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Abstract 

 
We present in this paper an alternative of modeling physical systems through a non-Classical logic namely 

the Paraconsistent Logic (PL) whose main feature is the revocation of the principle of non-contradiction. The 

Paraconsistent Annotated Logic with annotation of two values (PAL2v) is a type of PL and has in its theo-

retical structure the main feature of dealing with contradictions offering flexibility in drawing conclusions. 

Several works about applications of PAL2v have shown that such logic is able to provide us with an ade-

quate treatment to uncertainties. Based on the foundations of the PAL2v we presented the ParaQuantum 

logic (PQL) with the goal of performing analysis of signals from information sources which model physical 

systems. The formalization of the concepts of the logics PQL, that it is represented in a Lattice, requires the 

considering of Paraquantum logical states ψ which are propagated through variations of the evidence De-

grees µ and λ which come out from measurements performed in Observable Variables in the physical world. 

When we analyze the lattice of the PQL, we obtain equations which quantify values of physical quantities 

from where we obtain the effects of propagation of the Paraquantum logical states ψ. In this paper, we in-

troduce the Paraquantum Factor of quantization hψ whose value is associated with a special logical state on 

the lattice which is identified with the Planck constant h. We conclude through these studies that the 

Paraquantum Logical Model based on the ParaQuantum logics PQL can link the several fields of the 

physical sciences by means of quantization of values. It is an innovative approach of formulating natural 

phenomena. 

 

Keywords: Paraconsistent Logic, Paraquantum Logic, Classical Physic, Relativity Theory, Quantum  

Mechanics 

1. Introduction 
 
Physics, as the science through we can study nature, has 

in its foundations measurements and mathematical com-

putations which are based on laws of Classical logic 

concepts [1,2]. In some cases, the limits imposed by the 

Classic Logic influences in the results of analyses of 

Physical Systems [3].  

It is possible through the non-Classic logics to develop 

physical models which are capable of treating uncer-

tainty conditions in fields which deal with extreme val-

ues such as quantum mechanics and relativity theory 

[3,4].  

We present in this paper an alternative of modeling 

physical systems through a non-Classical logic namely 

the Paraconsistent Logic (PL) whose main feature is the 

revocation of the classic logic principle of non-contra- 

diction. In other words, in its foundation this Paraconsis-

tent logic is capable of dealing with contradictory signals 

[4-7]. 

Important research has been made in the projects of 

expert systems based on algorithms originated from a 

non-Classical logic, namely Paraconsistent Annotated 

logic with annotation of two values (PAL2v) [8]. The 

applications of PAL2v have been successful in the de-

velopment of expert systems that have to make decisions 
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based on uncertain or contradictory information [9,10]. 

In these applications of the PAL2v there was the need of 

some restrictions on the algorithms because in certain 

conditions the model presented values which were gen-

erated through jumps or unexpected variations. Results 

of more recent research showed us that the restrictions 

were imposed on the PAL2v because it has features in its 

basic structure such that the results obtained can be iden-

tified with phenomena watched in the study of quantum 

mechanics [11-14]. In this paper these special features of 

the PAL2v are studied in the form of variations of values 

from the concepts of the Paraquantum logic PQL where 

these phenomena are called Paraquantum Leaps. 

We begin the next section introducing Paraconsistent 

logic (PL) and their main fundamental ideas necessary to 

the comprehension of this paper. For more information 

on Paraconsistent logics, we refer the reader to [3,4,6,8]. 

 

1.1. The Non-Classical Paraconsistent Logics 
 

Among the several non-Classical logics we have Para-

consistent logics whose main feature is the revocation of 

the principle of non-contradiction [3,8]. The initial sys-

tems of the Paraconsistent logics containing all logical 

levels such as propositional and predicate calculi as well 

as logics of superior order are due to N.C.A. da Costa 

[2,4,5]. There are also Paraconsistent systems for set 

theory which are strictly stronger that the classic theory so 

that the classic theory can be considered as a case of the 

Paraconsistent systems [6]. 

 

1.2. Paraconsistent Annotated Logic 
 

The Paraconsistent Annotated logic (PAL) belongs to a 

family of Paraconsistent logics and can be represented 

through a lattice of four vertices. These four vertices 

represent extreme logical states referring to the proposi-

tion that will be being analyzed [1,4,6,8]. 

