Universidade de Aveiro Departamento de Matemidtica

2014

Diana Filipa Paraconsisténcia em Loégica Hibrida

de Pinho Costa Paraconsistency in Hybrid Logic






Universidade de Aveiro Departamento de Matemidtica

2014

Diana Filipa Paraconsisténcia em Loégica Hibrida

de Pinho Costa Paraconsistency in Hybrid Logic

Dissertacdo apresentada a Universidade de Aveiro para cumprimento dos
requisitos necessdrios a obtencdo do grau de Mestre em Matematica e
Aplicagdes, realizada sob a orientacdo cientifica do Doutor Manuel Anténio
Gongalves Martins, Professor Auxiliar do Departamento de Matematica da

Universidade de Aveiro

Esta dissertacdo é financiada pelo Fundo Europeu de Desenvolvimento Re-
gional — FEDER - através do programa COMPETE — Programa Opera-
cional Fatores de Competitividade — e por fundos nacionais através da
FCT — Fundac3o para a Ciéncia e a Tecnologia — no ambito do projeto
FCOMP-01-0124-FEDER-028923 (Nasoni) sob uma Bolsa de Investigagdo
(BI/UI97/6684/2013).






o juri

presidente

vogais

Doutor Anténio Ferreira Pereira

Professor Auxiliar, Universidade de Aveiro

Doutor Joao Filipe Quintas dos Santos Rasga

Professor Auxiliar, Universidade de Lisboa - Instituto Superior Técnico

Doutor Manuel Anténio Gongalves Martins

Professor Auxiliar, Universidade de Aveiro (orientador)






agradecimentos

Por me ter apresentado ao mundo da investigacdo, pelo seu conhecimento
cientifico, mas acima de tudo por ter sido um orientador no verdadeiro
sentido da palavra — presente, critico e encorajador — a minha profunda
gratiddo ao Professor Doutor Manuel Anténio Martins.

Ao Professor Doutor Luis Barbosa, ndo tenho palavras para agradecer pelo
positivismo transmitido nos Days in Logic, foi um gesto realmente muito
importante para mim.

Pelo apoio e carinho ao longo de todos, mas principalmente durante o ultimo
ano, agradeco aos meus pais e avé. E pela confianca e entusiasmo, a minha
irm3. Ao meu avd que contribuiu na minha formagdo como pessoa e que,
n3o duvido, estaria hoje muito feliz. A Micaela, pela amizade, por estar
sempre presente mesmo depois de tomarmos percursos diferentes. Ao Pedro,
pela compreensdo, por todo o apoio incondicional, e toda a tranquilidade

que me transmite. Obrigada!






palavras-chave

resumo
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sisténcia.

O uso de légicas hibridas permite a descricdo de estruturas relacionais,
ao mesmo tempo que permite estabelecer relaces de acessibilidade entre
estados, e, para além disso, nomear e fazer referéncia ao que acontece em
estados especificos.

No entanto, a informacdo que recolhemos estd sujeita a inconsisténcias,
isto é, a procura de diferentes fontes de informacdo pode levar a recolha
de contradi¢des. O que nos dias de hoje, com tantos meios de divulgacio
disponiveis, acontece frequentemente.

O objetivo deste trabalho é desenvolver ferramentas capazes de lidar com in-
formacdo contraditéria que possa ser descrita através de férmulas de légicas
hibridas. Construir modelos e comparar a inconsisténcia de diferentes bases
de dados e ver a aplicabilidade deste método no dia-a-dia sdo a base para

o desenvolvimento desta dissertacao.
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decoupled satisfaction, strong satisfaction, model, measure of inconsistency.

The use of hybrid logics allows the description of relational structures, at the
same time that allows establishing accessibility relations between states and,
furthermore, nominating and making mention to what happens at specific

states.
However, the information we collect is subject to inconsistencies, namely,

the search for different information sources can lead us to pick up contra-
dictions. Nowadays, by having so many means of dissemination available,
that happens frequently.

The aim of this work is to develop tools capable of dealing with contradic-
tory information that can be described as hybrid logics’ formulas. To build
models, to compare inconsistency in different databases, and to see the ap-
plicability of this method in day-to-day life are the basis for the development

of this dissertation.
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Chapter 1

Introduction

Information is nowadays, and progressively more, accessible to everyone, thanks to all
transmission means existent. Actually, sharing information is crucial in a huge variety of
areas, from the health area, where any development concerning the discovery of a new cure or
the appearence of a new illness should be reported globally, until the economics area, because
presently the successes and insuccesses of different markets should be thoroughly followed
since all of them have an impact in our lives. In summary, each and every information is
serviceable in some sense. However, one does not need to go so far, it takes only a few
minutes of conversation with a friend so that information is exchanged. Problems arise when
from different sources one obtains contradictory information, in fact, gathering inconsistent
information is the rule rather than the exception. Personal opinions change from one person
to another, and not even scientific areas escape the occurrence of inconsistencies. This is
the main reason why the study and development of flexible logical systems able to handle
heterogeneous and complex data has become more and more relevant for the last two decades,
resorting to interdisciplinary research in linguistics, computer sciences, mathematics and even

philosophy.

Paraconsistent logics were created with the purpose of allowing inconsistencies without
producing the collapse of the whole system. Discussed for almost a century, paraconsistent
logics have been a growing topic of interest, as the increase in the number of publications, the
number of dedicated specialized journals and of international conferences (for example the
World Congress of Paraconsistency) confirms. For the last sixty years, many philosophers,
logicians and mathematicians have become involved in the area. The Brazilian logic school
(Newton da Costa, Walter Carnielli, Jean-Yves Béziau, Joao Marcos, etc.) is prominent
among them. There have been also developed many systems of paraconsistent logic, either

to meet different aims or to target specific applications.

Paraconsistent logics exclude the Principle of Non-Contradiction ([43]) which states that

from contradictory premises any formula can be derived, thus turning the logic trivial. The



first person to discuss the possibility of violating this principle was Lukasiewicz, however he
did not develop any logical system to formalize his studies. It was his disciple, Stanistaw

Jagkowski, the one who constructed the first system of propositional paraconsistent logic.

Whilst paraconsistent logics allow storaging and reasoning with inconsistent information,
such would never be possible within classical logics where a formula can only be true or
false, cannot be both nor anything else. With the intention of removing inconsistencies there
were created techniques, but all of them showed limited applicability, as well as not to be
very reliable because often hidden inconsistencies were not eliminated. So, in conclusion, the
safest and more adequate way to deal with inconsistency, for example in sets of information
(knowledgebases), is in fact using paraconsistent logics, where inconsistencies are seen as facts

rather than anomalies.

Among the areas where paraconsistent logics have been successfully applied are the ones
of Computer Science, Medicine and Robotics. For example in the medical practice, consulting
two or more physicians may lead to contradictory diagnoses, none of them to be dismissed
([57)). In Physics, through the years there have been made discoveries that collide with each
others, namely some aspects of quantum mechanics are being discussed ([45]). In Computer
Science, subdomains like requirements engineering ([51]), artificial intelligence ([52]) and au-
tomated reasoning within information processing knowledgebases ([47]), are among the most
relevant areas in which paraconsistent logic can address theoretical difficulties raised by in-
consistent data. Other applications are discussed in [9I]. All of this has contributed to
transform paraconsistent logics in a mature, independent, and well established field of math-
ematical logic as the entry “03B53 - Paraconsistent logics” in the 2010 Mathematics Subject

Classification evidences.

One of the systems of paraconsistent logic was projected by Grant and Hunter in [58], they
call it Quasi-Classical Logic, and it consists on adapting a first-order logic (with functions
of arity 0) so that it is possible to enable both a proposition and its negation to be true.
This is accomplished by resorting to two valuations, one for the positive literals, and another
for the negative ones. From a set of informations, a model which will be a set of literals
satisfying all formulas in the initial set is defined, later the ones with smaller cardinality
are considered and then the ones with smallest measure of inconsistency are handled. This
measure of inconsistency is a ratio between 0 and 1, where de numerator is the number of
inconsistencies in the model, and the denominator is the possible number of inconsistencies
in it. This is not a new idea, it has been already used in [I1] and [I2], however, being able to
measure inconsistency is a great feature which allows comparing between models and deciding

which one is less inconsistent.

Different researches led to the appearance of hybrid logics almost seven decades ago,
motivated by the necessity of — in addition to describing relational structures and taking in

consideration the context in which the evaluation of a formula takes place, which modal logics



already could do — being able to make assertions about each state and to define accessibility
relations and equalities between states. This is possible due to the introduction of a new set
of atomic formulas, called nominals, such that each of them is true exactly at the unique
state it names, and a new operator, @, called the satisfaction operator. The basic version of
hybrid logic, although being more expressive than the basic version of modal logic, does not
increase complexity. There are some other versions, where binders are introduced, but where

the complexity augments.

The challenge was to unite both paraconsistency and hybrid logics, thus creating a para-
consitent version for hybrid logics, and the aim of this work is to present it. Following the
work of Hunter and Grant in [58], this dissertation introduces the Quasi-Hybrid (Basic) Logic.
Without loss of generality, formulas are in negation normal form. Once again, the idea is to
allow both a propositional symbol and its negation to be true by resorting to two valuations.
The positive valuation of a propositional symbol is the set of states where the propositional
symbol is true, while the negative one is the set of states where the negation of the propo-
sitional symbol is true. The “valuation” of nominals is not subject to inconsistencies, so it
is considered disjoint from the valuations of propositional symbols, and it is called “nomina-
tion”, since for every nominal there is only one state where the nominal is true, which is the
state it names. Then, most concepts defined for Quasi-Classical Logic are adapted, such as
the concepts of structure, bistructure, literal, model, ... The measure of inconsistency is also
described in Quasi-Hybrid Logic, again as a ratio between 0 and 1, and the results for the
intrinsic and extrinsic inconsistencies in Quasi-Classical Logic are also suited and proved in

the context of basic hybrid logic with paraconsistency as introduced.

Outline

The First Chapter introduces the concept of paraconsistency, accompanied with its
emergence and then a road map of schools of paraconsistent logic is presented. An example
of paraconsistent logic, the Quasi-Classical Logic, which is the basis for the developments
in Chapter 3, is broadly introduced. To conclude, applications of paraconsistent logics are

announced.

In the Second Chapter the subject to be approached is hybrid logic. There will be
introduced both the basic hybrid logic and the strong Priorean logic. The concept of bisim-
ulation is given, and some results are presented. Then there are defined the standard and
hybrid translations, which will help understanding the relation between hybrid and first-order

logics.

In the Third Chapter, which was the target of investigation for the last months, arises
the idea of considering paraconsistency in hybrid logic. This idea brings a new definition

for Quasi-Hybrid Logic, as well as new notions of satisfaction, namely the presence of two



valuations that allow local inconsistency without destroying the validity of the entire theory.
The concept of model is introduced, and subsequently the concepts of minimal model and
preferred model appear. Meanwhile, it is presented the measure of inconsistency of a model,
fundamental to compare between theories. Along the Chapter, various examples are given in

order to illustrate the theory.

In order to evidence the relevance of this theme, and to conclude, the Fourth Chapter

introduces applications, namely in the fields of robotics and medical care.

In the Fifth Chapter, conclusions are stated, and some ideas for future research are
presented.



Chapter 2
Paraconsistency

Paraconsistent (or inconsistency-tolerant) logics distinguish themselves from the classical
ones through their ability to reason about inconsistent information without slipping into
absurdity. Their underlying idea is not new; in fact, history tells us that Aristotle already
used it up to some extent. However, they only became an active scientific topic in the
beginning of the 20th century, and received their name in 1976, in the Third Latin America
Conference on Mathematical Logic when the Peruvian philosopher Francisco Miré Quesada

introduced it as a possible solution to a request by da Costa, [43].

The prefix “para”, of Greek origin, has three synonyms: (1) “against”, as in “paradox”,
Greek for “against the common sense”; (2) “beyond”, as in “paranormal”; and finally (3)

“very similar”, “connected” or “nearby” as in “parallel” and “parabola”.

In classical logic — the one developed by Boole, Frege, Russell et al. in the late 1800s, and
typically taught in the university courses — as well as in intuitionistic and most other logics,
[66], contradictions are linked to everything. Paraconsistent logics accommodate inconsistency
in a sensible manner that treats inconsistent information as informative. So, when in need of
a controlled and discriminative environment where we can keep sensible and reasonable even

when contradictions arise, the answer is precisely the huge universe of paraconsistent logics.

In [81], Priest declares that paraconsistent logics’ major motivation is the thought that in
certain circumstances we may be in a situation where our information or theory is inconsistent,
and yet we are required to draw inferences in a controlled way. He gives numerous examples
of inconsistent situations: information in a computer data base (this one is fairly obvious),
various scientific theories (for example, Bohr’s theory of the atom which required bound
electrons both to irradiate energy (by Maxwell’s equations) and not to (since they do not
spiral inwards towards the nucleus)), constitutions and other legal documents (constitutions
that give different kinds of people different privileges, for example, when a person of type A
can do something and a person of type B cannot do that same thing, then a person who is

both types appears), descriptions of fictional (and other non-existent) objects (for example



characterizations by means of a novel or a myth), and descriptions of counterfactual situations
(when form an impossible situations we make a proposal, for example, “if you draw a square

circle, I would give you my money”) are some of them.

Formally, a logic is composed of (but not only) a set of well-formed formulas, together

with an inference relation, I, following the so called Tarskian conditions:
1. Reflexivity: If A € ', then I' F A;
2. Monotonicity: f ' A and I' C A, then A+ A;

3. Transitivity: If '+ A and AU{A} F B, then TUA - B.

It is possible to characterize an enormous amount of distinct logics using these conditions,
but they can also be made more permissive. One example is the weakening of the monotonicity

requirement, which paves the way for a whole new family of logics, the non-monotonic ones.

This inference relation, also called relation of logical consequence, details which formulas
(conclusions) follow from which others (premises). If the formula B follows from the set
of formulas {Ag, A1, Ag,..., Ay}, we write {Ag, A1, Az2,..., Ay} = B and say that B is a
consequence of {Ag, A1, Aa, ..., Ay}, When B is a consequence of (), we say that B is a
theorem. A set of formulas closed under F, i.e., such that I' - ¢ = ¢ € I, is called a theory.

A relation of logical consequence is called explosive if the entailment {A, - A} - B holds,
for every A and B. This phenomenon is known as the principle of explosion or ex contradic-
tione quodlibet (ECQ) (latin for “from a contradiction anything follows”), [38]. Thereby, if a
theory contains a single inconsistency then it has every formula as a theorem. Actually, this
is the only inconsistent theory in non-paraconsistent logics, called the trivial one. The oppo-
site happens in paraconsistent logics: they are capable of distinguishing between inconsistent
theories; such feature is interesting because when reasoning with a paraconsistent logic one

can begin with inconsistent premises and still reach sensible conclusions.

As pointed out, all approaches to paraconsistency seek inference relations that do not
explode. This can be accomplished by idealizing new meanings for the relation of logical
consequence, which, obviously, will not be explosive, or, through any other process which

removes causes of explosion.

One may say that paraconsistency carries out a tradeoff. Removing the potential for
explosion requires dropping at least one of the following principles: disjunction introduction
(A+ AV B), disjunctive syllogism ({AVB,—A} - B), or transitivity (' A, AF B=TF B).
Frequently logicians choose to drop the disjunctive syllogism. One, however, may choose to

maintain it along with transitivity and exclude disjunction introduction instead.

Moreover, the next three principles cannot coexist: reductio ad absurdum (A — (BA-B) -
—A), rule of weakening (A F+ B — A) and double negation elimination (——A F A). So, at

least one should be abandoned too.



2.1 History of Paraconsistent Logic

In the words of Aristotle, “it is impossible that the same thing should be necessitated by
the being and by the not-being of the same thing”. This principle, known as the connezive
principle, became a topic of debates in the Middle Ages, [73]. Two of its biggest debaters,
Boethius (480 — 524 or 525) and Abelard (1079 — 1142) took the principle and considered
two sorts of consequences. The first one was a similar view of the notion of truth-preservation
that fails to meet the connexive principle. The second one is the containment account which

does not permit an inference whose conclusion is arbitrary, thus capturing Aristotle’s idea.

To reject the connexive principle is an approach that has become most influential. The
followers of Adam Parvipontanus (or Adam of Balsham, 12th century) embraced the truth-
preservation account which states that it is impossible for the premises to be true but the
conclusion false, and the ‘paradoxes’ that are associated with it, [78]. On the other hand, the
containment account did not disappear. John Duns Scotus (1266 — 1308), and his followers
accepted the philosophy that the sense of the premises contains the sense of the conclusions,
[92]. All of this is, of course, related to the paraconsistent logics’ history, which is detailed

next.

