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Abstract. We introduce a number of paraconsistent semantics, including three-valued and
four-valued semantics, for the description logic SROIQ, which is the logical foundation of
OWL 2. We then study the relationship between the semantics and paraconsistent reasoning
in SROIQ w.r.t. some of them through a translation into the traditional semantics. We
also present a formalization of rough concepts in SROIQ.

1 Introduction

The Web Ontology Language (OWL) is a family of knowledge representation languages
for authoring ontologies. It is considered one of the fundamental technologies under-
pinning the Semantic Web, and has attracted both academic and commercial interest.
OWL has a formal semantics based on description logics (DLs), which are formalisms
concentrated around concepts (classes of individuals) and roles (binary relations between
individuals), and aim to specify concepts and concept hierarchies and to reason about
them.1 DLs belong to the most frequently used knowledge representation formalisms
and provide a logical basis to a variety of well known paradigms, including frame-based
systems, semantic networks and semantic web ontologies and reasoners. The extension
OWL 2 of OWL, based on the DL SROIQ [6], became a W3C recommendation in
October 2009.

Some of the main problems of knowledge representation and reasoning involve vague-
ness, uncertainty, and/or inconsistency. There are a number of approaches for dealing
with vagueness and/or uncertainty, for example, by using fuzzy logic, rough set theory,
or probabilistic logic. See [7] for references to some works on extensions of DLs using
these approaches. A way to deal with inconsistency is to follow the area of paraconsistent
reasoning. There is a rich literature on paraconsistent logics (see, e.g., [5] and references
there).

Rough set theory was introduced by Pawlak in 1982 [17, 18] as a new mathematical
approach to vagueness. It has many interesting applications and has been studied and
extended by a lot of researchers (see, e.g., [21, 20, 19]). In rough set theory, given a
similarity relation on a universe, a subset of the universe is described by a pair of subsets of
the universe called the lower and upper approximations. In [22, 8] Schlobach et al. showed
how to extend DLs with rough concepts. By treating the similarity relation R as a role,
the lower and upper approximations of a concept C are expressed, respectively, as ∀R.C
? This is a revised and extended version of the conference paper [14], which was partially supported by
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and ∃R.C, provided that the properties of R (like reflexivity, symmetry, transitivity)
are encoded as axioms of the logic. Note that DL is closely related to modal logic and
characterizations of the lower and upper approximations using modal operators have
been studied earlier (e.g., in [26]). In [7] Jiang et al. gave some details about the rough
version of the DL ALC. In general, a traditional DL can be used to express and reason
about rough concepts if similarity relations are used as roles and the properties of the
similarity relations are expressible and used as axioms of the logic.

A number of researchers have extended DLs with paraconsistent semantics and para-
consistent reasoning methods [12, 23, 16, 10, 9, 27, 15]. The work [16] studies a constructive
version of the basic DL ALC. The remaining works except [15] are based on the well-
known Belnap’s four-valued logic [3, 4]. Truth values in this logic represent truth (t),
falsity (f), the lack of knowledge (u) and inconsistency (i). However, there are serious
problems with using Belnap’s logic for Semantic Web (see [11, 25, 15]). In [15] together
with Sza las we gave a three-valued paraconsistent semantics for the DL SHIQ, which is
related to the DL SHOIN used for OWL 1.1.

Both rough concepts and paraconsistent reasoning are related to approximation.
Rough concepts deal with concept approximation, while paraconsistent reasoning is a
kind of approximate reasoning. We can combine them to deal with both vagueness and
inconsistency. In this paper, we study rough concepts and paraconsistent reasoning in the
DL SROIQ. As rough concepts can be expressed in SROIQ using the usual way, we
just briefly formalize them. We concentrate on defining a number of different paraconsis-
tent semantics for SROIQ, studying the relationship between them, and paraconsistent
reasoning in SROIQ w.r.t. some of such semantics through a translation into the tra-
ditional semantics. Our paraconsistent semantics for SROIQ are characterized by four
parameters for:

– using two-, three-, or four-valued semantics for concept names
– using two-, three-, or four-valued semantics for role names
– interpreting concepts of the form ∀R.C or ∃R.C (two ways)
– using weak, moderate, or strong semantics for terminological axioms.

Note that, with respect to DLs, three-valued semantics has been studied earlier only
for SHIQ [15]. Also note that, studying four-valued semantics for DLs, Ma and Hitzler
[9] did not consider all features of SROIQ. For example, they did not consider concepts
of the form ∃R.Self and individual assertions of the form ¬S(a, b).

The rest of this paper is structured as follows. In Section 2 we recall notations and
semantics of SROIQ. In Section 3 we formalize rough concepts in SROIQ. We present
our paraconsistent semantics for SROIQ in Section 4 and study the relationship between
them in Section 5. In Section 6 we give a faithful translation of the problem of conjunctive
query answering w.r.t. some of the considered paraconsistent semantics into a version that
uses the traditional semantics. Section 7 concludes this work.

2 The Description Logic SROIQ

In this section we recall notations and semantics of the DL SROIQ [6]. Assume that our
language uses a finite set C of concept names, a subset N ⊆ C of nominals, a finite set R
of role names including the universal role U , and a finite set I of individual names. Let
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R− def= {r− | r ∈ R \ {U}} be the set of inverse roles. A role is any member of R ∪R−.
We use letters like R and S for roles.