 

1.3. The Paraconsistent Annotated Logic with 
Annotation of Two Values (PAL2v) 

 

According to [8] we can obtain through the PAL a rep-

resentation of how the annotations or evidences express 

the knowledge about a certain proposition P. This is 

done through a lattice on the real plane with pairs (, λ) 
which are the annotations as seen in Figure 1.  

In this representation an operator is fixed: ~:||  || 
where  = {(, λ)|, λ  [0, 1]  } 

And defined as follows: if P is a basic formula then  

~ [(, λ)] = (λ, ) where , λ  [0, 1]  . 

The operator ~ stands for the “meaning” of the logical 

symbol of negation of the system to be considered. 

 





 

Figure 1. Lattice of four vertexes and representation of the 

Paraconsistent logical signal: P(, λ).  

 

We introduce the extreme logical Paraconsistent states 

which are the four vertices of the lattice with Favorable 

Degree of evidence μ and Unfavorable Degree of evi-

dence λ. We read them in the following way:   

PT = P(1, 1) → The annotation (, ) = (1, 1) assigns 

intuitive reading that P is inconsistent.  

Pt = P(1, 0) → The annotation (, ) = (1, 0) assigns in-

tuitive reading that P is true.  

PF = P(0, 1) → The annotation (, ) = (0, 1) assigns 

intuitive reading that P is false.  

P = P(0, 0) → The annotation (, ) = (0, 0) assigns 

intuitive reading that P is Indeterminate.  

In the internal point of the lattice which is equidistant 

from all four vertices, we have the following interpreta-

tion:  

PI = P(0.5, 0.5) → The annotation (, ) = (0.5, 0.5) as-

signs intuitive reading that P is undefined.  

The logical negation of P is defined as: 

( , ) ( , )P P     

 

1.4. The Lattice of the PAL2v  
 

With the values of x and y that vary between 0 and 1 and 

being considered in an Unitary Square on the Cartesian 

Plane (USCP) we can get linear transformations for a 

Lattice k of analogous values to the associated Lattice τ 
of the PAL2v [8]. We obtain the following final trans-

formation: 

   , ,T X Y x y x y 1              (1) 

Therefore, through the transformation (1) we can con-

vert points of the USCP which represent annotations of τ 
into points of  which also represent annotations of τ (see 

[4-6,8]). According to the language of the PAL2v we 

have: 

x =  is the Favorable evidence Degree 
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y = λ is the Unfavorable evidence Degree. 

The first coordinate of the transformation (1) is called 

Certainty Degree DC. So, the Certainty Degree is ob-

tained by: 

CD                    (2) 

The second coordinate of the transformation (1) is 

called Contradiction Degree Dct. So, the Contradiction 

Degree is obtained by: 

1ctD                   (3) 

The second coordinate is a real number in the closed 

interval [–1, +1]. The y-axis is called “axis of the contra-

diction degrees”.  

 

1.5. The Paraconsistent States Logic τ  
 

Since the linear transformation T(x, y) shown in (1) is 

expressed with evidence Degrees μ and λ, from (2), (3) 

and (1) we can represent a Paraconsistent logical state τ 
into Lattice τ of the PAL2v [8], such that:  

  ,
,          1



           (4) 

or 

  ,
,C ctD D                  (5) 

where:  

τ is the Paraconsistent logical state. 

DC is the Certainty Degree obtained from the evidence 

Degrees μ and λ. 
Dct is the Contradiction Degree obtained from the evi-

dence Degrees μ and λ. 
Since the Paraconsistent logical state τ can be any-

where in the lattice τ, the real Certainty Degree DCR can 

be obtained as follows:  

For  we compute:  0CD 

 2 21 1CR C ctD D    D           (6) 

For  we compute: 0CD 

 2 21CR C ctD D D   1



          (7) 

where:  ,CD f    and  ,ctD f    

For DC = 0 we consider the undefined Paraconsistent 

logical state with: DCR =0. 

Through (8) we compute the resulting evidence De-

gree which expresses the intensity of the Paraconsistent 

logical state ετ.  

 ,

1

2

CR

ER

D
 


               (8) 

where: 

 ,ER    is the resulting evidence Degree in function 

of μ and λ.  

CR  is the real Certainty Degree calculated by (6) or 

(7).  

D

 

2. The Paraquantum Logic—PQL  
 

Based on the previous considerations about the PAL2v 

[8], we present the foundations of the Paraquantum Lo-

gics PQL as follows. 