The idea of abandoning the principle of explosion occurred to different people at different
times and places independently of each other during the last century, triggered by several
distinct motivations. The Russian Vasil’év proposed, in 1910, a modified Aristotelian syl-
logistic including statements of the form: “S is both P and not P”, which seems to be the
earliest paraconsistent logic in the contemporary era. However the proposal did not make any
significant impact at the time. Later on, the Polish logician Stanistaw Jaskowski, disciple of

Lukasiewicz, developed the first (formal) system of propositional paraconsistent logic ([64]).

Paraconsistent logics were independently developed in South America by Asenjo (1954)
and especially Newton da Costa (1963) in their doctoral dissertations, with an emphasis
on mathematical applications. By the mid-1970s, the development of paraconsistent logic
became more intensive. Afterwards, for the last sixty years, many philosophers, logicians and
mathematicians have become involved in the area with the Brazilian logic school (Newton da
Costa, Walter Carnielli, Jean-Yves Béziau, Joao Marcos, etc.) taking a prominent role. The
theory of paraconsistent logic developed considerably as witnessed by both the increase in
the number of publications, the number of dedicated journals, and international conferences:
in 1997, the First World Congress on Paraconsistency was held at the University of Ghent
in Belgium, [I5]; the second was held in Sao Sebastiao (Sdo Paulo, Brazil) in 2000, [36]; the
third in Toulouse (France) in 2003, [21]; and the fourth in Melbourne (Australia) in 2008,
[87]. The fifth took place in Kolkate (India), this year (2014), [20].

Our attention is now turned into the large variety of ways paraconsistent logic can be

embedded into. The most relevant ones are introduced.



2.2 Schools of Paraconsistent Logic

Through the years, many ideas of how and where can paraconsistency be used have been
developed all over the world as the interest in paraconsistent logic continues to grow. Here

are presented some ways of viewing paraconsistency.

2.2.1 Dialetheism

The formal definition of a paraconsistent logic is the following:

Definition I: A logic is paraconsistent iff it is not the case that for all formulas A, B,
{A,-A} F B.
This is simply the denial of ex contradictione quodlibet, i.e., that a logic is paraconsistent

iff it does not validate explosion. However, things are a little different in this second definition:

Definition II: A logic is paraconsistent iff there are some formulas A, B such that - A
and - —A, but not - B.

A logic that satisfies the second definition automatically satisfies the first one, but the con-
verse is not true. Actually the subtle difference between them is what will help distinguishing

between two main degrees of paraconsistency: weak and strong.

Roughly speaking, weak paraconsistency is the concept that insists that any apparent
contradictions are always due to human error. In a better world where humans did not err,
we would use classical logic because no true theory would ever contain an inconsistency. But
in the real world sometimes information systems contain regrettable but inevitable errors,
and paraconsistent logics are tools for damage control. Weak paraconsistentists look for ways

to restore consistency to the system or to make the system work as consistently as possible.

On the other hand, strong paraconsistency comprehends ideas like: “some contradictions
may not be errors”; “some true theories may actually be inconsistent”. A strong paracon-
sistentist considers relaxing the law of non-contradiction in some way, either by dropping it
entirely, so that —=(A A =A) is not a theorem, or by holding that the law can itself figure
into contradictions of the form “always, not (A and not A), and sometimes, both A and not
A”. The assumption that true contradictions exist in reality led to the establishment of the
philosophical school of dialetheism, most notably advocated by Graham Priest and properly

introduced now.

Pioneered by Richard Routley and Graham Priest in Australia in the 1970s, the dialethe-
ism is not a logic, it is rather a movement where the belief is that contradictions truly exist
in real life, [I7]. Do not confuse dialetheism with paraconsistency, the latter can be seen as a
property of an inference relation, whereas the former can be assumed as a view about truth.
Indeed, in a paraconsistent logic assuming that a formula is both true and false does not mean

that the contradiction is true per se, as supported by the school of dialetheism. This is why



paraconsistency must be distinguished from dialetheism. A paraconsistent logician may feel
some pull towards dialetheism, however we need to keep in mind that most paraconsistent

logics are not ‘dialetheic’ logics.

Despite the need for dialetheism and paraconsistency to be distinguished, dialetheism can
be a motivation for paraconsistent logic. One example of a dialetheia is the Liar Paradoz,
expressed in the sentence “This sentence is not true” (A). The explanation is simple: if
we consider that (A) is true, then “This sentence is not true” is true; therefore (A) is false,
however by hypothesis, (A) is true, which is a contradiction. On the other hand, by considering
that (A) is false, then “This sentence is not true” is false, thus (A) is true, which contradicts
the hypothesis that (A) is false. So, (A) is both true and false, that is, a dialetheia.

2.2.2 Discussive logic

As said before, the first formal paraconsistent logic was projected by Jaskowski, in 1948,
(cf. [44]). The logician’s idea was to imagine a group of people having a discussion where
each participant contributes with some information. Each assertion is true according to the
participant. However, even though each participant’s opinion is self-consistent, the group as
a whole (i.e., the sum of all assertions) may bring inconsistency. In fact, one ought to expect
that participants disagree on some issue, as it happens in our daily lives: by reading new

articles, blogs and opinion pieces, we take in contradictions.

In order to see the relevance of paraconsistent logics in discussions, consider that a par-
ticipant says that A holds, while another one says that = A holds. Then both A and —A hold
in the discourse, yet, a certain sentence B may not be supported by any of the participants,

so the discussive logic invalidades the principle of explosion.

2.2.3 Preservationism

Preservationism appeared circa 1978, pioneered by Ray Jennings and Peter Soch, two
logicians from Canada. It is an approach to modal logic and paraconsistency with a certain
connection with discussive logic, [65]. The idea of preservationism is to, given a set of in-
consistent premises I, define maximally consistent subsets I such that if A € T'\I"”, then
{A}UT" is inconsistent. They do not reason over an inconsistent set of premises, they reason

over consistent subsets of premises.

The level of an inconsistent set of premises is defined as the least number of subsets into
which the initial inconsistent set must be divided in order to get internal consistency in all
subsets. The consequence relation, called forcing, is defined over some maximally consistent

subset, in terms of a logic X, as follows:

A set of formulass I' forces A iff there is at least one subset A C I' such that A is an

X -valid inference from A.



This consequence relation preserves the level of the maximally consistent subset, which is

why this is known as preservationism.

More recently, Payette showed that two logics are identical if and only if they assign any

set of formulas the same level, [65].

2.2.4 Adaptive logics

Developed by Diderik Batens in Belgium, the primary motivation for adaptive logics is
that we should treat a formula or a theory as consistently as possible, [I4]. An adaptive logic
adapts itself to the situation when the inference rules are about to be applied. They are
typically used to explain the many interesting dynamic consequence relations that occur in
human reasoning. As humans, our knowledge is not closed under logical consequence because
we can always add something to the things that we already know and also because all of our

actions have consequences and we are not fully aware of all of them.

Our way of reasoning is dynamic in two aspects:

1. FEzternally dynamic: if conclusions may be discarded in view of new information. This
means that the consequence relation is nonmonotonic (I' = A and I' U A ¥ A for some
LA A).

2. Internally dynamic: if a conclusion may be removed in view of the better understanding
of the premises provided by a sequel of the reasoning, i.e., if we are forced to infer a
contradiction at a later stage, our reasoning has to adapt itself so that an application

of the previously used inference rule is withdrawn.

A system of an adaptive logic can be characterized by three elements: the lower limit
logic, a set of abnormalities, and an adaptive strategy. The lower limit logic determines
which consequences hold regardless of any assumptions (or conditions); it is not subject to
adaptation. A set of abnormalities is a set of formulas presupposed as absurd at the beginning
of reasoning until they are shown to be otherwise. Finally, an adaptive strategy will pick,

based on the set of abnormalities, one specific way of applying the inference rules.

2.2.5 Logics of Formal Inconsistency

Logics of Formal Inconsistency, LFIs, are a family of paraconsistent logics where each of its
components constitutes a consistent fragment of classical logic. As a family of paraconsistent
logics, LFTs reject explosion principle when a contradiction is present, [35]. They appeared
recently, as Marcos, Carnielli and others worked on developing a broad generalization of the
C-systems, (cf. [43], [90]), investigated by Newton C. A. da Costa, one of the first pioneeres

of paraconsistent logic in Brazil back in the 1950s.

When working on his C-systems, da Costa established that ([46]):
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1. in this kind of logic, the principle of contradiction should not be generally valid;

2. in general, it should not be possible to deduce any conclusion from two contradictory

premises;

3. extending these logics to obtain quantified logics should be immediate.

The idea was to study inconsistent theories without assuming that they were necessarily
trivial, and that consistent formulas and inconsistent formulas should be separated. They
have in mind that classical logic should be respected as much as possible, and that we should
divert from this classical approach only when contradictions appear. This means that the

ECQ is valid in the absence of contradictions.
LFTs have been useful on modelling some actual mathematics. In particular, da Costa and

his students developed new ideas in the areas of arithmetics (cf. [54]), infinitesimal calculus
(cf. [48]) and model theory (cf. [37]).

2.2.6 Relevant logics

Relevant logics, ([3], [4]), were introduced by Anderson and Belnap in 1975, in Pittsburgh.
Their underlying idea is that, for an argument to be valid, premises and conclusions must

have a significative connection.
Formally, a logic is relevant iff it satisfies the condition:
if A— B is a theorem, then A and B share a non-logical constant.
It follows that {p, p} ¥ ¢, so the principle of explosion does not hold.

Relevant logics provide an implication connective that obeys modus ponens (A — B,
A, therefore B), which evidently restores a lot of power lost in the invalidity of disjunctive
syllogism. But from there on, one has several different axiomatizations for a relevant logic

[50]. The relevant approach has been used in the study of set theory and arithmetics [74].

2.3 Quasi-Classical Logic

So far, a large number of formal techniques to invalidate ECQ have been developed. The
need to isolate an inconsistency is the main purpose to reject ECQ. [77] is an interesting
reading in the way it takes the ideas discussed in Section and introduces formal methods
for most of them. However in this Section, only the Quasi-Classical Logic, a version of a

paraconsistent system developed by Grant and Hunter ([58]), is addressed.

The Quasi-Classical Logic, a gateway to deal with inconsistencies in classical logic, was
developed by Grant and Hunter in the 21th century, [58]. This work will be the basis to

the developments in Chapter [4, where it will be introduced a paraconsistent version of basic
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hybrid logic, capable of processing inconsistencies. It will be named Quasi-Hybrid Logic since
it follows the approach of Grant and Hunter. But before presenting it, let us focus on the

Quasi-Classical Logic.

The idea behind Quasi-classical Logic is to decouple the link between a proposition and its
negation. For that, two valuations are required: one for dealing with the positive propositions
and another one for dealing with the negative propositions. The satisfaction is defined with
resource to this two valuations, plus a feature called focus, which asserts the validity of
disjunctive syllogism in Quasi-Classical Logic. Since it is possible to use the method of
Robinson diagrams, models are defined as sets of literals. The measure of inconsistency is
introduced as the ratio between the number of inconsistencies in the model, and the total
number of inconsistencies that the model could have. Models with least cardinality are called
minimal and models with least inconsistency measure are called preferred. Using the last
ones, it is defined the extrinsic and intrinsic inconsistency of a theory, which are sequences of

inconsistency measures. For those sequences, several results are announced and proved.

It will be considered a first-order language that contains, in terms of vocabulary, the
following logical symbols: a countable set of variables V', denoted x,y, . ..; ordinary connec-
tives {—, V, A, —}; two quantifiers {3, V}; punctuation symbols for readability; and in terms of
extra-logical symbols: a set of constants C, denoted as a, b, ¢, . .. ; along with a set of predicate

symbols, P, denoted P(-), R(-),..., with their arities in parentheses;
Note that there are only allowed function symbols of arity 0, i.e. constants.

A term is either a variable or a constant symbol. An atom is a formula of the form
P(t1,...,t,), where P is a predicate symbol of arity n and ¢4, ...,t, are terms. And a literal
is an atom or the negation of an atom. It is also assumed that all formulas are in prenex
conjunctive normal form, this is possible because every first-order formula can be transformed

into this form.

Although it is not part of the language, the ~ operator is introduced in order to make
some definitions clearer. Let « be a literal and let ~ be a complementation operation such

that ~ @ = =« and ~ (—a) = a.

Consider also the definition for the focus, which will take an important role in the definition

of satisfaction of a disjunction of literals.

Definition 2.3.1. Let a1 V as V -+ V ay,, be a disjunction of literals, with n > 1 and
a1, Q, -+, ay all distinet. The focus of apVagV---Vay, by a;, denoted @(a1VasV---Vay, a;)

1s the clause obtained by removing a; from a1V ag V-V ay.

It is now defined a classical structure for a language, a pair with a domain and an inter-

pretation function.
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Definition 2.3.2. A classical structure for a language L is a pair (D, I), where
1. D # 0 is the domain;

2. I is the interpretation function, assigning elements and predicates over D to symbols in

L as follows:

e ForceC, I(c) € D;
e For P(n) an n-ary predicate symbol, I(P) : D™ — {0, 1} is an n-ary predicate over

D;

To make notation easier to follow, it will be assumed that I maps constants to themselves.
This leads to assume that C C D. Going even further, by introducing a new constant for each
element in D\C, it is assumed that we deal with languages L(D) = (P, D), where D is the

domain of interpretation.

In order to accommodate inconsistencies, it is required a bistructure which is a tuple
(D,I*,I7), where (D,I") and (D, ™) are classical structures.

The definition of an assignment is the usual one: an assignment is a function g : V. — D.
Given an assignment g and x € V, an z-variant assignment g’ of g is an assignment such
that:

g () =9gy), foralyeV,y#ux

The extension g (abusing notation) of an assignment to terms is defined by

g(t)=d, if t=xand g(x) =d

Next, it is introduced the satisfaction in this quasi-classical language. First, the decoupled

version for literals:

Definition 2.3.3. Given a bistructure E = (D,I",17) and an assignment g, the decoupled
satisfaction, =4, for literals in L(D) is defined as follows:

E,gFa Pty ta, ... ta) iff IT(P)(g(t1),9(t2), ..., 9(tn))
Eag 'Zd _'P(tlvt%- .. ;tn) Zﬁ Ii(P)(g(tl)ag(tQ)a s 7g(tn))

Note that both an atom and its negation may be true in a bistructure: this constitutes the

1
1

justification for the term decoupled satisfaction and, also, provides the basis for paraconsistent

reasoning. The strong satisfaction can now be defined.
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Definition 2.3.4. A satisfiability relation |=s, called strong satisfaction, is defined as follows:
1. E,gEsa iff E,g Eq a, for a aliteral;

2. E,gEsaiVaaV---Va, iff [E,gFsa1 or E,gFEsag or -+ or E,g =5 ay)
and for all 1 <i<n,[E, g s~ a; implies E,g |Fs @(a1 Vag V-V ay, o),

for ay, ..., ay literals;

3. E,gEs 1 Npa AN ANy iff E,g =5 ¢1 and E, g =5 ¢2 and -+ and E, g =5 én

for ¢1,..., ¢, disjunctions of literals;
4. E,g s 3x.0iff for some x—variant assignment ¢’ of g, E, g =5 0 for 6 any formula;
5. E,g s V.0 iff for all x—variant assignment g’ of g, E,g' =56 for 6 any formula;

Strong validity in o bistructure is defined by:

E =5 0 iff for all assignment g, FE,g =56

For A a finite set of formulas and E a bistructure; E is a QC model of A iff for all
0eAFE 0.

For the rest of the discussion on this theme, it is necessary to present the concepts of
ground atom and ground literal:

For a language L = (P,C) and a domain D,

e GrdAt(L,D) ={P(t1,...,tn) | P(n) € P, t1,...,tn € D};

e GrdLt(L,D) = GrdAt(L,D)U {—«a | o € GrdAt(L,D)};

A QC model E = (D, I, 1) may be equivalently represented by a set of ground literals

as follows:
{a |F s a and o € GrdLt(L, D)}.

It is possible to adopt this representation of models because earlier it was assumed that
for any language L = (P,C) and domain D, C C D. Furthermore, it is essential to recall the

presence of Robinson diagrams in classical logic.

It is assumed that all languages L = (P,C) are finite (i.e. P is finite and C is finite) and

that all domains D are finite. This means that all QC models considered here are finite.

The following notation will be used:

e QC(L,A, D) is the class of QC models of A, where the formulas are in L and the domain
of the QC models is D;
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e M denotes a QC model in the form of ground literals.

A QC model for a set A may have more information than it is needed to satisfy all the

elements in A. This is the reason why it is introduced the following definition for minimal
QC model.

Definition 2.3.5. Let L be a language and A a set of formulas in L. The set of minimal QC
models with domain D is MQC(L, A, D) :== {M € QC(L,A,D) | M" ¢ M implies M’ ¢
QC(L,A,D)};

In some sense, these are models without irrelevant, useless information and restricting

attention to them does not affect reasoning.

It follows an example illustrating the concepts introduced. Namely, it exemplifies the role

of the focus of a disjunction of literals when determining models.

