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Abstract. Description logics refer to a family of formalisms concen-
trated around concepts, roles and individuals. They are used in many
multiagent and Semantic Web applications as a foundation for specify-
ing knowledge bases and reasoning about them. Among them, one of the
most important logics is SROIQ, providing the logical foundation for
the OWL 2 Web Ontology Language recommended by W3C in October
2009.

In the current paper we address the problem of inconsistent knowledge.
Inconsistencies may naturally appear in the considered application do-
mains, for example as a result of fusing knowledge from distributed
sources. We introduce a number of paraconsistent semantics for SROIQ,
including three-valued and four-valued semantics. The four-valued se-
mantics reflects the well-known approach introduced in [5, 4] and is con-
sidered here for comparison reasons only. We also study the relationship
between the semantics and paraconsistent reasoning in SROIQ through
a translation into the traditional two-valued semantics. Such a transla-
tion allows one to use existing tools and reasoners to deal with inconsis-
tent knowledge.

1 Introduction

The Web Ontology Language (OWL) is a family of knowledge representation
languages for designing ontologies. It is considered one of the fundamental tech-
nologies underpinning the Semantic Web, and has attracted both academic and
commercial interest. OWL has a formal semantics based on description logics
(DLs), which are formalisms concentrated around concepts (classes of individu-
als) and roles (binary relations between individuals), and aim to specify concepts
and concept hierarchies and to reason about them.3 DLs belong to the most fre-
quently used knowledge representation formalisms and provide a logical basis
to a variety of well known paradigms, including frame-based systems, semantic

3 There is a rich literature on DLs. For good surveys consult [2], in particular papers
[20, 3] as well as the bibliography provided there.
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networks and Semantic Web ontologies and reasoners. The extension OWL 2
of OWL, based on the DL SROIQ [10], became a W3C recommendation in
October 2009.

Description logics have usually been considered as syntactic variants of re-
stricted versions of classical first-order logic. On the other hand, in Semantic Web
and multiagent applications, knowledge/ontology fusion frequently leads to in-
consistencies. When inconsistencies occur in facts provided by different sites of
a distributed system (e.g., in the ABox of a combined ontology), the consensus-
based method proposed by N.T. Nguyen [23–26] is an advanced approach that
can be used to solve conflicts. When inconsistencies are caused through onto-
logical knowledge (e.g., a TBox) rather than by direct conflicts in facts, one
can adapt paraconsistent reasoning approaches. For example, consider an on-
tology KB1 reflecting the typical relationship between concepts Bird and Fly,
Bird v Fly, an ontology KB2 extending KB1 with axioms Penguin v Bird
and Penguin v ¬Fly, and an ontology KB3 extending KB2 with facts Bird(a)
and Penguin(tweety). Then, using paraconsistent reasoning we would like to
draw from KB3 facts Fly(a) and Bird(tweety). Also, both Fly(tweety) and
¬Fly(tweety) can be derived, so Fly(tweety) is inconsistent w.r.t. KB3. How-
ever, we do not want to draw ¬Fly(a) from KB3. This example will be continued
in Section 6.

There is a rich literature on paraconsistent logics (see, e.g., [7] and references
there). In general, paraconsistent reasoning relies on weakening the traditional
reasoning methods in order to avoid trivialization (which allows to draw any
conclusion from an inconsistent knowledge base). In [11] Hunter listed a few
approaches for dealing with paraconsistent reasoning in classical propositional
logic:

1. restricting to a consistent subset of the knowledge base
2. forbidding some inference rules
3. using four-valued semantics
4. using quasi-classical semantics
5. using argumentation-based reasoning.

All of these approaches can be applied for paraconsistent reasoning in DLs.
The first approach involves knowledge maintenance and will not be addressed
in this paper. The second approach lacks semantics and usually leads to non-
intuitive consequences [11], and hence not received much attention from the
DL community. The fifth approach has recently been applied for the basic DL
ALC by Zhang et al. [32, 33]. However, they did not provide adequate reasoning
methods. The third and fourth approaches will be addressed in more detail for
DLs and compared with our approaches presented in this paper.

A number of researchers have extended description logics with paraconsis-
tent semantics and adequate reasoning methods [19, 28, 27, 15, 14, 31, 30, 22, 21].
The work [27] studies a constructive version of the basic description logic ALC,
but it is not clear how to extend the semantics provided in this work to other
description logics. Papers [19, 28, 15, 14] are based on the well-known Belnap’s
four-valued logic [5, 4]. Truth values in this logic represent truth (t), falsity (f),
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the lack of knowledge (u) and inconsistency (i). However, there are serious prob-
lems with using Belnap’s logic for the Semantic Web. Some of these problems
are considered in the general context, e.g., in [18, 29]. We give here some others,
more directly related to description logics (see also Sections 3 and 4):

– According to the semantics considered in [19, 28, 15, 14], if (x ∈ CI) = i and
(x ∈ DI) = u then (x ∈ (C uD)I) = f and (x ∈ (C tD)I) = t which, in our
opinion, is not intuitive.

– A knowledge base, as a theory, may be incomplete in the sense that truth
value of a formula given as a query to the knowledge base may be not de-
termined using the theory. In such cases, we have a meta-unknown value. If
the semantics uses the truth value u, one can raise the question about the
relationship between u and the meta-unknown value. This problem was not
addressed in the mentioned works.

– One of the most common approaches is to use paraconsistent reasoning for
knowledge bases specified in the traditional way without explicit truth values
t, f, i, u. The reason is that, if we allow explicit uses of t, f, i, u then, for
example, two facts C(a) : t and C(a) : u in a knowledge base form a clash.
With this approach, as used in [19, 28, 15, 14], u is not used for knowledge
representation but only for the semantics. On the other hand, in many cases
allowing the value u by excluding the axioms > v At¬A weakens the logic
too much.

