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Abstract. We develop a discrete version of paracontrolled distributions as a tool for deriving scaling limits of lattice systems, and

we provide a formulation of paracontrolled distributions in weighted Besov spaces. Moreover, we develop a systematic martingale

approach to control the moments of polynomials of i.i.d. random variables and to derive their scaling limits. As an application,

we prove a weak universality result for the parabolic Anderson model: We study a nonlinear population model in a small random

potential and show that under weak assumptions it scales to the linear parabolic Anderson model.

Résumé. Nous développons une version discrète de la théorie des distributions paracontrôlées comme outil pour déduire les

limites d’échelles des modèles discrets, et nous proposons une formulation des distributions paracontrôlées dans les espaces de

Besov avec poids. De plus, nous obtenons une approche martingale pour contrôler systématiquement les moments des polynômes

des variables aléatoires i.i.d., et pour déduire leurs limites d’échelles. Comme application, un résultat d’universalité faible pour le

modèle parabolique d’Anderson est obtenu : nous étudions un modèle non linéaire d’une population dans un potentiel aléatoire, et

démontrons, sous des hypothèses faibles, que le modèle converge vers le modèle parabolique d’Anderson linéaire.
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1. Introduction

Paracontrolled distributions were developed in [17] to solve singular SPDEs, stochastic partial differential equations

that are ill-posed because of the interplay of very irregular noise and nonlinearities. A typical example is the two-

dimensional continuous parabolic Anderson model,

∂tu=�u+ uξ − u∞,

where u : R+×R2 →R and ξ is a space white noise, the centered Gaussian distribution whose covariance is formally

given by E[ξ(x)ξ(y)] = δ(x − y). The irregularity of the white noise prevents the solution from being a smooth

function, and therefore the product between u and the distribution ξ is not well defined. To make sense of it we need

to eliminate some resonances between u and ξ by performing an infinite renormalization that replaces uξ by uξ−u∞.

The motivation for studying singular SPDEs comes from mathematical physics, because they arise in the large scale

description of natural microscopic dynamics. For example, if for the parabolic Anderson model we replace the white
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noise ξ by its periodization over a given box [−L,L]2, then it was recently shown in [10] that the solution u is the

limit of uε(t, x)= e−cε tvε(t/ε2, x/ε), where vε : R+ × {−L/ε, . . . ,L/ε}2 →R solves the lattice equation

∂tv
ε =�εvε + εvεη,

where �ε is the periodic discrete Laplacian and (η(x))x∈{−L/ε,...,L/ε}2 is an i.i.d. family of centered random variables

with unit variance and sufficiently many moments.

Results of this type can be shown by relying more or less directly on paracontrolled distributions as they were de-

veloped in [17] for functions of a continuous space parameter. But that approach comes at a cost because it requires us

to control a certain random operator, which is highly technical and a difficulty that is not inherent to the studied prob-

lem. Moreover, it just applies to lattice models with polynomial nonlinearities. See the discussion below for details.

Here we formulate a version of paracontrolled distributions that applies directly to functions on Bravais lattices and

therefore provides a much simpler way to derive scaling limits and never requires us to bound random operators. Apart

from simplifying the arguments, our new approach also allows us to study systems on infinite lattices that converge

to equations on Rd , while the formulation of the Fourier extension procedure we sketch below seems much more

subtle in the case of an unbounded lattice. Moreover, we can now deal with non-polynomial nonlinearities which is

crucial for our main application, a weak universality result for the parabolic Anderson model. Besides extending para-

controlled distributions to Bravais lattices we also develop paracontrolled distributions in weighted function spaces,

which allows us to deal with paracontrolled equations on unbounded spaces that involve a spatially homogeneous

noise. And finally we develop a general machinery for the use of discrete Wick contractions in the renormalization

of discrete, singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting, and

we build on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as

multiple Wiener–Itô integrals.

Our main application is a weak universality result for the two-dimensional parabolic Anderson model. We consider

a nonlinear population model vε : R+ ×Z2 →R,

∂tv
ε(t, x)=�(d)vε(t, x)+ F

(
vε(t, x)

)
ηε(x), (1)

where �(d) is the discrete Laplacian, F ∈ C2 has a bounded second derivative and satisfies F(0)= 0, and (ηε(x))x∈Z2

is an i.i.d. family of random variables with Var(ηε(0)) = ε2 and E[ηε(0)] = −F ′(0)ε2cε for a suitable sequence

of diverging constants cε ∼ | log ε|. The variable vε(t, x) describes the population density at time t in the site x.

The classical example would be F(u) = u, which corresponds to the discrete parabolic Anderson model in a small

potential ηε . In that case vε describes the evolution of a population where every individual performs an independent

random walk and finds at every site x either favorable conditions if ηε(x) > 0 that allow the individual to reproduce

at rate ηε(x), or non-favorable conditions if ηε(x) < 0 that kill the individual at rate −ηε(x). We can include some

interaction between the individuals by choosing a nonlinear function F . For example, F(u) = u(C − u) models a

saturation effect which limits the overall population size in one site to C because of limited resources. In Section 5

we will prove the following result:

Theorem (see Theorem 5.13). Assume that F and (ηε(x)) satisfy the conditions described above and also that
the pth moment of ηε(0) is uniformly bounded in ε for some p > 14. Then there exists a unique solution vε to
(1) with initial condition vε(0, x) = 1·=0, up to a possibly finite explosion time T ε with T ε →∞ for ε → 0, and
uε(t, x) = ε−2vε(ε−2t, ε−1x) converges in law to the unique solution u : R+ × R2 → R of the linear continuous
parabolic Anderson model

∂tu=�u+ F ′(0)uξ − F ′(0)2u∞, u(0)= δ,

where δ denotes the Dirac delta.

Remark 1.1. It may appear more natural to assume that ηε(0) is centered. However, we need the small shift of the

expectation away from zero in order to create the renormalization −F ′(0)2u∞ in the continuous equation. Making

the mean of the variables ηε(x) slightly negative (assume F |[0,∞) ≥ 0 so that F ′(0) ≥ 0) gives us a slightly higher

chance for a site to be non-favorable than favorable. Without this, the population size would explode in the scale
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in which we look at it. A similar effect can also be observed in the Kac–Ising/Kac–Blume–Capel model, where the

renormalization appears as a shift of the critical temperature away from its mean field value [37,42]. Note that in the

linear case F(u) = u we can always replace ηε by ηε + c if we consider ectvε(t) instead. So in that case it is not

necessary to assume anything about the expectation of ηε , we only have to adapt our reference frame to its mean.

Remark 1.2. The condition p > 14 might seem rather arbitrary. Roughly speaking this requirement is needed to

apply a form of Kolmogorov’s continuity criterion, see Remark 5.6 for details.

Structure of the paper

Below we provide further references and explain in more details where to place our results in the current research

in singular SPDEs and we fix some conventions and notations. In Sections 2–4 we develop the theory of paracon-

trolled distributions on unbounded Bravais lattices, and in particular we derive Schauder estimates for quite general

random walk semigroups. Section 5 contains the weak universality result for the parabolic Anderson model, and here

we present our general methodology for dealing with multilinear functionals of independent random variables. The

Appendix contains several proofs that we outsourced. Finally, there is a list of important symbols at the end of the

paper.

Related works

As mentioned above, we can also use paracontrolled distributions for functions of a continuous space parameter to

deal with lattice systems. The trick, which goes back at least to [37] and was inspired by [26], is to consider for

a lattice function uε on say {kε : −L/ε ≤ k ≤ L/ε}2 the unique periodic function Ext(uε) on (R/(2LZ))2 whose

Fourier transform is supported in [−1/ε,1/ε]2 and that agrees with uε in all the lattice points. If the equation for

uε involves only polynomial nonlinearities, we can write down a closed equation for Ext(uε) which looks similar

to the equation for uε but involves a certain “Fourier shuffle” operator that is not continuous on the function spaces

in which we would like to control Ext(uε). But by introducing a suitable random operator that has to be controlled

with stochastic arguments one can proceed to study the limiting behavior of Ext(uε) and thus of uε . This argument

has been applied to show the convergence of lattice systems to the KPZ equation [21], the �4
3 equation [47], and to

the parabolic Anderson model [10], and the most technical part of the proof was always the analysis of the random

operator. The same argument was also applied to prove the convergence of the Kac–Ising/Kac–Blume–Capel model

[37,42] to the �4
2/�6

2 equation. This case can be handled without paracontrolled distributions, but also here some

work is necessary to control the Fourier shuffle operator. This difficulty is of a technical nature and not inherent to the

studied problems, and the line of argumentation we present here avoids that problem by analysing directly the lattice

equation rather than trying to interpret it as a continuous equation.

Other intrinsic approaches to singular SPDEs on lattices have been developed in the context of regularity structures

by Hairer, Matetski and Erhard [13,27] and in the context of the semigroup approach to paracontrolled distributions by

Bailleul and Bernicot [2], and we expect that both of these works could be combined with our martingale arguments

of Section 5 to give an alternative proof of our weak universality result.

We call the convergence of the nonlinear population model to the linear parabolic Anderson model a “weak uni-

versality” result in analogy to the weak universality conjecture for the KPZ equation. The (strong) KPZ universality

conjecture states that a wide class of (1+1)-dimensional interface growth models scale to the same universal limit, the

so called KPZ fixed point [36], while the weak KPZ universality conjecture says that if we change some “asymmetry

parameter” in the growth model to vanish at the right rate as we scale out, then the limit of this family of models is the

KPZ equation. Similarly, here the influence of the random potential on the population model must vanish at the right

rate as we pass to the limit, so the parabolic Anderson model arises as scaling limit of a family of models. Similar

weak universality results have recently been shown for other singular SPDEs such as the KPZ equation [16,20,22,28]

(this list is far from complete), the �2n
d equations [30,37,42], or the (stochastic) nonlinear wave equation [18,39].

A key task in singular stochastic PDEs is to renormalize and to construct certain a priori ill-defined products

between explicit stochastic processes. This problem already arises in rough paths [35] but there it is typically not

necessary to perform any renormalizations and general construction and approximation results for Gaussian rough

paths were developed in [15]. For singular SPDEs the constructions become much more involved and a general
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construction of regularity structures for equations driven by Gaussian noise was found only recently and is highly

nontrivial [5,8]. For Gaussian noise it is natural to regroup polynomials of the noise in terms of Wick products,

which goes back at least to [11] and is essentially always used in singular SPDEs, see [7,21,23,24] and many more.

Moreover, in the Gaussian case all moments of polynomials of the noise are equivalent, and therefore it suffices to

control variances. In the non-Gaussian case we can still regroup in terms of Wick polynomials [9,29,37,43], but a

priori the moments are no longer comparable and new methods are necessary. In [37] the authors used martingale

inequalities to bound higher order moments in terms of variances.

In our case it may look as if there are no martingales around because the noise is constant in time. But if we

enumerate the lattice points and sum up our i.i.d. variables along this enumeration, then we generate a martingale.