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the domain of
I, and a function ·I , called the interpretation function of I, which maps every concept
name A to a subset AI of ∆I , where AI is a singleton set if A ∈ N, and maps every role
name r to a binary relation rI on ∆I , with UI = ∆I ×∆I , and maps every individual
name a to an element aI ∈ ∆I . Inverse roles are interpreted as usual, i.e., for r ∈ R, we
define (r−)I def= (rI)−1 = {〈x, y〉 | 〈y, x〉 ∈ rI}.

A role inclusion axiom is an expression of the form R1◦. . .◦Rk v S. A role assertion is
an expression of the form Ref(R), Irr(R), Sym(R), Tra(R), or Dis(R,S), where R,S 6= U .
Given an interpretation I, define that:

I |= R1 ◦ . . . ◦Rk v S if RI1 ◦ . . . ◦RIk ⊆ SI
I |= Ref(R) if RI is reflexive
I |= Irr(R) if RI is irreflexive
I |= Sym(R) if RI is symmetric
I |= Tra(R) if RI is transitive
I |= Dis(R,S) if RI and SI are disjoint,

where the operator ◦ stands for composition. By a role axiom we mean either a role
inclusion axiom or a role assertion. We say that a role axiom ϕ is valid in I and I
validates ϕ if I |= ϕ.

An RBox is a set R = Rh ∪Ra, where Rh is a finite set of role inclusion axioms and
Ra is a finite set of role assertions. It is required that Rh is regular and Ra is simple. In
particular, Ra is simple if all roles R, S appearing in role assertions of the form Irr(R)
or Dis(R,S) are simple roles w.r.t. Rh. These notions (of regularity and simplicity) will
not be exploited in this paper and we refer the reader to [6] for their definitions. An
interpretation I is a model of an RBox R, denoted by I |= R, if it validates all role
axioms of R.

The set of concepts is the smallest set such that:

– all concept names (including nominals) and >, ⊥ are concepts
– if C, D are concepts, R is a role, S is a simple role, and n is a non-negative integer,

then ¬C, CuD, CtD, ∀R.C, ∃R.C, ∃S.Self, ≥nS.C, and ≤nS.C are also concepts.

We use letters like A, B to denote concept names, and letters like C, D to denote
concepts.

Given an interpretation I, the interpretation function ·I is extended to complex
concepts as follows, where #Γ stands for the number of elements in the set Γ :

>I def= ∆I ⊥I def= ∅ (¬C)I def= ∆I \ CI

(C uD)I def= CI ∩DI (C tD)I def= CI ∪DI

(∀R.C)I def= {x ∈ ∆I | ∀y[〈x, y〉 ∈ RI implies y ∈ CI ]}
(∃R.C)I def= {x ∈ ∆I | ∃y[〈x, y〉 ∈ RI and y ∈ CI ]}
(∃S.Self)I def= {x ∈ ∆I | 〈x, x〉 ∈ SI}
(≥ nS.C)I def= {x ∈ ∆I | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≥ n}
(≤ nS.C)I def= {x ∈ ∆I | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≤ n}.
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A terminological axiom, also called a general concept inclusion (GCI), is an expression
of the form C v D. A TBox is a finite set of terminological axioms. An interpretation
I validates an axiom C v D, denoted by I |= C v D, if CI ⊆ DI . We say that I is a
model of a TBox T , denoted by I |= T , if it validates all axioms of T .

We use letters like a and b to denote individual names. An individual assertion is
an expression of the form a

.=6= b, C(a), R(a, b), or ¬S(a, b), where S is a simple role and
R,S 6= U . Given an interpretation I, define that:

I |= a
.=6= b if aI 6= bI

I |= C(a) if aI ∈ CI
I |= R(a, b) if 〈aI , bI〉 ∈ RI
I |= ¬S(a, b) if 〈aI , bI〉 /∈ SI .

We say that I satisfies an individual assertion ϕ if I |= ϕ. An ABox is a finite set of
individual assertions. An interpretation I is a model of an ABox A, denoted by I |= A,
if it satisfies all assertions of A.

A knowledge base is a tuple 〈R, T ,A〉, where R is an RBox, T is a TBox, and A is
an ABox. An interpretation I is a model of a knowledge base 〈R, T ,A〉 if it is a model
of all R, T , and A. A knowledge base is satisfiable if it has a model.

A (conjunctive) query is an expression of the form ϕ1 ∧ . . . ∧ ϕk, where each ϕi is
an individual assertion. An interpretation I satisfies a query ϕ = ϕ1 ∧ . . . ∧ ϕk, denoted
by I |= ϕ, if I |= ϕi for all 1 ≤ i ≤ k. We say that a query ϕ is a logical consequence
of a knowledge base 〈R, T ,A〉, denoted by 〈R, T ,A〉 |= ϕ, if every model of 〈R, T ,A〉
satisfies ϕ.

Note that, queries are defined to be “ground”. In a more general context, queries
may contain variables for individuals. However, one of the approaches to deal with such
queries is to instantiate variables by individuals occurring in the knowledge base or the
query.