 

2.1. The Paraquantum Function ψ(PQ) and the 
Paraquantum Logical State ψ 

 

A Paraquantum logical state ψ is created on the lattice of 

the PQL as the tuple formed by the certainty degree DC and 

the contradiction degree Dct. Both values depend on the 

measurements perfomed on the Observable Variables in 

the physical environment which are represented by μ and 

λ. We can express (2) and (3) in terms of μ and λ 
obtaining: 

( , )CD                     (9) 

( , ) 1ctD                    (10) 

A Paraquantum function (P) is defined as the Paraq-

uantum logical state : 

  ( ) ( , ) ,
,PQ C ct

D D               (11) 

 

2.2. The Paraquantum Lattice of States of the  
PQL 

 

For each measurement performed in the physical world 

of μ and λ, we obtain a unique duple  ,ct
 

which represents a unique Paraquantum logical state ψ 

which is a point of the lattice of the PQL. 

 ( , ) ,CD D   

On the vertical axis of contradictory degrees, the two 

extreme real Paraquantum logical states are: 

1) The contradictory extreme Paraquantum logical 

state which represents Inconsistency T: 

   (1,1) (1,1), 0C ctD D  T ,1  

2) The contradictory extreme Paraquantum logical 

state which represents Undetermination : 

   (0,0) (0,0), 0C ctD D  , 1    

On the horizontal axis of certainty degrees, the two 

extreme real Paraquantum logical states are: 

1) The real extreme Paraquantum logical state which 

represents Veracity t: 

   (1,0) (1,0), 1t C ctD D   ,0  

2) The real extreme Paraquantum logical state which 

Copyright © 2011 SciRes.                                                                                 JMP 
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,0

CX  Vector with same direction as the axis of the 

certainty degrees (horizontal) whose module is the com-

plement of the intensity of the certainty degree: 

represents Falsity F: 

   (0,1) (0,1), 1F C ctD D    

 1C CX D   
2.3. The Vector of State P(ψ) 

ct  Vector with same direction as the axis of the con-

tradiction degrees (vertical) whose module is the contra-

diction degree: 

Y 

A Vector of State P(ψ) will have origin in one of the two 

vertexes that compose the horizontal axis of the certainty 

degrees and its extremity will be in the point formed for 

the pair indicated by the Paraquantum function: 
ct ctY D  

Given a current Paraquantum logical state ψcur defined 

by the duple  ( , ) ( , ),C ctD D     then according to (5) we 

compute the module of a Vector of State P(ψ) as follows: 

 ( ) ( , ) ( , ),PQ C ctD D     . 

If the Certainty Degree is negative (DC < 0), then the 

Vector of State P(ψ) will be on the lattice vertex which is 

the extreme Paraquantum logical state False: ψF = (–1, 0). 
   2 21 C  ctMP D    D          (12) 

If the Certainty Degree is positive (DC > 0), then the 

Vector of State P(ψ) will be on the lattice vertex which is 

the extreme Paraquantum logical state True: ψt = (1, 0).  

where:  

DC = Certainty Degree computed by (9) 

Dct = Contradiction Degree computed by (10).  

.If the certainty degree is nil (DC = 0), then there is an 

undefined Paraquantum logical state ψI = (0.5, 0.5).  

Figure 2 shows a point (DC, Dct) where DC = ƒ(μ, λ) 
and Dct = ƒ(μ, λ) which represents a Paraquantum logical 

state ψ on the lattice of states of the PQL. The Vector of State P(ψ) will always be the vector ad-

dition of its two component vectors:  Using (12) which is for computing the module of a  

 

 





 

Figure 2. Vector of State P(ψ) representing a Paraquantum logical state ψ on the Paraquantum lattice of states on the point 

DC, Dct), therefore DC > 0.  ( 
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Vector of State P(ψ), we have: 

1) For DC > 0 the real Certainty Degree is computed 

by:  

 1C RD MP               (13) 

Therefore:  

 2 21 1  C R C ctD D     D         (14) 

where:  

DCψR = real Certainty Degree. 

DC = Certainty Degree computed by (9). 

Dct = Contradiction Degree computed by (10).  

2) For DC < 0, the real Certainty Degree is computed 

by: 

   1C RD MP              (15) 

Therefore: 

 2 21  C R C ctD D D    1        (16) 

where: 

DCψR = real Certainty Degree. 