Example 1. Let L = ({P(1),Q(1)},{a}) and A = {P(a) vV Q(a),~Q(a)}.
In this case there is only one minimal QC model for any domain, which is: M =
{=Q(a), P(a)}. That is because in a QC model where =Q(a) holds, @(P(a) V Q(a),Q(a))

which is P(a) must also be true.

A QC model (not minimal) would be, for example, M' = {=Q(a), P(a),Q(a)}.

The measure for the inconsistency of a model is crucial in a diverse range of applications
in artificial intelligence to compare between knowledgebases. It may be a useful tool in
analysing various information types, such as news reports, software specifications, integrity
constraints and e-commerce protocols, [63]. Depending on the language L used and the
domain D, a knowledgebase may have many different minimal QC models. The measure will
be a ratio between 0 and 1, with denominator the total possible number of inconsistencies in

the bistructure;

Given a QC model M, its conflictbase is defined by

CnflM) :={a|aeMand ~a € M};

The measure of inconsistency for a model M in the context of L and D (i.e., Cnfl(M) C
GrdAt(L, D)) is defined by

Cnfl(M
ModInce(M,L,D) := |G|rdz£t((Ll))‘)\

To exemplify, here are given some examples:
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Example 2. Resuming to Example[l, Cnfl(M) = 0. Considering D = {a}, the measure of

inconsistency is:

ModInc(M,L,D) = g =0

For the model M’, taking the same domain, the measure of inconsistency is:

1
ModInc(M,L,D) = 5

In the next example, it will be notorious that two minimal models do not always have the
same measure of inconsistency:
Example 3. Let L = ({P(1),Q(1)},{a}), A = {3x.P(z),~P(a) vV Q(a),~Q(a)} and D =
{a,b}.

So, MQC(L, A, D) = { My, Ms}, where:

My ={P(a),~P(a),Q(a),~Q(a)}
My ={P(b),~P(a), ~Q(a)}
Hence, ModInc(My,L,D) = % > % = ModInc(May, L, D)

Since not all minimal QC models have the same conflictbase, thus the same measure of
inconsistency, it will be considered a new class of models, the preferred QC models, constituted
by minimal models with minimal conflictbase. In essence, there will be considered the least

inconsistent models. Formally,

Definition 2.3.6. Let L be a language and A a set of formulas in L. The set of pre-
ferred QC models with domain D is PQC(L,A, D) := {M € MQC(L,A,D) | for all M’ €
MQC(L, A, D), [Cnfl(M)] < [Cnfl(M)]};

One example of a preferred QC model, based on the previous one:
Example 4. From Ezample[d, PQC(L, A, D) = {Ms}.

It seems quite straightforward to say that two preferred QC models for the same set A,
with the same language and domain have the same measure of inconsistency. Furthermore,

this is valid also when there are considered two different domains, but with the same size.

Now it is possible to define, for a theory in a language, a sequence of inconsistency ratios:

Definition 2.3.7. We define the extrinsic inconsistency of a theory A in a language L,
TheoryInc(A, L) as a sequence (ri,...,mn) where for alln > 1, let W,, be a domain of size
n. If there is a model M € PQC(L, A, W,,), then let r,, = ModInc(M, L, W,,), otherwise, let

rn = *. We use x as a kind of a null value.
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This sequence captures how the inconsistency of a theory A in a language L evolves with
increasing domain size. At one extreme, there are cases where we do not have inconsisten-
cies for any domain size; for example for the trivial case when A = (), TheoryInc(A, L) =
(0,0,...). At the other extreme, there are theories A which are completely inconsistent,
i.e., TheoryInc(A,L) = (1,1,...), such as A = {Vz(P(z) A =P(x))}, in a language where
P={P(1)}.

Some examples on the computation of the extrinsic inconsistency of some theories:

Example 5. Let L = ({P(1)},{a,b}) and A = {—=P(a) vV P(b), P(a)}.
TheoryInc(A, L) = (x,0,0,0,...)
Example 6. Let L = ({P(1),Q(1)},{a,b}) and A = {=P(a),~Q(b),Vz.P(x)\=P(x)\Q(z)}.

3
TheoryInc(A, L) = (x, 1

S|

)
R

Some properties of TheorylInc are now announced and proved:

Proposition 2.3.8. Let TheoryInc(A, L) = (z1,z2,...). If |C| = k then for all i such that
1<i<k,z; =% and for all i > k,x; # *.

Proof. The reason for the asterisks is that the domain, according to a previous definition,
must have at least as many elements as the number of constants in L, that is, |C|. And it is

always possible to increase the size of the domain.
O

Another interesting proposition is the following:

Proposition 2.3.9. Let TheoryInc(A,L) = (ri,re,...). If there is an r; € {r1,ra,...},
such that r; = 0, then (ri1,r2,...) s of the form (x,...,*,0,...,0,...).

Adopting a lexicographic ordering, denoted by the relation < over the tuples generated by

the TheorylInc function, comes as:

Definition 2.3.10. Let TheoryInc(Ay, L1) = (ri,72,...) and TheoryInc(Ag, L) = (s1, 82,...).

TheoryInc(Ay, L) < TheoryInc(Ag, L) iff for alli > 1, r; < s; or 1y = % or s; = *.

Writting TheoryInc(Ai,L1) < Theorylnc(As, La) abbreviates Theorylnc(Aq,Ly) =
TheorylInc(Ag, L) and TheoryInc(Ay, L) # TheoryInc(Ag, La).

In case Ly = Lo(= L), it is said that A; has smaller than or equal inconsistency as Ay iff
TheoryInc(Aq, L) < TheoryInc(Ag, L) and this is denoted as Ay <F = A,.

To accompany this idea, an example:
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Example 7. Let L = ({P(1)},{a}), A1 = {P(a)} and Ay = {P(a),~P(a)}.
TheoryInc(Ay, L) = (0,0,0,...)

1
TheoryInc(Ag, L) = <I’ e

W=

1
2 )
Then Al SZ[;’LC AQ.

The TheorylInc function is monotonic with respect to A and antimonotonic with respect

to L, i.e., if Ay C Ag, then TheoryInc(Ay, L) < TheoryInc(Ag, L), and if Ly C Lo (P; C Po
and C; C Cy) then TheoryInc(A, Ly) =< TheoryInc(A, Ly).

The definition of QC-equivalent sets is presented.

Definition 2.3.11. For A;, Ay C Form(L), Ay is QC-equivalent to Ag if, for all M, M is
a QC model of Ay iff M is a QC model of As.

Thus, the following statement is true:

Proposition 2.3.12. Let A1, Ag be sets of formulas in the language L. If Ay is QC-equivalent
to Ao, then
TheoryInc(Ay, L) = TheoryInc(Ag, L).

Resembling the definition of extrinsic inconsistency, it is introduced the definition of in-
trinsic inconsistency of a set of formulas A, for a specific language L defined with recourse

to A, as follows:

Definition 2.3.13. For a given theory A, let L® be the language that contains exactly the
predicate symbols and constants that occur in A. The intrinsic inconsistency of A, is given
by TheoryInc(A), as TheoryInc(A) = TheoryInc(A, L?).

So the measure of intrinsic inconsistency of a theory TheorylInc(A), delineates the degree
of the theory in its own terms, whereas TheoryInc(A, L), the extrinsic inconsistency of a

theory, delineates the degree of the theory with respect to the language L.

This idea is illustrated with another example:

Example 8. Let L = ({P(1),Q(1), R(1)},{a,b}), A = {P(a),~P(b), R(a),~R(a)}.

TheoryInc(A, L) = (x,

| =
O =
—

w‘*“

111
Th Inc(A) = — ==, ...
eoryInc(A) (*,4,6,8, )
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When TheoryInc(A1) < Theorylnc(As) it is said that A; has smaller than or equal

inconsistency as Ag, and this is denoted as A1 <;ne As.

Remark. Posterior to this work, the duo Grant and Hunter wrote [59]. This new approach
considers full first-order logic, it no longer uses the focus, and it introduces classes of models
and it also introduces different measures of inconsistency: one for finite sets of finite models,
another for sets that include a model of every domain size and finally another for sets that

include infinite models.

2.4 Applications

When in the middle of a situation where inconsistencies are not merely due to human
errors or confusion, and are not easily removed even upon careful reflection, the answer is
paraconsistent logic, because, obviously, we want inconsistency without triviality. In this
section there are introduced some fields where paraconsistency is desirable and has already

been successfully used.

2.4.1 Linguistics

Studies have been made in this field in connection with paraconsistency. The idea is that
lexical features are preserved even in inconsistent contexts. For example the word ‘near’ has
spacial connotations that remain undisturbed even when dealing with impossible spaces, as
in “I am near a blue door that is red”. Clearly, this is an inconsistency as the door can be

only one of two things: blue or red.

Thus, if natural languages would have associated a logic, some sort of paraconsistency
ought to be taken into consideration.
2.4.2 Law, Science and Revision

Consider a country with the following laws (in [82]):

1. No non-Caucasian people shall have the right to vote;

2. All landowners shall have the right to vote.

Which are the rights of an individual that is not Caucasian and owns a small farm? The
laws, as they stand, are inconsistent. So, either new laws are made, ending inconsistencies,
or the current ones must be revised. In either case, though, the law as it stands needs to be

dealt with in a discriminating way.

Even in science we hold some laws as true. As new discoveries are made everyday, the

scientific process accepts that laws can be, in the light of new evidence, revised, updated,
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or even rejected completely. At present, it seems extremely likely that different branches
of science are inconsistent with one another or even within the same discipline, as is the
case in theoretical physics with relativity and quantum mechanics [86]. Even set theory and

foundations of mathematics can be considered paraconsistent, (cf. [84], [67]).

In [61] it is explained that Frege was able to explain most mathematical notions with the
help of his comprehension scheme, which asserts that, for every ¢ (formula or statement),
there should exist a set X such that, for all x, x € X if and only if ¢(x) is true (z does not
occur free in ¢); formally, IXVz(z € X < ¢(x)). Moreover, by the axiom of extensionality,
this set X is uniquely determined by ¢(x), formally, Vz(z € X <> 2 €Y) - X =Y. A flaw
in Frege’s system was uncovered by Russell: by taking ¢(z) to be =(xz € X), Frege’s system
is logically contradictory. This became known as the Russel’s Paradox: “Consider M the set
of all sets that do mot contain themselves as members. Does M belong to itself ?” Formally, A
is an element of M if and only if A does not belong to itself: M = {A | A ¢ A}. If the answer
is yes, than M is not an element of itself according to the definition, which is a contradiction.
On the other hand, if the answer is no, then M does not contain itself, so, by the definition of
M, M must be an element of M, again another contradiction. Therefore, stating that “M is
an element of M” and stating that “M is not an element of M” lead both to inconsistencies.

Thus, set theory is considered paraconsistent.

Moreover, it must be said that people have inconsistent beliefs as well.

2.4.3 Automated Reasoning

Another application is in the field that intersects automated reasoning and information
processing. As a practical example, take a computer which stores large amounts of information
and is capable of performing operations and inferences over such data. Stored information may
contain inconsistencies, certainly a problem for database operations with theorem-provers,
and so has drawn much attention from computer scientists. For this reason, techniques for
removing inconsistent information have been investigated. Yet all have limited applicability,
and, in any case, are not guaranteed to produce full consistency. Hence, even if steps are
taken to get rid of contradictions when they are found, an underlying paraconsistent logic is

desirable so that hidden contradictions cannot invalidate conclusions taken from the theory.

Another example involves a team of researchers in Sao Paulo, Brazil, which has been using
paraconsistent logics in artificial intelligence. One of their results, the autonomous robot
EMMY III is designed to be able to navigate through dilemmatic situations, for example,
when one sensor detects an obstacle in front of the robot, while the other detects the presence
of no objects [89].
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2.4.4 Paraconsistent Artificial Neural Networks — PANNets

Paraconsistent Artificial Neural Networks — PANNets — have been highly explored in the
last years, (cf. [52]). Among their applications, the use of PANNets for image recognition
in medical, biological and odontological diagnoses and for intelligent systems for sound and

image recognition and modeling of the brain should be highlighted.

In medical science, a paraconsistent artificial neural network has showed some potential

for detecting Alzheimer’s disease, as reported in [69)].

It was also made a study of brain electroencephalography (EEG) waves through a new
paraconsistent artificial neural network which is capable of manipulating concepts like impre-
ciseness, inconsistency, and paracompleteness in a nontrivial manner. In what concerns to
applications, the paraconsistent artificial neural network showed the capacity of recognizing

children with Dyslexia [1].

PANNets were even used to analyse cephalometric measurements in order to support
orthodontics diagnoses. They use the information provided by cephalometric analysis to
perform pattern recognition then, from determined parameters, it is established the best

treatment for the patient, narrated in [2], and [75].
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Chapter 3

Hybrid Logics

Modal Logics, [24], provide a simple formalism for working with relational structures (or
multigraphs). However, they lack in mechanisms for naming worlds (or states), asserting
equalities and describing accessibility relations between them. Hybrid logics, [23], appear as
an extension of propositional modal logic with the ability to refer to worlds by considering a
new class of atomic formulas, called nominals, and using a new operator, @, called satisfaction
operator. A nominal’s interpretation is required to be a singleton, i.e., a nominal is true at

exactly one state: the one it names.

Hybrid logics turn out to be the key to improve some already existing logics in modal
form, for example feature logic, description logic and temporal logic, [23]. Furthermore,
hybrid logics have been an opulent source of inspiration for many researchers in many areas
(see examples in [68], [93]).

With hybrid logics we may express what happens at a specific world: for instance @Q;p
means that the proposition p is true at the world named by i, whereas =@;p (logically equiv-
alent to @;—p) denies it. We may also express equality between worlds: @;j means that the
worlds named by ¢ and j coincide, and —@;; (logically equivalent to @;—j) says the contrary.
It is even possible to express accessibility between worlds: @;<j means that j can be reached

from i, and =@;<j (logically equivalent to @;0-75) says that there is no such connection.

Moreover, hybrid logics are strictly more expressive than its modal fragment. For example,
irreflexivity (i — —<4), asymmetry (i — —<O<O4) or antisymmetry (i — O(<Oi — i) are
properties of the underlying transition structure which are simply no definable in standard

modal logic, but straightforward to state in the hybrid family.

We shall examine two different kinds of hybrid languages: we start by introducing, as in
[27], the basic hybrid logic, and finish with a version with quantification over worlds, the so

called strong Priorean logic.

Although being stronger than proposition modal logic, the basic hybrid logic does not

increase the complexity of the problem of determining whether a formula is valid or not.

23



Actually, it remains a decidable system. However, in the strong Priorean logic the complexity

increases.

But first, some historical details on hybrid logics’ introduction and development.

3.1 History of Hybrid Logics

Hybrid logics were introduced by Arthur Prior in the 50’s [31]. Prior focused in the frame-
work of temporal logic and, in 1954, at the New Zealand Congress of Philosophy, introduced

the I-calculus (which later he calls U-calculus).

In the I-calculus, propositions of the tense calculus are treated as predicates expressing
properties of dates, represented by variables. He established that the formula pz should be
read as “p at ” and considered a binary relation I over dates, where xly should be read as

“y is later than z”.

By representing the time of utterance by means of an arbitrary date x, Fp (intuitively
interpreted as “the proposition p happens in the future”, but that, later Prior explains, means
“it is now the case that it will be the case that p happens”) is equated with Jy(zly A py).
And similarly for the past, Pp, equated with Jy(ylz A py).

The initial idea of Prior was to reconstruct the tense calculus using the I-calculus, but soon
he found out that the second was more expressive than the first, and started investigating
ways to extend the expressive power of the tense calculus, which led to what we call today

very expressive hybrid languages, i.e., hybrid languages including binders (V, ] ).

After Prior’s death in 1969, his student Robert Bull continued his work on hybridization.
Bull considered a logic containing variables for paths on a model, which he calls “history-

propositional” variables and provided it with an axiomatization and proved its completeness
[34].

Some years later, in the 80’s, the Bulgarian school of logic, also known as Sofia school,
(namely Passy, Tinchev, Gargov and Goranko) revived the interest in hybrid logic. They
explored the fact that the union of two accessibility relations is definable in the basic modal
language in the sense that the formula (T)p < (R)p V (S)p is valid on a frame precisely if
Ry, the relation that interprets (T'), is the union of Rr and Rg, respectively the relation
that interprets (R) and the relation that interprets (S). Yet, and it came as a surprise, the
intersection of two accessibility relations does not work in the same way [55]. Later, Gargov,
Passy and Tinchev showed in [53] that the intersection can be defined using nominals by
stating that (T')i <> (R)i A (S)i, where Rr is the relation that interprets (7), and is the
intersection of R and Rg, respectively the relation that interprets (R) and the relation that
interprets (S). The same occurs for complementation: although there is no formula of the

basic modal logic that is valid on a frame where the accessibility relation that interprets (R)
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is the complement of the accessibility relation that interprets (S), there is a such formula

when nominals are added to the language and it is defined that (R)i <> —(S)i.