In [31] Zhang et al. gave a quasi-classical semantics for the DL SHIQ, which
is a sublogic of SHOIQ used for OWL 1. The semantics is based on both
Belnap’s four-valued logic and the quasi-classical logic of Besnard and Hunter [6,
12]. In [30] Zhang et al. also gave a paradoxical semantics for the basic DL ALC,
which is based on a three-valued semantics.4

Independently from [30], in the conference paper [22] we modeled inconsis-
tency using only three truth values t, f, i (as in Kleene’s three-valued logic [13, 8])
for the DL SHIQ, which is more expressive than ALC. In a sense, we identified
inconsistency with the lack of knowledge. There are many good reasons for such
an identification (see, e.g., [9]). Assuming that the objective reality is consistent,
the value i reflects a sort of lack of knowledge. Namely, inconsistent information
often reflects differences in subjective realities of agents resulting, for example,
from their different perceptual capabilities. Inconsistency appears, when differ-
ent information sources do not agree with one another and one cannot decide
which of them is right. Also, in many multiagent and Semantic Web scenarios
one has contradictory evidence as to a given fact. In [22] we also gave a faithful
translation of our formalism into a suitable version of a two-valued description
logic. Such a translation allows one to use existing tools and reasoners to deal
with inconsistent knowledge in SHIQ.

In [21] Nguyen extended the method and results of [22] for the expressive
DL SROIQ. He introduced a number of different paraconsistent semantics for

4 Theorems 3, 5, 6 of [30] are wrong. For Theorem 3 of [30], take > v ⊥ as an
ontological axiom. For Theorems 5 and 6 of [30], take φ = (A u ¬A v ⊥).
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SROIQ and studied the relationship between them. He also addressed para-
consistent reasoning in SROIQ w.r.t. some of such semantics through a trans-
lation into the traditional semantics. His paraconsistent semantics for SROIQ
are characterized by four parameters for:

– using two-, three-, or four-valued semantics for concept names
– using two-, three-, or four-valued semantics for role names
– considering two kinds of interpretation of concepts of the form ∀R.C or ∃R.C
– using weak, moderate, or strong semantics for terminological axioms.

Due to the lack of space, the results of [21] were given without proofs. Further-
more, the definition of s v s′ given in Section 5 of that paper is not entirely
correct.

This work is a revised and extended version of the conference papers [22,
21]. The main contributions of the current paper comparing to [22, 21] are a
correction for the mentioned definition of [21] and full proofs for the results listed
in that paper. Also, new discussions and examples are provided. As SROIQ and
its simpler versions are used for specifying Web ontologies, our semantics and
method are useful for paraconsistent reasoning for Semantic Web agents.

Let us emphasize that the four-valued semantics is considered in our paper
for comparisons only. It reflects the approach based on Belnap’s logic which we
found inadequate for Semantic Web applications (see Sections 3 and 4). A logic
which seems to behave much better in this context is provided in [18, 29]. We do
not consider it here as its adaptation to Semantic Web applications is not obvious
and requires further investigations, especially in the light of new developments
in the field of paraconsistent rule languages [17, 16].

Note that, in the context of description logics, three-valued semantics has
been studied earlier only for ALC [30] and SHIQ [22]. Also note that, studying
four-valued semantics for DLs, Ma and Hitzler [14] did not consider all features
of SROIQ. For example, they did not consider concepts of the form ∃R.Self
and individual assertions of the form ¬S(a, b).

The rest of this paper is structured as follows. In Section 2 we recall notations
and semantics of SROIQ. We present our paraconsistent semantics for SROIQ
in Section 3 and study the relationship between them in Section 4. Comparison
with other authors’ paraconsistent semantics of SROIQ and SHIQ is given in
Section 5. In Section 6 we give a faithful translation of the problem of conjunc-
tive query answering w.r.t. some of the considered paraconsistent semantics into
a version that uses the traditional semantics. Section 7 concludes this work.

2 The Two-Valued Description Logic SROIQ

In this section we recall notations and semantics of the DL SROIQ [10]. Assume
that our language uses a finite set C of concept names, a subset N ⊆ C of
nominals, a finite set R of role names including the universal role U , and a finite

set I of individual names. Let R−
def
= {r− | r ∈ R \ {U}} be the set of inverse

roles. A role is any member of R ∪R−. We use letters like R and S for roles.
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An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the
domain of I, and a function ·I , called the interpretation function of I, which
maps every concept name A to a subset AI of ∆I , where AI is a singleton set
if A ∈ N, and maps every role name r to a binary relation rI on ∆I , with
UI = ∆I × ∆I , and maps every individual name a to an element aI ∈ ∆I .
Inverse roles are interpreted as usual, i.e., for r ∈ R, we define

(r−)I
def
= (rI)−1 = {〈x, y〉 | 〈y, x〉 ∈ rI}.

A role inclusion axiom is an expression of the form R1 ◦ . . . ◦ Rk v S. A
role assertion is an expression of the form Ref(R), Irr(R), Sym(R), Tra(R), or
Dis(R,S), where R,S 6= U . Given an interpretation I, define that:

I |= R1 ◦ . . . ◦Rk v S if RI1 ◦ . . . ◦RIk ⊆ SI
I |= Ref(R) if RI is reflexive
I |= Irr(R) if RI is irreflexive
I |= Sym(R) if RI is symmetric
I |= Tra(R) if RI is transitive
I |= Dis(R,S) if RI and SI are disjoint,

where the operator ◦ stands for the composition of relations. By a role axiom we
mean either a role inclusion axiom or a role assertion. We say that a role axiom
ϕ is valid in I (or I validates ϕ) if I |= ϕ.

An RBox is a set R = Rh ∪ Ra, where Rh is a finite set of role inclusion
axioms and Ra is a finite set of role assertions. It is required that Rh is regular
and Ra is simple. In particular, Ra is simple if all roles R, S appearing in role
assertions of the form Irr(R) or Dis(R,S) are simple roles w.r.t. Rh. These
notions (of regularity and simplicity) will not be exploited in this paper and we
refer the reader to [10] for their definitions. An interpretation I is a model of an
RBox R, denoted by I |= R, if it validates all role axioms of R.

The set of concepts is the smallest set such that:

– all concept names (including nominals) and >, ⊥ are concepts
– if C, D are concepts, R is a role, S is a simple role and n is a non-negative

integer, then ¬C, C uD, C tD, ∀R.C, ∃R.C, ∃S.Self, ≥nS.C, and ≤nS.C
are also concepts.