DC = Certainty Degree computed by (9). 

Dct = Contradiction Degree computed by (10).  

3) For DC = 0, then the real Certainty Degree is nil: 

0C RD    

The intensity of the real Paraquantum logical state is 

computed by: 

1

2

C R

R

D 



              (17) 

The inclination angle  of the Vector of State which 

is the angle formed by the Vector of State P() and the 

x-axis of the certainty degrees is computed by:  

 1

C

C

D
arctg

D


 
 

  
           (18) 

The degree of intensity of the contradictory Paraquan-

tum logical state ψctrψ is computed by:  

1

2

ct
ctr

D



              (19) 

where:  

μctrψ = intensity degree of the contradictory Paraquan-

tum logical state.  

Dct = Contradiction Degree computed by (10).  

When the module of the Vector of State MP(ψ) = 1, 

this vector will represent the maximal fundamental su-

perposed Paraquantum logical states ψsupfmax which has 

real certainty degrees zero. The maximum Contradiction 

Degree for this condition is when the Vector of State P(ψ) 

forms an angle of 45˚ with the horizontal axis of cer-

tainty degrees. Therefore, given that the inclination angle 

of the Vector of State is α = 45˚ then the maximum Con-

tradiction Degree for this condition is computed by: 

max

1
1 cos 45   0.707106781

2
ctD        

We observer that this same condition is found when 

the Vector of State has inclination angle α = –45˚, or still, 

with origin in the extreme Vertex representative of the 

extreme False Paraquantum logical state. In that extreme 

contradictory situation the module of the Vector of State 

MP(ψ) will have his maximum value of: 

  2MP   . 

The unbalanced contradictory Paraquantum logical 

state ψctru is the one located on the lattice of states of the 

PQL where there is a condition of opposite signs between 

the Certainty Degree (DC) and the real Certainty Degree 

(DCψR). 

 

2.4. Paraquantum Leap and Uncertainty 
Paraquantum Region 

 

There may be variations in the measurements performed 

on the observable variables in the physical environment 

which can dynamically change the values of the evidence 

Degrees in such a way that the module of the Vector of 

State MP(ψ) tends to increase. In this situation, as soon 

as the increase of the module of the Vector of State 

MP(ψ) becomes greater than 1, the real Certainty Degree 

DCψR will become greater than 0, that is, the undefined 

value. This makes DCψR to have the opposite sign of the 

Certainty Degree DC. In this way, values of real Cer-

tainty Degree DCψR will come up and change the logical 

state of the opposed vertices, even if the Paraquantum 

logical states defined by the Vector of State P(ψ) are 

located in the region of the vertex which represents its 

original logical state. Under this condition a sudden Leap 

happens in the values of intensity degree of the real 

Paraquantum logical state μψR computed in (17). This 

phenomenon where the resultant values are modified 

abruptly we call Paraquantum Leap. 

In the Paraquantum lattice of states of the PQL there is 

a region where the unbalanced contradictory Paraquan-

tum logical states ψctrd come up. The region of uncer-

tainty on the lattice of states of the PQL is defined by the 

location of the unbalanced contradictory Paraquantum 

logical states ψctrd. Therefore, the analysis in this region 

is as following: 

DC > 0 and DCψR < 0 or 

DC < 0 and DCψR > 0 

These are the conditions which define the unbalanced 
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contradictory Paraquantum logical states ψctrd character-

ized by the Vector of State P(ψ) with module greater 

than 1.  

Since the Favorable evidence Degree μ and the Unfa-

vorable evidence Degree λ in the Paraquantum analysis 

are originated from the Observable Variables in the 

physical world, the region of Paraquantum uncertainty is 

well defined by the increase of decrease of the module of 

the Vector of State P(ψ) which is related to these values.  

 

3. The Paraquantum Logical State of  
Quantization h 

 

The propagation of the superposed Paraquantum logical 

states sup through the lattice of the PQL happens due to 

the continuous measurements performed on the Observ-

able Variables in the physical world.  

Since the Paraquantum analysis deals with Favorable 

and Unfavorable evidence Degrees  and  of the meas-

urements performed on the physical world, these varia-

tions affect the behavior and propagation of the super-

posed Paraquantum logical states sup on the lattice of 

the PQL.  