Among the large number of interesting results that Passy and Tinchev proved, there is
one which was crucial to the development of Chapter [4f They observed in [80] that named
models, ¢.e., models in which each world is named by a nominal, can be completely described
by a set of formulas of the form (—)@Q;p, (=)@;j, (-)@;< 4. Clearly such property holds in
the basic hybrid logic (H(@)) as it depends solely on the nominals and satisfaction operator
machinery.

The Sofia tradition in hybrid logic continues with the work of Goranko. Goranko, together
with Gargov, investigated the basic modal language extended with nominals and the universal
and existential modalities, #(E). Goranko also investigated the binder (J) in the context of
hybrid logic, see [56].

Meanwhile, Patrick Blackburn, Maarten de Rijke and Yde Venema wrote [24] a great
manual about modal logics, and Blackburn also wrote [23], a very good introduction to
hybrid logics. More recently, Blackburn, Marx and Areces have dedicated their research to
prove results on interpolation and complexity of hybrid logics [8, 6] [7]. Another contributor
to the development of hybrid logics is Balder ten Cate, who wrote his thesis on model theory
for extended modal languages [8§], and contributed a lot in the domain of bisimulation. In
[27], Blackburn and ten Cate approach several extensions of basic hybrid logic, and provide
them with Hilbert axiomatizations. Also, lan Hodkinson’s work on axiomatizing hybrid logics
using modal logics is quite interesting [62]. And finally, Torben Braiiner worked on defining
first-order hybrid logic [32], intuitionistic hybrid logic [33] and many-valued hybrid logic [60].
Works on hierarchical hybrid logic [71] and hybridization [76] [70, [79] have been especially
addressed lately.

3.2 Basic Hybrid Logic

To start, it is presented the simplest form of hybrid logic: the basic hybrid language,
H(@). The basic hybrid language introduces nominals and the satisfaction operator into the
propositional modal logic. However, it is interesting to see how such simple extension (with

only nominals and the satisfaction operator) carries such great power in terms of expressivity.
Next it is defined the syntactic structure of hybrid propositional logic:

Definition 3.2.1. Let L = (Prop,Nom) be a hybrid similarity type, where Prop is a set
of propositional symbols and Nom is a set disjoint from Prop. We use p,q,r,etc. to refer
to the elements in Prop. The elements in Nom are called nominals and we typically write
them as i, j, k, etc.. The well-formed formulas over L, Forma(L), are defined by the following
grammar:

WEF:=i|p[L[T][-pleVe[eny|Op|Dp| Qg
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For any nominal ¢, any formula ¢, @;p is called a satisfaction statement.

A hybrid structure is defined as a Kripke frame with some slight differences.

Definition 3.2.2. Let L = (Prop,Nom) be a hybrid similarity type. A hybrid structure H
over L is a tuple (W, R,N,V'). Here, W is a non-empty set called domain whose elements
are called states or worlds, and R is a binary relation such that R C W x W and is called
the accessibility relation. N : Nom — W is a function called hybrid nomination that assigns
nominals to elements in W such that for any nominal i, N (i) is the element of W named by
1. We call this element the denotation of © under N. V is a hybrid valuation, which means
that V is a function with domain Prop and range Pow(W') such that V(p) tells us at which
states (if any) each propositional symbol is true.

The pair (W, R) is called the frame underlying H and H is said to be a structure based

on this frame.

The satisfaction relation comes as a generalization of Kripke’s satisfaction for modal logic,

in the following sense:

Definition 3.2.3 (Satisfaction). The local satisfaction relation |= between a hybrid structure
H = (W,R,N,V), a state w € W and a hybrid formula is recursively defined by:

1. H,w =i iff w= N(i);

2. H,w E=p iff we V(p);

3. H,w = L never;

4. Hy,w =T always;

5. H,w =~ iff not H,w | ¢;

6. Hywl= oAy iff H,w =@ and H,w = 1b;

7. H,w = oV iff How =@ or How = 1);

8. H,w k= Op iff Jw' € W(wRw' and H,w' |= ¢);
9. H,w = Op iff Vu' € W(wRw' = H,w' = @);

10. H,w = Qo iff H,w' = ¢, where w' = N(i);

If H,w |= ¢ it is said that ¢ is satisfied in H at w. If ¢ is satisfied at all states in a
structure H, it is written H |= ¢. If ¢ is satisfied at all states in all structures based on a
frame F, then it is said that ¢ is valid on F and it is written F = @. If ¢ is valid on all
frames, then it is simply said that ¢ is valid and it is written = .

For A C Forma(L), it is said that H is a model of A iff for all 0 € A, H = 6.
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The idea of two hybrid formulas being logically equivalent is expressed in the next defini-

tion.

Definition 3.2.4. A formula ¢* € Forma(L) is said to be (logically) equivalent to ¢ €
Forma (L) iff for all hybrid structure H = (W, R, N,V) and all w € W,

How b= ¢ iff How = o

Given this definition, note that boolean connectives have the usual properties, and that

Oy is (logically) equivalent to =<O—p.

Next lemma states some properties about the satisfaction operator that will be important

in the sequel.
Lemma 3.2.5. Let ¢, be hybrid formulas. Then,
1. Qi(p V) is equivalent to Q;p V Q;1);
2. Q;(¢ A1) is equivalent to Q;p A Q1
3. @;Q;p is equivalent to Q;p;
4. 2Q;p is equivalent to Q;—y;

5. @i(gol VAN ¢1) V @i(gpg VAN 1/)2) is equivalent to (@itpl V @Z‘(,DQ) A (@itpl V @ﬂ/)z) A (@ﬂﬁl V
Qipa) A (Qiap1 V Qjaa).

The problem of determining the satisfiability of a formula is decidable, in fact, basic hybrid

logic is no more complex than basic modal logic.
Theorem 3.2.6. The satisfiability problem for the basic hybrid logic is PSPACE-complete.

Proof. See [6]. O

A homomorphism between hybrid structures is defined by considering them as first-order

structures. Concretely,

Definition 3.2.7. Let L = (Prop,Nom) be a hybrid similarity type, H = (W, R, N, V') and
H = (W', R',N', V') be two hybrid structures over L. A homomorphism h from H to H' is
a map h: W — W' such that

1. for any p € Prop and any w € W, w € V(p) iff h(w) € V'(p);
2. for any i € Nom, h(N(i)) = N'(i);

3. for any w,s € W, wRs implies that h(w)R'h(s).
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It is said that h is an embedding if it is injective and the condition (@ holds in the strong

Version:

for any w,s € W, wRs iff h(w)R'h(s).

3.2.1 Frame Definability

The definition of frame definability is given as follows:

Definition 3.2.8. A formula ¢ defines a class K of frames of some type if for all of those
frames F, one has that F € K & F |= .

Hybrid languages have gained popularity because, as said earlier, many properties of
frames that are not modally definable can be defined using nominals, for example irreflexivity
(i = —<14) and antisymmetry (i — O(<4 — 4)). These formulas do not contain any proposi-
tional symbols, so they are called pure. Thus, hybrid logics are stronger than modal ones, in

the sense that they allow the definition of more properties.

Definition 3.2.9. A frame F has the property stated if and only if it validates the hybrid

formula listed alongside. We start with the ones also definable in basic modal logic:

Yw wRw reflexivity Q;O4
Vw,u (WRu — uRw) symmetry  @;004
Vw,u,v (wWRu A uRv — wRv) transitivity Q;Oj A Q;O0k — @Ok
Vw,u (wRu — Jv(wRv AvRu)) density i — OO

Now there are given some examples of properties that are not definable in basic modal

logic but that are easily stated in basic hybrid language:

Yw ~wRw irreflexivity  @Q;—q
Vw,u (wRu — —uRw) asymmetry Q; =001
Vw,u (WRu AN uRw — u=w) antisymmetry i— O(<Ci— 1)
Vw,u (wWRuV w =uV uRw) trichotomy O AVACIAVACReY/

However, there are many classes of frames which are not definable using only pure H(Q)-
axioms. The class of frames in which every world has a predecessor is an example. This class
of frames is definable in H(@,V), which will be introduced in Section using the formula
Vs3t@Q;<s.

The union of frame classes can be defined in hybrid logics as follows.

Proposition 3.2.10 ([88]). Let L be a hybrid similarity type. For all formulas ¢, €

Formq(L) that do not share any propositional symbols, and for all distinct nominals i,
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not occurring in @ and ), Q;o VvV Q;1) defines the union of the frame classes defined by ¢ and

.

An aziomatization for basic hybrid language, Ky(a), is provided in the following table

(ct. [27]):

K@)

Axioms:
CT)
Dual)

F ¢, for all classical tautologies ¢
FOp < —O-p

FDO(p — q) = (Op — Og)
FQ;(p— q) = (Qp — Qi)
F=@p <> @;—p

F Qi

Finp— @Qp

FoQ;p — Q;p

F@;Q;p — Q;p

If-¢ — 1 and F ¢ then - ¢

If - ¢ then - O¢

If - ¢ then - @;¢

If - ¢ then F ¢, where o is a substitution that
uniformly replaces propositional symbols by arbitrary
formulas and nominals by nominals.

If F @Q;¢ and ¢ does not occur in ¢ then - ¢

If FQ;¢5 — @;¢ and j # 4 does not occur in ¢

then - @;0¢

The axiomatization presented is sound and complete with respect to the class of all frames.

Recall that an axiomatization is sound for a class of semantic structures if every derivable

formula is semantically valid, and the converse of that, i.e. saying that every semantically

valid formula is derivable, is the definition of a complete axiomatization.

Moreover, completeness is guaranteed for extensions with pure axioms. Note that a pure

formula in the context of H(@) is a formula with no propositional symbols, i.e., the only

atomic symbols that a pure formula can contain are nominals.

For any set of pure H(Q@)-formulas A, let Ky @) + A denote the above axiomatization

extended with the axioms in A. Then,
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Theorem 3.2.11 (Completeness, [27]). Let A be any set of pure H(Q)-azxioms. A set of
H(Q)-formulas X is Kyy@) + A consistent iff ¥ is satisfiable in a model based on a frame
satisfying the frame properties defined by A.

For example, by considering A = {@Q;Oj A @;Ok — @; Ok}, one has that Ky a) + A is

complete with respect to the class of transitive frames.

3.2.2 Hybrid Diagrams

In order to define the diagram of a hybrid structure, the concepts of hybrid atom and
hybrid literal must be introduced.

Definition 3.2.12. For a hybrid similarity type L = (Prop, Nom), we define

1. Hybrid atoms over L:
HAt(L) = {Q;p, Q;j, @;<Of | 4,7 € Nom,p € Prop};

2. Hybrid literals over L:
HLit(L) = {Q;p, Q;—p, Q;j, Q;—j,@;Of, @;0-j | 4,5 € Nom,p € Prop};

An important feature of hybrid logic is the fact that we can specify Robinson diagrams
[8]. As in first-order logic, in order to define the diagram of a hybrid structure, the hybrid
similarity type L is expanded by adding new nominals for the elements of the domain W.
The denotation L(W) is used for this new hybrid similarity type; in other words, L(W') =
(Prop, Nom U W).

Given a hybrid structure H = (W, R, N, V) over L, H(W) denotes the natural expansion
of H to L(W) by taking N the identity on the new symbols.

The diagram of a hybrid structure H over L is the set of literals over L(WW) that are valid
in H(W). Formally,

Definition 3.2.13. For a hybrid similarity type, L = (Prop,Nom), and a hybrid structure
over L, H = (W, R, N, V), the elementary diagram of H, diag(H), is the set of hybrid literals
over L(W) that hold in H(W), i.e.,

diag(H) = {a € HLit(L(W)) | H(W) E o}

Actually, diag(H) behaves like the standard diagram for first-order logic.

Theorem 3.2.14. Let L = (Prop,Nom) be a hybrid similarity type and H = (W, R, N, V),
H = (W',R',N', V') two hybrid structures over L. Then, there is an embedding from H to
H' iff H' can be expanded to a model of diag(H).
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Proof. Let h be an embedding from #H to H'. Define the expansion H'* = (W', R/, N"" V")
of H' to L(W) by extending N to Nom U W by N"*(w) = h(w) for w € W. It is not hard to
show that H'" is a model of the diagram of H.

Conversely, let H' = (W', R’ N, V') be an expansion of H' to L(W) which is a model of
the diagram of H. Define the map h : W — W' by h(w) = N(w). Clearly, h is injective.
Moreover, it is not difficult to see that h is an homomorphism. Hence, it is an embedding.

O]

In Example [9] it is presented the diagram for the hybrid structure represented.

Example 9. Let L = ({p,q},{}), and W = {u, v, w}

O——0

P q

Figure 3.1: A hybrid structure.
The hybrid structure H described in Figure has the following diagram:
diag(/H) = {@up7 Qumq, Qy=p, Qyq, Qyp, Qg
Q,—w, Q,~w, Q,—u, Q,—~w, Q,—u, Q,—w
Q, v, @, 0-u, Q,0-w, @, w, Q,0-u
@,0-w,@,0-u, @,0-w, @wlﬂﬂw}

Once again, let us recall that given L and W, the diagram of Figure [3.1] is unique.

3.2.3 Bisimulation and Standard Translation

In this section the notion of bisimulation between hybrid structures, sometimes called

bisimulation with constants, is addressed.

Also, the notion that (@) is the bisimulation invariant fragment of a first-order language
with constants is explained ([88]).
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In [7], bisimulations are seen as binary relations that connect worlds in which the atomic

information is the same, and where the accessibility relations match.

In this section it will also be introduced the standard translation, which transforms hybrid
formulas into first-order formulas. This translation preserves truth, and has a deep connection

with bisimulations, as it will be shown.

Definition 3.2.15 (Bisimulation). Let L = (Prop,Nom) be a hybrid similarity type. Let
H=(W,R,N,V) and H = (W', R/, N', V') be two hybrid structures. A H(Q)- bisimulation
between H and H' is a non-empty relation Z C W x W' such that:

e All points named by nominals are related by Z, i.e., for each i € Nom, N(i)ZN'(i);

e for every pair (w,w’) € Z we have:

— Atomic conditions:
x for all p € Prop, w € V(p) iff w' € V'(p).

x for all i € Nom, N(i) = w iff N'(i) = w'.

— if wRu for some u € W, then there is some u' € W' such that w' R'v' and uZu’
(Zig),

— conversely: if w' R'u" for some u' € W', then there is some u € W such that wRu
and uZu' (Zag).

To illustrate this definition, an example of a bisimulation is presented:

Example 10. Let L = ({p,q},{}) be a hybrid similarity type and H = (W, R, N, V) and H' =
(W' R',N", V") be two hybrid structures. A bisimulation Z is represented in the following

figure:
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Figure 3.2: A H(@)-bisimulation.

A pointed hybrid structure is a pair (H,w) where H is a hybrid structure and w is an
element of H.

Two pointed hybrid structures (H,w) and (H',w’) are bisimilar, if there is a H(Q)-
bisimulation Z between H and H' such that wZw’.

It is well known that hybrid satisfaction is invariant under bisimulation (cf. [88]):

Theorem 3.2.16. Basic hybrid logic is invariant under bisimulation: let L be a hybrid sim-

ilarity type; if two pointed hybrid structures (H,w) and (H',w') are bisimilar, then for any
¢ € Forma (L)

How e iff H w' =

Proof. The proof follows the idea in [24] and is by induction on ¢. Suppose that (H,w) and
(H',w') are bisimilar, thus wZw'.

For ¢ = p € Prop,

HwkEp & weV(p)

< w eV'(p) (atomic cond. in[3.2.15
& H W Ep

For ¢ =4 € Nom,
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HwkEi <& w=N(i)
< w' =N'(i) (atomic cond. in|3.2.15
s H.ow Ei

For ¢ = ¢¢, with ¢ € Forma (L),

H,wE Op < there exists v such that (wRv & H,v | ¢)
< there exists v’ such that (w'R'v' & H',v' = ¢) (Zig/Zag in[3.2.15
& Houw E O plus the induction hypothesis)

For ¢ = O¢, with ¢ € Forma(L), the proof is analogous.
For ¢ a boolean case the proof is immediate.

Finally, for the case that ¢ = Q;¢,

HowlEQp < H,N@G)E
< H,N'(i) ¢ (for all i € Nom, N(i)ZN'(i), in[3.2.15
& H.,w' |E Qe plus induction hypothesis)

O]

The reciprocal is not true, unless we consider a restriction to image-finite models, [24]. H

is an image-finite model iff for each state u in H, the set {v; € W | uRv;} is finite.

