

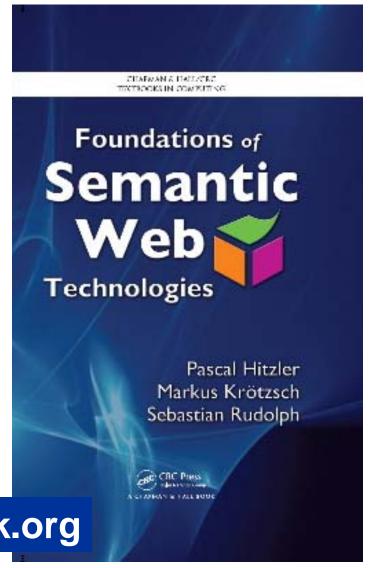
Paraconsistent Reasoning for OWL 2

Yue Ma Institute LIPN Université Paris-Nord, France

Pascal Hitzler

Kno.e.sis Center Wright State University, Dayton, OH http://www.knoesis.org/pascal/

Book Announcement



Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies Chapman & Hall/CRC, 2009

Grab a flyer!

http://www.semantic-web-book.org

Paraconsistent Reasoning for OWL 2

Yue Ma Institute LIPN Université Paris-Nord, France

Pascal Hitzler

Kno.e.sis Center Wright State University, Dayton, OH http://www.knoesis.org/pascal/

In a Nutshell

- Paraconsistent semantics which can deal with inconsistent OWL 2 DL ontologies, based on 4valued logic
- PolyTime transformation into OWL 2 DL (i.e. standard OWL reasoner can be used)

 Tractability of OWL 2 EL and OWL 2 QL retained under paraconsistent semantics

Prototype implementations exist

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

Paraconsistent Reasoning

Idea:

Rather than repairing inconsistencies change semantics to provide for them

Rationales:

- Inconsistencies occur naturally, i.e. they do not need repair but dealing with
- Repair is too difficult or too expensive

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

Standard Approach

- Use 4 truth values instead of 2:
 - true
 - talse
 - undefined / unknown
 - overdefined / both / inconsistent
- Make reasonable truth tables (choices exist)
- Lift semantics to the 4 truth values

how to guide the choices?

Properties of Our Semantics

- Does not increase OWL 2 computational complexity
- Tractable fragments of OWL 2 remain tractable
- Polytime transformations to 2-valued semantics
- Standard equivalences from 2-valued semantics still hold (e.g. DeMorgan)

Lifting the Semantics

Constructor Syntax	Semantics
\overline{A}	$A^I = \langle P, N \rangle$, where $P, N \subseteq \Delta^I$
R	$R^I \subseteq \Delta^I \times \Delta^I$
o	$o^I \in \Delta^I$
T	$\langle arDelta^I, \emptyset angle$
\perp	$\langle \emptyset, \Delta^I \rangle$
$C_1 \sqcap C_2$	$\langle P_1 \cap P_2, N_1 \cup N_2 \rangle$, if $C_i^I = \langle P_i, N_i \rangle$ for $i = 1, 2$
$C_1 \sqcup C_2$	$\langle P_1 \cup P_2, N_1 \cap N_2 \rangle$, if $C_i^I = \langle P_i, N_i \rangle$ for $i = 1, 2$
$\neg C$	$(\neg C)^I = \langle N, P \rangle$, if $C^I = \langle P, N \rangle$
$\exists R.C$	$\langle \{x \mid \exists y, (x, y) \in R^I \text{ and } y \in proj^+(C^I) \},$
	$\{x \mid \forall y, (x, y) \in R^I \text{ implies } y \in proj^-(C^I)\}\$
$\forall R.C$	$\langle \{x \mid \forall y, (x, y) \in R^I \text{ implies } y \in proj^+(C^I) \}, $ $\{x \mid \exists y, (x, y) \in R^I \text{ and } y \in proj^-(C^I) \} \rangle$

Lifting the Semantics

Constructor	Semantics
$\geq nR.C$	$ \begin{aligned} & \{x \mid \#(y.(x,y) \in R^I \land y \in proj^+(C^I)) \ge n\}, \\ & \{x \mid \#(y.(x,y) \in R^I \land y \not\in proj^-(C^I)) < n\} \rangle \\ & \{x \mid \#(y.(x,y) \in R^I \land y \not\in proj^-(C^I)) \le n\}, \\ & \{x \mid \#(y.(x,y) \in R^I \land y \in proj^+(C^I)) > n\} \rangle \end{aligned} $
	$\{x \mid \#(y.(x,y) \in R^I \land y \not\in proj^-(C^I)) < n\} \rangle$
$\leq nR.C$	$\left \langle \{x \mid \#(y.(x,y) \in R^I \land y \not\in proj^-(C^I)) \le n \}, \right $
	$ \{x \mid \#(y.(x,y) \in R^I \land y \in proj^+(C^I)) > n\}\rangle$
$\{o_1,o_n\}$	$\langle \{o_1^I,,o_n^I\},N\rangle$, where $N\subseteq \Delta^I$

 Nominals are basically treated like named classes; just that their positive part is fixed.