We use letters like A, B to denote concept names, and letters like C, D to
denote concepts.

Given an interpretation I, the interpretation function ·I is extended to com-
plex concepts as follows, where #Γ stands for the number of elements in the
set Γ :

>I def
= ∆I

⊥I def
= ∅

(¬C)I
def
= ∆I \ CI

(C uD)I
def
= CI ∩DI
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(C tD)I
def
= CI ∪DI

(∀R.C)I
def
=
{
x ∈ ∆I | ∀y

[
〈x, y〉 ∈ RI implies y ∈ CI

]}
(∃R.C)I

def
=
{
x ∈ ∆I | ∃y

[
〈x, y〉 ∈ RI and y ∈ CI

]}
(∃S.Self)I

def
=
{
x ∈ ∆I | 〈x, x〉 ∈ SI

}
(≥ nS.C)I

def
=
{
x ∈ ∆I | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≥ n

}
(≤ nS.C)I

def
=
{
x ∈ ∆I | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≤ n

}
.

A terminological axiom, also called a general concept inclusion (GCI), is an
expression of the form C v D. A TBox is a finite set of terminological axioms.
An interpretation I validates an axiom C v D, denoted by I |= C v D, if
CI ⊆ DI . We say that I is a model of a TBox T , denoted by I |= T , if it
validates all axioms of T .

We use letters like a and b to denote individual names. An individual assertion
is an expression of the form a 6= b, C(a), R(a, b), or ¬S(a, b), where S is a simple
role and R,S 6= U . Given an interpretation I, define that:

I |= a 6= b if aI 6= bI

I |= C(a) if aI ∈ CI
I |= R(a, b) if 〈aI , bI〉 ∈ RI
I |= ¬S(a, b) if 〈aI , bI〉 /∈ SI .

We say that I satisfies an individual assertion ϕ if I |= ϕ. An ABox is a finite set
of individual assertions. An interpretation I is a model of an ABox A, denoted
by I |= A, if it satisfies all assertions of A.

A knowledge base is a tuple 〈R, T ,A〉, where R is an RBox, T is a TBox, and
A is an ABox. An interpretation I is a model of a knowledge base 〈R, T ,A〉 if it
is a model of all R, T , and A. A knowledge base is satisfiable if it has a model.

A (conjunctive) query is an expression of the form ϕ1∧. . .∧ϕk, where each ϕi

is an individual assertion. An interpretation I satisfies a query ϕ = ϕ1∧ . . .∧ϕk,
denoted by I |= ϕ, if I |= ϕi for all 1 ≤ i ≤ k. We say that a query ϕ is a logical
consequence of a knowledge base 〈R, T ,A〉, denoted by 〈R, T ,A〉 |= ϕ, if every
model of 〈R, T ,A〉 satisfies ϕ.

Note that, queries are defined to be “ground”. In a more general context,
queries may contain variables for individuals. However, one of the approaches to
deal with such queries is to instantiate variables by individuals occurring in the
knowledge base or the query.

3 Paraconsistent Semantics for SROIQ

3.1 Discussion and Definitions

Recall that, using the traditional semantics, every query is a logical consequence
of an inconsistent knowledge base. A knowledge base may be inconsistent, for
example, when it contains both individual assertions A(a) and ¬A(a) for some
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A ∈ C and a ∈ I. Paraconsistent reasoning is inconsistency-tolerant and aims
to derive (only) meaningful logical consequences even when the knowledge base
is inconsistent. Following the recommendation of W3C for OWL, we use the
traditional syntax of DLs and only change its semantics to cover paraconsistency.
The general approach is to define a semantics s such that, given a knowledge
base KB , the set Conss(KB) of logical consequences of KB w.r.t. semantics s is
a subset of the set Cons(KB) of logical consequences of KB w.r.t. the traditional
semantics, with the property that Conss(KB) contains mainly only meaningful
logical consequences of KB and Conss(KB) approximates Cons(KB) as much
as possible.

In this paper, we introduce a number of paraconsistent semantics for the DL
SROIQ. Each of them, let’s say s, is characterized by four parameters, denoted
by sC, sR, s∀∃, sGCI, with the following intuitive meanings:

– sC ∈ {2, 3, 4} specifies the number of possible truth values of assertions of
the form x ∈ AI , where A is a concept name not being a nominal and I
is an interpretation. In the case sC = 2, the truth values are t (true) and f

(false). In the case sC = 3, the third truth value is i (inconsistent). In the
case sC = 4, the additional truth value is u (unknown). When sC = 3, one
can identify inconsistency with the lack of knowledge, and the third value i

can be read either as inconsistent or as unknown.
– sR ∈ {2, 3, 4} specifies the number of possible truth values of assertions of

the form 〈x, y〉 ∈ rI , where r is a role name different from the universal role
U and I is an interpretation. The truth values are as in the case of sC.

– s∀∃ ∈ {+,±} specifies which of the two semantics studied by Straccia [28]
for concepts of the form ∀R.C or ∃R.C is used.

– sGCI ∈ {w,m, s} specifies one of the three semantics for general concept
inclusions: weak (w), moderate (m), strong (s).

For simplicity, we use the same value of sC for all concept names of C\N and
use the same value of sR for all role names of R\{U}. One may want to consider
different values of sC for different concept names, and different values of sR for
different role names. The methods and results of this paper can be generalized
for that case in a straightforward way.

We identify s with the tuple 〈sC, sR, s∀∃, sGCI〉. The set S of considered para-
consistent semantics is thus {2, 3, 4} × {2, 3, 4} × {+,±} × {w,m, s}.

For s ∈ S, an s-interpretation I = 〈∆I , ·I〉 is similar to a traditional inter-
pretation except that the interpretation function maps every concept name A
to a pair AI = 〈AI+, AI−〉 of subsets of ∆I and maps every role name r to a pair
rI = 〈rI+, rI−〉 of binary relations on ∆I such that:

– if sC = 2 then AI+ = ∆I \AI−
– if sC = 3 then AI+ ∪AI− = ∆I

– if sR = 2 then rI+ = (∆I ×∆I) \ rI−
– if sR = 3 then rI+ ∪ rI− = ∆I ×∆I

– if A is a nominal then AI+ is a singleton set and AI− = ∆I \AI+
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– UI+ = ∆I ×∆I and UI− = ∅.