Theorem 3.2.17. Let L be a hybrid similarity type; H and H' are image-finite L-models and
we W,w e W

(H,w) and (H',w') are bisimilar iff for all p € Formq(L), H,wE ¢ < H v E¢

Proof. The direction from left to right follows from Theorem [3.2.16] For the other direc-
tion, let us prove that the relation of hybrid equivalence on these models is itself a H(Q)-
bisimulation. The proof for the atomic conditions is obvious. In order to prove Zig, assume
that for all ¢, H,w = ¢ & H',w' = ¢, and that wRv. Suppose there is no v’ such that
w' Ry’ and for all p, H,v = ¢ & H',v' = ¢. Consider the set S" = {u/ | v’ Ru'}; S" must be
non-empty, because, if it were the case that S’ = (), then one would have H’,w’ = 0L, which
contradicts the fact that H,w E ¢ < H',w' = ¢, since H,w = T (because wRv). For H'
image-finite, one must have that S’ is a finite set, let us suppose that S" = {w},...,w],}. By
assumption, for every w, € S’, there is a formula 1); such that H,v = v;, but H', w} = ;. It
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follows that
H,w = O(hr A= Athn) and H' w' = O(r A Ahy),

which again contradicts the assumption that H,w E ¢ < H',w’' = ¢. Thus we reach
absurdity. Therefore, such v' must exist. The idea for proving Zag is similar. The first
condition of all in the definition of #H(@)-bisimulation is achieved because, for all ¢ € Nom,
¥ € Forma(L),

H,U)Zw,U:N(i> Ang Haw):@ﬂ/f
& H W' EQp (H,w E o< H W = p, for all ¢)
& H,V EY,v = N(i)

Thus, N(i)ZN'(i), for all i € Nom.
O

Given a structure H = (W, R, N, V) for the hybrid similarity type L = (Prop, Nom), its
correspondent structure in a first-order language L* = (P,C) where P is a set of predicate

symbols and C is a set of constant symbols, together with a binary relation R, denoted
H* = (W, V*), is such that ([29]):

e there is an unary predicate P € P for each p € Prop,

there is a binary relation R € P,

e there is a constant ¢; € C for each i € Nom,
e V'(R) =R,
o V*(P)={weV(p)}

The link between hybrid and classical languages is that both can talk about relational
structures, so it seems likely that there is a connection between them. A standard translation
is a way of transforming hybrid formulas into first-order formulas capturing in the process

the first one’s meaning ([5]).

Definition 3.2.18. The standard translation, that maps basic hybrid formulas into first-order

formulas, is defined as:
1. ST,(T) = T
2. ST,(L) = L

3. ST,(p) = P(z), p € Prop
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4. STu(i) = (z~¢), i € Nom

5. ST.(—p) = —STu(p)

6. ST.(pVh) = STu(p)V ST,(v)

7. STo(p A1) = STu(e) A STy(1)

8. ST.(Cp) = Jy(xRy A ST,(p))

9. ST, (Bp) = Vy(xRy — ST,(¢))

10. STx(Qip) = (ST:(¥))lei/], i € Nom

Here x is a fized, yet arbitrary, free variable, and y is a variable not used in the translation.

For any modal formula ¢, STy(¢) is a first-order formula containing exactly one free
variable, namely x. Nominals correspond to constants, and satisfaction statements let us
switch our perspective from the current state to named states (the substitution [c;/x], which

replaces all free occurrences of x by c¢; in the formula, makes it quite clear).

Theorem 3.2.19 ([7]). This translation preserves the truth, in the sense that for all formulas
¢ € Forma (L), given a model H = (W, R, N, V') for hybrid logic and its correspondent model
for first-order logic H* = (W, V™), and for all worlds w of W,

H,w =@ iff H = ST(¢)[x + w)
(where [x < w] means assign w to the free variable x).

The definition of a first-order formula invariant under H(@)-bisimulations is given as

follows:

Definition 3.2.20. [2]] A first-order formula 1 (x) € L* is invariant under H(Q)-bisimulations
if for all models M and N, and all states w in M, v in N, and all H(Q)-bisimulations Z

between M and N such that wZv, we have, for its correspondent models for first-order,
M Y(z)[z  w] ff N* | ()] < v].

A result that connects bisimulation with standard translation is presented in [88], and is

reproduced here:

Theorem 3.2.21. Let ¢ € L* be a first-order formula, with at most one free variable. The

following are equivalent:

1. Y(z) is equivalent to the standard translation of a basic hybrid formula;

2. Y(z) is invariant under H(Q)-bisimulations.
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3.3 Strong Priorean Logic

In this Section it is introduced the strong Priorean logic. In order to do that, consider the
addition of the set of world variables, WVar, (typically written as s,t,u, etc), distinct from
both nominals and propositional variables. Such enables nominal binding by making use of

world variables and assignments of values to world variables.

The result of this new machinery is a powerful hybrid logic, H(@,V), whose grammar is

defined as follows:

Definition 3.3.1. Let L = (Prop,Nom, WVar) be a hybrid similarity type where Prop and
Nom are as usual the set of propositional variables and the set of nominals, and WVar is
the set of world variables. The well-formed formulas over L, Formay(L), are defined by the

following grammar:
WFF:=i|p[s|[L]T|=p|leVve[enyd|Op|Be| Q| Qup|Vsp|Ise
Note that Q@ can make use of world variables.

A hybrid structure is defined in the same pattern as in the previous section:

Definition 3.3.2. Let L = (Prop, Nom, WVar) be a hybrid similarity type. A hybrid structure
H over L is a tuple (W, R,N,V). Here, W is the domain, R is the accessibility relation, N
is the hybrid nomination and V is the hybrid valuation.

The pair (W, R) is called the frame underlying H, and H is said to be a structure based

on this frame.

But now there is a need of a mechanism for coping with free world variables, so it is

considered an assignment g : WVar — W.

If g, ¢’ are assignments of values to variables in H, recall that ¢’ is an s-variant assignment

of g iff ¢'(t) = g(t), for all t € WVar, t # s; in such case we write ¢’ < g.
The satisfaction is defined in the following way:

Definition 3.3.3 (Satisfaction). The local satisfaction relation |= between a hybrid structure

H = (W,R,N,V), astatew € W, an assignment g and a hybrid formula is recursively defined
by:

L4 H797w |:s iﬁw:g(s);
e H,g,w = p iff we V(p);
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o H,g,w = L never;

o H,g,w T always;

o H,g,w = ¢ iff not H,g,w = p;

e H.gwEeANY iffH,g,w = and H,g,w = ;
e H.gwEeVY iff H,gw =@ orH,g,w = ¢;
o H,g,wE Oy iff I € W(wRw' and H, g,w' E ¢);
o H,g,w = Op iff Vw' € W(wRw' = H,g,w" | ¢);
o H,g,w E Q iff H,w' = ¢, where w' = N(i);

o H,g,w E Qs iff H,g,w" |E ¢, where w' = g(s);
e H,g,w=Vs.o iff H,g',wl= @, forall g X g;

o H,g,w k= Is.o iff H,g',w = @, for some g’ % g;

The catch of this extension is that the satisfiability problem is turned EXPTIME-complete
([27]). On the other hand, observe that this kind of quantification covers other extensions of

hybrid logic, namely, it is possible to define the | binder as:

lx.p=IJz.(xAp)

There are some possible complete axiomatizations for H(@, V), one is an extension of the

axiomatization for basic hybrid language previously presented, as follows (cf. [27]):

Kyaw1
Axioms:

All axioms of Ky(a)
(including the last two presented)

(Q1) FVs(¢— ) = (¢ — Vsa)
where s does not occur free in ¢
(Q2) FVs.p — @[T < s| where T

(a world variable or nominal) is

substitutable for s in ¢

(Barcang) FVs.Q;¢ > Q;Vs.¢
Rules:

All rules of Ky/(a)

(Geny) If - ¢ then - Vs.¢
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3.3.1 Standard and Hybrid Translations

It is also possible to extend standard translation referred in Subsection to the new

formulas introduced in this stronger logic, following the work in [26], as:
1. STy(s) = (z~s), s€ WVar
2. ST, (Qgp) = (STx(p))[s/z], s € WVar
3. ST, (Vs.p) = Vs.(STx(p)), s € WVar

4. STy(3s.p) = Is.(STy(p)), s € WVar

Where z is a fixed, yet arbitrary, free variable.
World variables are considered to be first-order variables.

This extension of standard translation is also truth-preserving ([88]), as the one in Sub-
section [3.2.J]

The language H(@Q,V) is very strong: any first-order expression in a language with a
binary relation R, so that it is possible to talk about accessibility, and with an unary relation
P, so that it is possible to talk about propositional information, can be translated into a

formula of H(@,V). This translation became known as hybrid translation.

Definition 3.3.4. The hybrid translation between first-order formulas and hybrid formulas
is defined in the following way:

HT(T) = T

HT(L) = 1

HT(sRt) = QgOt
HT(P(s)) = @p
HT(s~t) = Qg

HT(~p) = —HT(p)
HT(pAy) = HT(g)AHT()
HT(Fv.p) = Fu.HT(p)
HT(Mv.p) = Yv.HT(p)

Note that the absence of @ (either as a primitive or defined using some sort of modality),

does not make it possible to define such translation [25].

Assuming the same denotation for H,H* as in Subsection [3.2.3] one can state that HT is

also truth-preserving.

Theorem 3.3.5 ([5]). Given H a model for hybrid logic, H* its first-order correspondent, for

any first-order formula ¢ € L*, any assignment g,
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H 9= iff HogE=HT(p).

3.3.2 Strong Bisimulation

For simplicity, a less expressive language will be considered in this Subsection, namely
H(E). Before introducing the definition of strong bisimulation, the syntax of H(F) is defined,
as well as the satisfaction of H(E) formulas. Posteriorly, the standard translation is presented

and a result connecting it with bisimulation is announced.

For more details on bisimulation and standard translation for others less expressive lan-
guages than H(@Q,V), consult [8§].

The syntax of the language H(E) is now introduced.

Definition 3.3.6. Let L = (Prop,Nom) be a hybrid similarity type where Prop is the set
of propositional variables and Nom is the set of nominals. The well-formed formulas over L,

Formpg (L), are defined by the following grammar:

WFF:=i|p|L|T|-p|leVY|oAy|Op|Op| Ep| Ap

A structure is defined as usual, H = (W, R, N, V), and the satisfaction of E¢ and Ap

which are new formulas, is defined by:
1. H,w |= E¢ iff for some v € W, H,v = ¢;
2. Hyw | Ay iff for all v e W, H,v | .
Observe that Ay is equivalent to = E—¢.

This is an interesting approach to hybrid logics, since it is possible to define the @ operator
by means of the modalities E and A, namely, E(i A ¢) means that “somewhere in the model

there is a world where ¢ and ¢ are both true”, which has the same meaning as @;p. Thus,

Qi =4 E@i N )

and alternatively,
Qo A= ).
A(i — ) says that “at all worlds in the model where i is true, ¢ is also true”.
An axiomatization for H(E) can be found at [8§].
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The definition of strong bisimulation between H(E) models is the same as the one for

H(@) plus the fact that it is a left-total and surjective relation.

Definition 3.3.7 (Strong Bisimulation). Let L = (Prop, Nom) be a hybrid similarity type. Let
H=(W,R,N,V) and H = (W', R/, N', V') be two hybrid structures. A H(F)- bisimulation
between H and H' is a non-empty relation Z C W x W' such that:

o Vw e W,3w' € W such that wZw' and YVw' € W’ ,3w € W such that wZw';
e ifw= N(i) and w' = N'(i) for some i € Nom, then wZw';
e for every pair (w,w') € Z we have:

— atomic conditions:

x w € V(p) iff w € V'(p), for all p € Prop;
x N(i) =w iff N'(i) = ', for all i € Nom;
— if wRu for some u € W, then there is some u' € W' such that w'R'v' and uZu’
(Zig);
— conversely: if w' R'v' for some u' € W', then there is some u € W such that wRu

and uZv' (Zag).

Note that every H(E)-bisimulation is a H(@)-bisimulation.

Theorem [3.2.16| can be translated into H(E) as follows (cf. [88]):

Theorem 3.3.8. H(E) is invariant under bisimulation: let L = (Prop,Nom) be a hybrid
similarity type; if two pointed hybrid structures (H,w) and (H',w’) are bisimilar, then for

any ¢ € Formpg(L)
HowlEpiff H,w' Eo

Proof. Continuing the proof for Theorem [3.2.16} for ¢ = F¢, we have that:

H,wE E¢p < forsomeve W, H,vl¢
&  forsomev e W H vV E¢ ()
& H.,w EE¢

(%) the direction from right to left is because Z is a left-total relation, and it is considered

that v’ is the element in W'’ such that vZv’. The converse is because Z is a surjective relation.

O
The standard translation for the new formulas introduced in H(E) is given by:
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STy (Ep) = 3y.ST,(v)

Proposition [3.2.19| can be easily considered for formulas in Formpg(L), and so does Defi-
nition |3.2.20} replacing #H(@)-bisimulations for H(E)-bisimulations.

An analogous result to the one in [3.:2.3] about the connection between bisimulation and

standard translation follows (as in [88]).

Theorem 3.3.9. Let v € L* be a first-order formula, with at most one free variable. The
following are equivalent:

1. Y(z) is equivalent to the standard translation of a hybrid formula in Formpg(L) for some

hybrid similarity type L = (Prop, Nom);

2. YP(x) is invariant under H(E)-bisimulations.
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Chapter 4
Paraconsistency in Hybrid Logic

This Chapter is a new contribution in the fields of paraconsistency and hybrid logics. It
is inspired by the work of Grant and Hunter in [58]. Although [59] seemed simpler and more
straightforward in the approach of the satisfaction in the presence of inconsistencies, the fact
that [58] carries the notion of disjunctive syllogism ended being more appealing. The main
motivation for this Chapter is that it ought to be possible to reason about information in

relational structures, even when there are inconsistencies present.

First of all, it is defined a Quasi-Hybrid Basic Logic. Analogously to the assumption in
[58], where it is assumed that all formulas are in prenex conjunctive normal form, it will be
assumed that all formulas are in negation normal form. This assumption does not lead to
loss of generality since Proposition shows that any hybrid formula is equivalent to one

in negation normal form.

The concepts of bistructure, decoupled and strong satisfaction and QH model are pre-
sented. The paraconsistent diagram of a bistructure is defined and a very important theorem
concerning the designing of QH models as sets of quasi-hybrid literals is proved. Afterwards,
there are considered minimal QH models and some examples with illustrations are presented.
The inconsistency measure, a central goal of this work is introduced and consequently, the
notion of preferred QH model appears. Finally, the extrinsic and intrinsic inconsistency for
preferred QH models is defined, and there are presented some analogous results to the ones
in [58].

4.1 Quasi-Hybrid Basic Logic

In order to generalize the approach in [58] to the hybrid case, one must consider formulas
in negation normal form (i.e., formulas in which the negation symbol occurs immediately
before propositional symbols or nominals). As such, an analogous result to the one in [2§]
for classical propositional logic is established. Essentially it states that any hybrid formula is

logically equivalent to its negation normal form. It is important to point out that the same
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result was presented without proof in [49] for the modal case. Therefore, it is possible to
restrict our attention to the formulas in negation normal form. First, the formal definition of

such formulas:

Definition 4.1.1. Let L = (Prop,Nom) be a hybrid similarity type. The negation normal
form of a formula, for short NNF, is defined just as in propositional logic: a formula is said
to be in NNF if negation only appears directly before propositional variables and/or nominals.

The set of NNF formulas over L, FormNNF(@)(L), is recursively defined as follows:
For p € Prop, ¢ € Nom,
1. 1L, T arein NNF;
2. p, i, —p, —i are in NNF;
3. If p, ¥ are formulas in NNF, then @ V1, o A are in NNF;
4. If p is in NNF, then Op, O are in NNF;

5. If i € Nom and ¢ is in NNF, then Q;p is in NNF.

The next proposition states that there can be considered only the formulas in negation

normal form.

Proposition 4.1.2. Every formula ¢ € Forma(L) is logically equivalent to a formula ¢* €

FOl"mNNF(@) (L).