This observation was used in [10] to show that for certain polynomial functionals of the noise (“discrete multiple

stochastic integrals”) the moments are still comparable, but the approach was somewhat ad-hoc and only applied

directly to the product of two variables in “the first chaos”.

Here we develop a general machinery for the use of discrete Wick contractions in the renormalization of discrete,

singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting. Moreover, we build

on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as multiple

Wiener–Itô integrals. Although these techniques are only applied to the discrete 2d parabolic Anderson model, the

approach extends in principle to any discrete formulation of popular singular SPDEs such as the KPZ equation or the

�4
d models.

1.1. Conventions and notation

We use the common notation �, � in estimates to denote ≤, ≥ up to a positive constant. The symbol ≈ means that

both � and � hold true. For discrete indices we mean by i � j that there is a N ≥ 0 (independent of i, j ) such that

i ≤ j +N , i.e. that 2i � 2j , and similarly for j � i; the notation i ∼ j is shorthand for i � j and j � i.

We denote partial derivatives by ∂α for α ∈Nd := {0,1,2, . . .}d and for α = (1i=j )j we write ∂ i = ∂α . Our Fourier

transform follows the convention that for f ∈L1(Rd)

FRdf (y) :=

∫

Rd

f (x)e−2πıx•y dx, F
−1

Rd f (x) :=

∫

Rd

f (y)e2πıx•y dy,

where x • y denotes the usual inner product on Rd . The most relevant notations are listed in a glossary at the end of

this article.

2. Weighted Besov spaces on Bravais lattices

2.1. Fourier transform on Bravais lattices

A Bravais-lattice in d dimensions consists of the integer combinations of d linearly independent vectors a1, . . . , ad ∈

Rd , that is

G := Za1 + · · · +Zad . (2)

Given a Bravais lattice we define the basis â1, . . . , âd of the reciprocal lattice by the requirement

âi • aj = δij , (3)

and we set R := Zâ1 + · · · +Zâd . However, we will mostly work with the (centered) parallelotope which is spanned

by the basis vectors â1, . . . , âd :

Ĝ := [0,1)̂a1 + · · · + [0,1)̂ad −
1

2
(̂a1 + · · · + âd)= [−1/2,1/2)̂a1 + · · · + [−1/2,1/2)̂ad .

We call Ĝ the bandwidth or Fourier-cell of G to indicate that the Fourier transform of a map on G lives on Ĝ, as we

will see below. We also identify Ĝ ≃Rd/R and turn Ĝ into an additive group which is invariant under translations by

elements in R.
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Fig. 1. Depiction of some Bravais lattices G with their bandwidths Ĝ: a square lattice, an oblique lattice and the so called hexagonal lattice. The

length of the reciprocal vectors âi is rather arbitrary since it actually depends on the units in which we measure ai .

Example 2.1. If we choose the canonical basis vectors a1 = e1, . . . , ad = ed , we have simply

G = Zd , R = Zd , Ĝ = Td = [−1/2,1/2)d .

Compare also the left lattice in Figure 1.

In Figure 1 we sketched some Bravais lattices G together with their Fourier cells Ĝ. Note that the dashed lines

between the points of the lattice are at this point a purely artistic supplement. However, they will become meaningful

later on: If we imagine a particle performing a random walk on the lattice G, then the dashed lines could be interpreted

as the jumps it is allowed to undertake. From this point of view the lines will be drawn by the diffusion operators we

introduce in Section 3.

Definition 2.2. Given a Bravais lattice G as defined in (2) we write

Gε := εG

for the sequence of Bravais lattice we obtain by dyadic rescaling with ε = 2−N , N ≥ 0. Whenever we say a statement

(or an estimate) holds for Gε we mean that it holds (uniformly) for all ε = 2−N , N ≥ 0.

Remark 2.3. The restriction to dyadic lattices fits well with the use of Littlewood–Paley theory which is traditionally

built from dyadic decompositions. However, it turns out that we do not lose much generality by this. Indeed, all the

estimates below will hold uniformly as soon as we know that the scale of our lattice is contained in some interval

(c1, c2)⊂⊂ (0,∞). Therefore it is sufficient to group the members of any positive null-sequence (εn)n≥0 in dyadic

intervals [2−(N+1),2−N ) to deduce the general statement.

Given ϕ ∈ ℓ1(G) we define its Fourier transform as

FGϕ(x) := |G|
∑

k∈G

ϕ(k)e−2πık•x, x ∈ Ĝ, (4)

where we introduced a “normalization constant” |G| := |det(a1, . . . , ad)| that ensures that we obtain the usual Fourier

transform on Rd as |G| tends to 0. We will also write |Ĝ| for the Lebesgue measure of the Fourier cell Ĝ.
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If we consider FGϕ as a map on Rd , then it is periodic under translations in R. By the dominated convergence

theorem FGϕ is continuous, so since Ĝ is compact it is in L1(Ĝ) := L1(Ĝ,dx), where dx denotes integration with

respect to the Lebesgue measure. For any ψ ∈ L1(Ĝ) we define its inverse Fourier transform as

F
−1
G

ψ(k) :=

∫

Ĝ

ψ(x)e2πık•x dx, k ∈ G. (5)

Note that |G| = 1/|Ĝ| and therefore we get at least for ϕ with finite support F−1
G

FGϕ = ϕ. The Schwartz functions on

G are

S(G) :=
{
ϕ : G→C : sup

k∈G

(
1+ |k|

)m∣∣ϕ(k)
∣∣<∞ for all m ∈N

}
,

and we have FGϕ ∈ C∞(Ĝ) (with periodic boundary conditions) for all ϕ ∈ S(G), because for any multi-index α ∈Nd

the dominated convergence theorem gives

∂αFGϕ(x)= |G|
∑

k∈G

ϕ(k)(−2πık)αe−2πık•x .

By the same argument we have F
−1
G

ψ ∈ S(G) for all ψ ∈ C∞(Ĝ), and as in the classical case G = Zd one can show

that FG is an isomorphism from S(G) to C∞(Ĝ) with inverse F
−1
G

. Many relations known from the Zd -case carry

over readily to Bravais lattices, e.g. Parseval’s identity

∑

k∈G

|G| ·
∣∣ϕ(k)

∣∣2 =
∫

Ĝ

∣∣ϕ̂(x)
∣∣2 dx (6)

(to see this check for example with the Stone–Weierstrass theorem that (|G|1/2e2πık·)k∈G forms an orthonormal basis

of L2(Ĝ,dx)) and the relation between convolution and multiplication

FG(ϕ1 ∗G ϕ2)(x) :=FG

(∑

k∈G

|G|ϕ1(k)ϕ2(· − k)

)
(x)=FGϕ1(x) ·FGϕ2(x), (7)

F
−1
G

(ψ2 ∗Ĝ ψ2)(k) :=F
−1
G

(∫

Ĝ

ψ1(x)ψ2

(
[· − x]Ĝ

)
dx

)
(k)=F

−1
G

ψ1(k) ·F
−1
G

ψ2(k), (8)

where [z]Ĝ is for z ∈Rd the unique element in Ĝ such that z− [z]Ĝ ∈R.

Since S(G) consists of functions decaying faster than any polynomial, the Schwartz distributions on G are the

functions that grow at most polynomially,

S ′(G) :=
{
f : G→C : sup

k∈G

(
1+ |k|

)−m∣∣f (k)
∣∣<∞ for some m ∈N

}
,

and f (ϕ) := |G|
∑

k∈G f (k)ϕ(k) is well defined for ϕ ∈ S(G). We extend the Fourier transform to S ′(G) by setting

(FGf )(ψ) := f
(
F
−1
G

ψ
)
= |G|

∑

k∈G

f (k)F−1
G

ψ(k), ψ ∈ C∞(Ĝ),

where (. . .) denotes the complex conjugate. This should be read as (FGf )(ψ)= f (FGψ), which however does not

make any sense because for ψ ∈ C∞(Ĝ) we did not define the Fourier transform FGψ but only F
−1
G

ψ . The Fourier

transform (FGf )(ψ) agrees with
∫
Ĝ
FGf (x) ·ψ(x)dx in case f ∈ S(G). It is possible to show that f̂ ∈ S ′(Ĝ), where

S ′(Ĝ) :=
{
u : C∞(Ĝ)→C : u is linear and ∃C > 0,m ∈N s.t.

∣∣u(ψ)
∣∣≤ C‖ψ‖Cm

b (Ĝ)

}
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for ‖ψ‖Cm
b (Ĝ) :=

∑
|α|≤m ‖∂

αψ‖L∞(Ĝ), and that FG is an isomorphism from S ′(G) to S ′(Ĝ) with inverse

(
F
−1
G

u
)
(ϕ) := |G|

∑

k∈G

u
(
e2πık•(·)

)
ϕ(k). (9)

As in the classical case G = Z it is easy to see that we can identify every f ∈ S ′(G) with a “Dirac comb” distribution

fdir ∈ S ′(Rd) by setting

fdir = |G|
∑

k∈G

f (k)δ(· − k), (10)

where δ(· − k) ∈ S ′(Rd) denotes a shifted Dirac delta distribution. We can identify any element g ∈ S ′(Ĝ) of the

frequency space with an R-periodic distribution gext ∈ S ′(Rd) by setting

gext(ϕ) := g

(∑

k∈R

ϕ(· − k)

)
, ϕ ∈ S

(
Rd

)
. (11)

If g ∈ S ′(Ĝ) coincides with a function on Ĝ one sees that

gext(x)= g
(
[x]Ĝ

)
, (12)

where [x]Ĝ is, as above, the (unique) element [x]Ĝ ∈ Ĝ such that [x]Ĝ − x ∈ Zâ1+ · · · +Zâd =R. Conversely, every

R-periodic distribution g ∈ S ′(Rd) can be seen as a restricted element gres ∈ S ′(Ĝ), e.g. by considering

gres(ϕ) := (ψ · g)(ϕext)= g(ψ · ϕext), ϕ ∈ C∞(Ĝ), (13)

where ψ ∈ C∞c (Rd) is chosen such that
∑

k∈R ψ(· − k)= 1 and where we used in the second equality the definition

of the product between a smooth function and a distribution. To construct such a ψ it suffices to convolve 1Ĝ with a

smooth, compactly supported mollifier, and it is easy to check that (gext)res = g for all g ∈ S ′(G) and that gres does

not depend on the choice of ψ . This motivates our definition of the extension operator E below in Lemma 2.6.

With these identifications in mind we can interpret the concepts introduced above as a sub-theory of the classical

Fourier analysis of tempered distributions. We will sometimes use the following identity for f ∈ S ′(G)

(FGf )ext =FRd (fdir), (14)

which is easily checked using the definitions above.

Next, we want to introduce Besov spaces on G. Recall that one way of constructing Besov spaces on Rd is by

making use of a dyadic partition of unity.