3 Rough Concepts in Description Logic

Let I be an interpretation and R be a role standing for a similarity predicate. For x ∈ ∆I ,
by the neighborhood of x w.r.t. R we understand the set of elements similar to x specified
by nR(x) def= {y ∈ ∆I | 〈x, y〉 ∈ RI}. The lower and upper approximations of a concept
C w.r.t. R, denoted respectively by C R and CR, are interpreted in I as follows:

(C R)I def= {x ∈ ∆I | nR(x) ⊆ CI}

(CR)I def= {x ∈ ∆I | nR(x) ∩ CI 6= ∅}

In words, (C R)I consists of objects whose neighborhoods w.r.t. R completely belong
to CI , and (CR)I consists of objects whose neighborhoods contain at least one object
of CI . Intuitively, if the similarity predicate R reflects the perception ability of an agent
then

– x ∈ (C R)I means that all objects indiscernible from x are in CI

– x ∈ (CR)I means that there are objects indiscernible from x in CI .
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The pair 〈C R, CR〉 is usually called the rough concept of C w.r.t. the similarity pred-
icate R. The following proposition is well known from the literature of rough DLs [22, 7].
Its proof is straightforward.

Proposition 3.1. Let I be an interpretation, C be a concept, and R be a role. Then
(C R)I = (∀R.C)I and (CR)I = (∃R.C)I . That is, ∀R.C and ∃R.C are the lower and
upper approximations of C w.r.t. R, respectively. C

One can adopt different restrictions on a similarity predicate R. It is expected that
the lower approximation is a subset of the upper approximation. That is, for every in-
terpretation I and every concept C, we should have that (C R)I ⊆ (CR)I , or equiv-
alently, (∀R.C)I ⊆ (∃R.C)I . The latter condition corresponds to seriality of RI (i.e.
∀x ∈ ∆I ∃y ∈ ∆I RI(x, y)), which can be formalized by the global assumption ∃R.>.
Thus, we have the following proposition, which is clear from the view of the correspond-
ing theory of modal logics [24].

Proposition 3.2. Let I be an interpretation. Then (C R)I ⊆ (CR)I holds for every
concept C iff I validates the terminological axiom > v ∃R.>. C

In most applications, one can assume that similarity relations are reflexive and sym-
metric. Reflexivity of a similarity predicateR is expressed in SROIQ by the role assertion
Ref(R).2 Symmetry of a similarity predicate R can be expressed in SROIQ by the role
assertion Sym(R) or the role inclusion axiom R− v R. Transitivity is not always assumed
for similarity relations. If one decides to adopt it for a similarity predicate R, then it
can be expressed in SROIQ by the role assertion Tra(R) or the role inclusion axiom
R ◦R v R. In particular, in SROIQ, to express that a similarity predicate R stands for
an equivalence relation we can use the three role assertions Ref(R), Sym(R), and Tra(R).

Example 3.3. Consider the domain of universities and the language with

– N = {University-of-Warsaw,Name-Linh-Anh-Nguyen}
– C = N ∪ {University, Institute,Academic-Teacher,Teacher,Course,Name}
– R = {has-name, is-part-of,works-at, teaches, similar-name, U}
– I = {UW, IIUW, IMUW, SemanticWeb, DataMining, LANguyen, ASzalas,

HSNguyen, “University of Warsaw”, “Institute of Informatics, University of War-
saw”, “Institute of Mathematics, University of Warsaw”, “Andrzej Sza las”, “Nguyen”,
“Anh Linh Nguyen”, “Linh Anh Nguyen”, “Hung Son Nguyen”}.

Let

– R = {works-at ◦ is-part-of v works-at,
Tra(is-part-of), Ref(similar-name), Sym(similar-name)}

– T = {∃works-at.University u ∃teaches.> v Academic-Teacher,
Academic-Teacher v Teacher}

– A = {University(UW), has-name(UW, “University of Warsaw”),
Institute(IIUW), is-part-of(IIUW,UW),
has-name(IIUW, “Institute of Informatics, University of Warsaw”),

2 Reflexivity of R can also be expressed by id v R, where id stands for the “identity” role.
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Institute(IMUW), is-part-of(IMUW,UW),
has-name(IMUW, “Institute of Mathematics, University of Warsaw”),

works-at(LANguyen, IIUW), teaches(LANguyen,SemanticWeb),
has-name(LANguyen, “Anh Linh Nguyen”),
works-at(ASzalas, IIUW), teaches(ASzalas,SemanticWeb),
has-name(ASzalas, “Andrzej Sza las”),
works-at(HSNguyen, IMUW), teaches(HSNguyen,DataMining),
has-name(HSNguyen, “Hung Son Nguyen”),

similar-name(“Nguyen”, “Hung Son Nguyen”),
similar-name(“Nguyen”, “Anh Linh Nguyen”),
similar-name(“Nguyen”, “Linh Anh Nguyen”),
similar-name(“Anh Linh Nguyen”, “Linh Anh Nguyen”),

University-of-Warsaw(UW),
Name-Linh-Anh-Nguyen(“Linh Anh Nguyen”)}.3

Thus, 〈R, T ,A〉 is a knowledge base in SROIQ. Suppose that we look for individuals x
that are instances of the following concept ϕ w.r.t. the knowledge base:

ϕ
def= Teacher u ∃works-at.University-of-Warsaw u
∃has-name.Name-Linh-Anh-Nguyen

That is, we look for x ∈ I such that 〈R, T ,A〉 |= ϕ(x). There are no answers to this query.
However, if we replace the concept Name-Linh-Anh-Nguyen in the query by its upper
approximation ∃similar-name.Name-Linh-Anh-Nguyen, then there is a unique answer
x = LANguyen. Using this approximation and extending the RBox R with the role
assertion Tra(similar-name), there will be another answer x = HSNguyen. C