Remark 3.1. The intuition behind AI = 〈AI+, AI−〉 is that AI+ gathers positive
evidence about A, while AI− gathers negative evidence about A. Thus, AI can
be treated as the function from ∆I to {t, f, i, u} defined below:

AI(x)
def
=


t for x ∈ AI+ and x /∈ AI−
f for x ∈ AI− and x /∈ AI+
i for x ∈ AI+ and x ∈ AI−
u for x /∈ AI+ and x /∈ AI−

(1)

Informally, AI(x) can be thought of as the truth value of x ∈ AI . Note that
AI(x) ∈ {t, f} if sC = 2 or A is a nominal, and AI(x) ∈ {t, f, i} if sC = 3. The
intuition behind rI = 〈rI+, rI−〉 is similar, and under which rI(x, y) ∈ {t, f} if
sR = 2 or r = U , and rI(x, y) ∈ {t, f, i} if sR = 3. C

The interpretation function ·I maps an inverse role R to a pair RI =

〈RI+, RI−〉 defined by (r−)I
def
= 〈(rI+)−1, (rI−)−1〉. It maps a complex concept

C to a pair CI = 〈CI+, CI−〉 of subsets of ∆I defined as follows:

>I def
= 〈∆I , ∅〉

⊥I def
= 〈∅, ∆I〉

(¬C)I
def
= 〈CI−, CI+〉

(C uD)I
def
= 〈CI+ ∩DI+, CI− ∪DI−〉

(C tD)I
def
= 〈CI+ ∪DI+, CI− ∩DI−〉

(∃R.Self)I
def
=
〈
{x ∈ ∆I | 〈x, x〉 ∈ RI+}, {x ∈ ∆I | 〈x, x〉 ∈ RI−}

〉
(≥ nR.C)I

def
=
〈
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y ∈ CI+} ≥ n},
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y /∈ CI−} < n}

〉
(≤ nR.C)I

def
=
〈
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y /∈ CI−} ≤ n},
{x ∈ ∆I | #{y | 〈x, y〉 ∈ RI+ and y ∈ CI+} > n}

〉
;

if s∀∃ = + then

(∀R.C)I
def
=
〈
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI+ implies y ∈ CI+)},
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI−)}

〉
(∃R.C)I

def
=
〈
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI+)},
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI+ implies y ∈ CI−)}

〉
;

if s∀∃ = ± then

(∀R.C)I
def
=
〈
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI− or y ∈ CI+)},
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI−)}

〉
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(∃R.C)I
def
=
〈
{x ∈ ∆I | ∃y(〈x, y〉 ∈ RI+ and y ∈ CI+)},
{x ∈ ∆I | ∀y(〈x, y〉 ∈ RI− or y ∈ CI−)}

〉
.

Remark 3.1 applies also to complex concepts. For example, we say that
CI(x) = i if x ∈ CI+ and x ∈ CI−. Note that CI is computed in the stan-
dard way [15, 14, 31, 22] for the case C is of the form >, ⊥, ¬D, DuD′, DtD′,
≥ nR.D or ≤ nR.D. When s∀∃ = +, (∀R.C)I and (∃R.C)I are computed as
in [15, 14, 31, 22] and as using semantics A of [28]. When s∀∃ = ±, (∀R.C)I and
(∃R.C)I are computed as using semantics B of [28].

3.2 Example

The following example illustrates the above definitions.
Consider a Semantic Web service supplying information about stocks. As-

sume that a web agent looks for low risk stocks, promising big gain. The agent’s
query can be expressed by

(LR uBG)(x), (2)

where LR and BG stand for “low risk” and “big gain”, respectively.
For simplicity, assume that the service has a knowledge base consisting only of

the following concept assertions (perhaps provided by different experts/agents):

LR(s1),¬LR(s1),¬LR(s2),¬BG(s2), LR(s3), BG(s3).

We then consider the interpretation I with:

LRI = 〈{s1, s3}, {s1, s2}〉 and BGI = 〈{s1, s3}, {s2}〉. (3)

The query (2) looks for stocks x that are instances of LR uBG w.r.t. I.
In the case of the traditional (two-valued) semantics, the knowledge base has

no models, and hence all of s1, s2, s3 are answers to the query, despite the fact
that s2 is of high risk and low gain.

Using any semantics s ∈ S with sC = 3, we have that

(LR uBG)I = 〈LRI+ ∩BGI+, LRI− ∪BGI−〉 = 〈{s1, s3}, {s1, s2}〉,

meaning that (according to (1)):

(LR uBG)I(s1) = i, (LR uBG)I(s2) = f and (LR uBG)I(s3) = t,

which is well-justified. Namely, there is both positive and negative evidence that
s1 satisfies (2), there is only negative evidence that s2 satisfies (2) and there is
only positive evidence that s3 satisfies (2).

Consider now the four-valued semantics and let I ′ differ from I given by (3)
in that BGI

′
= 〈{s3}, {s2}〉. Notice that BGI

′

+ ∪ BGI
′

− 6= ∆I
′
. In this case,

according to (1), we have that BGI
′
(s1) = u. Now

(LR uBG)I
′

= 〈{s3}, {s1, s2}〉,
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that is,

(LR uBG)I
′
(s1) = f, (LR uBG)I

′
(s2) = f and (LR uBG)I

′
(s3) = t.

The result that (LRuBG)I
′
(s1) = f is not intuitive. Namely, we have inconsis-

tent information that s1 is low risk and have no information whether it promises
big gain and still we have the result that the conjunction of both is false.

Observe also that

(LR tBG)I
′

= 〈LRI
′

+ ∪BGI
′

+ , LRI
′

− ∩BGI
′

− 〉 = 〈{s1, s3}, {s2}〉.