Definition 2.4. A dyadic partition of unity is a family (ϕj )j≥−1 ⊆ C∞c (Rd) of nonnegative radial functions such that

• suppϕ−1 is contained in a ball around 0, suppϕj is contained in an annulus around 0 for j ≥ 0,

• ϕj = ϕ0(2
−j ·) for j ≥ 0,

•
∑

j≥−1 ϕj (x)= 1 for any x ∈Rd ,

• if |j − j ′|> 1 we have suppϕj ∩ suppϕj ′ =∅.

Using such a dyadic partition as a family of Fourier multipliers leads to the Littlewood–Paley blocks of a distribu-

tion f ∈ S ′(Rd),

Δjf :=F
−1

Rd (ϕj ·FRdf ).

Each of these blocks is a smooth function and it represents a “spectral chunk” of the distribution. By choice of the

(ϕj )j≥−1 we have f =
∑

j≥−1 Δjf in S ′(Rd), and measuring the explosion/decay of the Littlewood–Paley blocks

gives rise to the Besov spaces

Bα
p,q

(
Rd

)
=
{
f ∈ S ′

(
Rd

)
:
∥∥(2jα‖Δjf ‖Lp

)
j≥−1

∥∥
ℓq

<∞
}
. (15)
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In our case all the information about the Fourier transform of f ∈ S ′(G), that is FGf ∈ S ′(Ĝ), is stored in a finite

bandwidth Ĝ. Therefore, it is more natural to decompose the compact set Ĝ, so that we consider only finitely many

blocks. However, there is a small but delicate problem: We should decompose Ĝ in a smooth periodic way, but if j is

such that the support of ϕj touches the boundary of Ĝ, the function ϕj will not necessarily be smooth in a periodic

sense. We therefore redefine the dyadic partition of unity for x ∈ Ĝ as

ϕG
j (x)=

{
ϕj (x), j < jG,

1−
∑

j<jG
ϕj (x), j = jG,

(16)

where j ≤ jG := inf{j : suppϕj ∩ ∂Ĝ �=∅}. Now we set for f ∈ S ′ω(G)

ΔG
j f :=F

−1
G

(
ϕG
j ·FGf

)
,

which is now a function defined on G. As in the continuous case we will also use the notation S
G
j f =

∑
i<j Δ

G
i f .

Of course, for a fixed G it may happen that Δ
G
−1 = Id, but if we rescale the lattice G to εG, the Fourier cell Ĝ

changes to ε−1Ĝ and so for ε→ 0 the following definition becomes meaningful.

Definition 2.5. Given α ∈R and p,q ∈ [1,∞] we define

Bα
p,q(G) :=

{
f ∈ S ′(G) | ‖f ‖Bα

p,q (G) =
∥∥(2jα

∥∥ΔG
j f

∥∥
Lp(G)

)
j=−1,...,jG

∥∥
ℓq

<∞
}
,

where we define the Lp(G) norm by

‖f ‖Lp(G) :=

(
|G|

∑

k∈G

∣∣f (k)
∣∣p
)1/p

=
∥∥|G|1/pf

∥∥
ℓp
. (17)

We write furthermore Cα
p(G) := Bα

p,∞(G).

The reader may have noticed that since we only consider finitely many j =−1, . . . , jG (and since Δj : L
p(G)→

Lp(G) is a bounded operator, uniformly in j , as we will see below), the two spaces Bα
p,q(G) and Lp(G) are in fact

identical with equivalent norms! However, since we are interested in uniform bounds on Gε for ε → 0, we are of

course not allowed to switch between these spaces. Whenever we consider sequences Gε of lattices we construct all

dyadic partitions of unity (ϕ
Gε

j )j=−1,...,jGε from the same partition of unity (ϕj )j≥−1 on Rd .

With the above constructions at hand it is easy to develop a theory of paracontrolled distributions on a Bravais

lattice G which is completely analogous to the one on Rd . For the transition from the rescaled lattice models on Gε

to models on the Euclidean space Rd we need to compare discrete and continuous distributions, so we should extend

the lattice model to a distribution in S ′(Rd). One way of doing so is to simply consider the identification with a Dirac

comb, already mentioned in (10), but this has the disadvantage that the extension can only be controlled in spaces of

quite low regularity because the Dirac delta is quite irregular. We find the following extension convenient:

Lemma 2.6. Let ψ ∈ C∞c (Rd) be a positive function with
∑

k∈Rψ(· − k)≡ 1 and set

Ef :=F
−1

Rd

(
ψ · (FGf )ext

)
, f ∈ S ′(G),

where the periodic extension (·)ext : S
′(Ĝ)→ S ′(Rd) is defined as in (11). Then Ef ∈ C∞(Rd)∩S ′(Rd) and Ef (k)=

f (k) for all k ∈ G.

Proof. We have Ef ∈ S ′(Rd) because (FGf )ext is in S ′(Rd), and therefore also Ef =F
−1

Rd (ψ · (FGf )ext) ∈ S ′(Rd).

Knowing that Ef is in S ′(Rd), it must be in C∞(Rd) as well because it has compact spectral support by definition.
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Moreover, we can write for k ∈ G

Ef (k)= (FGf )ext

(
ψ · e2πık•(·)

)
=FGf

(∑

r∈R

ψ(· − r)e2πık•(·−r)

)
=FGf

(
e2πık•(·)

)
= f (k),

where we used the definition of (·)ext from (11) and that k • r ∈ Z for all k ∈ G and r ∈R. �

It is possible to show that if Eε denotes the extension operator on Gε , then the family (Eε)ε>0 is uniformly bounded

in L(Bα
p,q(G

ε),Bα
p,q(R

d)), and this can be used to obtain uniform regularity bounds for the extensions of a given

family of lattice models.

However, since we are interested in equations with spatially homogeneous noise, we cannot expect the solution to

be in Bα
p,q(G) for any α,p,q and instead we have to consider weighted spaces. In the case of the parabolic Anderson

model it turns out to be convenient to even allow for subexponential growth of the form e|·|
σ

for σ ∈ (0,1), which

means that we have to work on a larger space than S ′(G), where only polynomial growth is allowed. So before we

proceed let us first recall the basics of the so called ultra-distributions on Rd .

2.2. Ultra-distributions on Euclidean space

A drawback of Schwartz’s theory of tempered distributions is the restriction to polynomial growth. As we will see

later, it is convenient to allow our solution to have subexponential growth of the form eλ|·|
σ

for σ ∈ (0,1) and λ > 0. It

is therefore necessary to work in a larger space S ′ω(R
d)⊇ S ′(Rd), the space of so called (tempered) ultra-distributions,

which has less restrictive growth conditions but on which one still has a Fourier transform. Similar techniques already

appear in the context of singular SPDEs in [38], where the authors use Gevrey functions that are characterized by

a condition similar to the one in Definition 2.11 below. Here, we will follow a slightly different approach that goes

back to Beurling and Björck [3], and which mimics essentially the definition of tempered distribution via Schwartz

functions. For a broader introduction to ultra-distributions see for example [44, Chapter 6] or [3].

Let us fix, once and for all, the following weight functions which we will use throughout this article.

Definition 2.7. We denote by

ωpol(x) := log
(
1+ |x|

)
, ω

exp
σ (x) := |x|σ , σ ∈ (0,1),

where x ∈ Rd , σ ∈ (0,1). For ω ∈ ω := {ωpol} ∪ {ω
exp
σ | σ ∈ (0,1)} we denote by ρ(ω) the set of measurable, strictly

positive ρ :Rd → (0,∞) such that

ρ(x)� ρ(y)eλω(x−y) (18)

for some λ = λ(ρ) > 0. We also introduce the notation ρ(ω) :=
⋃

ω∈ω
ρ(ω). The objects ρ ∈ ρ(ω) will be called

weights.

Note that the sets ρ(ω) are stable under addition and multiplication for a fixed ω ∈ ω. The indices “pol” and

“exp” of the elements in ω indicate the fact that elements in ρ ∈ ρ(ωpol) are polynomially growing or decaying while

elements in ρ(ω
exp
σ ) are allowed to have subexponential behavior. Note that

ρ
(
ωpol

)
⊆ ρ

(
ω

exp
σ

)

and that

(1+ |x|)λ ∈ ρ
(
ωpol

)
(19)

and eλ|x|
σ
∈ ρ(ω

exp
σ ) for λ ∈R, σ ∈ (0,1). The reason why we only allow for σ < 1 will be explained in Remark 2.10

below.

We are now ready to define the space of ultra-distributions.
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Definition 2.8. We define for ω ∈ ω the locally convex space

Sω

(
Rd

)
:=

{
f ∈ S

(
Rd

)
| ∀λ > 0, α ∈Nd ,pω

α,λ(f )+ πω
α,λ(f ) <∞

}
, (20)

which is equipped with the seminorms

pω
α,λ(f ) := sup

x∈Rd

eλω(x)
∣∣∂αf (x)

∣∣, (21)

πω
α,λ(f ) := sup

x∈Rd

eλω(x)
∣∣∂αFRdf (x)

∣∣. (22)

Its topological dual S ′ω(R
d) is called the space of tempered ultra-distributions.

Remark 2.9. We here follow [44, Def. 6.1.2.3] and equip the dual S ′ω(R
d) with the strong topology. The choice of

the weak-* topology is however also common in the literature [1].

Remark 2.10. The reason why we excluded the case σ ≥ 1 for ω
exp
σ in Definition 2.7 is that we want Sω to contain

functions with compact support, which then allows for localization and thus for a Littlewood–Paley theory. But if

ω = ω
exp
σ with σ ≥ 1 and f ∈ Sω(R

d) the requirement πω
0,λ(f ) <∞ implies that FRdf can be bounded by e−c|x|,

c > 0, which means that f is analytic and the only compactly supported f ∈ Sω(R
d) is the zero-function f = 0.

In the case ω = ω
exp
σ , σ ∈ (0,1) the space S ′ω is strictly larger than S ′. Indeed: ec|·|

σ ′

∈ S ′ω(R
d) \ S ′(Rd) for

σ ′ ∈ (0, σ ]. In the case ω= ωpol we simply have

Sω

(
Rd

)
= S

(
Rd

)

with a topology that can also be generated by only using the seminorms pω
α,λ so that the dual of Sω(R

d)= S(Rd) is

given by

S ′ω

(
Rd

)
= S ′

(
Rd

)
.

The theory of “classical” tempered distributions is therefore contained in the framework above.

The role of the triple

D
(
Rd

)
:= C∞c

(
Rd

)
⊆ S

(
Rd

)
⊆ C∞

(
Rd

)

in this theory will be substituted by spaces Dω(R
d),C∞ω (Rd) such that

Dω

(
Rd

)
⊆ Sω

(
Rd

)
⊆ C∞ω

(
Rd

)
.