4 Paraconsistent Semantics for SROIQ

Recall that, using the traditional semantics, every query is a logical consequence of an
inconsistent knowledge base. A knowledge base may be inconsistent, for example, when it
contains both individual assertions A(a) and ¬A(a) for some A ∈ C and a ∈ I. Paracon-
sistent reasoning is inconsistency-tolerant and aims to derive (only) meaningful logical
consequences even when the knowledge base is inconsistent. Following the recommenda-
tion of W3C for OWL, we use the traditional syntax of DLs and only change its semantics
to cover paraconsistency. The general approach is to define a semantics s such that, given
a knowledge base KB , the set Conss(KB) of logical consequences of KB w.r.t. semantics
s is a subset of the set Cons(KB) of logical consequences of KB w.r.t. the traditional
semantics, with the property that Conss(KB) contains mainly only “meaningful” logical
consequences of KB and Conss(KB) approximates Cons(KB) as much as possible.

In this paper, we introduce a number of paraconsistent semantics for the DL SROIQ.
Each of them, let’s say s, is characterized by four parameters, denoted by sC, sR, s∀∃, sGCI,
with the following intuitive meanings:
3 Here, “Nguyen” is a surname, “Linh” and “Son” are first names, “Anh” and “Hung” are middle names.

The full Vietnamese names (in the Vietnamese order) are “Nguyen Anh Linh” and “Nguyen Hung Son”.
In official Polish documents, foreign names like “Anh Linh” and “Hung Son” are used in the combined
form.
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– sC specifies the number of possible truth values (2, 3, or 4) of assertions of the form
x ∈ AI , where A is a concept name not being a nominal and I is an interpretation.
In the case sC = 2, the truth values are t (true) and f (false). In the case sC = 3, the
third truth value is i (inconsistent). In the case sC = 4, the additional truth value is u

(unknown). When sC = 3, one can identify inconsistency with the lack of knowledge,
and the third value i can be read either as inconsistent or as unknown.

– sR specifies the number of possible truth values (2, 3, or 4) of assertions of the form
〈x, y〉 ∈ rI , where r is a role name different from the universal role U and I is an
interpretation. The truth values are as in the case of sC.

– s∀∃ specifies one of the two semantics studied by Straccia [23] for concepts of the form
∀R.C or ∃R.C, which are denoted in this paper by + and +−.

– sGCI specifies one of the three semantics w (weak), m (moderate), s (strong) for general
concept inclusions.

For simplicity, we use the same value of sC for all concept names of C\N and use the
same value of sR for all role names of R \ {U}. One may want to consider different values
of sC for different concept names, and different values of sR for different role names. The
methods and results of this paper can be generalized for that case in a straightforward
way.

We identify s with the tuple 〈sC, sR, s∀∃, sGCI〉. The set S of considered paraconsistent
semantics is thus {2, 3, 4} × {2, 3, 4} × {+,+−} × {w,m, s}.

For s ∈ S, an s-interpretation I = 〈∆I , ·I〉 is similar to a traditional interpretation
except that the interpretation function maps every concept name A to a pair AI =
〈AI+, AI−〉 of subsets of ∆I and maps every role name r to a pair rI = 〈rI+, rI−〉 of binary
relations on ∆I such that:

– if sC = 2 then AI+ = ∆I \AI−
– if sC = 3 then AI+ ∪AI− = ∆I

– if sR = 2 then rI+ = (∆I ×∆I) \ rI−
– if sR = 3 then rI+ ∪ rI− = ∆I ×∆I

– if A is a nominal then AI+ is a singleton set and AI− = ∆I \AI+
– UI+ = ∆I ×∆I and UI− = ∅.

The intuition behind AI = 〈AI+, AI−〉 is that AI+ gathers positive evidence about A,
while AI− gathers negative evidence about A. Thus, AI can be treated as the function
from ∆I to {t, f, i, u} defined below:

AI(x) def=


t for x ∈ AI+ and x /∈ AI−
f for x ∈ AI− and x /∈ AI+
i for x ∈ AI+ and x ∈ AI−
u for x /∈ AI+ and x /∈ AI−

Informally, AI(x) can be thought of as the truth value of x ∈ AI . Note that AI(x) ∈
{t, f} if sC = 2 or A is a nominal, and AI(x) ∈ {t, f, i} if sC = 3. The intuition behind
rI = 〈rI+, rI−〉 is similar, and under which rI(x, y) ∈ {t, f} if sR = 2 or r = U , and
rI(x, y) ∈ {t, f, i} if sR = 3.
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The interpretation function ·I maps an inverse role R to a pair RI = 〈RI+, RI−〉 defined

by (r−)I def= 〈(rI+)−1, (rI−)−1〉. It maps a complex concept C to a pair CI = 〈CI+, CI−〉 of
subsets of ∆I defined as follows:

>I def= 〈∆I , ∅〉 ⊥I def= 〈∅, ∆I〉 (¬C)I def= 〈CI−, CI+〉

(C uD)I def= 〈CI+ ∩DI+, CI− ∪DI−〉 (C tD)I def= 〈CI+ ∪DI+, CI− ∩DI−〉

(∃R.Self)I def= 〈{x ∈ ∆I | 〈x, x〉 ∈ RI+}, {x ∈ ∆I | 〈x, x〉 ∈ RI−}〉

(≥ nR.C)I def= 〈{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y ∈ CI+} ≥ n},
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y /∈ CI−} < n}〉

(≤ nR.C)I def= 〈{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y /∈ CI−} ≤ n},
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y ∈ CI+} > n}〉;

if s∀∃ = + then

(∀R.C)I def= 〈{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI+ implies y ∈ CI+)},
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI−)}〉

(∃R.C)I def= 〈{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI+)},
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI+ implies y ∈ CI−)}〉;

if s∀∃ = +− then

(∀R.C)I def= 〈{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI− or y ∈ CI+)},
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI−)}〉

(∃R.C)I def= 〈{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI+)},
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI− or y ∈ CI−)}〉.