In the propagation of the superposed Paraquantum 

logical states sup an equilibrium point exist that is situ-

ated on the vertical axis of the degrees of contradiction 

of the lattice of PQL. The Paraquantum state of quantiza-

tion h is defined as the equilibrium state in the propa-

gation through the uncertainty region of the PQL. 

The Paraquantum logical state of quantization h 

which is located in the equilibrium points of the lattice 

can be obtained through trigonometric analysis. First, we 

consider the lattice of the PQL as two isosceles triangles 

with base 2 and height 1.  

We observe that from Figure 3, the vertices of these 

two isosceles triangles are the extreme logical states. On  

 

 

 2
1 2 1h   

1
2 1h  

 2
1 2 1h   

 2
1 2 1h   



1

1

2
d 

1

1

2
d 

2

1
1

2
d  

2

1
1

2
d  

3

1
1

2
d  

3

1
1

2
d  



 

Figure 3. Correlation of values between the physical world and the Paraquantum universe represented by the lattice of the 

araquantum logics PQL.  P 
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the isosceles triangle FTt whose vertices are the extreme 

Paraquantum logical states false, inconsistent and true, 

we draw the internal angle bisectors and we find the 

point I1 (Incenter point) which is the center of the incir-

cle. The point I1 is equidistant from the sides of the isos-

celes triangle FTt. 

The distance from the base, formed by the horizontal 

axis with the extreme Paraquantum logical states false 

and true, to I1 is:  

1 2 1h    

This same analysis can be made for other isosceles 

triangle Ft getting itself thus the correlation of values 

of balance between the physical world and the lattice of 

the PQL. Figure 3 shows to this condition of correlation. 

The lines drawn inside the lattice have inclination of an-

gle α = 45˚ with respect to the horizontal axis. Also, sev-

eral distances are specified.  

Since the normalized values of the Favorable and Un-

favorable evidence Degrees  and  are representations 

of variations occurred in measurements performed on 

Observable Variables in the physical environment, then 

the corresponding distances are reflected in the distances 

of the lattice of the PQL.  

The Paraquantum logical states into limits of the Re-

gion of Uncertainty of the PQL are those in which the 

hatched lines with inclination of α = 45˚.  

We observe that with respect to the point of Indefini-

tion which is equidistant from the vertices of the PQL, 

therefore around the Paraquantum logical state of pure 

Indefinition IP, the variation of values inside the limits 

can be expressed by: 

 2 11

2 2
d


                (20) 

These logical states establish connection the incircle 

point, therefore, in the point where the logical Paraquan-

tum state of quantization h is situated. 

The Paraquantum logical states into limits of the Re-

gion of Uncertainty are identified with Factors of maxi-

mum limitation of transition. These factors are:  

1) The factor of Paraquantum limitation False/incon- 

sistent - hQFT. 

 ( ) ( , ) ( , ),PQ C ctD D      

( )
11

;1;1
22

1 1
1 ,

2 2
PQ h 

  
  
  


     


Q FT







 

2) The factor of Paraquantum limitation True/incon- 

sistent - hQtT. 

 ( ) ( , ) ( , ),PQ C ctD D      

( )
11

1;1;
22

1 1
1 ,

2 2
PQ Qh 

  
  
  

 
        
 

Tt  

3) The factor of Paraquantum limitation False/unde- 

termined - hQF. 

 ( ) ( , ) ( , ),PQ C ctD D      

( )
1 1

0; 1- 0; 1-
2 2

1 1
1 ,

2 2
PQ Qh  F

      
      

      

 
                

 

 

4) The factor of Paraquantum limitation True/unde- 

termined - hQt. 

 ( ) ( , ) ( , ),PQ C ctD D      

( )
1 1

1 ;0 1 ;0
2 2

1 1
1 ,

2 2
PQ Qh  t

      
       

      

 
               
 

 

All the Superposed Paraquantum logical states sup to 

these and that they will have variation of the inclination 

angle until null degree delimit the Region of Uncertainty 

of the Lattice of PQL.  

 

3.1. The Paraquantum Factor of Quantization hψ 
 

When the superposed Paraquantum logical state sup 

propagates on the lattice of the PQL a value of quantiza-

tion for each equilibrium point is established. This point 

is the value of the contradiction degree of the Paraquan-

tum logical state of quantization h  such that:  

2 1h                  (21) 

where: 

h is the Paraquantum Factor of quantization. 