Definition 2.11. Let U ⊆Rd be an open set and ω ∈ ω= {ωpol} ∪ {ω
exp
σ | σ ∈ (0,1)}. We define for ω= ω

exp
σ the set

C∞ω (U) to be the space of f ∈ C∞(U) such that for every ε > 0 and compact K ⊆U there exists Cε,K > 0 such that

for all α ∈Nd

sup
K

∣∣∂αf
∣∣≤ Cε,Kε|α|(α!)1/σ . (23)

For ω= ωpol we set C∞ω (U)= C∞(U). We also define

Dω(U)= C∞ω (U)∩C∞c (U). (24)

The elements of C∞ω (U) are called ultra-differentiable functions and the elements of the dual space D′
ω(R

d) are called

ultra-distributions.
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Remark 2.12. The space D′
ω(R

d) is equipped with a suitable topology [3, Section 1.6] which we did not specify

since this space will not be used in this article and is just mentioned for the sake of completeness.

Remark 2.13. The factor α! in (23) can be replaced by |α|! or |α||α| [41, Proposition 1.4.2] as can be easily seen from

α! ≤ |α|! ≤ d |α|α! and Stirlings formula.

The relation between Dω, Sω, C∞ω and their properties are specified by the following lemma.

Lemma 2.14. Let ω ∈ ω.

(i) We have Sω(R
d)⊆ C∞ω (Rd) and

Dω

(
Rd

)
= Sω

(
Rd

)
∩C∞c

(
Rd

)
. (25)

In particular Dω(R
d)⊆ Sω(R

d)⊆ C∞c (Rd).

(ii) The space Sω(R
d) is stable under addition, multiplication and convolution.

(iii) The space C∞ω (Rd) is stable under addition, multiplication and division in the sense that f/g ·1suppf ∈ C∞ω (Rd)

for f,g ∈ C∞ω (Rd), suppf ⊆
◦

suppg.

Sketch of the proof. We only have to prove the statements for ω ∈ {ω
exp
σ | σ ∈ (0,1)}. Take f ∈ Sω(R

d) and ε > 0.

We then have for α ∈Nd

∂αf (x)= (2πı)|α|
∫

Rd

e2πıx•ξ ξαFRdf (ξ)dξ.

Using further that for λ > 0 (we here follow [31, Lemma 12.7.4])

∫
|ξ ||α|e−λ|ξ |σ dξ �

∫ ∞

0

r |α|+d−1e−λrσ dr � λ−|α|/σŴ
((
|α| + d

)
/σ

) Stirling

� λ−|α|/σC|α||α||α|/σ ,

we obtain for x ∈Rd

∣∣∂αf (x)
∣∣� Cλλ

−|α|/σC|α||α||α|/σ · πω
0,λ(f ).

Choosing λ > 0 big enough shows that f satisfies the estimate in (23) (with global bounds) and thus f ∈ C∞ω (Rd)

and Sω(R
d)⊆ C∞ω (Rd). In particular we get Sω(R

d) ∩ C∞c (Rd)⊆Dω(R
d). To show the inverse inclusion consider

f ∈Dω(R
d). We only have to show that πω

α,λ(f ) <∞ for any λ > 0 and α ∈Nd . And indeed for x ∈Rd with |x| ≥ 1

(without loss of generality)3

∣∣eλ|x|σFRdf (x)
∣∣≤

∞∑

k=0

λk

k!
|x|σk

∣∣FRdf (x)
∣∣≤

∞∑

k=0

λkCk

k!
|x|⌈σk⌉

∣∣FRdf (x)
∣∣

≤

d∑

i=1

∞∑

k=0

λkCk

k!
|xi |

⌈σk⌉
∣∣FRdf (x)

∣∣=
d∑

i=1

∞∑

k=0

λkCk

k!

∣∣∣∣
∫

e2πıξ∂⌈σk⌉eif (ξ)dξ

∣∣∣∣

(23) & Stirling
≤ Cε

∞∑

k=0

λkCkεk <∞,

where C,Cε > 0 denote as usual constants that may change from line to line and where in the last step we chose

ε > 0 small enough to make the series converge; note that the bound (23) holds on all of Rd because f is compactly

supported by assumption.

3We here follow ideas from [38, Proposition A.2].
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The stability of Sω(R
d) under addition, multiplication and convolution are quite easy to check, see [3, Proposi-

tion 1.8.3].

It is straightforward to check that f · g ∈ C∞ω (U) for f,g ∈ C∞ω (U) using Leibniz’s rule. For the stability under

composition see e.g. [40, Proposition 3.1], from which the stability under division can be easily derived. �

Many linear operations such as addition or derivation that can be defined on distributions can be translated im-

mediately to the space of ultra-distributions (Dω(R
d))′. We see with (24) that C∞ω (Rd) should be interpreted as

the set of smooth multipliers for ultra-distributions in D′
ω(R

d) and in particular for tempered ultra-distributions

S ′ω(R
d)⊆D′

ω(R
d). The space S ′ω(R

d) is small enough to allow for a Fourier transform.

Definition 2.15. For f ∈ S ′ω(R
d) and ϕ ∈ Sω(R

d) we set

FRdf (ϕ) := f (FRdϕ),

F
−1

Rd f (ϕ) := f
(
F
−1

Rd ϕ
)
.

By definition of Sω(R
d) we have that FRd and F

−1

Rd are isomorphisms on Sω(R
d) which implies that FRd and F

−1

Rd

are isomorphisms on S ′ω(R
d).

The following lemma proves that the set of compactly supported ultra-differentiable functions Dω(R
d) is rich

enough to localize ultra-distributions, which gets the Littlewood–Paley theory started and allows us to introduce

Besov spaces based on ultra-distributions in the next section.

Lemma 2.16 ([3, Theorem 1.3.7]). Let ω ∈ ω. For every pair of compact sets K �K ′ ⊆ Rd there is a ϕ ∈Dω(R
d)

such that

ϕ|K = 1, suppϕ ⊆K ′.

2.3. Ultra-distributions on Bravais lattices

For the discrete setup we essentially proceed as in Section 2.1 and define spaces

Sω(G)=
{
f : G→C

∣∣ sup
k∈G

eλω(k)
∣∣f (k)

∣∣<∞ for all λ > 0
}
,

and their duals (when equipped with the natural topology)

S ′ω(G)=
{
f : G→C

∣∣ sup
k∈G

e−λω(k)
∣∣f (k)

∣∣<∞ for some λ > 0
}
,

with the pairing f (ϕ)= |G|
∑

k∈G f (k)ϕ(k), ϕ ∈ Sω(G). As in Section 2.1 we can then define a Fourier transform FG

on S ′ω(G) which maps the discrete space Sω(G) into the space of ultra-differentiable functions Sω(Ĝ) := C∞ω (Ĝ) with

periodic boundary conditions. The dual space S ′ω(Ĝ) can be equipped with a Fourier transform F
−1
G

as in (9) such

that FG , F−1
G

become isomorphisms between S ′ω(G) and S ′ω(Ĝ) that are inverse to each other. For a proof of these

statements we refer to Lemma A.1.

Performing identifications as in the case of S ′(Rd) we can interpret these concepts as a sub-theory of the Fourier

analysis on S ′ω(R
d) with the only difference that we have to choose the function ψ , satisfying

∑
k∈R ψ(· − k)= 1,

on page 2064 as an element of Dω(R
d), see page 2072 below for details.

2.4. Discrete weighted Besov spaces

We can now give our definition of a discrete, weighted Besov space, where we essentially proceed as in Section 2.1

with the only difference that ρ ∈ ρ(ω) is included in the definition and that the partition of unity (ϕj )j≥−1, from

which (ϕG
j )j≥−1 is constructed as on page 2065, must now be chosen in Dω(R

d).
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Definition 2.17. Given a Bravais lattice G, parameters α ∈ R, p,q ∈ [1,∞] and a weight ρ ∈ ρ(ω) for ω ∈ ω we

define

Bα
p,q(G, ρ) :=

{
f ∈ S ′ω(G) | ‖f ‖Bα

p,q (G,ρ) :=
∥∥(2jα

∥∥ρ ·ΔG
j f

∥∥
Lp(G)

)
j=−1,...,jG

∥∥
ℓq

<∞
}
,

where the Littlewood–Paley blocks (ΔG
j )j=−1,...,jG are built from a dyadic partition of unity (ϕ

G
j )j=−1,...,jG ⊆ C∞ω (Ĝ)

on Ĝ constructed from some dyadic partition of unity (ϕj )j≥−1 ⊆ Dω(R
d) on Rd as on page 2065. If we con-

sider a sequence Gε as in Definition 2.2 we take the same (ϕj )j≥−1 ⊆ Dω(R
d) to construct for all ε the partitions

(ϕGε

j )j=−1,...,jGε on Ĝε .

We write furthermore Cα
p(G, ρ)= Bα

p,∞(G, ρ) and define

Lp(G, ρ) :=
{
f ∈ Sω(G) | ‖f ‖Lp(G,ρ) := ‖ρf ‖Lp(G) <∞

}
,

i.e. ‖f ‖Bα
p,q (G,ρ) = ‖(2

jα‖ΔG
j f ‖Lp(G,ρ))j‖ℓq .

Remark 2.18. When we introduce the weight we have a choice where to put it. Here we set ‖f ‖Lp(G,ρ) = ‖ρf ‖Lp(G),

which is analogous to [44] or [25], but different from [38] who instead take the Lp norm under the measure ρ(x)dx.

For p = 1 both definitions coincide, but for p =∞ the weighted L∞ space of Mourrat and Weber does not feel the

weight at all and it coincides with its unweighted counterpart.

Remark 2.19. The formulation of this definition for continuous spaces Bα
p,q(R

d , ρ), Cα
p(R

d , ρ) and Lp(Rd , ρ) is

analogous.

We can write the Littlewood–Paley blocks as convolutions (on G):

ΔG
j f (x)=�G,j ∗G f (x)= |G|

∑

k∈G

�G,j (x − k)f (k), x ∈ G, (26)

where

�G,j :=F
−1
G

ϕ
G
j .

We also introduce the notation

�G,<j :=
∑

i<j

�G,j .

Due to our convention to only consider dyadic scalings we always have the useful property

�Gε,j = 2jdφ〈j〉ε
(
2j ·

)
(27)

for a lattice sequence Gε as in Definition 2.2, where

〈j〉ε =

⎧
⎪⎨
⎪⎩

−1, j =−1,

0, −1 < j < jGε ,

∞, j = jGε ,

(28)

and where φ−1, φ0, φ∞ ∈ S(Rd) are Schwartz functions on Rd with FRdφ〈j〉ε ∈Dω(R
d). The functions φ−1, φ0, φ∞

depend on the lattice G used to construct Gε = εG but are independent of ε. In a way, this is a discrete substitute for

the scaling one finds on Rd for �j :=F
−1

Rd ϕj = 2jd(F−1

Rd ϕ0)(2
j ·) (for j ≥ 0) due to the choice of the dyadic partition

of unity in Definition 2.4. We prove the identity (27), together with a similar result for �G,<j , in Lemma 2.25 below.