Note that CI is computed in the standard way [10, 9, 27, 15] for the case C is of
the form >, ⊥, ¬D, D u D′, D t D′, ≥ nR.D or ≤ nR.D. When s∀∃ = +, (∀R.C)I

and (∃R.C)I are computed as in [10, 9, 27, 15] and as using semantics A of [23]. When
s∀∃ = +−, (∀R.C)I and (∃R.C)I are computed as using semantics B of [23].

We write C ≡s D and say that C and D are equivalent w.r.t. s if CI = DI for every
s-interpretation I. The following proposition states that De Morgans laws hold for our
constructors w.r.t. any semantics from S. Its proof is straightforward.

Proposition 4.1. The following equivalences hold for every s ∈ S :

(¬¬C)I ≡s C
I

(¬>)I ≡s ⊥I

(¬(C uD))I ≡s (¬C t ¬D)I

(¬∀R.C)I ≡s (∃R.¬C)I

(¬(≥ 0R.C))I ≡s ⊥I

(¬(≥ (n+ 1)R.C))I ≡s (≤ nR.C)I

(¬(≤ nR.C))I ≡s (≥ (n+ 1)R.C)I C

The following proposition means that: if sC ∈ {2, 3} and sR ∈ {2, 3} then s is a three-
valued semantics; if sC = 2 and sR = 2 then s is a two-valued semantics. Its proof is
straightforward via induction on the structure of C and R.
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Proposition 4.2. Let s ∈ S be a semantics such that sC ∈ {2, 3} and sR ∈ {2, 3}. Let
I be an s-interpretation, C be a concept, and R be a role. Then CI+ ∪ CI− = ∆I and
RI+ ∪ RI− = ∆I × ∆I . Furthermore, if sC = 2 and sR = 2 then CI+ = ∆I \ CI− and
RI+ = (∆I ×∆I) \RI−. C

Let s ∈ S and let I be an s-interpretation. We say that:

– I s-validates a role axiom R1 ◦ . . . ◦Rk v S if RI1+ ◦ . . . ◦RIk+ ⊆ SI+
– I s-validates a role assertion Ref(R) (resp. Irr(R), Sym(R), Tra(R)) if RI+ is reflexive

(resp. irreflexive, symmetric, transitive)
– I s-validates a role assertion Dis(R,S) if RI+ and SI+ are disjoint
– I is an s-model of an RBox R, denoted by I |=s R, if it s-validates all axioms of R

– I s-validates C v D, denoted by I |=s C v D, if:
• case sGCI = w : CI− ∪DI+ = ∆I

• case sGCI = m : CI+ ⊆ DI+
• case sGCI = s : CI+ ⊆ DI+ and DI− ⊆ CI−

– I is an s-model of a TBox T , denoted by I |=s T , if it s-validates all axioms of T

– I s-satisfies an individual assertion ϕ if I |=s ϕ, where
I |=s a

.=6= b if aI 6= bI

I |=s C(a) if aI ∈ CI+
I |=s R(a, b) if 〈aI , bI〉 ∈ RI+
I |=s ¬S(a, b) if 〈aI , bI〉 ∈ SI−

– I is an s-model of an ABox A, denoted by I |=s A, if it s-satisfies all assertions of A

– I is an s-model of a knowledge base 〈R, T ,A〉 if it is an s-model of all R, T , A
– a knowledge base 〈R, T ,A〉 is s-satisfiable if it has an s-model
– I s-satisfies a query ϕ = ϕ1∧ . . .∧ϕk, denoted by I |=s ϕ, if I |=s ϕi for all 1 ≤ i ≤ k
– ϕ is an s-logical consequence of a knowledge base 〈R, T ,A〉, denoted by 〈R, T ,A〉 |=s

ϕ, if every s-model of 〈R, T ,A〉 s-satisfies ϕ.

In [9, 10] Ma et al. use non-traditional inclusion axioms C 7→ D, C @ D and C →
D, which correspond to our inclusion C v D w.r.t. semantics s with sGCI = w, m, s,
respectively.

