D.O. calculus (see e.g. Hörmander (1985, Chapter 18)). The first term
is then bK and the remainder precisely [K,b]. In general

K^K+2Z^A-zA^-tKm + ...
3 3*
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where K^ has the "symbol" m^'(t) = ~idm(t)/dtj etc. This leaves us with a
remainder of the type (with a Calderón-Zygmund kernel)

(14.16) Tbf(x) = J^ a(x - y) (b(y) - b(x) - £(w -Xj)^L-...\ f(y) dy,

where the parenthesis is the remainder in a Taylor expansion (of a preassigned
order) of b at x. This is easily seen to be a paracommutator with

(14.17) A(t, V) = m(t) - m{r,) - £($ -n,)^-----,

a remainder term in the Taylor expansion of m at n. It would be nice to extend the
results of this paper to such a case too; our results are not directly applicable since A
is unbounded. (However, we obtain by Theorem 9.1, applied to £>(|77|/|£|)yl(£, r,) for
a suitable <p, that if Tb G Sp, then b G Bp. Furthermore, if the Taylor expansions
contain all terms of order < N — 1, then Theorem 11.1 applies with k = N and
shows that p > d/N is necessary for nontrivial results. Finally, the Hilbert-Schmidt
case is, as usual, simple: Tb G S2 iff b G B2 , provided N - 1 < d/2 < N.) See
also Cohen (1980) and Cohen and Gosselin (1982) where operators of the type
(14.16) (with a different homogeneity of the kernel a) are studied (together with
multilinear generalizations).

Finally, we make one more point about Hankel operators (Example 3, §1). As is
well known, Hankel operator theory is intimately connected with group invariance
considerations (invariance under the Möbius group SU(1,1) if we consider Hankel
operators on T, and invariance under SL(2,R) if we consider them on R). This
is seen e.g. by the fact that in many theorems the relevant symbol classes turn out
to be (Möbius) invariant. Indeed, a very simple purely "group theoretic" proof of
Peller's trace ideal theorem in the case 1 < p < oo (see Example 3, §1 and Peller
(1980)) is available (see Peetre (1984), (1985a), (1985b), Ahlmann (1984) for
various versions). This becomes even more pregnant if we instead consider Hankel
forms. Then the Hankel forms appear as just one irreducible component under the
natural action of the group on the space of all bilinear forms. There arises the
question to identify the other irreducible components. This can be done, and in
fact the corresponding forms can be realized as paracommutators so our results are
applicable to them. One has thus especially a separate "Peller's theorem" for each
of these irreducible components. The details of these computations have appeared
elsewhere, Janson and Peetre (1987).

One can in principle also conceive paracommutators in the periodic case (on
Td). Thus, still speaking of bilinear forms, we are led to consider the expression
(27r)-dEE»(m- n)A(m,n)f(m)g(n).

The question when a form simultaneously can be realized as a paracommutator
on Rd and on Td is somehow related to the above considerations concerning Hankel
forms of "higher weights."

References
1. M. Ahlmann (1984),  The trace ideal criterion for Hankel operators on the weighted Bergman

space Aa2 in the unit ball of Cn, Technical report 1984-3, Univ. Lund.
2. G. Bennett (1977), Schur multipliers, Duke Math. J. 44, 603-639.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PARACOMMUTATORS 503

3. J. Bergh and J. Löfström (1976), Interpolation spaces, Grundlehren Math. Wiss., vol. 223,
Springer-Verlag, Berlin, Heidelberg and New York.

4. J.-M. Bony (1981),  Calcul symbolique et propagation des singularités pour les équations aux
dérivées partielles non linéaires, Ann. Sei. École Norm. Sup. 14, 209-246.

5. A. P. Calderón (1965), Commutators of singular integral operators, Proc. Nat. Acad. Sei. U.S.A.
53, 1092-1099.

6. J. Cohen (1980), Multilinear singular integrals, Studia Math. 68, 261-280.
7. J. Cohen and J. A. Gosselin (1982), On multilinear singular integrals on R", Studia Math. 72,

199-223.
8. R. R. Coifman and Y. Meyer (1978), Au delà des opérateurs pseudo-différentiels, Astérisque

57, Soc. Math. France, Paris.
9. _   (1980), Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on

Lipschitz curves, Euclidean Harmonic Analysis (Proceedings, Univ. Maryland 1979), Lecture
Notes in Math., vol. 779, Springer-Verlag, Berlin, Heidelberg and New York, pp. 104-122.

10. R. R. Coifman, A. Mclntosh and Y. Meyer (1978), L'intégrale de Cauchy définit un opérateur
borné sur lA pour les courbes lipschitziennes, Ann. of Math. (2) 116, 361-387.

11. R. R. Coifman and R. Rochberg (1980), Representation theorems for holomorphic and harmonic
functions in Lp, Astérisque 77, Soc. Math. France, Paris, pp. 11-66.

12. R. R. Coifman, R. Rochberg and G. Weiss (1976), Factorization theorems for Hardy spaces in
several variables, Ann. of Math. (2) 103, 611-635.

13. G. David and J.-L. Journé (1984), A boundedness criterion for generalized Calderón-Zygmund
operators, Ann. of Math. (2) 120, 371-397.

14. R. G. Douglas (1972), Banach algebra techniques in operator theory, Pure Appl. Math., vol. 49,
Academic Press, New York and London.