This means that the disjunction

s1 is of low risk︸ ︷︷ ︸
i

or s1 promises big gain︸ ︷︷ ︸
u

is t, which is again not intuitive.
In fact, the definitions of u and t in the four-valued context reflect the truth

ordering proposed by Belnap [5, 4] and used in the Semantic Web context, e.g.,
in [14, 15]. The use of Belnap’s knowledge ordering also provides non-intuitive
results in many other cases. Therefore we advocate for using three-valued logic,
as proposed in [22] in the case of complete knowledge. In the case of incomplete
knowledge the use of truth ordering proposed independently in [1] and [18, 29]
provides much more intuitive results (i for the disjunction and u for the conjunc-
tion).

3.3 Properties of Paraconsistent Semantics

We write C ≡s D and say that C and D are equivalent w.r.t. s if CI = DI for
every s-interpretation I. The following proposition states that De Morgan laws
hold for our constructors w.r.t. any semantics from S. Its proof is straightfor-
ward.

Proposition 3.2. The following equivalences hold for every s ∈ S :

(¬¬C)I ≡s C
I

(¬>)I ≡s ⊥I

(¬(C uD))I ≡s (¬C t ¬D)I

(¬∀R.C)I ≡s (∃R.¬C)I

(¬(≥ 0R.C))I ≡s ⊥I

(¬(≥ (n+ 1)R.C))I ≡s (≤ nR.C)I

(¬(≤ nR.C))I ≡s (≥ (n+ 1)R.C)I C

The following proposition means that: if sC ∈ {2, 3} and sR ∈ {2, 3} then s is
a three-valued semantics; if sC = 2 and sR = 2 then s is a two-valued semantics.
Its proof is straightforward via induction on the structure of C and R.
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Proposition 3.3. Let s ∈ S be a semantics such that sC ∈ {2, 3} and sR ∈
{2, 3}. Let I be an s-interpretation, C be a concept, and R be a role. Then
CI+ ∪ CI− = ∆I and RI+ ∪ RI− = ∆I × ∆I . Furthermore, if sC = 2 and sR = 2
then CI+ = ∆I \ CI− and RI+ = (∆I ×∆I) \RI−. C

Let s ∈ S and let I be an s-interpretation. We say that:

– I s-validates a role axiom R1 ◦ . . . ◦Rk v S if RI1+ ◦ . . . ◦RIk+ ⊆ SI+
– I s-validates a role assertion Ref(R) (resp. Irr(R), Sym(R), Tra(R)) if RI+

is reflexive (resp. irreflexive, symmetric, transitive)

– I s-validates a role assertion Dis(R,S) if RI+ and SI+ are disjoint

– I is an s-model of an RBox R, denoted by I |=s R, if it s-validates all axioms
of R

– I s-validates C v D, denoted by I |=s C v D, if:

• case sGCI = w : CI− ∪DI+ = ∆I

• case sGCI = m : CI+ ⊆ DI+
• case sGCI = s : CI+ ⊆ DI+ and DI− ⊆ CI−

– I is an s-model of a TBox T , denoted by I |=s T , if it s-validates all axioms
of T

– I s-satisfies an individual assertion ϕ if I |=s ϕ, where

I |=s a 6= b if aI 6= bI

I |=s C(a) if aI ∈ CI+
I |=s R(a, b) if 〈aI , bI〉 ∈ RI+
I |=s ¬S(a, b) if 〈aI , bI〉 ∈ SI−

– I is an s-model of an ABox A, denoted by I |=s A, if it s-satisfies all
assertions of A

– I is an s-model of a knowledge base 〈R, T ,A〉 if it is an s-model of all R, T
and A

– a knowledge base 〈R, T ,A〉 is s-satisfiable if it has an s-model

– I s-satisfies a query ϕ = ϕ1 ∧ . . . ∧ ϕk, denoted by I |=s ϕ, if I |=s ϕi for
all 1 ≤ i ≤ k

– ϕ is an s-logical consequence of a knowledge base 〈R, T ,A〉, denoted by
〈R, T ,A〉 |=s ϕ, if every s-model of 〈R, T ,A〉 s-satisfies ϕ.

4 The Relationship between the Semantics

The following proposition states that if s ∈ S is a semantics such that sC = 2
and sR = 2 then s coincides with the traditional semantics.

Proposition 4.1. Let s ∈ S be a semantics such that sC = 2 and sR = 2,
let 〈R, T ,A〉 be a knowledge base, and ϕ be a query. Then 〈R, T ,A〉 |=s ϕ iff
〈R, T ,A〉 |= ϕ.
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Proof. Consider the “if” direction. Suppose that 〈R, T ,A〉 |= ϕ. We show that
〈R, T ,A〉 |=s ϕ. Let I be an s-model of 〈R, T ,A〉. We show that I |=s ϕ.

Let I ′ be the traditional interpretation specified by ∆I
′

= ∆I , AI
′

= AI+
for A ∈ C, rI

′
= rI+ for r ∈ R, and aI

′
= aI for a ∈ I. It can be proved by

induction (on the structure of C) that, for any concept C, CI
′

= CI+. Clearly,

we also have that RI
′

= RI+ for any role R.
Since I |=s R, it follows that I ′ |= R. By Proposition 3.3, for any concept

C, CI− = ∆I \ CI+. Hence, for any terminological axiom C v D, I |=s C v D
iff CI+ ⊆ DI+. Since I |=s T , it follows that I ′ |= T . By Proposition 3.3, we
also have that RI− = (∆I ×∆I) \ RI+ for any role R. Hence, for any individual
assertion ψ, I |=s ψ iff I ′ |= ψ. Since I |=s A, it follows that I ′ |= A.

Therefore, I ′ is a model of 〈R, T ,A〉. Since 〈R, T ,A〉 |= ϕ, it follows that
I ′ |= ϕ, which implies that I |=s ϕ. This completes the proof of the “if” direction.
The “only if” direction can be proved analogously. C

Proposition 4.2. Let s, s′ ∈ S be semantics such that sR = s′R = 2, sC = s′C,
sGCI = s′GCI, but s∀∃ 6= s′∀∃. Then s and s′ are equivalent in the sense that,
for every knowledge base 〈R, T ,A〉 and every query ϕ, 〈R, T ,A〉 |=s ϕ iff
〈R, T ,A〉 |=s′ ϕ. C

The proof of this lemma is straightforward.
Let s, s′ ∈ S. We say that s is weaker than or equal to s′ (and s′ is stronger

than or equal to s) if for any knowledge base KB , Conss(KB) ⊆ Conss′(KB).
(Recall that Conss(KB) stands for the set of s-logical consequences of KB .)