Example 4.3 (cf. [15]). Consider a web service supplying information about stocks. As-
sume that a web agent looks for low risk stocks, promising big gain. The agent’s query
can be expressed by (LR u BG)(x), where LR and BG stand for “low risk” and “big
gain”, respectively. For simplicity, assume that the service has a knowledge base con-
sisting only of the following concept assertions (provided by different experts/agents):
LR(s1), ¬LR(s1), BG(s1), ¬LR(s2), ¬BG(s2), LR(s3), BG(s3). The query looks for
stocks x that are instances of LR uBG w.r.t. the knowledge base. Using the traditional
(two-valued) semantics, the knowledge base has no models, and hence all of s1, s2, s3 are
answers to the query, despite that s2 is of high risk and low gain. Using any semantics
s ∈ S with sC ∈ {3, 4}, only s1 and s3 are answers to the query, which is well-justified.
Namely, there is only positive evidence that s3 satisfies the query and there is some pos-
itive4 evidence that s1 satisfies the query (resulting from the facts LR(s1) and BG(s1)).
C

4 In addition to negative evidence resulting from the fact that ¬LR(s1).
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5 The Relationship between the Semantics

The following proposition states that if s ∈ S is a semantics such that sC = 2 and sR = 2
then s coincides with the traditional semantics.

Proposition 5.1. Let s ∈ S be a semantics such that sC = 2 and sR = 2, let 〈R, T ,A〉
be a knowledge base, and ϕ be a query. Then 〈R, T ,A〉 |=s ϕ iff 〈R, T ,A〉 |= ϕ.

Proof. Consider the “if” direction. Suppose that 〈R, T ,A〉 |= ϕ. We show that
〈R, T ,A〉 |=s ϕ. Let I be an s-model of 〈R, T ,A〉. We show that I |=s ϕ.

Let I ′ be the traditional interpretation specified by ∆I
′

= ∆I , AI
′

= AI+ for A ∈ C,
rI
′

= rI+ for r ∈ R, and aI
′

= aI for a ∈ I. It can be proved by induction (on the
structure of C) that, for any concept C, CI

′
= CI+. Clearly, we also have that RI

′
= RI+

for any role R.
Since I |=s R, it follows that I ′ |= R. By Proposition 4.2, for any concept C, CI− =

∆I \ CI+. Hence, for any terminological axiom C v D, I |=s C v D iff CI+ ⊆ DI+. Since
I |=s T , it follows that I ′ |= T . By Proposition 4.2, we also have thatRI− = (∆I×∆I)\RI+
for any role R. Hence, for any individual assertion ψ, I |=s ψ iff I ′ |= ψ. Since I |=s A,
it follows that I ′ |= A.

Therefore, I ′ is a model of 〈R, T ,A〉. Since 〈R, T ,A〉 |= ϕ, it follows that I ′ |= ϕ,
which implies that I |=s ϕ. This completes the proof of the “if” direction. The “only if”
direction can be proved analogously. C

Proposition 5.2. Let s, s′ ∈ S be semantics such that sR = s′R = 2, sC = s′C, sGCI = s′GCI,
but s∀∃ 6= s′∀∃. Then s and s′ are equivalent in the sense that, for every knowledge base
〈R, T ,A〉 and every query ϕ, 〈R, T ,A〉 |=s ϕ iff 〈R, T ,A〉 |=s′ ϕ. C

The proof of this lemma is straightforward.
Let s, s′ ∈ S. We say that s is weaker than or equal to s′ (and s′ is stronger than

or equal to s) if for any knowledge base KB , Conss(KB) ⊆ Conss′(KB). (Recall that
Conss(KB) stands for the set of s-logical consequences of KB .)

Define sGCI v s′GCI according to w v m v s, where v is transitive. Define that s v s′

if: 5

s′C ≤ sC ≤ 3, s′R ≤ sR ≤ 3, s∀∃ = s′∀∃, and sGCI v s′GCI; or (1)
s′C ≤ sC, s′R ≤ sR, s∀∃ = s′∀∃, and m v sGCI v s′GCI; or (2)
s′C ≤ sC ≤ 3, sR = s′R = 2, and sGCI v s′GCI; or (3)
s′C ≤ sC, sR = s′R = 2, and m v sGCI v s′GCI; or (4)
sC = s′C = 2 and sR = s′R = 2. (5)

Theorem 5.3. Let s, s′ ∈ S be semantics such that s v s′. Then s is weaker than or
equal to s′ (i.e., for any knowledge base KB, Conss(KB) ⊆ Conss′(KB)).

Proof. The assertion for the case (5) follows from Proposition 5.1. By using Proposi-
tion 5.2, the cases (3) and (4) are reduced to the cases (1) and (2), respectively. Consider
the cases (1) and (2), and assume that one of them holds. Let s′′ = 〈s′C, s′R, s∀∃, sGCI〉. We

5 This corrects a mistake of [14].
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show that s is weaker than or equal to s′′, and s′′ is weaker than or equal to s′, which
together imply the assertion of the theorem.

Observe that every s′′-interpretation is an s-interpretation. Furthermore, since s′′∀∃ =
s∀∃ and s′′GCI = sGCI, if I is an s′′-interpretation then, for every knowledge base KB and
every query ϕ, I |=s′′ KB iff I |=s KB , and I |=s′′ ϕ iff I |=s ϕ. Hence, for every
knowledge base KB and every query ϕ, KB |=s ϕ implies KB |=s′′ ϕ. That is, s is weaker
than or equal to s′′.