Proof. The proof is achieved by induction on complexity. The base step is trivial, since
an atomic formula is already in negation normal form. Most cases of the induction steps
are trivial as well. For instance, if A and B are equivalent respectively to negation-normal
formulas A* and B*, then AA B and AV B are equivalent respectively to A* A B* and A*V B*,
which are also negation-normal. The non-trivial case is to prove that if A is equivalent to the
negation-normal A* then ~ A is equivalent to some negation-normal Af. This divides into
seven subcases according to the form of A*. The case where A* is atomic is trivial, since we
may simply let AT be ~ A*. In case A* is of form ~ B, so that ~ A* is ~~ B, we may let Af
be B. In case A* is of form BV C| so that ~ A* is ~ (B Vv C'), which is logically equivalent to
(~ BA ~ C), by the induction hypothesis the simpler formulas ~ B and ~ C' are equivalent
to formulas Bt and C7 of the required form, so we may let A} be (Bt ACt). The case of
conjunction is similar. In case A* is of form ¢B, so that ~ A* is ~ OB, which is logically
equivalent to O ~ B, by the induction hypothesis the simpler formula ~ B is equivalent to a
formula Bf of the required form, so we may let At be OBt. The case of box is similar. If A*
is of the form @; B, so that ~ A* is ~ @; B, which is logically equivalent to @; ~ B, and since
by hypotheses ~ B is equivalent to a formula Bt of the required form, then we can conclude
that At is Q;Bf. O
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Based on this proof, a recursive procedure that transforms formulas into negation normal

form can be formulated. Formally, nnf : Forma(L) — Formynpa)(L) is defined as follows:

1. nnf(l) = l,if I is a literal;

d

2. nnf (Y1 Vo) e nnf(y1) Vanf(vs);:

de

3. nnf (1 Ae) < nnf (1) Annf();

def

4. nnf(=(P1 V) = nnf(—1) Annf(—2);

5. nnf(=(v1 A b)) S nnf (<) V nnf(—aps);

6. nnf(Ov) < onnf(v);
7. nnf(=0¢) < onnf(-=y);

8. nnf(ov) Y onnf);

def

9. nnf(=O¢) = Bnnf(—);

def

10. nnf(——p) = nnf(y);

11. nnf(Q;)) = Qnnf(v);
12. nnf(-@u) < @mnf(—p);

Without loss of generality (see Proposition [4.1.2)), it will be assumed that all formulas
are in negation normal form, i.e, given a hybrid similarity type L = (Prop, Nom), the set of

formulas is Formynp(a)(L)-

Let us continue with the definition of the ~ operator, which will make some definitions

clearer.
Definition 4.1.3. Let 6 be a formula in NNF and let ~ be a complementation operation such

that ~ 0 = nnf(—0).

Recall that a hybrid structure for the hybrid similarity type L is a tuple (W, R, N, V).
However, in order to accommodate inconsistencies in a model, one has to consider two valu-

ations for propositions: V* and V.

Definition 4.1.4. A hybrid bistructure is a tuple (W, R, N,V , V™) where (W, R, N,V ™)
and (W, R, N,V ™) are hybrid structures.

The map V' is the interpretation for positive propositional symbols, and V= is the inter-

pretation for negative ones. This is formalized in the definition for decoupled satisfaction.
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Definition 4.1.5. For a hybrid bistructure E = (W, R, N,V V™), a satisfiability relation

=4 called decoupled satisfaction at w € W for propositional symbols and nominals is defined

as follows:

1.
2.

3.

4.

E,wEqap iff we V*(p);
E,w =g —p iffwe V= (p);

E,w =g —i iff w # N(i);

Note that the link between a formula and its complement has been decoupled at structural

level, in order to allow both a positive and a negative propositional symbol to be satisfiable.

In contrast, if a classical hybrid structure satisfies a propositional symbol at some world, it

is forced to not satisfy its complement at that world.

This decoupling gives the basis for a semantic for paraconsistent reasoning.

Definition 4.1.6. A satisfiability relation =5, called strong satisfaction, is defined as follows:

1.

2.

3.

9.

10.

11.

E,w s T always;
E,w =, L never;

Ew=spiff E,2w=qp;

. E7w 'ZS -p Zﬁva ):d -p;

EwEsiiff E,wlqi;

E,w e, ~iiff Eow Eq i

Ew Es 01 Vo iff[E,w Es 61 or E;w s 03] and

0] and [E,w s~ 03 = E,w =5 61];

E,wks 0 N0y iff E,w =5 61 and E,w =g 0o
E,w s 00 iff 3w (wRw' & E,w' =5 0);

E,w s 00 iff V' (wRw' = E,w' =5 6);

E,w s Q6 iff E,w' =5 0 where w' = N(i);

Strong validity is set as follows:

EEsfiffforallwe W, E,w = 6.
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Analogously to the definition in the basic hybrid case of a model of a set A of formulas,
it is said that E is a quasi-hybrid model of A iff for all 0 € A, E =, 0.

To make it easier to follow, it will be assumed that N maps nominals to themselves; hence
W will always contain all the nominals in L. This also means that all nominals are mapped
to distinct elements, i.e., N is an inclusion map. Hence, for a given hybrid similarity type

L = (Prop,Nom) and a domain W of a bistructure one must have Nom C W.

Following the assumption that N is injective, in order to define diagrams, hybrid literals
regarding equality between nominals, i.e., @;j, @;,—j are not needed. Therefore, in this
context, the notion of atom and literal is reformulated as follows:

For a hybrid similarity type L = (Prop, Nom),

1. Quasi-hybrid atoms over L:
QHAt(L) = {@Zpu @ZOJ ’ /Lv.] € NOIl’l, pE Prop};

2. Quasi-hybrid literals over L:
QHLit(L) = {Q;p, Q;—p, @;<j, @;0-5 | 4,5 € Nom, p € Prop};

To build the paraconsistent diagram, new nominals are added for the elements of W which
are not named yet, and this expanded similarity type is denoted by L(W), i.e., L(W) =
(Prop, W) (recall that Nom C W). As in the standard case, E(WW) denotes the natural
expansion of the bistructure E to the hybrid similarity type L(W), by taking N the identity
for the new nominals. Moreover, it will be once again assumed that Prop, Nom are finite sets

for any hybrid similarity type L = (Prop, Nom), as well as the domain W of any bistructure.

Definition 4.1.7. Let L = (Prop,Nom) be a hybrid similarity type, and consider a hybrid
bistructure over L, E = (W, R, N,V* V7). The elementary paraconsistent diagram of E,
denoted by Pdiag(FE), is the set of quasi-hybrid literals over L(W) that hold in E(W), i.e.,

Pdiag(E) = {a € QHLit(L(W)) | BE(W) =, a}

The paraconsistent diagram Pdiag(F) defines completely the bistructure E in the sense
that, fixing the domain W and N being the identity, there is an unique model of Pdiag(FE)
(over L(W)) with domain W and a hybrid nomination N, which is E(W). Therefore, in the
sequel, a bistructure £ = (W, R, N,V V™) will be represented by its (finite) paraconsistent
diagram Pdiag(FE). This syntactical representation will play an important role throughout

this dissertation.

Let L = (Prop, Nom) be a hybrid similarity type, A C Formyyp(a)(L) and W a finite set.

The notation QH(L, A, W) is used for the set of representations (i.e., paraconsistent diagrams)
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of hybrid bistructures that are models of A with domain W. Recall that the domain and the
hybrid similarity type are considered to be finite. This implies that bistructures are finite and
consequently representations of QH models are also finite. This fact is relevant in the next

section when discussing the measure of inconsistency in a model.

The syntactic representations of models will be denoted by M, My, etc. Let M be the
representation of E with domain W. For w € W, one writes M,w =5 ¢ if E,w 5 ¢.
Analogously, M =5 ¢ defines E =5 ¢.

In order to make it easier to construct QH models as sets of quasi-hybrid literals, some
properties about the satisfaction operator are introduced and proved, and a very important
theorem which makes it possible to use only quasi-hybrid literals when transforming a formula
in negation normal form into a quasi-equivalent positive boolean combination of QH-literals

will be presented.

Definition 4.1.8. A formula ¢* € Formynpa)(L) s said to be quasi-equivalent to ¢ €
Formynra)(L), denoted ¢ =4 *, iff for all hybrid bistructure E = (W, R, N, VY V™) and
any w e W,

Ewkspe E,wks o

Some properties of the satisfaction operator in quasi-hybrid logic are now presented:

Lemma 4.1.9. Let L = (Prop, Nom) be a hybrid similarity type, and ¢, € Formynp(a)(L)

be hybrid formulas in negation normal form. Then,
1. Qi(p V) =, Qo V Qp;
2. Qi(p NY) =4 Qip A Qi
8. @;Q;p =, Qjp;

4. Q0 =, Q;=p.
Proof. (1) Let E be an arbitrary bistructure, and w be an arbitrary world in E:
Bl GipVy) & Bl by pViu = N()
& [E,w' Espor E\w s 1Y)
and [E,w' s nnf(—p) = E,w' 4 Y]
and [E,w' =5 nnf(—Y) = E,w' =5 ¢],w’ = N(i)
& [B,wlss Qip or E,w =5 Q;y]
and [E,w s Q;(nnf(—y¢)) = E,w =5 Q)]
and [E,w |=s Qi(nnf(—¢)) = E,w = Qiy]
& [E,w ks Qi or E,w = Q1))
and [E,w Es nnf(-(Qp)) = E,w s Q)]
and [E,w s nnf(—(Q0)) = E,w s Q)
& Eowls QeVvaq
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The proof for (2), (3) and (4) is trivial.

The distributive law does not hold as it is shown in the following counter-example:

Example 11. Let L = ({p,q,7},{i}) and the bistructure E, with domain W = {i}, R =0
and the valuation V' defined by V' (p) = 0,V (p) = {i},VT(q) = V(q) = {i},VT(r) =
{i},V=(r)=0.

Clearly, the formula Q;pV (Q;q A Q;r) is valid in E. However, the formula (Q;pV @Q;q) A
(Q;pV Q;r) is not valid in E. This shows that in Quasi-Hybrid Logic the distributive law does
not hold.

The following theorem is very important to build the representation of hybrid bistructures

using quasi-hybrid literals:

Theorem 4.1.10. Let L = (Prop,Nom) be a hybrid similarity type, and M be the rep-
resentation of a finite hybrid bistructure over L with domain W. Then for all formula
¢ € Formynp(a) (L), there is a positive boolean combination of quasi-hybrid literals ¢ over
L(W) such that

MEspe& MED.

Proof. One should start by noting that for a QH model with finite domain W = {iy,i2,...,i,}
one has that,
M ):5 go(:ﬁ/\/l ):5 @ilgo/\@iztp/\-“/\@intp.

Since the conjunction of positive boolean combinations of quasi-hybrid literals remains a
positive boolean combination of quasi-hybrid literals , the proof follows by defining a procedure
to transform any formula @; ¢ in a quasi-equivalent positive boolean combination of quasi-
hybrid literals, PBCL for short.

o if p=p,@; pisa PBCL;

o if p =—-p, Q; —pis a PBCL;

if p =1,Q;,iis a PBCL;
o if o =—i,@; —iis a PBCL;
For the induction step, suppose that Q;, ¢, @; 1 are equivalent to PBCL formulas,

o if p = ¢V, Q;, ¢V is quasi-equivalent to @Q;, ¢V @;, ¢ by Lemma [£.1.9 which by Ind.
Hyp. is quasi-equivalent to a PBCL;
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o if p = P A, Q; P A1) is quasi-equivalent to @Q; ¢ A Q; 1) by Lemma which by Ind.
Hyp. is quasi-equivalent to a PBCL;

o if p = O¢p, @; O¢ is quasi-equivalent to (Q; O—-iy V @Q; @) A (Q;, O—ig V Qi) A -+ A
(Q;,0-i, V @Q; @) by Lemma which by Ind. Hyp. is quasi-equivalent to a PBCL;

o if p = O, @;, O¢ is quasi-equivalent to (Q;, Cip A Q@) V (Q;, Cig A Qi) V - -+ V
(Q;, Cip A Q; @) by Lemma which by Ind. Hyp. is quasi-equivalent to a PBCL;

o if o =@Q; ¢, @; Q; ¢ is quasi-equivalent to @; ¢ by Lemma which by Ind. Hyp.
is quasi-equivalent to a PBCL.

O

This theorem will take an important role when determining QH models. As it was al-
ready pointed out, one can represent bistructures by the quasi-hybrid literals that are true
there. Therefore, it will be considered that models are representations of bistructures and
consequently, models will be sets of quasi-hybrid literals. So, for a given set A, an easier
construction of models in the desired form requires the application of this theorem for each

formula in A.

4.1.1 Minimal QH Models

The next definition is the basis for proving that we can deal only with models with the

least number of elements:

Definition 4.1.11. Let L be a hybrid similarity type and W be a domain. For a set K of
QH models, the set of satisfied literals in K is the set SLit(K) defined as follows:

SLit(K) = {a € QHLit(L(W)) | YM € K, M =, a}

As different hybrid similarity types contain different sets of formulas, it is important to
have L as a parameter when discussing concepts about models. Also, it will be assumed that
A is a set of formulas of L. The domain is also important and therefore will be considered as

a parameter.

As referred before, models with the least number of elements are now defined:

Definition 4.1.12. Let L be a hybrid similarity type, A C Formynp@)(L) and W a non-
empty set. The set of minimal QH models of A with domain W is the set MQH(L, A, W),
defined as:

MQH(L,A, W) = {M € QH(L,A,W) | if M'C M then M’ ¢ QH(L,A, W)}
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Clearly, every QH model contains a minimal QH model, i.e., for all QH model M, there
is a minimal QH model My such that My C M.

It is not difficult to see that, if a variable p € Prop does not occur in A, then p also does
not occur in any model M € MQH(L, A, W).

The minimal QH models are just models with no irrelevant and useless information, ac-

cording to the next theorem:

Theorem 4.1.13. Let L be a hybrid similarity type, A C Formyng(a)(L) and W a non-empty
set. Then
SLit(QH(L, A, W)) = SLit(MQH(L, A, W))

Proof. Since MQH(L, A, W) C QH(L, A, W), by Galois Connection, the set of satisfied liter-
als in QH(L, A, W) is a subset of the set of satisfied literals in MQH(L, A, W),
SLit(QH(L, A, W)) C SLit(MQH(L, A, W)).

To prove the other inclusion, let ¢ € SLit(MQH(L, A, W)). So, M, |=5 ¢, for all M; €
MQH(L, A, W).

For all M’ € QH(L, A, W), there is an N; C QHLit(L(W)) and an M; € MQH(L, A, W)
such that M; UN; = M; Since M; =5 ¢, for all M; € MQH(L, A, W), then M; UNj |=;5 ¢,
for all M; € MQH(L,A,W) and any N; C QHLit(L(W)). So, M’ =5 ¢, for all M’ €
QH(L, A, W). Therefore,

SLit(MQH(L, A, W)) C SLit(QH(L, A, W)).
O]

The previous theorem does not hold if one consider all satisfied formulas, say SForm(K),

instead of only satisfied literals. The following is actually a counter-example:

Example 12. Let L = ({p,q,7},{i,7}), W = {i,j} and A = {Q;pV Q;q, Q;—pV Q;—q, Q;r}.

The two minimal QH models of A are:

My = {Q;p, Q;j~q, Q;r};

My = {Q;q,@;—p,Q;r}.

It is easy to see that:

Q;r v Q;r € SForm(MQH(L, A, W)).

However, if one consider the model M = {Q;p, Q;—~q, Q;r, Q;—r}, then M (=, Q;r vV Q;r,
because since M =5 Qjr, M would have to satisfy Q;r, which is false.

So, @Q;r v Q;r ¢ SForm(QH(L, A, W)).

Thus SForm(MQH(L, A, W)) € SForm(QH(L, A, W)).

Next, there are presented several examples that illustrate how to build models (as sets of
quasi-hybrid literals) for a set of formulas A, using Theorem [4.1.10
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Example 13. Let L = ({p,q},{i}), W = {i}, and A = {Q;(p A q), Q;—p}.
First, notice that the formula Q;(p A q) is quasi-equivalent to Q;p A @Q;q. Hence, any
minimal model of A must contain the set Q = {Q;—p, Q;q, Q;p}.

Seeing that in a minimal model all transitions (or its lack) between states must be specified,

one has to explore all possibilities for W = {i}. Hence there are exactly two minimal QH
models of A:

Ml = {@i_'pv @ZQa @Zp7 @iD_'i};
My = {Q;—p, Q;q, Q;p, @; O}

The minimal model M 1is represented in Figure [{.1):

Figure 4.1: The minimal model M;.

And the minimal model My is represented in Figure [[.3:

Figure 4.2: The minimal model M.

In this example the minimal models have the same number of inconsistencies. However

this is not always the case as we will see below.

Example 14. Let L = <{pa Q}a {%]})7 W = {7’7]}’ and A = {p\/ q, @1ﬁp}

Not all formulas in A are PBCL. Using the properties of the satisfaction operator and the
method described in the proof of Theorem[{.1.10, let us make the necessary adjustments:

1. pVq=,(Qi(pVq)A(Qj(pVq) = (QipV Qiq) A(QjpV Qjq)
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Since the formula @Q;—p is mandatory in every model, from (Q;p V Q;q) it follows that
Q;q is too. The formula (Q;p Vv Q;q) is going to be split in two, as there is no restriction to
which component consider. Hence, any minimal model of A must contain one of these sets:
Q1 = {Q;=p, Q;q, Q;p} or Qp = {Q;—p, Q;q, Qjq}.