It turns out that (27) is helpful in translating arguments from the continuous theory into our discrete framework. Let us
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once more stress the fact that φ〈j〉ε is defined on all of Rd , and therefore (26) actually makes sense for all x ∈Rd . With

the φ〈j〉ε from Lemma 2.25 this “extension” coincides with Eε(�
G
j f ), where the extension operator Eε is defined as

in Lemma 2.24 below.

The following Lemma, a discrete weighted Young inequality, allows us to handle convolutions such as (26).

Lemma 2.20. Given Gε as in Definition 2.2 and � ∈ Sω(R
d) for ω ∈ ω we have for any δ ∈ (0,1] with δ � ε and

p ∈ [1,∞], λ > 0 for �δ := δ−d�(δ−1·) the bound

sup
x∈Rd

∥∥�δ(· + x)
∥∥
Lp(Gε,eλω(·+x))

� δ−d(1−1/p), (29)

where the implicit constant is independent of ε > 0. In particular, ‖�δ‖Lp(Gε,eλω) � δ−d(1−1/p) and for ρ ∈ ρ(ω)

∥∥�δ ∗Gε f
∥∥
Lp(Gε,ρ)

� ‖f ‖Lp(Gε,ρ),
∥∥�δ ∗Gε f

∥∥
Lp(Rd ,ρ)

� ‖f ‖Lp(Gε,ρ), (30)

where we used in the second estimate that

x �→
(
�δ ∗Gε f

)
(x)=

∣∣Gε
∣∣ ∑

k∈Gε

�δ(x − k)f (k)

can be canonically extended to Rd .

Remark 2.21. Using δ = 2−j for j ∈ {−1, . . . , jGε } this covers in particular the functions �Gε,j =F
−1
Gε ϕ

Gε

j via (27).

Proof. The case p =∞ follows from the definition of Sω(R
d) and eλω(k) ≤ eλω(δ−1k), so that we only have to show

the statement for p <∞. And indeed we obtain

∥∥�δ
∥∥p
Lp(Gε,eλω)

=
∑

k∈Gε

∣∣Gε
∣∣∣∣�δ(k)

∣∣pepλω(k) = δ−dpεd
∑

k∈G

|G|
∣∣�

(
δ−1εk

)∣∣pepλω(εk)

≤ δ−dpεd
∑

k∈G

|G|
∣∣�

(
δ−1εk

)∣∣pepλω(δ−1εk) � δ−d(p−1)
∑

k∈G

|G|δ−dεd
1

1+ |δ−1εk|d+1

Lemma A.2

� δ−d(p−1)

∫

Rd

dz
(
δ−1ε

)d 1

1+ |δ−1εz|d+1
� δ−d(p−1),

where we used that � ∈ Sω(R
d) and in the application of Lemma A.2 that for |x − y| � 1 the quotient

1+|δ−1εx|

1+|δ−1εy|
is

uniformly bounded. Inequality (29) can be proved in the same way since it suffices to take the supremum over |x|� ε.

The estimates for �δ ∗Gε f then follow by Young’s inequality on Gε and a mixed Young inequality, Lemma A.3

below, applied to the right-hand side of

ρ(x)
∣∣�δ ∗Gε f (x)

∣∣≤
∑

k∈Gε

∣∣Gε
∣∣ρ(x)

∣∣�δ(x − k)
∣∣ ·
∣∣f (k)

∣∣

(⋆)

�
∑

k∈Gε

∣∣Gε
∣∣eλω(x−k)

∣∣�δ(x − k)
∣∣ · ρ(k)

∣∣f (k)
∣∣=

∣∣eλω�
∣∣ ∗Gε |ρf |(x).

In the step (⋆) we used that ρ(x)� eλω(x−k)ρ(k) for some λ > 0 due to (18). �

From Lemma 2.20 (and Remark 2.21) we see in particular that the blocks ΔGε

j map the space Lp(Gε, ρ) into itself

for any p ∈ [1,∞]:

∥∥ΔGε

j f
∥∥
Lp(Gε,ρ)

=
∥∥�Gε,j ∗Gε f

∥∥
Lp(Gε,ρ)

Lemma 2.20

� ‖f ‖Lp(Gε,ρ), (31)
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where the involved constant is independent of ε and j =−1, . . . , jGε . This is the discrete analogue of the continuous

version

‖Δjf ‖Lp(Rd ,ρ) � ‖f ‖Lp(Rd ,ρ) (32)

for j ≥−1 (which can be proved in essentially the same manner).

As in the continuous case we can state an embedding theorem for discrete Besov spaces. Since it can be shown

exactly as its continuous (and unweighted) cousin ([1, Proposition 2.71] or [12, Theorem 4.2.3]) we will not give its

proof here.

Lemma 2.22. Given Gε as in Definition 2.2 for any α1 ∈R, 1≤ p1 ≤ p2 ≤∞, 1≤ q1 ≤ q2 ≤∞ and weights ρ1, ρ2

with ρ2 � ρ1 we have the continuous embedding (with norm of the embedding operator independent of ε ∈ (0,1])

Bα1
p1,q1

(
Gε, ρ1

)
⊆ Bα2

p2,q2

(
Gε, ρ2

)

for α2 −
d
p2
≤ α1 −

d
p1

. If α2 < α1 − d(1/p1 − 1/p2) and lim|x|→∞ ρ2(x)/ρ1(x)= 0 the embedding is compact.

For later purposes we also recall the continuous version of this embedding.

Lemma 2.23 ([12, Theorem 4.2.3]). For any α1 ∈ R, 1≤ p1 ≤ p2 ≤∞, 1 ≤ q1 ≤ q2 ≤∞ and weights ρ1, ρ2 with
ρ2 � ρ1 we have the continuous embedding (with norm independent of ε ∈ (0,1])

Bα1
p1,q1

(
Rd , ρ1

)
⊆ Bα2

p2,q2

(
Rd , ρ2

)

for α2 ≤ α1 − d(1/p1 − 1/p2). If α2 < α1 − d(1/p1 − 1/p2) and lim|x|→∞ ρ2(x)/ρ1(x)= 0 the embedding is com-
pact.

The extension operator
Given a Bravais lattice G and a dyadic partition of unity (ϕj )j≥−1 on Rd such that jG , as defined on page 2065, is

strictly greater than 0 we construct a discrete dyadic partition of unity (ϕ
G
j )−1,...,jG from (ϕj )j≥−1 as on page 2065.

We choose a symmetric function ψ ∈ Dω(R
d) which we refer to as the smear function and which satisfies the

following properties:

1.
∑

k∈R ψ(· − k)= 1,

2. ψ = 1 on suppϕj for j < jG ,

3. (suppψ ∩ supp(ϕG
j )ext) \ Ĝ �=∅⇒ j = jG .

The last property looks slightly technical, but actually only states that the support of ψ is small enough such that it only

touches the support of the periodically extended ϕG
j with j < jG inside Ĝ. Using dist(∂Ĝ,

⋃
j<jG

supp(ϕG
j )ext) > 0

it is not hard to construct a function ψ as above: Indeed choose via Lemma 2.16 some ψ̃ ∈ Dω(R
d) that satisfies

property 3 and ψ̃ |Ĝ = 1 and set ψ := ψ̃/
∑

k∈R ψ̃(· − k).

The rescaled ψε := ψ(ε·) satisfies the same properties on Gε (remember that by convention we construct the

sequence (ϕ
Gε

j )j=−1,...,jGε from the same (ϕj )j≥−1). This allows us to define an extension operator Eε in the spirit of

Lemma 2.6 as

Eεf :=F
−1

Rd

(
ψε · (FGεf )ext

)
, f ∈ S ′ω

(
Gε
)
,

and as in Lemma 2.6 we can show that Eεf ∈ C∞ω (Rd)∩ S ′ω(R
d) and Eεf |Gε = f .

Using (14) we can give a useful, alternative formulation of Eεf

Eεf =F
−1

Rd ψ
ε ∗Rd F

−1

Rd (FGεf )ext =F
−1

Rd ψ
ε ∗Rd fdir

=F
−1

Rd ψ
ε ∗Gε f =

∣∣Gε
∣∣ ∑

z∈Gε

F
−1

Rd ψ
ε(· − z)f (z), (33)
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where as in (26) we read the convolution in the second line as a function on Rd using that F−1

Rd ψ
ε ∈ Sω(R

d) is defined

on Rd . By property 3 of ψ we also have for j < jGε

ΔjE
εf = EεΔGε

j f. (34)

Finally, let us study the interplay of Eε with Besov spaces.

Lemma 2.24. For any α ∈R, p,q ∈ [1,∞] and ρ ∈ ρ(ω) the family of operators

Eε : Bα
p,q

(
Gε, ρ

)
−→ Bα

p,q

(
Rd , ρ

)
,

defined above, is uniformly bounded in ε.

Proof. We have to estimate ΔjE
εf for j ≥−1. For j < jGε we can apply (34) and (33) together with Lemma 2.20

to bound

∥∥ΔjE
εf

∥∥
Lp(Rd ,ρ)

=
∥∥ε−d(FRdψ)

(
ε−1·

)
∗Gε ΔGε

j f
∥∥
Lp(Rd ,ρ)

�
∥∥ΔGε

j f
∥∥
Lp(Gε,ρ)

� 2−jα‖f ‖Bα
p,q (G

ε,ρ).

For j ≥ jGε only j ∼ jGε contributes due to the compact support of ψε . By spectral support properties we have

ΔjE
εf =Δj

(
Eε

∑

i∼jGε

Δ
Gε

i f

)
.

From (32) we know that Δj maps Lp(Rd , ρ) into itself and we thus obtain

∥∥ΔjE
εf

∥∥
Lp(Rd ,ρ)

�

∥∥∥∥E
ε
∑

i∼jGε

Δ
Gε

i f

∥∥∥∥
Lp(Gε,ρ)

� 2−jGεα‖f ‖Bα
p,q (G

ε,ρ),

where we applied once more (33) and Lemma 2.20 in the second step. �

Below, we will often be given some functional F(f1, . . . , fn) on discrete Besov functions taking values in a discrete

Besov space X (or some space constructed from it) that satisfies a bound of the type

∥∥F(f1, . . . , fn)
∥∥
X
≤ c(f1, . . . , fn). (35)

We then say that the estimate (35) has the property (E) (on X) if there is a “continuous version” F of F and a

continuous version X of X and a sequence of constants oε → 0 such that

∥∥EεF(f1, . . . , fn)− F
(
Eεf1, . . . ,E

εfn

)∥∥
X
≤ oε · c(f1, . . . , fn). (E)

In other words we can pull the operator Eε inside F without paying anything in the limit. With the smear function ψ

introduced above when can now also give the proof of the announced scaling property (27) of the functions �Gε,j .