15. L. Hörmander (1979), The Weyl calculus of pseudo-differential operators, Comm. Pure Appl.
Math. 32, 359-443.

16. _   (1985), The analysis of linear partial differential operators. Ill, Grundlehren Math. Wiss.,
vol. 274, Springer-Verlag, Berlin, Heidelberg and New York.

17. S. Janson (1978), Mean oscillation and commutators of singular integral operators, Ark. Mat.
16, 263-270.

18. S. Janson and J. Peetre (1984), Higher order commutators of singular integral operators, Inter-
polation Spaces and Allied Topics (Proceedings, Lund 1983), Lecture Notes in Math., vol.
1070, Springer-Verlag, Berlin, Heidelberg and New York, pp. 125-142.

19. _   (1987), A new generalization of Hankel operators (the case of higher weights), Math. Nachr.
132, 313-328.

20. S. Janson, J. Peetre and S. Semmes (1984), On the action of Hankel and Toeplitz operators on
some function spaces, Duke Math. J. 51, 937-958.

21. S. Janson and T. Wolff (1982), Schatten classes and commutators of singular integral operators,
Ark Mat. 20, 301-310.

22. C. A. McCarthy (1967), cp, Israel J. Math. 5, 249-271.
23. M. Murray (1985), Commutators with fractional differentiation and BMO Sobolev spaces, Indiana

Univ. Math. J. 34, 205-215.
24. N. K. Nikol'skiï (1986), Treatise on the shift operator, Grundlehren Math. Wiss., vol. 273,

Springer-Verlag, Berlin, Heidelberg and New York.
25. J. Peetre (1976), New thoughts on Besov spaces, Duke Univ. Math. Ser. 1, Durham.
26. _   (1983), Hankel operators, rational approximation and allied questions of analysis, Second

Edmonton Conference on Approximation Theory, CMS Conference Proceedings 3, Amer.
Math. Soc, Providence, R.I., pp. 287-332.

27. _ (1984), Invariant function spaces connected with the holomorphic discrete series, Anniver-
sary Volume on Approximation Theory and Functional Analysis (Proceedings, Oberwolfach
1983), Internat. Ser. Numer. Math., vol. 65, Birkhäuser, Basel, Boston and Stuttgart, pp.
199-134.

28._   (1985a), Paracommutators and minimal spaces, Operators and Function Theory (S. C.
Power, ed.) (Proceedings, Lancaster 1984), Reidel, Dordrecht, pp. 163-224.

29. _    (1985b), Invariant function spaces and Hankel operators—a rapid survey, Exposition.
Math. 5 (1986), 3-16.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



504 SVANTE JANSON AND JAAK PEETRE

30. V. V. Peller (1980), Hankel operators of class Sp and their application (rational approximation,
Gaussian processes, the majorant problem for operators), Mat. Sb. 113, 538-581. (Russian)

31. _    (1982), Hankel operators of the Schatten-von Neumann class Sp, 0 < p <  1, LOMI
preprints E-6-82, Leningrad.

32. _    (1984), Nuclear Hankel operators acting between Hp spaces, Operator Theory:   Adv.
Appl. 14, 213-220.

33. _   (1985), Hankel operators in the theory of perturbation of unitary and self-adjoint operators,
Funktsional. Anal, i Prilozhen. 19, 37-51. (Russian) (An earlier (English) version: Hankel
operators and differentiability properties of functions of selfadjoint (unitary) operators, LOMI
preprints E-l-84, Leningrad 1984.)

34. L. Zh. Peng (1984), Compactness of para-products, Technical report 1984-13, Univ. Stockholm.
35. _   (1985), On the compactness of paracommutators, Ark. Mat. (to appear).
36. _   (1986), Paracommutators of Schatten-von Neumann class Sp, 0 < p < 1, Math. Scand.

(to appear).
37. S. C. Power (1982), Hankel operators in Hubert spaces, Research Notes in Math., vol. 64,

Pitman, Boston, London and Melbourne.
38. R. Rochberg (1982), Trace ideal criteria for Hankel operators and commutators, Indiana Univ.

Math. J. 31, 913-925.
39. D. Sarason (1978), Function theory on the unit circle, Virginia Polytechnic Institute and State

University, Blacksburg.
40. S. Semmes (1984), Trace ideal criteria for Hankel operators, and applications to Besov spaces,

Integral Equations Operator Theory 7, 241-281.
41. B. Simon (1979), Trace ideals and their applications, London Math. Soc. Lecture Note Ser. 35,

Cambridge Univ. Press, Cambridge.
42. E. Stein (1970), Singular integrals and differentiability properties of functions, Princeton Univ.

Press, Princeton, N.J.
43. R. S. Strichartz (1982),  Para-differential operators—another step forward for the method of

Fourier, Notices Amer. Math. Soc. 29, 402-406.
44. D. Timotin (1984), A note on Cp estimates for certain kernels, Preprint 47/1984, INCREST,

Bucharest.
45. _    (1985), Cp-estimates for certain kernels: the case 0 < p <  1, Preprint, INCREST,

Bucharest.
46. A. Uchiyama (1978), On the compactness of operators of Hankel type, Tôhoku Math. J. (2) 30,

163-171.

DEPARTMENT  OF MATHEMATICS,  UNIVERSITY  OF UPPSALA,  THUNBERGSVÄGEN  3,
S-752 38 Uppsala, Sweden

department of mathematics, university of lund, box 118, s-221 00 lund,
Sweden

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