As pointed out before, all connections (or lack of them) must be specified in minimal QH
models. There will be given some examples of minimal QH models for the considered similarity
type L, set of formulas A, and domain W, in a total of 2°%% = 2* = 16 possibilities, by
combining quasi-hybrid literals of the form @;Of, @047,

For instance, for €q:

Ml - {@i_'p7 @ZQ7 @]p7 @i‘:‘_'ia @%D_‘jv @jD_‘i7 @]D_'j}f

MQ = {@Z_'p7 @qu @]pa @iD_'Zla @loja @]Olv @jD_‘]}

And for Qs
MS = {@Zﬁp) @ZQ7 @]Q7 @l‘:‘_\la @’LDﬂ.]a @]Dﬁlla @]D_\j}}
M4 = {@i_‘p7 @ZQ7 @]Q7 ) @iD_'i7 @Z<>j7 @]<>Zv @jD_‘]}

The minimal model My is represented in Figure [[.5:

OO

p

Figure 4.3: The minimal model Mj.

The minimal model My is represented in Figure [{.4):

Figure 4.4: The minimal model M.

The minimal model Mg is represented in Figure [{.5:
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q q

Figure 4.5: The minimal model Ms3.

The minimal model My is represented in Figure [{.6:

Figure 4.6: The minimal model M.

Example 15. Let L = ({p,q},{i,j}), W = {3, 4, k}, and A ={Q;(p A q),Q;(—=p Ap)}.

None of the formulas in A are PBCL. Let us rearrange it:

1. Q;(pAq) =¢ Qip A Qiq

The set of formulas that are satisfiable in every minimal QH model of A is the set: Q) =
{@;p, Q;q,Q;p, @;—p}.

Since there is no information about connections between worlds, there are 23*3 = 712

combinations of formulas of the form Q;<$4,@;0-7, hence there are 712 minimal models.

One minimal model for A is, for example:
M = {@2p7 @zQ7 @jpa @j_‘pa @iD_‘iy @ilj_'j7 @iD_'k7
@jD—\i, @jD—\j, @jD—\k, @p0-, QpO—7, @kD_‘k}

The minimal model M is represented in Figure [{.7;:
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Figure 4.7: The minimal model M.

Example 16. Let L = ({p},{i}), W = {i} and A = {@Q;0-p, @;0p}.
There are ezactly two minimal QH models with domain W = {i}, which are:
My ={Q;0-i};
Ma = {@;Oi, Q;p, @Q;—p}.
The minimal model My is represented in Figure [[.8:

O

Figure 4.8: The minimal model Mj.

The minimal model My is represented in Figure [{.9:

Figure 4.9: The minimal model M.
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Example 17. Let L = ({p,q,r},{i,j}), W = {i,j}, and A = {@;Of v Q;04,Q;O(p Vv
q)a@iqu@iD_\j) @ZﬁQ}

Some formulas in A are not PBCL. We will make the necessary adjustments:

1. @Qi0(pVg) =¢ QO0(pVq) =4 (@O ANQi(pVq)) vV (Q;O5 AQ;(pVQ));
2. Q,0q =, (@;0-i VvV @Qiq) A (Q;0-5 V @jq).

There is a set of formulas that are true in every minimal model, which is the set: ) =
{@,0-j,@;01, @;04, Q;q, Q;~g, Qp}.

Again,even though there is already some information about transitions, one needs to com-
plete it in order to have information about all connections (or their lack) between pairs of

states. The only pair left is the pair (j,j). There are two possibilities: the connection exists,

or it does not.

So, one has the following QH minimal models:

M ={Q;0-5,Q; 1, Q;04, @Qiq, @;~g, Qup, Q<5 )
My = {Q;0-y5,@;01, @04, Qiq, Qg Qp, @05}
The minimal model My is represented in Figure [{.10;

Figure 4.10: The minimal model Mj.

The minimal model My is represented in Figure [{. 11}

Figure 4.11: The minimal model M.
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The interest in using MQH(L, A, W) rather than QH(L, A, W), for a set of formulas A,
is that models in MQH(L, A, W) do not contain irrelevant information for analysing incon-

sistency, and no useful information is lost.

4.1.2 The Inconsistency Measure

A theory may have different minimal QH models depending on the hybrid similarity type
and domain. Now it will be introduced a way to measure the inconsistency of a QH model.
This measure is a ratio between 0 and 1 whose numerator is the number of inconsistencies
in the model, and whose denominator is the total possible number of inconsistencies in the
underlying hybrid similarity type.

To make the notation in the next definition simpler, it is defined the set of inconsistency

literals over L and W as
IL(L,W) = {Q;p | i € W,p € Prop}

Definition 4.1.14. For a QH model M,

Conflictbase(M) = {Q;p € IL(L,W) | Q;p € M & Q;—p € M}

The inconsistency measure comes in the form:

Definition 4.1.15. The measure of inconsistency for a model M in the context of a hybrid
similarity type L and domain W is given by the Modellnc function giving a value between 0

and 1 as follows:

The Modellnc function is anti-monotonic in the following sense:
Theorem 4.1.16. Let Ly, Lo be hybrid similarity types and W1, Wy non-empty sets. Then,
o If Ly C Ly then ModelInc(M, Ly, W) > ModelInc(M, Ly, W)

o [f Wy C Wy then ModelInc(M, L, W) > ModelInc(M, L, Ws)

Example 18. In this example there will be considered the minimal models presented in Fzx-
amples and their measures of inconsistency, i.e., their Modellnc function will be com-
puted.

1. From Ezample Conflictbase(My) = {Q;p}. Then,

Conflictbase(M 1
ModelInc(My, L, W) = | ﬁL(L W)(| )l _ 5
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The same happens for M.

. From Ezample Conflictbase(M1) = {}. Then,

licth
ModelInc(My, L, W) = |CO”-|7; ﬁEL GVS;)(KVH)I _ % —0

The same happens for Ma, M3 and My.

. From Ezample Conflictbase(M) = {Q;p}. Then,

ot )« )

. From Ezample Conflictbase(M1) = {}. Then,

Modellne(My, L, W) = |Oon‘|];l£§?a;f)(|/\/ll)| = % =0

However, for My, Conflictbase(Ms) = {Q;p}. Hence,

|Conflictbase(My)| 1

ModelInc(Msq, L,W) = L)) =7= 1
. From Ezample Conflictbase(M1) = {}. Then,
ModelIne(My, L, W) — |Conflictbase(M1)| _ 0 _ 0

[IL(L, W)| 6

The same happens for M.

Example shows that minimal models for a certain A, over the same hybrid similar-

ity type and domain, may have different number of inconsistencies and consequently the

ModelInc function assigns different values to them.

In order to consider minimal models with the least number of inconsistencies, the class of

minimal models will be restricted by considering the so called class of preferred models which
are the ones with a minimal conflictbase. This follows the approach of Grant and Hunter in

[58]. This idea was already adopted in the context of the minimal four-valued logic [10].

Definition 4.1.17. Let L be a hybrid similarity type, A C Formynga)(L) and W a non-
empty set. The set of preferred QH models for A with domain W is given by PQH(L, A, W)

as follows:
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PQH(L,A,W) = {M e MQH(L,A,W)| for all M’ € MQH(L, A, W),
|Con flictbase(M)| < |Con flictbase(M')|}

Theorem 4.1.18. Let L be a hybrid similarity type, A C Formynra)(L) and Wi, W non-

empty sets with the same number of elements.

If My € PQH(L,A,W1) and Mo € PQH(L,A, W), then ModelInc(My,L,W;) =
ModelInc(Ma, L, Ws).

Proof. Suppose that M; € PQH(L, A, W7). Construct a model My € PQH(L, A, Ws) as
follows: Define a bijective function F': Wi — Wj such that for all ¢ € Nom, F'(i) = i. Write
for each QH literal a € L(W) F(«) for the QH literal where each w € W is replaced by
F(w). Let My = {F(a)|a € M1}. Clearly, My € QH(L, A, W5). My must also be minimal
because if a proper subset of My was a QH model, by applying F~! one could obtain a QH
model with W7 for the domain, thus making M; not minimal. Similarly one can show that

My is preferred. The result now follows.
O

Now, for a hybrid similarity type L, it will be defined the extrinsic inconsistency of a set

of formulas A:

Definition 4.1.19. We define the extrinsic inconsistency of a theory A in a hybrid similarity
type L, TheoryInc(A, L) as a sequence (ri,...,ry,) where for alln > 1, let W,, be a domain
of size n. If there is a model M € PQH(L,A,W,), then let r, = ModelInc(M,L,W,),

otherwise, let r, = x. We use x as a kind of a null value.

This sequence captures how the inconsistency of a theory A in a hybrid similarity type
L evolves with increasing domain size. At one extreme, there are cases where we do not
have inconsistencies for any domain size; for example for the trivial case when A = 0,
Theorylnc(A,L) = (0,0,...). At the other extreme, there are theories A which are com-
pletely inconsistent, i.e., Theorylnc(A,L) = (1,1,...), such as A = {p A —p : forall p €
Prop}.

Example 19. Some examples on the computation of the intrinsic inconsistency of some

theories:
1. Let L = ({p},{i,j}) and A ={Q;=p Vv @Q;p, Q;p}.
TheoryInc(A, L) = (x,0,0,0,...)
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2. Let L= ({p,q},{i,7}) and A ={Q;(p A q),Q;(—~pAp)}.

Theorylnc(A, L) = (x,

N
=

3. Let L = ({p}, {i}) and A ={Q;p, Q;—p}.

1
TheoryInc(A, L) = (1, 373 )

W=

4' Let L = <{P,Q}’ {7’7.]}> and A = {@i_‘pa @j_‘Qap AN/ A Q}

TheoryInc(A, L) = (x,

= w
O W~
Qo | Ut
~

5. Let L = ({p},{i,j}) and A = {iV j}.

TheoryInc(A, L) = (x,0,%,%,...)

Some properties of TheorylInc are now announced and proved:

Proposition 4.1.20. Let L = (Prop, Nom) be a hybrid similarity type, A C Formynp(a)(L)
and TheoryInc(A, L) = (z1,x2,...). If [Nom| = k then for all i such that 1 <i < k,x; = *;

moreover, if Tpr1 7 * then for all i > k,x; # *.

Proof. The reason for the asterisks is that the domain, according to our definition, must have

at least as many elements as the number of nominals in L, that is, [Nom]|.

Suppose now that z;11 # *. Hence there is a preferred model M of A with domain W
which has k + 1 elements.

Let u be a new element not in W, i.e. the element k£ 4+ 1 and z be the element of W that
is not named by a nominal, i.e., the element k + 2. We define a new model M’ over L with
domain W U {u}, which has cardinality k + 2, admitting the following representation:

M =Mu{Q,ow |weW, @owe M}uU{Q,0-u|weW}U

{@,0-w | weW, Q,0-weM}u{Q,p|peProp, Q,pe M}U
{@,=p | p € Prop, @,—p € M}.
The claim is that:
CLAIM: for any ¢ € Formynp(a)(L),
M,z Es ¢ iff M'Jul=s ¢ and
M,z s g iff Mu s~ .
In fact, this can be proved by induction. The base step is trivial. The steps for the

conjunction, the satisfaction operator and the modal operators are also straightforward. Let

us see what happens with the disjunction:
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Let ¢ := @1 V 9. It is assumed that the claim is true for formulas shorter than .
(Note that a formula 1; is shorter than a formula )y iff the formula 1; contains less boolean
operators than the formula v9; however, the elements that compose 1 are not necessarily
the same elements that compose 13.) Then,

Mzl it Mzlsp1Ve

iff M,z s @1 or M,z =5 2] and

M,z Es~ p2 = M,z =5 1] and
(M, 2z Es~ o1 = M, 2 =5 2]
(M’ u =5 1 or M, u =5 o] and
M u =g~ o1 = M u =5 2] and
(M u s~ 2 = M u s 1]
The step (*) is by induction hypothesis.
As a consequence, one has that M’ =5 A. And consequently zj o # *.

This argument can be recursively applied.

Proposition 4.1.21. Let L = (Nom,Prop) be a hybrid similarity type with [Nom| = k,
A C Formynp(a)(L) and Theorylnc(A,L) = (x1,22,...). If zpy1 = 0 then for all j >
k+ 1, T; = 0.

Proof. The same construction used in the previous proposition can also be applied here. The
model M’ obtained has 0 inconsistencies since M has 0 inconsistencies.
O

There can be adopted a lexicographic ordering, denoted by the symbol < over the tuples
generated by the TheorylInc function:

Definition 4.1.22. Let Ly and Ly be hybrid similarity types and A1, Ag C Formynp(a)(L)-
Let TheoryInc(Ay, L) = (r1,r2,...) and TheoryInc(Asz, La) = (s1,52,...). One says that
TheoryInc(Ay, L) = TheoryInc(Ag, Lo) iff for all i > 1, r; < s; or r; = x or §; = *.

Writting Theorylnc(Ai,L1) < Theorylnc(Ag, La) abbreviates Theorylnc(Aq, L) =
TheoryInc(Ag, Ly) and TheoryInc(Ay, Ly) # TheoryInc(Ag, Lo).

In case L1 = Lao(= L) one says that A; has smaller than or equal inconsistency as Ay iff
TheoryInc(Aq, L) < TheoryInc(Ay, L) and this is denoted by Ay < = A,.

Example 20. Let L = ({p},{i}), A1 = {Q;p} and As = {Q;p, Q;,—p}.
TheoryInc(A1, L) = (0,0,0,...)
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TheoryInc(Ag, L) = (

Then Al Sz[;lc AQ.

Proposition 4.1.23. Let L be a hybrid similarity type, A1, As C Formynpa)(L). If A1 C
Ay, then TheoryInc(Aq, L) < TheoryInc(As, L).

Proof. Additional statements may add but cannot subtract inconsistencies.

Proposition 4.1.24. Let Ly = (Prop;, Nom;), and Ly = (Propy, Noms) be two hybrid sim-
ilarity types, and A C FormNNF(@)(Ll). If L1 C Ly, i.e., Prop; C Propy, Nom; C Nomsg,
then

TheoryInc(A, La) < Theorylnc(A, Ly).

Proof. Let n be such that r, # x. For a domain W,,, such that |W,| = n, IL(L;(W,)) C
IL(Lo(Wh,)).

The fact that Prop; C Prop, does not interfere with the construction of preferred QH
models of A.

By Theorem two preferred models for the same set of formulas A and domain W,
have the same size of Con flictbase. Hence, for each W,,, for M1 , € PQH(L1, A, W,,), My, €
PQH(Ly, A, Wy,), one has that |Conflictbase(M;,)| = |Conflictbase(Maz,)|. But the
denominator of Modellnc(Mi p, L1, W,),IL(L1(W,)), is smaller than the denominator of
ModelInc(Ma,y, Lo, W), IL(La(W5,)), for all W,,. Which means that Theorylnc(A, Ly) <
TheoryInc(A, Ly).

O

The next example shows that if A1 C As and L; C Lo then it is not necessarily the case
that TheoryInc(Ay, L1) < Theorylnc(Asg, Ls).

Example 21. Let
Ly = {p}. {i}) and Ay ={Qip}

Ly = {p},{i}) and Aq={Q;p,Q;—p}
L3 = ({p,q},{i}) and Az = {Q;p,@;—p,Q;q}

In this case,
TheoryInc(Ay, L1) < TheoryInc(Aa, Ls)

TheoryInc(As, Lg) < TheorylInc(Aa, La)
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Definition 4.1.25. For Ay, Ay C Formynpa)(L), A1 is QH-equivalent to Ay if, for all M,

M is a QH model of Ay iff M is a QH model of As.

Proposition 4.1.26. Let L be a hybrid similarity type, A1, Ay C Formynga)(L). If Ay is
QH-equivalent to Ay, then

TheoryInc(Ay, L) = TheoryInc(Ag, L).

Proof. Since Aq is QH-equivalent to Ao, any preferred QH model M’ of A is a preferred QH
model of As.

Therefore, for a fixed domain W,, one may consider the same preferred model and conse-
quently the n element in the sequences TheorylInc(Ay, L) and TheorylInc(As, L) are equal.
O

Resembling the definition of extrinsic inconsistency, it is introduced the definition of in-
trinsic inconsistency of a set of formulas A, for a specific similarity type L defined with

recourse to A, as follows:

Definition 4.1.27. For a given theory A, let L® be a hybrid similarity type that contains
exactly the propositional variables and nominals that occur in A. The intrinsic inconsistency
of A, TheoryInc(A), is defined as TheoryInc(A) = TheoryInc(A, L),

So the measure of intrinsic inconsistency of a theory TheorylInc(A), delineates the degree
of the theory in its own terms; whereas TheoryInc(A, L), the extrinsic inconsistency of a

theory, delineates the degree of the theory with respect to the hybrid similarity type L.

Example 22. Let L = ({p,q,7},{%,j}), A = {Q;p, Q;—p, Q;r, Q;—r}.

—_

1 1
TheoryInc(A, L) = (x, AT )

1 1
TheoryInc(A) = (x, 168" o)

[N

When TheoryInc(Ay) < TheoryInc(Asg) it is said that A; has smaller than or equal

inconsistency as As.