Define sGCI v s′GCI according to w v m v s, where v is transitive. Define that
s v s′ if: 5

s′C ≤ sC ≤ 3, s′R ≤ sR ≤ 3, s∀∃ = s′∀∃, and sGCI v s′GCI; or (4)

s′C ≤ sC, s
′
R ≤ sR, s∀∃ = s′∀∃, and m v sGCI v s′GCI; or (5)

s′C ≤ sC ≤ 3, sR = s′R = 2, and sGCI v s′GCI; or (6)

s′C ≤ sC, sR = s′R = 2, and m v sGCI v s′GCI; or (7)

sC = s′C = 2 and sR = s′R = 2. (8)

Theorem 4.3. Let s, s′ ∈ S be semantics such that s v s′. Then s is
weaker than or equal to s′ (i.e., for any knowledge base KB, Conss(KB) ⊆
Conss′(KB)).

Proof. The assertion for the case (8) follows from Proposition 4.1. By using
Proposition 4.2, the cases (6) and (7) are reduced to the cases (4) and (5),
respectively. Consider the cases (4) and (5), and assume that one of them holds.
Let s′′ = 〈s′C, s′R, s∀∃, sGCI〉. We show that s is weaker than or equal to s′′, and s′′

is weaker than or equal to s′, which together imply the assertion of the theorem.
Observe that every s′′-interpretation is an s-interpretation. Furthermore,

since s′′∀∃ = s∀∃ and s′′GCI = sGCI, if I is an s′′-interpretation then, for every

5 This corrects the corresponding definition given in [21].
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knowledge base KB and every query ϕ, I |=s′′ KB iff I |=s KB , and I |=s′′ ϕ
iff I |=s ϕ. Hence, for every knowledge base KB and every query ϕ, KB |=s ϕ
implies KB |=s′′ ϕ. That is, s is weaker than or equal to s′′.

Semantics s′′ may differ from s′ only by the pair s′′GCI and s′GCI, with s′′GCI v
s′GCI. Every s′′-interpretation is an s′-interpretation, and vice versa. Let I be an
arbitrary s′′-interpretation. Observe that, for any terminological axiom C v D,
if I |=s′ C v D then I |=s′′ C v D (for the case (4), note that CI+ ⊆ DI+ implies
CI− ∪ CI+ ⊆ CI− ∪ DI+ and hence CI− ∪ DI+ = ∆I). Hence, for every knowledge
base KB , if I |=s′ KB then I |=s′′ KB . Clearly, for every query ϕ, I |=s′ ϕ iff
I |=s′′ ϕ. Hence, for every knowledge base KB and every query ϕ, KB |=s′′ ϕ
implies KB |=s′ ϕ. That is, s′′ is weaker than or equal to s′. C

We give below a revised version of a corollary of [21] stating which semantics
from S give only correct answers. It follows immediately from the above theorem
and Proposition 4.1.

Corollary 4.4. Let s ∈ S be a semantics such that sGCI 6= w or sC ≤ 3 and sR ≤
3, and let 〈R, T ,A〉 be a knowledge base and ϕ be a query. Then 〈R, T ,A〉 |=s ϕ
implies 〈R, T ,A〉 |= ϕ. C

5 Comparison with Existing Paraconsistent Semantics

Here, we restrict only to many-valued semantics and quasi-classical semantics for
DLs. Other paraconsistent semantics have been discussed in the introduction.

In [14, 15] Ma et al. use non-traditional inclusion axioms C 7→ D, C @ D
and C → D, which correspond to our inclusion C v D w.r.t. semantics s with
sGCI = w, m, s, respectively. The work [15] concerns paraconsistent reasoning in
the DL SHIQ, which is later extended in [14] for paraconsistent reasoning in
the DL SROIQ. Defining a four-valued semantics for SROIQ, Ma and Hitzler
[14] did not consider all features of SROIQ. For example, they did not consider
concepts of the form ∃R.Self and individual assertions of the form ¬S(a, b).
Ignoring such detailed differences, their four-valued semantics for SROIQ can
be characterized using the traditional language (with v instead of 7→, @, →),
when v is interpreted as:

7→ : their semantics is equivalent to our semantics 〈4, 2,+, w〉
@ : their semantics is equivalent to our semantics 〈4, 2,+,m〉
→ : their semantics is equivalent to our semantics 〈4, 2,+, s〉.

By Theorem 4.3, their semantics is weaker than our semantics 〈3, 2,+, sGCI〉,
where sGCI ∈ {w,m, s} when v is interpreted as 7→, @, →, respectively.

Recall also that in Section 3.2 we have shown that approaches based on Bel-
nap’s four-valued logic, like [14, 15], sometimes lead to counter-intuitive results.

In [31], Zhang et al. define weak and strong quasi-classical semantics for
SHIQ, which will be denoted here by |=w

4 and |=s
4. These semantics are four-

valued semantics and are based on the quasi-classical semantics of Besnard and
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Hunter [6, 12]. For the conjunctive query answering in SHIQ, the weak quasi-
classical semantics is weaker than our semantics 〈3, 2,+, w〉. Comparing our
semantics 〈3, 2,+, s〉 with |=s

4, neither of them is stronger than the other. The
relationship between these semantics (for SHIQ) can be characterized as follows.
First, axioms of the form C v C is not valid w.r.t. the semantics |=s

4, which is
quite unusual. Second, extending |=s

4 with axioms A v A for all atomic concepts
A results in a three-valued semantics that differs from our three-valued semantics
in that it assumes t∧ i = t and f∨ i = f, while our three-valued semantics assume
t ∧ i = i and f ∨ i = i. Moreover, the same problem as indicated in Section 3.2,
applies to both weak and strong semantics proposed in [31].