Lemma 2.25. Let Gε be as in Definition 2.2 and let ω ∈ ω. Let (ϕGε

j )j=−1,...,jGε ⊆Dω(Ĝ
ε) be a partition of unity of

Ĝε as defined on page 2065 and take �Gε,j =F
−1
Gε ϕ

Gε

j and �Gε,<j :=
∑

i<j �
Gε,i . The extensions

�̃ε,j := Eε�Gε,j =F
−1

Rd

(
ψε ·

(
ϕGε

j

)
ext

)
,

�̃ε,<j := Eε�Gε,<j =F
−1

Rd

(
ψε ·

(∑

i<j

ϕGε

i

)

ext

)
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are elements of Sω(R
d). Moreover there are φ̌−1, φ̌0, φ̌∞, φ̌� ∈ Dω(R

d), independent of ε, such that for for j =

−1, . . . , jGε and j ′ = 0, . . . , jGε with 〈j〉ε as in (28)

ψε ·
(
ϕ
Gε

j

)
ext
= φ̌〈j〉ε

(
2−j ·

)
, (36)

ψε ·

(∑

i<j ′

ϕ
Gε

i

)

ext

= φ̌�

(
2−j ′ ·

)
. (37)

The functions φ̌0 and φ̌∞ have support in an annulus A⊆Rd .

In particular we have for j =−1, . . . , jGε and j ′ = 0, . . . , jGε .

�̃ε,j = 2jd · φ〈j〉ε
(
2j ·

)
, �̃ε,<j ′ = 2j ′d · φ�

(
2j ′ ·

)
,

where φi :=F
−1

Rd φ̌i for i ∈ {−1,0,∞,�}.

Proof. Denote by (ϕj )j≥−1 ⊆ Dω(R
d) the partition of unity on Rd from which the partitions (ϕGε

j )j=−1,...,jGε are

constructed. Let us recall the following facts about (ϕj )j≥−1

ϕj = ϕ0

(
2−j ·

)
for j ≥ 0, (38)

∑

i<j ′

ϕi = ϕ−1

(
2−j ′ ·

)
for j ′ ≥ 0. (39)

The second property can be seen by rewriting

∑

i<j ′

ϕi = 1−
∑

l≥j ′

ϕ0

(
2−l ·

)
= 1−

∑

l′≥0

ϕ0

(
2−(j ′+l′)·

)
=

(
1−

∑

l′≥0

ϕl′

)(
2−j ′ ·

)
= ϕ−1

(
2−j ′ ·

)
.

Recall further that ϕ0 has support in an annulus around 0.

To prove the claim we only have to show (36) and (37). For j < jGε and 0≤ j ′ ≤ jGε we use that by construction

of ϕGε

j out of (ϕj )j≥−1 we have inside Ĝε

ϕ
Gε

j = ϕj ,
∑

i<j ′

ϕ
Gε

i =
∑

i<j ′

ϕi

so that due to properties 2 and 3 of the smear function ψε and (39) it is enough to take

φ̌� = ϕ−1

and for j < jGε by the scaling property of ϕj from (38)

φ̌〈j〉ε := ϕj

(
2j ·

)
∈
{
ϕ−1(·/2), ϕ0

}
.

For the construction of φ∞ a bit more work is required. Recall that by definition of our lattice sequence Gε we took a

dyadic scaling ε = 2−N which implies in particular

2−jGε = ε · 2k (40)

for some fixed k ∈ Z. Using once more (39) and relation (40) we can write for x ∈ Ĝε

ϕGε

jGε
(x)= 1−

∑

j<jGε

ϕj (x)= 1− ϕ−1

(
2−jGε x

)
= χ(εx)
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for some symmetric function χ ∈ C∞ω (Rd). As in (12) let us denote for x ∈ Rd by [x]
Ĝε ∈ Ĝε the unique element of

Ĝε for which x − [x]Ĝε ∈Rε . One then easily checks

ε[x]
Ĝε = [εx]Ĝ . (41)

Applying (12) and (41) we obtain for x ∈Rd that the periodic extension

(
ϕ
Gε

jGε

)
ext

(x)= ϕ
Gε

jGε

(
[x]Ĝε

)
= χ

(
ε[x]Ĝε

)
= χ

(
[εx]Ĝ

)

is the ε scaled version of the smooth, R-periodic function χ([·]Ĝ) ∈ C∞ω (Ĝ) (to see that the composition with [·]Ĝ
does not change the smoothness, note that χ equals 1 on a neighborhood of ∂Ĝ). Consequently

ψ(ε·)
(
ϕ
Gε

jGε

)
ext
=
(
ψχ

(
[·]Ĝ

))
(ε·),

so that setting φ̌∞ = (ψχ([·]Ĝ))(2
−k·) with k as in (40) finishes the proof. �

3. Discrete diffusion operators

Our aim is to analyze differential equations on Bravais lattice that are in a certain sense semilinear and “parabolic”,

i.e. there is a leading order linear difference operator, which here we will always take as the infinitesimal generator of

a random walk on our Bravais lattice. In the following we analyze the regularization properties of the corresponding

“heat kernel”.

3.1. Definitions

Let us construct a symmetric random walk on a Bravais lattice Gε with mesh size ε which can reach every point (our

construction follows [33]). First we choose a subset of “jump directions” {g1, . . . , gl} ⊆ G \ {0} such that Zg1 + · · · +

Zgl = G and a map κ : {g1, . . . , gl} → (0,∞). We then take as a rate for the jump from z ∈ Gε to z± εgi ∈ Gε the

value κ(gi)/2ε2. In other words the generator of the random walk is

Lεu(y)= ε−2
∑

e∈{±gi }

κ(e)

2

(
u(y + εe)− u(y)

)
, (42)

which converges (for u ∈ C2(Rd)) pointwise to Lu = 1
2

∑l
i=1 κ(gi)gi • ∇2ugi as ε tends to 0. In the case G = Zd

and κ(ei) = 1/d we obtain the simple random walk with limiting generator L = 1
2d

�. We can reformulate (42) by

introducing a signed measure

μ= κ(g1)

(
1

2
δg1

+
1

2
δ−g1

)
+ · · · + κ(gl)

(
1

2
δgl +

1

2
δ−gl

)
−

l∑

i=1

κ(gi)δ0,

which allows us to write Lεu= ε−2
∫
Rd u(x + εy)dμ(y) and Lu= 1

2

∫
Rd y • ∇2uy dμ(y). In fact we will also allow

the random walk to have infinite range.

Definition 3.1. We write μ ∈ µ(ω)= µ(ω,G) for ω ∈ ω if μ is a finite, signed measure on a Bravais lattice G such

that

• 〈suppμ〉 = G,

• μ|{0}c ≥ 0,

• for any λ > 0 we have
∫
G
eλω(x) d|μ|(x) <∞, where |μ| is the total variation of μ,

• μ(A)= μ(−A) for A⊆ G and μ(G)= 0,
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where 〈·〉 denotes the subgroup generated by · in (G,+). We associate a norm on Rd to μ ∈ µ(ω) which is given by

‖x‖2
μ =

1

2

∫

G

|x • y|2 dμ(y).

We also write µ(ω) :=
⋃

ω∈ω
µ(ω).

Lemma 3.2. The function ‖·‖μ of Definition 3.1 is indeed a norm.

Proof. The homogeneity is obvious and the triangle inequality follows from Minkowski’s inequality. If ‖x‖μ = 0 we

have x • g = 0 for all g ∈ suppμ. Since 〈suppμ〉 = G we also have x • ai = 0 for the linearly independent vectors

a1, . . . , ad from (2), which implies x = 0. �

Given μ ∈ µ(ω) as in Definition 3.1 we can then generalize the formulas we found above.

Definition 3.3. For ω ∈ ω, μ ∈ µ(ω) as in Definition 3.1 and Gε as in Definition 2.2 we set

Lε
μu(x)= ε−2

∫

G

u(x + εy)dμ(y)

for u ∈ S ′ω(G
ε) and

(Lμu)(ϕ) :=
1

2

∫

G

y •∇2uy dμ(y)(ϕ) :=
1

2

∫

G

y •∇2u(ϕ)y dμ(y)

for u ∈ S ′ω(R
d) and ϕ ∈ Sω(R

d). We write further L ε
μ , Lμ for the parabolic operators L ε

μ = ∂t − Lε
μ and Lμ =

∂t −Lμ.

Lε
μ is nothing but the infinitesimal generator of a random walk with sub-exponential moments (Lemma A.5). By

direct computation it can be checked that for G = Zd and with the extra condition
∫
yiyj dμ(y) = 2δij we have the

identities ‖·‖μ = |·| and Lμ =�Rd . In general Lμ is an elliptic operator with constant coefficients,

Lμu=
1

2

∫

G

y •∇2uy dμ(y)=
1

2

∑

i,j

∫

G

yiyj dμ(y) · ∂ iju=:
1

2

∑

i,j

a
μ
ij · ∂

iju,

where (a
μ
ij ) is a symmetric matrix. The ellipticity condition follows from the relation x • (a

μ
ij )x = 2‖x‖2

μ and the

equivalence of norms on Rd . In terms of regularity we expect therefore that Lε
μ behaves like the Laplacian when we

work on discrete spaces.

Lemma 3.4. We have for α ∈R, p ∈ [1,∞],ω ∈ ω and μ ∈ µ(ω),ρ ∈ ρ(ω)

∥∥Lε
μu

∥∥
Cα−2
p (Gε,ρ)

� ‖u‖Cα
p (G

ε,ρ),

where Cα
p(G

ε, ρ) = Bα
p,∞(Gε, ρ) is as in Definition 2.17, and where the implicit constant is independent of ε. For

δ ∈ [0,1] we further have
∥∥(Lε

μ −Lμ

)
u
∥∥
C
α−2−δ
p (Rd ,ρ)

� εδ‖u‖Cα
p (R

d ,ρ),

where the action of Lε
μ on u ∈ S ′ω(R

d) should be read as

(
Lε

μu
)
(ϕ)= u

(
ε−2

∫

G

ϕ(· + εy)dμ(y)

)
= u

(
ε−2

∫

G

ϕ(· − εy)dμ(y)

)
= u

(
Lε

μϕ
)

(43)

for ϕ ∈ Sω(R
d), where we used the symmetry of μ in the second step.
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Proof. We start with the first inequality. With �
Gε,j

:=
∑
−1≤i≤jGε :|i−j |≤1 �

Gε,i ∈ Sω(G
ε) we have by spectral sup-

port properties Δ
Gε

j u=�
Gε,j

∗Gε Δ
Gε

j u. Via (27) we can read �Gε,j and thus �
j,Gε

as a smooth function in Sω(R
d)

defined on all of Rd . In this sense we read

Δ
Gε

j u=
∣∣Gε

∣∣ ∑

z∈|Gε |

�
Gε,j

(· − z)Δ
Gε

j u(z), (44)

as a smooth function on Rd in the following. Since μ integrates affine functions to zero we can rewrite

ΔGε

j Lε
μu(x)= ε−2

∫

G

dμ(y)
[
ΔGε

j u(x + εy)−ΔGε

j u(x)−∇
(
ΔGε

j u
)
(x) · εy

]

=

∫

G

dμ(y)

∫ 1

0

dζ1

∫ 1

0

dζ2y •∇2
(
Δ
Gε

j u
)
(x + εζ1ζ2y)y.