Semantics s′′ may differ from s′ only by the pair s′′GCI and s′GCI, with s′′GCI v s′GCI.
Every s′′-interpretation is an s′-interpretation, and vice versa. Let I be an arbitrary s′′-
interpretation. Observe that, for any terminological axiom C v D, if I |=s′ C v D then
I |=s′′ C v D (for the case (1), note that CI+ ⊆ DI+ implies CI− ∪ CI+ ⊆ CI− ∪ DI+ and
hence CI−∪DI+ = ∆I). Hence, for every knowledge base KB , if I |=s′ KB then I |=s′′ KB .
Clearly, for every query ϕ, I |=s′ ϕ iff I |=s′′ ϕ. Hence, for every knowledge base KB and
every query ϕ, KB |=s′′ ϕ implies KB |=s′ ϕ. That is, s′′ is weaker than or equal to s′. C

The following corollary follows from the above theorem and Proposition 5.1. It states
which semantics from S give only correct answers.6

Corollary 5.4. Let s ∈ S be a semantics such that sGCI 6= w or sC ≤ 3 and sR ≤ 3,
and let 〈R, T ,A〉 be a knowledge base and ϕ be a query. Then 〈R, T ,A〉 |=s ϕ implies
〈R, T ,A〉 |= ϕ. C

6 A Translation into the Traditional Semantics

In this section we give a linear translation πs, for s ∈ S with sC ∈ {3, 4}, sR ∈ {2, 4}
and s∀∃ = +, such that, for every knowledge base KB and every query ϕ, KB |=s ϕ iff
πs(KB) |= πs(ϕ). In this section, if not otherwise stated, we assume that s satisfies the
mentioned conditions.

For A ∈ C \N, let A+ and A− be new concept names. For r ∈ R \ {U}, let r+ and
r− be new role names. With respect to the considered semantics s, let C′ = {A+, A− |
A ∈ C \N} ∪N, R′ = R if sR = 2, and R′ = {r+, r− | r ∈ R \ {U}} ∪ {U} if sR = 4.

We define also two auxiliary translations πs+ and πs−. In the following, if not otherwise
stated, r, R, S, A, C, D, a, b, R, T , A are arbitrary elements of their appropriate types
(according to the used convention) in the language using C and R.

If sR = 2 then:

– πs+(R) def= R and πs(R) def= R
– πs(R(a, b)) def= R(a, b) and πs(¬S(a, b)) def= ¬S(a, b)

– πs+(∃R.Self) def= ∃R.Self and πs−(∃R.Self) def= ¬∃R.Self.

If sR = 4 then:

– πs+(U) def= U

– πs+(r) def= r+ and πs−(r) def= r−, where r 6= U

– πs+(r−) def= (r+)− and πs−(r−) def= (r−)−, where r 6= U

6 This corrects a mistake of [14].
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πs+(>)
def
= > πs−(>)

def
= ⊥

πs+(⊥)
def
= ⊥ πs−(⊥)

def
= >

πs+(¬C)
def
= πs−(C) πs−(¬C)

def
= πs+(C)

πs+(C uD)
def
= πs+(C) u πs+(D) πs−(C uD)

def
= πs−(C) t πs−(D)

πs+(C tD)
def
= πs+(C) t πs+(D) πs−(C tD)

def
= πs−(C) u πs−(D)

πs+(∀R.C)
def
= ∀πs+(R).πs+(C) πs−(∀R.C)

def
= ∃πs+(R).πs−(C)

πs+(∃R.C)
def
= ∃πs+(R).πs+(C) πs−(∃R.C)

def
= ∀πs+(R).πs−(C)

πs+(≥ nR.C)
def
= ≥ nπs+(R).πs+(C) πs−(≥ (n+ 1)R.C)

def
= ≤ nπs+(R).¬πs−(C)

πs−(≥ 0R.C)
def
= ⊥

πs+(≤ nR.C)
def
= ≤ nπs+(R).¬πs−(C) πs−(≤ nR.C)

def
= ≥ (n+ 1)πs+(R).πs+(C)

Fig. 1. A partial specification of πs+ and πs−.

– for every role axiom ϕ, πs(ϕ) def= ϕ′, where ϕ′ is the role axiom obtained from ϕ by
replacing each role R by πs+(R)

– πs(R) def= {πs(ϕ) | ϕ ∈ R}
– πs(R(a, b)) def= πs+(R)(a, b) and πs(¬S(a, b)) def= πs−(S)(a, b), where R,S 6= U

– πs+(∃R.Self) def= ∃πs+(R).Self and πs−(∃R.Self) def= ∃πs−(R).Self.

If A is a nominal then πs+(A) def= A and πs−(A) def= ¬A.
If A is a concept name but not a nominal then πs+(A) def= A+ and πs−(A) def= A−.
The translations πs+(C) and πs−(C) for the case C is not of the form A or ∃R.Self

are defined as in Figure 1.
Define πs(C v D) and πs(T ) as follows:

– case sGCI = w : πs(C v D) def= {> v πs−(C) t πs+(D)}
– case sGCI = m : πs(C v D) def= {πs+(C) v πs+(D)}
– case sGCI = s : πs(C v D) def= {πs+(C) v πs+(D), πs−(D) v πs−(C)}
– case sC = 3 : πs(T ) def=

⋃
ϕ∈T πs(ϕ) ∪ {> v A+ tA− | A ∈ C \N}

– case sC = 4 : πs(T ) def=
⋃

ϕ∈T πs(ϕ).

Define that:

– πs(a
.=6= b) def= a

.=6= b and πs(C(a)) def= πs+(C)(a)
– πs(A) def= {πs(ϕ) | ϕ ∈ A}
– πs(〈R, T ,A〉)

def= 〈πs(R), πs(T ), πs(A)〉
– for a query ϕ = ϕ1 ∧ . . . ∧ ϕk, define πs(ϕ) def= πs(ϕ1) ∧ . . . ∧ πs(ϕk).