The factor h quantifies the levels of energy through 

the equilibrium points where the Paraquantum logical 

state of quantization h, defined by the limits of propa-

gation throughout the uncertainty of the PQL, is located. 

Figure 4 shows the interconnections between the fac-

tors and its characteristics, in which they delimit the Re-

gion of Uncertainty in the Lattice of PQL. 

In a process of propagation of Paraquantum logical 

state , we have that in the instant that the superposed 

Paraquantum logical state sup reaches the representative 

points of the limiting factors of the uncertainty region of 

the PQL, the Certainty Degree (DC) remains zero but the 

real Certainty Degree (DCR) will be increased or de-

creased from zero and this difference corresponds to the 

effect of the Paraquantum Leap. So, on the point where     
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Figure 4. The Paraquantum Factor of quantization h related to the evidence Degrees obtained in the measurements of the 

Observable Variables in the physical world. 

 

the logical state of Paraquantum quantization h is lo-

cated, we observe that in the instant of the arrival of the 

superposed logical states, the Certainty Degree (DC) will 

be zero but the real Certainty Degree (DCR) will be in-

creased corresponding to the Paraquantum Leap. In the 

same way, in the beginning of the propagation, therefore, 

at the instant that the superposed Paraquantum logical 

state sup leaves the point where the logical state of 

Paraquantum quantization h is located, the Certainty 

Degree (DC) will be zero but the real Certainty Degree 

(DCR) will be decreased according to the Paraquantum 

Leap [6]. 

At the instant that the superposed Paraquantum logical 

states sup visit the Paraquantum logical state of quanti-

zation h, the real Certainty Degree will have variations 

of the form: 

 21C Rt C RD D h     

3.2. The Value of the Paraquantum Leap of 
Quantization 

 

In a process of propagation of Paraquantum logical state 

, we have that in the instant that the superposed Paraq-

uantum logical state sup reaches the representative 

points of the limiting factors of the uncertainty region of 

the PQL, the Certainty Degree DC remains zero, but the 

real Certainty Degree DCR will be increased or de-

creased from zero and this difference corresponds to the 

effect of the Paraquantum Leap. So, on the point where 

the logical state of Paraquantum quantization h is lo-

cated, we observe that in the instant of the arrival of the 

superposed logical states, the Certainty Degree DC will 

be zero but the real Certainty Degree DCR will be in-

creased corresponding to the Paraquantum Leap. In the 

same way, in the beginning of the propagation, therefore, 

at the instant that the superposed Paraquantum logical 
1          (22) 
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state sup leaves the point where the logical state of 

Paraquantum quantization h is located, the Certainty 

Degree DC will be zero but the real Certainty Degree 

DCR [6] will be decreased according to the Paraquantum 

Leap. At the instant that the superposed Paraquantum 

logical states sup visit the Paraquantum logical state of 

quantization h, the real Certainty Degree will have 

variations of the form: 

 21C Rt C RD D h     1          (23) 

Figure 5 shows the details at the instant that the su-

perposed Paraquantum logical states cross the vertical 

axis of contradiction degrees at the representative point 

of the Paraquantum logical state of quantization h.  

During the propagation of the superposed Paraquan-

tum logical states sup on the lattice of the PQL, a value 

of quantization for each equilibrium point is established. 

This is the Contradiction Degree of the Paraquantum 

logical state of quantization h , such that: 

2 1h   . 

3.3. The Fundamental Lattice of the PQL 

 
We observed that when the Paraquantum logical states 

sup visit the Paraquantum logical state of quantization 

h  established by the Paraquantum Factor of quanti-

zation h, the Paraquantum Leap happens. In the study 

of the PQL, when the propagation happens only in this 

point, the lattice is called fundamental lattice of transi-

tion frequency level N = 1. Since that for the funda-

mental lattice of the PQL, the number of times of ap-

plication of the Paraquantum Factor of quantization h 

is N = 1, then, for a contraction or expansion, the num-

ber of times will be greater than 1. Generalizing, we 

have that the Paraquantum Factor of quantization h 

expands or contracts the lattice of the PQL N times such 

that: 

     2 1NN

N
h h              (24) 

In the physical environment, according to (20) we ob-

serve that the maximum evidence degrees, which in the  

 

  



1 2 1

2 2
 
 

1 2 1

2 2
 
 

0.0823922
C R

D   



 

Figure 5. The Paraquantum Factor of quantization h related to the evidence Degrees obtained in the measurements of the 

Observable Variables in the physical world.  
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fundamental lattice of the PQL were 1, become:  

   2 2max max

1

2 2

h               (25) 

In this fashion, the variation around the Paraquantum 

logical state of pure Indefinition ψIP for the evidence 

Degrees μ and λ inside the limits of certainty, at each 

application N of the Paraquantum Factor of quantization 

hψ: 

 1

2 2

N

IP

h                (26) 

where: 

hψ is the Paraquantum Factor of quantization. 