Recall that the paradoxical semantics for ALC by Zhang et al. [30] is based
on a three-valued semantics and was developed independently from our three-
valued semantics for SHIQ [22]. It is equivalent to our semantics 〈3, 2,+, w〉
when restricted to ALC (and the case without negative individual assertions of
the form ¬S(a, b)).

6 A Translation into the Traditional Semantics

In this section we give a linear translation πs, for s ∈ S with sC ∈ {3, 4},
sR ∈ {2, 4} and s∀∃ = +, such that, for every knowledge base KB and every
query ϕ, KB |=s ϕ iff πs(KB) |= πs(ϕ). In this section, if not otherwise stated,
we assume that s satisfies the mentioned conditions.

For A ∈ C \ N, let A+ and A− be new concept names. For r ∈ R \ {U},
let r+ and r− be new role names. In accordance to the semantics s, let C′ =
{A+, A− | A ∈ C \N} ∪N, and

R′ =

{
R for sR = 2
{r+, r− | r ∈ R \ {U}} ∪ {U} for sR = 4.

We also define two auxiliary translations πs+ and πs−. In the following, if
not otherwise stated, r, R, S, A, C, D, a, b, R, T , A are arbitrary elements of
their appropriate types (according to the used convention) in the language using
C and R.

If sR = 2 then:

– πs+(R)
def
= R and πs(R)

def
= R

– πs(R(a, b))
def
= R(a, b) and πs(¬S(a, b))

def
= ¬S(a, b)

– πs+(∃R.Self)
def
= ∃R.Self and πs−(∃R.Self)

def
= ¬∃R.Self.

If sR = 4 then:

– πs+(U)
def
= U

– πs+(r)
def
= r+ and πs−(r)

def
= r−, where r 6= U

– πs+(r−)
def
= (r+)− and πs−(r−)

def
= (r−)−, where r 6= U
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πs+(>)
def
= > πs−(>)

def
= ⊥

πs+(⊥)
def
= ⊥ πs−(⊥)

def
= >

πs+(¬C)
def
= πs−(C) πs−(¬C)

def
= πs+(C)

πs+(C uD)
def
= πs+(C) u πs+(D) πs−(C uD)

def
= πs−(C) t πs−(D)

πs+(C tD)
def
= πs+(C) t πs+(D) πs−(C tD)

def
= πs−(C) u πs−(D)

πs+(∀R.C)
def
= ∀πs+(R).πs+(C) πs−(∀R.C)

def
= ∃πs+(R).πs−(C)

πs+(∃R.C)
def
= ∃πs+(R).πs+(C) πs−(∃R.C)

def
= ∀πs+(R).πs−(C)

πs+(≥ nR.C)
def
= ≥ nπs+(R).πs+(C)

πs−(≥ (n+ 1)R.C)
def
= ≤ nπs+(R).¬πs−(C)

πs−(≥ 0R.C)
def
= ⊥

πs+(≤ nR.C)
def
= ≤ nπs+(R).¬πs−(C)

πs−(≤ nR.C)
def
= ≥ (n+ 1)πs+(R).πs+(C)

Fig. 1. A partial specification of πs+ and πs−.

– for every role axiom ϕ, πs(ϕ)
def
= ϕ′, where ϕ′ is the role axiom obtained

from ϕ by replacing each role R by πs+(R)

– πs(R)
def
= {πs(ϕ) | ϕ ∈ R}

– πs(R(a, b))
def
= πs+(R)(a, b) and πs(¬S(a, b))

def
= πs−(S)(a, b), for R,S 6= U

– πs+(∃R.Self)
def
= ∃πs+(R).Self and πs−(∃R.Self)

def
= ∃πs−(R).Self.

If A is a nominal then πs+(A)
def
= A and πs−(A)

def
= ¬A. If A is a concept

name but not a nominal then πs+(A)
def
= A+ and πs−(A)

def
= A−.

The translations πs+(C) and πs−(C) for the case C is not of the form A or
∃R.Self are defined as in Figure 1.

Define πs(C v D) and πs(T ) as follows:

– case sGCI = w : πs(C v D)
def
= {> v πs−(C) t πs+(D)}

– case sGCI = m : πs(C v D)
def
= {πs+(C) v πs+(D)}

– case sGCI = s : πs(C v D)
def
= {πs+(C) v πs+(D), πs−(D) v πs−(C)}

– case sC = 3 : πs(T )
def
=
⋃

ϕ∈T πs(ϕ) ∪ {> v A+ tA− | A ∈ C \N}

– case sC = 4 : πs(T )
def
=
⋃

ϕ∈T πs(ϕ).

Define that:

– πs(a 6= b)
def
= a 6= b and πs(C(a))

def
= πs+(C)(a)

– πs(A)
def
= {πs(ϕ) | ϕ ∈ A}
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– πs(〈R, T ,A〉)
def
= 〈πs(R), πs(T ), πs(A)〉

– for a query ϕ = ϕ1 ∧ . . . ∧ ϕk, define πs(ϕ)
def
= πs(ϕ1) ∧ . . . ∧ πs(ϕk).

Note that, if 〈R, T ,A〉 is a knowledge base and ϕ is a query in SROIQ
using C and R, then πs(〈R, T ,A〉) is a knowledge base and πs(ϕ) is a query in
SROIQ using C′ and R′, with the property that:

– the length of πs(ϕ) is linear in the length of ϕ
– the size of πs(〈R, T ,A〉) is linear in the size of 〈R, T ,A〉 in the case sC = 4,

and linear in the sizes of 〈R, T ,A〉 and C \N in the case sC = 3.6

To have a translation for the case sR = 3 one would have to allow role axioms
of the form U v r ∪ r′ (for expressing U v s+ ∪ s−). To have a translation for
the case s∀∃ = ± one would have to allow concepts of the form ∀(¬r).C (for
expressing ∀(¬s−).D+). These features fall out of SROIQ and that is why we
do not present translation for the case sR = 3 or s∀∃ = ±.