4.2 Inconsistency and Bisimulation

In this section the notion of bisimulation for hybrid bistructures is generalized.
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Definition 4.2.1. Let L = (Prop, Nom) be a hybrid similarity type and E = (W, R, N,V , V™),
E' = (W' RN V'* V'™ be two hybrid bistructures. A relation Z C W x W' is a paracon-
sistent bisimualtion if Z is a bisimulation between the hybrid structures E = (W, R, N, V)
and E' = (W', R',N',V'") and also a bisimulation between E = (W, R,N,V~) and E' =
(W', R, N',V'™).

The following proposition reformulates the notion of bisimulation in terms of representa-

tion of bistructures.

Proposition 4.2.2. Let L = (Prop,Nom) be a hybrid similarity type, E, E' be two hy-
brid bistructures and M, M’ their syntactic representations. A relation Z C W x W' is a

paraconsistent bisimulation between E and E' iff

e for each i € Nom N(i)ZN'(i);

o for every pair (w,w’") € Z we have:

— Atomic conditions:
*x Qupe M iff Qup e M, for all p € Prop.
* Q,—pe M iff Q,—pe M, for all p € Prop.
x for all i € Nom, N(i) = w iff N'(i) = w'.

— if Q,Ou € M for some u € W, then there is some v € W' such that Q,, v’ € M’
and uZu' (Zig),

— if Q@ Ou’ € M’ for some u' € W', then there is some u € W such that Q,Ou and
uZu' (Zag).

Two bisimilar bistructures may have different conflictbases. Clearly, this is the case when
the witness bisimulation is not total or not surjective. Moreover, these two conditions, to-

gether, are not sufficient as shown by the following examples:

Example 23. The bisimulation represented in Figure[{.13, despite being a total and surjec-

tive relation, does not imply the same conflictbase in both bistructures.
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Figure 4.12: Bisimulation 1.

Example 24. Once again, the bisimulation represented in Figure[{.13, a surjective function,

does not guarantee a common conflictbase for bisimilar bistructures.

p N
—|p \.\
Ay
£y
Ay
——— ]
— T, 1
’.-"-) H-\
p p
-p p

Figure 4.13: Bisimultion 2.

Example 25. However, a bisimulation which is a bijective function between bistructures al-

lows having always the same conflictbase in bisimilar bistructures. The result is proved below,
and an example is given in Figure [[.17)
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Figure 4.14: Bisimulation 3.

Next theorem states that two bisimilar bistructures such that the bisimulation is a bijective

bounded morphism have the same conflictbase.

Theorem 4.2.3. Let L = (Prop,Nom) be a hybrid similarity type, E = (W, R, N,V , V™),
E' = (W' R ,N' V" V'7) be two hybrid bistructures and M, M’ their representations.

If E and E’ are bisimilar via a bijective function Z, then

ModelInc(M, L,W) = ModelInc(M', L, W").

Proof. A bijective function between W and W’ means that both have the same cardinality.

Moreover, from the atomic conditions in the conflictbases for each bistructure coin-
cide.
]
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Chapter 5
Applications

Several variants of paraconsistent logics have been proposed to answer different problems
in specific applications [77]. There are many fields where a paraconsistent version of hybrid

logics is welcome. For now, let us concentrate in the Quasi-Hybrid (Basic) Logic.

In Computer Science, subdomains like requirements engineering ([51]), artificial intelli-
gence ([52]) and automated reasoning within information processing knowledgebases ([47)),
are among the most relevant areas in which paraconsistent logic can address theoretical dif-
ficulties raised by inconsistent data. As an example, in Section it will be considered a
robot which needs to make decisions based on inconsistent informations. This is an adap-
tive approach, since it will be considered that at each state the robot has more information,
and makes decisions based on them, sometimes even excludes some informations face to new
evidences, as reported in Subsection [2.2.4]

In the medical practice, two or more physicians may give two different and even contra-
dictory diagnoses for the same symptoms, none of them to be dismissed, which is the perfect
example of a discussive approach, described in Subsection An application in the field of
medicine concerns the health care flow of a patient in a hospital and it is described in Section
5.2

5.1 Robotics

Recall the robot EMMY III ([89]), which uses paraconsistent logic in order to determine
its movements. It is based on it that this small example is presented. The main goal is to
observe how can a robot that may receive contradictory information about the presence (or
not) of objects in from of it find a way out of a sort of labyrinth.

There will be made a schematic approach rather than a formal one.

Consider a robot with two positioning sensors, covering an amplitude of 90°: the one on

the left covers the first half, and the one on the right covers the second, as in Figure [5.1
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Figure 5.1: The range of each sensor of the robot.

In order to decide if there is something in front of it, the robot will have to consider both
evaluations from the sensors: if one of the sensors determines the presence of an object, the
robot can not move forward, until that information is denied. The range of the sensors is
obviously limited, and will be the measure of the smallest diagonal in the grid presented in

Figure [5.2

The robot is asked to go from the start point to the finish point in the following grid,
where the squares represent empty and distinct places, and the octagons represent two distinct

places occupied by objects.

s Wl s Wl e W

L
B

® @

[ 1 1]

[

Figure 5.2: The grid.

The robot can rotate precisely 45° at a time, but can only move in four directions: north,
south, east and west, and preferentially north and west; the robot can never move in the

diagonal.

In order to simplify the schemes obtained, at each position the robot will only collect
information regarding the direction it is heading to. In case it finds an object, it has to
change direction and furthermore, will collect information at each 45° of the turn. A black
small triangle will be used to denote that the sensors did not detect any object, and a black

small square will denote otherwise.

Starting by heading west, the first three steps are trivial:
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Figure 5.3: Robot’s position after 3 steps.

It is now the case that the robot will move north. Then it will face some changes of

scenario, as represented in the following scheme:

L]
L]
L]

®
[
L
[
L |
&

Figure 5.4: Robot’s position after 5 steps.

Since the robot detected an object, it is obliged to turn right, and, as explained before, in

the middle of the turn, the robot captured the information about the objects detected.

Let us see what happens next:
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Figure 5.5: Robot’s position after 6 steps.

The robot is required to preferentially move north and left, but since going left means
going back and that makes no sense since there are other options to explore, and going north

is not possible, the robot will continue moving to the right side.

The next step is very interesting:

AT

Figure 5.6: Robot’s position after 7 steps.

The robot heads north and is confronted with an inconsistency, because an object was
detected, but, according to the information gathered in the previous state, that place was
not occupied. This inconsistency is due to the fact that only one sensor captured an object,
in this case, the sensor on the right side. The presence of an object is thus denied, and the

robot can move directed north.

The remaining steps are trivial, however the final step is a little tricky but it is assumed

that the finish point can not be occupied by an object, and so the final scheme comes as:
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Figure 5.7: The Robot’s path from the start point to the finish point.

Based on that, considering that the domain is the number of places represented, namely
16, and that the only propositional symbol corresponds to the presence of an object, thus
inconsistencies occur when an object is detected and later not detected, or vice-versa, which
happens twice, at the finish point, and at the middle point explained after Figure [5.6, one
has that the measure of inconsistency for this model is given by:
_ |Conflictbase(M)| 2 1

ModelIne(M, L, W) = L)) =673

Programming a robot capable of moving in all directions would be much more challenging,
but this intended to be a small example, inspired by the robot EMMY III ([89]).

5.2 Health Care Flow of a Patient

Inconsistencies appear frequently in knowledge representation in the health care area.
Medical Informatics deals with health care knowledge that represents the daily behavior of a
patient in the health system and an effective procedure to manage such flow of information
should be studied. Moreover, Medical Informatics is one field where the ability to reason with
inconsistent information is crucial because through the health care process in a hospital, a
patient can receive different, even contradictory, diagnoses from different physicians, and the
same can happen with medical treatments: they can exhibit contradictory results. Therefore,
it is worth to develop easy mechanisms that offer a safe way to ‘live’ with inconsistency. Para-
consistent reasoning should help in this context, namely in prevention of diseases, diagnosis

and therapy of patients.

Being such an important issue, together with Professor Manuel A. Martins, we submitted

a paper entitled “Inconsistencies in Health Care Knowledge”.
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Let us consider, just to exemplify the idea, a small fragment of the clinical flow of a patient

in a central hospital, represented in Figure [5.8|

TRIAGE

OBSERVATION

ROOM

SPECIFIC
EXAMINATION

HOSPITALI-
ZATION

MEDICAL
DISCHARGE

Figure 5.8: The care delivery process.

A patient coming into a hospital is consulted at the triage station. The next step in the

care delivery process is the observation of the patient by physicians at an observation room.

From this stage, several things can happen: (1) the patient may need to take some medication,

(2) the patient may need to take an examination, (3) the patient may need to be hospitalized,

or (4) the patient may be discharged. If the medication has no effect, or the examination

is inconclusive, the patient returns to the previous state. The following situations may also

occur: (i) the patient takes medication and after takes an examination or vice-versa, (ii) the

patient after being medicated or examined needs to be hospitalized, (iii) the patient only

needed one of the following — medication/examination/hospitalization — and is discharged

after that treatment. This representation corresponds to the set A, which must be satisfied

in every model, and that comes in the form of:

A = {Qryigge(00bs.roomAOObs.room), Qops reom O MedicationV Qops room O ExaminationV

Qops.room O Hospitalization V Qops room O Medical discharge,
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Q@predication O FraminationV Qyregication O Hospitalization V Qpregication O Medical discharge,
Q pramination O Medication V Q gramination O HospitalizationV

QEramination®Medical discharge, @ pospitalization DM edical discharge.}

The pathway of cares of the patient can be represented by a Kripke frame and the reports
made at each stage are represented resorting to a decoupled valuation. Note that the decouple
of the valuation is mandatory since very often the diagnosis is not deterministic and we have
to allow inconsistencies; actually a team of physicians may not agree in the diagnosis of a
specific disease or even an exam can be inconclusive (for example a CT Screening for lung

cancer may hold inconclusive evidence).

Propositional variables are used to represent data in the patient report that may vary
from one observation to another. More specifically, a propositional variable can be seen as
a health feature observed in the patient (for example fever, cancer, cough, pallor). Some
of them are classical, however some others are paraconsistent. Nominals are used to name
referential states (i.e. important moments of diagnosis), while modalities are used to label
transitions in the flow, for example transitions induced by the administration of a certain

medicine or by a specific examination.

Practical Example

In this practical example, transitions are not labeled — they only mean the displacement

of the patient between states.

Figure [5.9 represents the pathway of care of patient A that appears at the triage with
cough. At the observation room, he is diagnosed with disease X. Another physician dis-
agrees and diagnoses him not with disease X and with disease Y. The patient takes an
examination that is conclusive: the patient has disease X but not disease Y, then the
patient takes some medication, however the cough does not disappear so the patient is
hospitalized until it does and then discharged. The medical pathway of the patient A
can be seen as a paraconsistent model, where Prop = {cough, disease X,disease Y} and
W = {Triage, Obs. room, M edication, Examination, Hospitalization, M edical Discharge}

and the valuations are given in Figure 5.9
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disease X disease Y ~disease X

MEDICAL
DISCHARGE

Figure 5.9: The QH model M of a patient A.

We can measure the inconsistency of this model in order to compare it with others.
Assuming that the propositional variable cough can not be paraconsistent, and that the
paraconsistency relies only on the medical diagnoses, and also that at triage there is no
paraconsistency as well as at medical discharge because there are not diagnoses to make, the
measure of inconsistency for this model is:

_ |Conflictbase(M)| 1

ModelIne(M, L, W) = TLW)) =3

Figure represents the pathway of care of patient B that enters triage with fever
and elevated heart rate. At observation room, two physicians disagree with the diagnose,
one keeping that the patient has disease X but not disease Y and the other stating the

converse. The patient takes an examination where it is concluded that he has disease X
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but not disease Y. The patient takes a certain medicine that cures his fever and elevated
heart rate and is discharged. Again, the patient’s medical pathway can be seen as a para-
consistent model, where Prop = {fever,elevated heart rate,disease X,disease Y} and
W = {Triage, Obs. room, Medication, Examination, Hospitalization,

Medical Discharge} and the valuations are given in Figure

OBSERVA-
TRIAGE TION
ROOM

fever, elevated

heart rate;
fever, elevated Hisease X, dise
heart rate ase Y, ~disea-

se X, disea-

HOSPITALI-
ZATION

MEDICATION

-fever, f levated
-elevated hearl oo _E
heart rate;
e, disease X
rdisease X, ~di ] '
~disease ¥

sease Y

MEDICAL
DISCHARGE

Figure 5.10: A QH model M’ of the patient B.

Assuming that the propositional variables fever and elevated heart rate are not para-
consistent, and that the paraconsistency relies only on the medical diagnoses, and also that
at triage there is no paraconsistency, as well as at medical discharge because there are not
diagnoses to make, the measure of inconsistency for this model is:

_ |Conflictbase(M')| 2

M 1 "L = -z
odelInc(M',L,W) TL(L, )] 3

Comparing the two situations, we conclude that M is less inconsistent than M’.
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Further considerations. Transitions between states can also be labeled with modalities
that might correspond to specific medications or examinations. If we had the chance to fully
axiomatize the medical guideline, we would have the perfect case. The axiomatization of the
medical guideline would include: (1) the complete (not a fragment) clinical flow of patients
in a central hospital, i.e., all the possible transitions between different stages (formulas of the
form @Q;(m)7, i, j nominals, 7 a modality), (2) the action of specific medication in the problems
verified in the patient, for example p — (A)—p means that a patient with problem p would
take medicine A and get cured, and furthermore, (3) the diagnose of a disease by means of
a specific examination, i.e., for any disease there would be an examination conclusive — the

disease is present or not.
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Chapter 6

Conclusion and Further Work

Inconsistency is a pervasive, and unavoidable, topic in data and knowledge management.
One must consider it natural, since inconsistent information can appear everywhere, and
for many reasons. Namely, contradictory information may arise in systems which are safety
critical, such as health systems, aviation systems and many others. As a means of increasing
the reliability of systems, especially those where extra care is required, formal methods, i.e.
mathematical tools, have been advocated. This dissertation aims to provide a logic capable

of handling with those systems.

Just by allowing inconsistent data to coexist in a knowledgebase, some kind of paracon-
sistent logic is required. So, being a fulcral theme for this dissertation, paraconsistent logics
were introduced, as well as some applications of paraconsistent logics, fields where their pres-
ence is mandatory, but before, several schools of paraconsistent logic were discussed, and one
formal kind of paraconsistent logic was particularly addressed: the Quasi-Classical Logic, the
version introduced by Hunter and Grant in [58]. By reading this article, it was clear to me
that a powerful version should exist. Since hybrid logics are a precious asset for description
logics, and furthermore they are so useful to model relational structures (or multigraphs),
by means of formulating the relations and equalities between states, plus the ability to refer
to specific ones, it seemed possible and even challenging to find a paraconsistent version for
them. This way, hybrid logics were introduced in its weakest and strongest form, along with

the concepts of structure, model, diagram, bisimulation, standard and hybrid translations.

The new development on this dissertation is the adaptation of the basic hybrid logic to
a paraconsistent version so that it can accommodate inconsistencies. Models are described
as sets of atomic and negation of atomic formulas which is possible due to the existence of
diagrams and it is because of this arrangement that measuring inconsistency is possible. The
measure of inconsistency, in addition to interesting, has several applications. As the examples
presented showed, it is worth to integrate the method mentioned in Chapter {4] as part of the

solution for problems in many areas. And the work that we can develop in the future seems
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quite exciting. In particular,

e one can investigate inconsistency not only in propositional symbols, but also in what
concerns to nominals, by allowing two nominations: a positive one for nominals, and a
negative one for the negation of nominals. This way, we are able to handle the possibility
of receiving information of the form @;j and @;—j, meaning that someone was confused

about the state that they were referring to;

e this work can be easily translated into multimodal basic hybrid logic, i.e., considering
different modalities, however it is not so straightforward to account inconsistency in
modalities, for example by allowing both @;$5 and @;0-7 to be true, so this would be
an interesting study, maybe by considering the coexistence of different interpretations
for modalities, and having formulas in conjunctive normal form as in [9] rather than in

negation normal form;

e studying paraconsistency in the context of strong Priorean logic is a main topic for
future research — for example the need of satisfying formulas of the form Vs.Qp requires
models to include Qg ¢ for all s; € WVar. Another interesting subject for investigation
is the introduction of paraconsistency in first-order hybrid logic, ([30]). The existence

of diagrams is crucial and it seems possible to define them:;

e as seen in Chapter 3] hybrid logics are provided with a standard translation which allows
working with a fragment of first-order logic, and it is even possible to define a hybrid
translation such that any first-order expression in a language with a binary relation
R (for expressing relations between states), and with an unary relation P (for making
assertions at states), can be translated into a formula of H(@,V). It seems likely that
similar translations can be accomplished for paraconsistent versions, namely, defining a
quasi-standard translation from formulas in this quasi-hybrid basic logic into formulas
in the quasi-classical logic designed by Grant and Hunter in [58] so it would be possible

to reason on quasi-classical logic instead of quasi-hybrid basic logic.
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