N is the number of times of application of hψ.  

In order to completely express it, we have to take into 

account the factor related to the Paraquantum Leaps 

which will be added to or subtracted from the Paraquan-

tum Factor of quantization such that: 

 21th h h     1            (27) 

Figure 6 shows the effect of the Paraquantum Leap in 

the quantization of values. 

We observe that to hψtn = N it will be added the factor 

related to the Paraquantum Leap at the arrival of the 

Paraquantum logical states propagated at the point N or 

from hψtn = N it will be subtracted the factor related to the 

Paraquantum Leaps at the arrival of the Paraquantum 

logical states propagated at the point N. 

We can obtain from the fundamental lattice of the PQL 

the relation between the Paraquantum Factor of quanti-

zation hψ and the quantitative value QValor of any physical 

quantity [15,16] by: 

 1ValormaxFund ValormaxFund ValormaxFundQ h Q h Q      (28) 

 
  

2 1

1 2 1

ValormaxFund ValormaxFund

ValormaxFund

Q Q

Q

 

  
    (29) 

 

4. The Paraquantum Equation of the  
Inertial or Irradiant Energy  

 

From the Equation (26) we can express the energy of the 

Paraquantum Leap as the Inertial (or Irradiant) energy  
 

 



  2 2
1

ct
MP D  

2 21 1
C R

D h   

2 21 1
ieap

h h   

1

2 2

h
1

2 2

h

1

2
1

2
1

1
2


1

1
2





 

Figure 6. The Paraquantum Factor of quantization on the Paraquantum logical state of quantization h due to Paraquan-

um Leap.  t 
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[17,18]. Therefore, this energy is that one that varies 

when the Paraquantum logical state ψ in its propagation 

passes for the equilibrium point of the lattice.  

  2

max 1irr NE E h   1          (30) 

If the maximum energy that is displayed in the hori-

zontal axle of the lattice of Inertial or Irradiant energy is 

given by irrE  , then, in a complete propagation, the In-

ertial or Irradiant quantized Energy, will be calculated by 

the application of the Paraquantum Factor of quantiza-

tion. This condition is express for: 

2irr irrE h E                 (31) 

where:  

irr  = quantized Energy of the lattice of Inertial or 

Irradiant energy. 

E

irr  = maxima Energy gotten of the lattice of Inertial 

or Irradiant energy in the fundamental lattice. 

E

h  = Paraquantum Factor of quantization. 

The multiplication for number 2 must the analysis be 

in a complete orbit of propagation of the Paraquantum 

logical state. 

 
4.1. The Paraquantum Planck Constant and 

Paraquantum Elementary Charge 
 

With Equation (31) we can get in the Lattice of the Iner-

tial or Irradiant Energy, two important constants used in 

the equations that shape the phenomena of the Physical 

Systems. Being the Inertial or Irradiant Energy calcu-

lated by: 

 21irrE E h  1              (32) 

Considering the Paraquantum Inertial or Irradiant En-

ergy (31):   2irr irrE h E 
Then, (31) in (32):  

 22 1 1irrE E h h               (33) 

Of the Equation (33) it can be extracted the following 

constants: 

1) The Paraquantum Planck constant Planckh   such that: 

 22 1 1Planckh h h               (34) 

2) The Paraquantum elementary charge: 

 22 1 1e h                 (35) 

As  2 1h    , then from (35) Paraquantum ele-

mentary charge is:  

 2

2 1 2 1 1 0.1647844e e 
 

     
 

  

The Paraquantum Factor of quantization h  and the 

Paraquantum Planck constant Planckh   are correlation 

by: 

Planckh h e                 (36) 

As  2 1h   , then the Paraquantum Planck Con-

stant value is: 

   2

2 1 2 1 1Planckh h 
      
 