Using (18) and the Minkowski inequality on the support of μ we then obtain

∥∥ρΔGε

j Lε
μu

∥∥
Lp(Gε)

�

∫

G

dμ(y)

∫ 1

0

dζ1

∫ 1

0

dζ2e
λω(εζ1ζ2y)|y|2

∥∥ρ(· + εζ1ζ2y)
∣∣∇2

(
ΔGε

j u
)
(· + εζ1ζ2y)

∣∣∥∥
Lp(Gε)

,

where λ is as in (18). By definition of µ(ω) and monotonicity of ω ∈ ω we have

∫ 1

0

dζ1

∫ 1

0

dζ2

∫

G

dμ(y)|y|2eλω(εζ1ζ2y) ≤

∫ 1

0

dζ1

∫ 1

0

dζ2

∫

G

dμ(y)|y|2eλω(y) <∞

so that we are left with the task of estimating

∥∥ρ(· + εζ1ζ2y)
∣∣∇2

(
Δ
Gε

j u
)
(· + εζ1ζ2y)

∣∣∥∥
Lp(Gε)

�
∥∥∇2�

Gε,j
(· + εζ1ζ2)

∥∥
L1(Gε,eλω(·+εζ1ζ2))

∥∥ΔGε

j u
∥∥
Lp(Gε,ρ)

,

where we applied (44) and Young’s convolution inequality on Gε . Due to (27) and Lemma 2.20 we can estimate the

first factor by 2j2 so that we obtain the total estimate

∥∥ΔGε

j Lε
μu

∥∥
Lp(Gε,ρ)

� 2−j (α−2)‖u‖Cα
p (G

ε,ρ)

and the first estimate follows.

To show the second inequality we proceed essentially the same but use instead �
j
=
∑

i:|i−j |≤1 �
i , where �j =

F
−1

Rd ϕj now really denotes the inverse transform of the partition (ϕj )j≥−1 on all of Rd . We then have Δj =�
j
∗Δj ,

so that

Δj

(
Lε

μ −Lμ

)
u=

∫ 1

0

dζ1

∫ 1

0

dζ2

∫

G

dμ(y)

∫

Rd

dzy •

(
∇2�

j
(· + εζ1ζ2y − z)−∇2�

j
(· − z)

)
yΔju(z).

As above we can then either get 2−j (α−2)‖u‖Cα
p (G

ε,ρ), by bounding each of the two second derivatives separately, or

2−j (α−3)ε‖u‖Cα
p (G

ε,ρ), by exploiting the difference to introduce the third derivative. We obtain the second estimate by

interpolation. �

3.2. Semigroup estimates

In Fourier space Lε
μ can be represented by a Fourier multiplier lεμ : Ĝ

ε →R:

FGε

(
Lε

μu
)
=−lεμ ·FGεu,
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for u ∈ S ′ω(G
ε). The multiplier lεμ is given by

lεμ(x)=−

∫

G

eıε2πx•y

ε2
dμ(y)=

∫

G

1− cos(ε2πx • y)

ε2
dμ(y)= 2

∫

G

sin2(επx • y)

ε2
dμ(y), (45)

where we used that μ is symmetric with μ(G) = 0 and the trigonometric identity 1 − cos = 2 sin2. The following

lemma shows that lεμ is well defined as a multiplier (i.e. lεμ ∈ C∞ω (Ĝε)). It is moreover the backbone of the semigroup

estimates shown below.

Lemma 3.5. Let ω ∈ ω and μ ∈ µ(ω). The function lεμ defined in (45) is an element of Sω(Ĝε)= C∞ω (Ĝε) and

• if ω= ω
exp
σ with σ ∈ (0,1) it satisfies |∂klεμ(x)|�δ ε

(|k|−2)∨0(1+ |x|2)δ|k|(k!)1/σ for any δ > 0, k ∈Nd ,

• for every compact set K ⊆ Rd with K ∩R = {0}, where R is the reciprocal lattice of the unscaled lattice G, we
have lεμ(x)�K |x|

2 for all x ∈ ε−1K .

The implicit constants are independent of ε.

Proof. We start by showing |∂klεμ(x)| �δ ε(|k|−2)∨0(1 + |x|2)δ|k|(k!)1/σ if ω = ω
exp
σ , which implies in particular

lεμ ∈ Sω(Ĝε) in that case. The proof that lεμ ∈ Sω(Ĝε) for μ ∈ µ(ωpol) is again similar but easier and therefore omitted.

We study derivatives with |k| = 0,1 first. We have

∣∣lεμ(x)
∣∣= 2

∣∣∣∣
∫

G

sin2(επx • y)

ε2
dμ(y)

∣∣∣∣�
∣∣∣∣
∫

G

sin2(επx • y)

|επx • y|2
|x • y|2 dμ(y)

∣∣∣∣

�

∫

G

|y|2 d|μ|(y) · |x|2 � |x|2,

and for i = 1, . . . , d

∣∣∂ i lεμ(x)
∣∣�

∫

G

| sin(επx • y)|

|επx • y|
|x||y|2 d|μ|(y)� |x|.

For higher derivatives we use that ∂k
x e

ı2πεx•y = (ı2πε)|k|ykeı2πεx•y which gives (where C > 0 denotes as usual a

changing constant)

∣∣∂klεμ(x)
∣∣≤ ε|k|−2C|k|

∫

G

|y||k| d|μ|(y)≤ ε|k|−2C|k|max
t≥0

(
t |k|e−λtσ

)∫

G

eλ|y|
σ

dμ(y)

for any λ > 0. Using maxt≥0 t
ae−λtσ = λ−a/σ (a/σ )a/σ e−a/σ for a > 0 we end up with

∣∣∂klεμ(x)
∣∣� ε|k|−2 1

λ|k|/σ
C|k||k||k|/σ � ε|k|−2 1

λ|k|/σ
C|k|(k!)1/σ ,

and our first claim follows by choosing λ1/σ := C/δ.

It remains to show that lεμ/|·|
2 � 1 on ε−1K , which is equivalent to l1μ/|·|

2 � 1 on K . We start by finding the zeros

of l1μ which, by periodicity can be reduced to finding all x ∈ Ĝ with l1μ(x)= 0. But if l1μ(x)= 0, then y • x ∈ Z for any

y ∈ suppμ, which yields with 〈suppμ〉 = G that we must have ai • x ∈ Z for ai as in (2). But since x ∈ Ĝ we have

x = x1â1 + · · · + xd âd with xi ∈ [−1/2,1/2) and âi as in (3). Consequently

xi = x • ai ∈ Z∩ [−1/2,1/2)= {0},

and hence x = 0. Since l1μ is periodic under translations in the reciprocal lattice R, its zero set is thus precisely R. By

assumption K ∩R = {0} and it remains therefore to verify l1μ(x)� |x|
2 in an environment of 0 to finish the proof.
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Note that there is a finite subset V ⊆ suppμ such that 0 ∈ V and 〈V 〉 = G, since only finitely many y ∈ suppμ are

needed to generate a1, . . . , ad . We restrict ourselves to V :

l1μ(x)= 2

∫

G

sin2(πx • y)dμ(y)≥ 2

∫

V

sin2(πx • y)dμ(y).

For x ∈ Ĝ \ {0} small enough we can now bound
∫
V

sin2(πx •y)dμ(y)�
∫
V
|x •y|2 dμ(y). The term on the right-hand

side defines (the square of) a norm by the same arguments as in Lemma 3.2, and since it must be equivalent to |·|2 the

proof is complete. �

Using that Sω(Ĝε)= C∞ω (Ĝε) is stable under composition with functions in C∞ω (Rd) we see that e−t lεμ ∈ C∞ω (Ĝε)

for t ≥ 0 and can thus define the Fourier multiplier

etL
ε
μf :=F

−1
Gε

(
e−t lεμFGεf

)

for t ≥ 0 and f ∈ S ′ω(G
ε), which gives the (weak) solution to the problem L ε

μg = 0, g(0)= f . The regularizing effect

of the semigroup is described in the following proposition.

Proposition 3.6. We have for α ∈R, β ≥ 0, p ∈ [1,∞], ω ∈ ω, μ ∈ µ(ω) and ρ ∈ ρ(ω)

∥∥etLε
μf

∥∥
C
α+β
p (Gε,ρ)

� t−β/2‖f ‖Cα
p (G

ε,ρ), (46)

∥∥etLε
μf

∥∥
C
β
p (G

ε,ρ)
� t−β/2‖f ‖Lp(Gε,ρ), (47)

and for α ∈ (0,2)

∥∥(etLε
μ − Id

)
f
∥∥
Lp(Gε,ρ)

� tα/2‖f ‖Cα
p (G

ε,ρ), (48)

uniformly on compact intervals t ∈ [0, T ]. The involved constants are independent of ε.

Proof. We show the claim for ω = ω
exp
σ = |x|σ , σ ∈ (0,1), the arguments for ω = ωpol are similar but easier. Using

spectral support properties we can rewrite for j =−1, . . . , jGε

�
Gε

j etL
ε
μf =F

−1
Gε

( ∑

i:|i−j |≤1

ϕ
Gε

i e−t lεμ ·FGεΔ
Gε

j f

)
=Kj (t, ·) ∗Gε Δ

Gε

j f, (49)

where we set for z ∈ Gε

Kj (t, z) :=

∫

Ĝε

dye2πız•y
∑

i:|i−j |≤1

ϕ
Gε

i (y)e−t lεμ(y).

Using the smear function ψε =ψ(ε·) from Section 2.4 we can rewrite this as an expression that is well-defined for
all x ∈Rd

Kj (t, x) :=

∫

Rd

dye2πıx•yψε(y)
∑

i:|i−j |≤1

(
ϕ
Gε

i

)
ext

(y) · e−t lεμ(y),

where (·)ext is given as in (12) and where we extended lεμ (periodically) to all of Rd by relation (45). Consequently,

we can apply Lemma 2.25 to give an expression for the scaled kernel

K(j)(t, x) := 2−jd
Kj

(
t,2−jx

)
=

∫

Rd

dye2πıx•yϕ(j)(y) · e
−t lεμ(2

j y),
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where we wrote ϕ(j) =
∑

i:|i−j |≤1 φ̌〈i〉ε (2
−(i−j)·) with φ̌〈i〉ε as in Lemma 2.25. Suppose we already know that for any

λ > 0 and x ∈ Gε the estimate

∣∣K(j)(t, x)
∣∣�λ e−λ|x|σ 2−jβ t−β/2 =: 2−jβ t−β/2�(x) (50)

holds. We then obtain from (49) with �2−j
(x) := 2jd�(2jx)= 2jde−λ|2j x|σ the bound

∥∥�Gε

j etL
ε
μf

∥∥
Lp(Gε,ρ)

� 2−jβ t−β/2
∥∥�2−j

∗Gε

∣∣�Gε

j etL
ε
μf

∣∣∥∥
Lp(Gε,ρ)

and an application of Lemma 2.20 shows (46) and (47) (for (47) we also need (31)). Note that we cheated a little bit

as Lemma 2.20 actually requires � ∈ Sω(R
d) which is not true, inspecting however the proof of Lemma 2.20 we see

that all we used was a suitable decay behavior which is still given.