Theorem 6.1. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4} and
s∀∃ = +. Let 〈R, T ,A〉 be a knowledge base and ϕ be a query in the language
using C and R. Then 〈R, T ,A〉 |=s ϕ iff πs(〈R, T ,A〉) |= πs(ϕ).

Proof. Consider the left to right implication and suppose that 〈R, T ,A〉 |=s ϕ.
Let I ′ be a traditional model of πs(〈R, T ,A〉) in the language using C′ and R′.
We show that I ′ |= πs(ϕ). Let I be the s-interpretation in the language using
C and R specified as follows:

– ∆I = ∆I
′

– for A ∈ C \N, AI+ = (A+)I
′

and AI− = (A−)I
′

– for A ∈ N, AI+ = AI
′

and AI− = ∆I \AI+
– if sR = 2 then, for r ∈ R, rI+ = rI

′
and rI− = (∆I ×∆I) \ rI+

– if sR = 4 then

• for r ∈ R \ {U}, rI+ = (r+)I
′

and rI− = (r−)I
′

• UI+ = ∆I ×∆I and UI− = ∅
– for a ∈ I, aI = aI

′
.

Observe that I is indeed an s-interpretation. It can be proved by induction on
the structure of C and R that, for any concept C and role R :

– CI = 〈(πs+(C))I
′
, (πs−(C))I

′〉
– if sR = 2 then RI = 〈RI′, (∆I ×∆I) \RI′〉
– if sR = 4 and R 6= U then RI = 〈(πs+(R))I

′
, (πs−(R))I

′〉.

Using this and the assumption that I ′ |= πs(〈R, T ,A〉), we derive that I |=s

〈R, T ,A〉. Hence I |=s ϕ, and it follows that I ′ |= πs(ϕ).
The right to left implication can be proved analogously. C

6 where the notions of length and size are defined as usual
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To check whether πs(〈R, T ,A〉) |= πs(ϕ) one can use, e.g., the tableau
method given in [10]. We have the following corollary of Theorem 6.1 by taking
ϕ = ⊥.

Corollary 6.2. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4}
and s∀∃ = +, and let 〈R, T ,A〉 be a knowledge base in the language using C
and R. Then 〈R, T ,A〉 is s-satisfiable iff πs(〈R, T ,A〉) is satisfiable (w.r.t. the
traditional semantics). C

Example 6.3. Consider the knowledge base KB = 〈R, T ,A〉, where

R = ∅

T = {Bird v Fly,
Penguin v Bird,
Penguin v ¬Fly}

A = {Bird(a), P enguin(tweety)}.

Let s be any semantics from S with sC = 3 and sGCI = m.
We have that πs(KB) = KB′ = 〈∅, T ′,A′〉, where

T ′ = {Bird+ v Fly+,
P enguin+ v Bird+,
P enguin+ v Fly−}

A′ = {Bird+(a), P enguin+(tweety)}.

We also have that

πs(Bird(tweety)) = Bird+(tweety)

πs(Fly(tweety)) = Fly+(tweety)

πs(¬Fly(tweety)) = Fly−(tweety)

πs(Fly(a)) = Fly+(a)

πs(¬Fly(a)) = Fly−(a).

Observe that πs(Bird(tweety)), πs(Fly(tweety)), πs(¬Fly(tweety)) and
πs(Fly(a)) are logical consequences of KB′ using the the traditional two-valued
semantics, but πs(¬Fly(a)) is not. This implies that Bird(tweety), Fly(tweety),
¬Fly(tweety) and Fly(a) are s-logical consequences of KB, but ¬Fly(a) is not.

C

7 Conclusions

SROIQ is a powerful DL used as the logical foundation of OWL 2. In this
work, we introduced and studied a number of different paraconsistent semantics
for SROIQ in a uniform way. We gave a translation of the problem of con-
junctive query answering w.r.t. some of the considered paraconsistent semantics
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into a version that uses the traditional semantics. This allows one to directly use
existing tools and reasoners of SROIQ for paraconsistent reasoning.

Note that answering queries that contain negative individual assertions of
the form ¬S(a, b) using a paraconsistent semantics is first studied in this work.
Also note that only a four-valued paraconsistent semantics has previously been
introduced for SROIQ [14] (without considering some important features of
SROIQ and having conceptual problems, as shown in Section 3.2). If s, s′ ∈ S
are semantics such that s v s′ and s′ is weaker than the traditional semantics
then, by Theorem 4.3, for the conjunctive query answering problem, KB |=s′ ϕ
approximates KB |= ϕ better than KB |=s ϕ does. Our postulate is that, if
s v s′ and KB is s′-satisfiable, then it is better to use s′ than s. In particular,
one should use a four-valued semantics only when the considered knowledge
base is s′-unsatisfiable in semantics s′ with s′C = 3. In such cases the four-
valued semantics based on truth ordering proposed in [1, 18, 29] appears to be a
better choice than the four valued semantics based on Belnap’s logic [5, 4]. Its
adaptation to paraconsistent reasoning in the Semantic Web is, however, left for
future work.

The approach of this work and [19, 28, 15, 14, 31, 22] does not guarantee that
all knowledge bases are satisfiable in the considered paraconsistent logic. The
reason is that axioms like > v ⊥ are not valid in any s-interpretation, where
s ∈ S. Due to the specific meanings of the universal role U and nominals,
we do not propose three- and four-semantics for them.7 This may also cause
a knowledge base KB s-unsatisfiable, e.g., when KB contains both individual
assertions A(a) and ¬A(a) with A ∈ N. In [22], we provided a quite general
syntactic condition of safeness guaranteeing satisfiability of a knowledge base in
SHIQ w.r.t. three-valued semantics.

To overcome the above mentioned problems one may want to define and
use constructive DLs in a similar way as Odintsov and Wansing did for their
constructive version of the basic DLALC. Extending such an approach to dealing
with number restrictions ≥ nS.C and ≤ nS.C is not obvious. We leave this for
future work.
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17. J. Ma luszyński and A. Sza las. Living with inconsistency and taming nonmono-
tonicity. In Datalog 2010, volume 6702 of LNCS, pages 334–398. Springer, 2011.
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