Lifting the Semantics

Axiom Name	Syntax	Semantics
material inclusion	$C_1 \mapsto C_2$	$\Delta^I \setminus proj^-(C_1^I) \subseteq proj^+(C_2^I)$
internal inclusion	$C_1 \sqsubset C_2$	$proj^{+}(C_{1}^{I}) \subseteq proj^{+}(C_{2}^{I})$ $proj^{+}(C_{1}^{I}) \subseteq proj^{+}(C_{2}^{I})$ $proj^{+}(C_{1}^{I}) \subseteq proj^{+}(C_{2}^{I}) \text{ and }$
strong inclusion	$C_1 \to C_2$	$proj^+(C_1^I) \subseteq proj^+(C_2^I)$ and
		$proj^{-}(C_2^I) \subseteq proj^{-}(C_1^I)$
individual assertions	C(a)	$a^I \in proj^+(C^I)$
	R(a,b)	$(a^I, b^I) \in R^I$

- Three choices for resolving class inclusion exist they differ in semantic strength.
- Note roles are 2-valued!

Class Inclusions

$$\varphi\mapsto\psi\ \ \text{is definable as}\ \ \neg\varphi\vee\psi. \tag{Material Implication}$$

$$\varphi\supset\psi\ \ \text{ evaluates to}\ \ \begin{cases} \psi\ \ \text{if}\ \ \varphi\in\{t,\ddot{\top}\}\\ t\ \ \text{if}\ \ \varphi\in\{f,\ddot{\bot}\} \end{cases} \tag{Internal Implication}$$

$$\varphi\to\psi\ \ \text{is definable as}\ \ (\varphi\supset\psi)\wedge(\neg\psi\supset\neg\varphi) \tag{Strong Implication}$$

- Material is the weakest of the three
- Internal satisfies the deduction theorem
- Strong additionally satisfies contraposition
- When to choose which implication is still unclear

4-Satisfiability

Every knowledge base has a four-valued model

- (under any mix of class inclusions)
- Caveat: Have to remove ⊤ and ⊥ first

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

PolyTime Transformation

(in fact, linear)

- Standard method:
 Rewrite ¬A to new class name A'
 and treat them separately.
 Then lift this transformation over the structure of formulae ⇒ π.
- $KB \vDash_4 \alpha$ iff $\pi(KB) \vDash_2 \pi(\alpha)$

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

Polytime Fragments of OWL 2

- OWL 2 EL: $\pi(K)$ is in this fragment if
 - K is and
 - only internal inclusion is used
- Horn-SHIQ: Transformation needs modification. $\pi_H(K)$ is in Horn-SHIQ if
 - K is and
 - only internal inclusion is used
- OWL 2 QL: Can be retained, but semantics needs modifications

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

Prototype Implementations

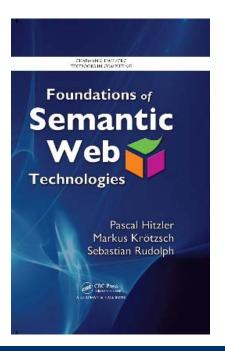
 By Steffen Stadtmüller Universität Karlsruhe

Part of the RaDON plugin of the NeOn Toolkit See ESWC2009 Demo paper on RaDON http://www.neon-toolkit.org

 By Fred Maier, Florida Institute for Human and Machine Cognition

- Motivation
- The Semantics
- PolyTime Transformation to classical OWL
- Tractable Fragments
- Implementation
- What needs to be done

What needs to be done



- Extensive testing of the tool
 - efficiency
 - comparison with other approaches (e.g. debugging)
- Investigate which class inclusion to use in which context
 - automatic classification?
 - iterative weakening?
 - are there other ways to resolve this?
- Apply in realistic application scenarios

Thanks!

In a Nutshell:

- Paraconsistent semantics for OWL 2 DL based on 4-valued logic
- PolyTime transformation into OWL 2 DL (i.e. standard OWL reasoner can be used)
- Tractability of OWL 2 EL and OWL 2 QL retained under paraconsistent semantics
- Prototype implementations exist