 

0.068253698Planckh    

The Equation (31) of the Paraquantum Inertial or Irra-

diant Energy is writing as: 

irrE h e   E                (37) 

or: 

irr PlanckE h E               (38) 

Considering the elementary charge |e| used in physical 

equations of value:  

191.60217653 10 eVe    

This value can be written as:  

180.160217653 10 eVe    

Then, the Paraquantum elementary charge of the Equa- 

tion (35) when inserted in the International System (IS), 

it can be written as: 

 2 182 1 1 10 eVe h 
     

or, when expressed with the value of the Paraquantum 

Factor of quantization:  2 1h    

 2
182 1 2 1 1 10 eVe

 
     

 
 

where results in: 

  182 0.0823922 10 eVe
  

180.1647844 10 eVe
  

In the same way, being the Planck’s constant h [18,19] 

given in electron-volts x seconds: 

154.13566743 10 eV sh     

The Paraquantum Planck’s constant Planckh   made 

calculations by the Equation (36), when considered in 

that same unit it will be inserted in the International Sys-

tem (IS):  

  1410 eV sSIh h 
    

or, when expressed with the value of the Paraquantum 
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Factor of quantization:  2 1h    

  142 1 10 eV sSIh
     

where results in:  140.414213562 10 eV sSIh
 

 

4.2. The Paraquantum Planck Constant in  
Reduced Form  

 

In the calculations of the physical science, mainly the 

ones that treat in the area of the Quantum Mechanics, 

they are used in some equations the reduced Planck con-

stant, also known as constant of Dirac.  

The reduced Planck constant appears with the symbol 

, that, by definition, it is made calculations for:  ћ
346.6260693 10

   J s
2π 2π

def hћ


    

34  1.054571682 10 J s
def

ћ     

As the module of the elementary charge of the electron 

is: 
191.60217653 10 Ce    

Then, the reduced Planck constant in electron-Volt x 

sec it is made calculations for: 

34

19

1 1 6.6260693 10  J s
  

2 2 1.60217653 10

def hћ
e 





         C
 

 161
  4.135667435 10 eV s

2π

def

ћ      

16  6.58211913 10 eV s
def

ћ   



 

That it can be written as:  

15  0.658211913 10 eV s
def

ћ    

This way, being the Paraquantum Planck constant of 

the Equation (36):  eV sSIh h e     

The reduced Planck constant is:  

 18
 1

  10 eV s
2π

def h e
ћ

e

 




     

 18  10 eV s
2π

def h
ћ 


    

or, when expressed with the value of the Paraquantum 

Factor of quantization:  2 1h    

 
 16

2 1
  10 eV s

2π

def

ћ



    

where results in: 

 16 6.5924135 10 eV s
def

ћ
   

 

5. Conclusions  
 

Based on the concepts of the Paraquantum logics PQL we 

did in this work a detailed study about the existing cor-

relations between the physical world represented by the 

values of the evidence Degrees and the Paraquantum 

world, represented by the lattice of the PQL. The equa-

tions and forms of dealing with representative values of 

physical systems considered on the lattice of the PQL 

allowed to obtain behavioral characteristics of Paraq-

uantum logical states ψ which produce quantitative re-

sults affected by the measurements performed on the 

Observable Variables in the physical environment. We 

presented the values which correlate the measurements 

of the evidence degrees in the physical environment with 

the quantization factors of the Paraquantum world.  

With the results obtained from these considerations, 

we advanced significantly in the formalization of the 

model which will allow direct applications of the funda-

mental ideas of the Paraquantum Logics PQL in analysis 

of phenomena found in many fields of physics. We saw 

as if it correlates the Paraquantum Factor of quantization 

hψ with the values used in the Physics the Planck con-

stant h and the elementary charge e.  

The correlation between the extraction of evidence 

degrees in the physical world, with the Paraquantum 

Factor of quantization hψ, allows that the Paraquantum 

logical model to be capable of analyzing physical quanti-

ties in a quantitative fashion. For this purpose in the next 

work we will study as Paraquantum Factor of quantiza-

tion hψ influences in the physical world, resulting in an 

important factor of reference that is called of Paraquan-

tum Gamma Factor γPψ.  

The model standardizes analysis and interpretations 

and allows that these applications to be extended to all 

study areas of physics which are considered incompatible 

because of existing contradictions in computations. 
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