Note that, if 〈R, T ,A〉 is a knowledge base and ϕ is a query in SROIQ using C and
R, then πs(〈R, T ,A〉) is a knowledge base and πs(ϕ) is a query in SROIQ using C′ and
R′, with the property that:

– the length of πs(ϕ) is linear in the length of ϕ
– the size of πs(〈R, T ,A〉) is linear in the size of 〈R, T ,A〉 in the case sC = 4, and linear

in the sizes of 〈R, T ,A〉 and C \N in the case sC = 3.7

7 where the notions of length and size are defined as usual
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To have a translation for the case sR = 3 one would have to allow role axioms of the
form U v r∪r′ (for expressing U v s+∪s−). To have a translation for the case s∀∃ = +−
one would have to allow concepts of the form ∀(¬r).C (for expressing ∀(¬s−).D+). These
features fall out of SROIQ and that is why we do not present translation for the case
sR = 3 or s∀∃ = +−.

Theorem 6.1. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4} and s∀∃ = +.
Let 〈R, T ,A〉 be a knowledge base and ϕ be a query in the language using C and R. Then
〈R, T ,A〉 |=s ϕ iff πs(〈R, T ,A〉) |= πs(ϕ).

Proof. Consider the left to right implication and suppose that 〈R, T ,A〉 |=s ϕ. Let I ′
be a traditional model of πs(〈R, T ,A〉) in the language using C′ and R′. We show that
I ′ |= πs(ϕ). Let I be the s-interpretation in the language using C and R specified as
follows:

– ∆I = ∆I
′

– for A ∈ C \N, AI+ = (A+)I
′

and AI− = (A−)I
′

– for A ∈ N, AI+ = AI
′

and AI− = ∆I \AI+
– if sR = 2 then, for r ∈ R, rI+ = rI

′
and rI− = (∆I ×∆I) \ rI+

– if sR = 4 then
• for r ∈ R \ {U}, rI+ = (r+)I

′
and rI− = (r−)I

′

• UI+ = ∆I ×∆I and UI− = ∅
– for a ∈ I, aI = aI

′
.

Observe that I is indeed an s-interpretation. It can be proved by induction on the struc-
ture of C and R that, for any concept C and role R :

– CI = 〈(πs+(C))I
′
, (πs−(C))I

′〉
– if sR = 2 then RI = 〈RI′, (∆I ×∆I) \RI′〉
– if sR = 4 and R 6= U then RI = 〈(πs+(R))I

′
, (πs−(R))I

′〉.

Using this and the assumption that I ′ |= πs(〈R, T ,A〉), we derive that I |=s 〈R, T ,A〉.
Hence I |=s ϕ, and it follows that I ′ |= πs(ϕ).

The right to left implication can be proved analogously. C

To check whether πs(〈R, T ,A〉) |= πs(ϕ) one can use, e.g., the tableau method given
in [6]. We have the following corollary of Theorem 6.1 by taking ϕ = ⊥.

Corollary 6.2. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4} and s∀∃ = +,
and let 〈R, T ,A〉 be a knowledge base in the language using C and R. Then 〈R, T ,A〉 is
s-satisfiable iff πs(〈R, T ,A〉) is satisfiable (w.r.t. the traditional semantics). C

7 Conclusions

SROIQ is a powerful DL used as the logical foundation of OWL 2. In this work, we
introduced and studied a number of different paraconsistent semantics for SROIQ in a
uniform way. We gave a translation of the problem of conjunctive query answering w.r.t.
some of the considered paraconsistent semantics into a version that uses the traditional
semantics. This allows to directly use existing tools and reasoners of SROIQ for para-
consistent reasoning. We also presented a formalization of rough concepts in SROIQ.
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Note that answering queries that contain negative individual assertions of the form
¬S(a, b) using a paraconsistent semantics is first studied in this work. Also note that
only a four-valued paraconsistent semantics has previously been introduced for SROIQ
[9] (without considering some important features of SROIQ). If s, s′ ∈ S are semantics
such that s v s′ and s′ is weaker than the traditional semantics then, by Theorem 5.3,
for the conjunctive query answering problem, KB |=s′ ϕ approximates KB |= ϕ better
than KB |=s ϕ does. Our postulate is that, if s v s′ and KB is s′-satisfiable, then it
is better to use s′ than s. In particular, one should use semantics s with sC = sR = 4
(i.e. four-valued semantics) only when the considered knowledge base is s′-unsatisfiable
in semantics s′ with s′C = 3.

The approach of this work and [12, 23, 10, 9, 27, 15] does not guarantee that all knowl-
edge bases are satisfiable in the considered paraconsistent logic. The reason is that axioms
like > v ⊥ are not valid in any s-interpretation, where s ∈ S. Due to the specific mean-
ings of the universal role U and nominals, we do not propose three- and four-semantics for
them.8 This may also cause a knowledge base KB s-unsatisfiable, e.g., when KB contains
both individual assertions A(a) and ¬A(a) with A ∈ N. To overcome these problems one
may want to define and use constructive DLs in a similar way as Odintsov and Wansing
did for their constructive version of the basic DL ALC. Extending such an approach to
dealing with number restrictions ≥ nS.C and ≤ nS.C is not obvious. We leave this for
future work.
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