We will now show (50). Using Lemma 3.7 below we can reduce this task to the simpler problem of proving the

polynomial bound for i = 1, . . . , d and n ∈N

tβ/2|xi |
n
∣∣K(j)(t, x)

∣∣�δ δ
nCn(n!)1/σ 2−jβ , δ > 0, (51)

with a constant C > 0 that does not depend on δ. To show (51) we assume that 2jε ≤ 1. Otherwise we are dealing

with the scale 2j ≈ ε−1 and the arguments below can be easily modified. Integration by parts gives

|xi |
n
∣∣K(j)(t, x)

∣∣= Cn

∣∣∣∣
∫

Rd

dye2πıx•y∂n·ei
(
ϕ(j)e

−t lεμ(2
j ·)
)
(y)

∣∣∣∣

≤Cn

∫

Rd

dy
∣∣∂n·ei

(
ϕ(j)e

−t22j l2
j ε

μ
)
(y)

∣∣,

where we used that lεμ(2
jy)= 22j l2

j ε
μ (y) by (45). Now we have the following estimates for k ∈N

∣∣∂k·eiϕ(j)(y)
∣∣�δ δ

k(k!)1/σ ,
∣∣∂k·ei lε2j

μ (y)
∣∣�δ δ

k(k!)1/σ ,
∣∣(22j t

)β/2
∂k
(
et2

2j ·
)(
l2

j ε
μ (y)

)∣∣�δ k
k/σ δk,

where we used that ϕ(j) ∈Dω(R
d) (with bounds that can be chosen independently of j by definition) and we applied

Lemma 3.5 with the assumption 2jε ≤ 1 (which we need because we only defined lε
′

μ for ε′ ≤ 1). Together with

Leibniz’s and Faà-di Bruno’s formula and a lengthy but elementary calculation (51) follows, which finishes the proof

of (46) and (47).

The last estimate (48) can be obtained as in the proof of Lemma [21, Lemma 6.6] by using Lemma A.4 below. �

Lemma 3.7. Let g : Rd → R, σ > 0 and B > 0. Suppose for any δ > 0 there is a Cδ > 0 such that for all z ∈ Rd ,

l ≥ 0 and i = 1, . . . , d

∣∣zlig(z)
∣∣�δ δ

lCl
δ(l!)

1/σB.

It then holds for any λ > 0 and z ∈Rd

∣∣g(z)
∣∣�λ Be−λ|z|σ .

Proof. This follows ideas from [38, Proposition A.2]. Without loss of generality we can assume |z|> 1 (otherwise we

get the required estimate by taking l = 0). Recall that we have |z|l ≤ Cl
∑d

i=1 |zi |
l , where C > 0 denotes a constant

that changes from line to line and is independent of l. Consequently, Stirling’s formula gives

∣∣eλ|z|σ g(z)
∣∣=

∣∣∣∣∣

∞∑

k=0

λk

k!
|z|σkg(z)

∣∣∣∣∣�
∞∑

k=0

λkCk

kk
|z|⌈kσ⌉

∣∣g(z)
∣∣�

∞∑

k=0

λkCk

kk

d∑

i=1

∣∣z⌈kσ⌉i g(z)
∣∣

� B

∞∑

k=0

λkCkδkσ

kk
⌈kσ⌉⌈kσ⌉/σ � B

∞∑

k=0

λkCkδkσ

kk
kk = B

∞∑

k=0

λkCkδkσ �λ B,
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where we used ⌈kσ⌉ ≤ k⌈σ⌉ so that ⌈kσ⌉⌈kσ⌉/σ ≤ (⌈σ⌉k)
kσ+1

σ � Ckkk and where we chose δ < (Cλ)−
1
σ in the last

step. �

3.3. Schauder estimates

We will follow here closely [21] and introduce time-weighted parabolic spaces L
γ,α

p,T that interplay nicely with the

semigroup etL
ε
μ .

Definition 3.8. Given γ ≥ 0, T > 0 and an increasing family of normed spaces X = (X(s))s∈[0,T ] we define the space

M
γ

TX :=
{
f : [0, T ]→X(T )

∣∣ ‖f ‖Mγ
T X = sup

t∈[0,T ]

∥∥tγ f (t)
∥∥
X(t)

<∞
}
,

and for α > 0

Cα
TX :=

{
f ∈ C

(
[0, T ],X(T )

)
| ‖f ‖Cα

T X <∞
}
,

where

‖f ‖Cα
T X := sup

t∈[0,T ]

∥∥f (t)
∥∥
X(t)

+ sup
0≤s≤t≤T

‖f (s)− f (t)‖X(t)

|s − t |α
.

For a lattice G, parameters γ ≥ 0, T > 0, α ≥ 0,p ∈ [1,∞] and a pointwise decreasing map ρ : [0, T ] ∋ t �→ ρ(t) ∈

ρ(ω) we set

L
γ,α

p,T (G, ρ) :=
{
f : [0, T ]→ S ′ω(G) | ‖f ‖L γ,α

p,T (G,ρ) <∞
}
,

where

‖f ‖L γ,α
p,T (G,ρ) :=

∥∥t �→ tγ f (t)
∥∥
C

α/2
T Lp(G,ρ)

+ ‖f ‖Mγ
T C

α
p (G,ρ).

Remark 3.9. As in Remark 2.19 the definition of the continuous version L
γ,α

p,T (Rd , ρ) is analogous.

Standard arguments show that if X is a sequence of increasing Banach spaces with decreasing norms, all the spaces

in the previous definition are in fact complete in their (semi-)norms.

The Schauder estimates for the operator

I ε
μf (t)=

∫ t

0

e(t−s)Lε
μf (s)ds (52)

and the semigroup (etL
ε
μ) in the time-weighted setup are summarized in the following lemma, for which we introduce

the weights

pκ(x)=
(
1+ |x|

)−κ
, (53)

eσl+t (x)= e−(l+t)(1+|x|)σ (54)

with κ > 0 and l, t ∈R. The parameter t should be thought of as time. The notation L
γ,α

p,T (G, eσl ) means therefore that

we take the time-dependent weight (eσl+t )t∈[0,T ], while eσl p
κ stands for the time-dependent weight (eσl+tp

κ)t∈[0,T ].

Lemma 3.10. Let Gε be as in Definition 2.2, α ∈ (0,2), γ ∈ [0,1), p ∈ [1,∞], σ ∈ (0,1) and T > 0. If β ∈R is such
that (α + β)/2 ∈ [0,1), then we have uniformly in ε

∥∥s �→ esL
ε
μf0

∥∥
L

(α+β)/2,α
p,T (Gε,eσl )

� ‖f0‖C−β
p (Gε,eσl )

, (55)
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and if κ ≥ 0 is such that γ + κ/σ ∈ [0,1), α + 2κ/σ ∈ (0,2) also
∥∥I ε

μf
∥∥

L
γ,α
p,T (Gε,eσl )

� ‖f ‖
M

γ
T C

α+2κ/σ−2
p (Gε,eσl p

κ )
. (56)

Proof. The proof is along the lines of Lemma 6.6 in [21] with the use of the simple estimate

pκeσl+s �
eσl+t

|t − s|κ/σ
, t ≥ s,

which is similar to an inequality from the proof of Proposition 4.2 in [25] and the reason for the appearance of the

term 2κ/σ in (56) (the factor 2 comes from parabolic scaling). We need γ + κ/σ ∈ [0,1) so that the singularity

|t − s|−γ−κ/σ is integrable on [0, t]. �

For the comparison of the parabolic spaces L
γ,α

p,T the following lemma will be convenient.

Lemma 3.11. Let Gε be as in Definition 2.2. For α ∈ (0,2), γ ∈ (0,1), ε ∈ [0, α ∧ 2γ ), p ∈ [1,∞], T > 0 and a
pointwise decreasing R+ ∋ s �→ ρ(s) ∈ ρ(ω) we have

‖f ‖
L

γ−ε/2,α−ε
p,T (Gε,ρ)

� ‖f ‖L γ,α
p,T (Gε,ρ),

and for γ ∈ [0,1) and ε ∈ (0, α)

‖f ‖
L

γ,α−ε
p,T (Gε,ρ)

� 1γ=0

∥∥f (0)
∥∥
Cα−ε
p (Gε,ρ)

+ T ε/2‖f ‖L γ,α
p,T (Gε,ρ).

All involved constants are independent of ε.

Proof. The first estimate is proved as in [21, Lemma 6.8]. For γ = 0 the proof of the second inequality works as in

Lemma 2.11 of [21]. The general case follows from the fact that f ∈L
γ,α

p,T if and only if t �→ tγ f ∈L
0,α
p,T . �

4. Paracontrolled analysis on Bravais lattices

4.1. Discrete paracontrolled calculus

Given two distributions f1, f2 ∈ S ′(Rd), Bony [4] defines their paraproduct as

f1 ✹ f2 :=
∑

1≤j2

∑

−1≤j1<j2−1

Δj1
f1 ·Δj2

f2 =
∑

1≤j2

Sj2−1f1 ·Δj2
f2,

which turns out to always be a well-defined expression. However, to make sense of the product f1f2 it is not sufficient

to consider f1 ✹ f2 and f1 ✺ f2 := f2 ✹ f1, we also have to take into account the resonant term [17]

f1 ✒ f2 :=
∑

−1≤j1,j2:|j1−j2|≤1

Δj1
f1 ·Δj2

f2,

which can in general only be defined under compatible regularity conditions such as f1 ∈ Cα
∞(Rd), f2 ∈ C

β
∞(Rd) with

α + β > 0 (see e.g. [1] or [17, Lemma 2.1]). If these conditions are satisfied we decompose f1f2 = f1 ✹ f2 + f1 ✺

f2+ f1 ✒ f2. Bony’s construction can easily be adapted to a discrete and weighted setup, where of course we have no

problem in making sense of pointwise products but we are interested in uniform estimates.

Definition 4.1. Let Gε be a Bravais lattice, ω ∈ ω and f1, f2 ∈ S ′ω(R
d). We define the discrete paraproduct

f1 ✹
G f2 :=

∑

1≤j2≤jG

∑

−1≤j1<j2−1

ΔG
j1
f1 ·Δ

G
j2
f2 =

∑

1≤j≤jG

SGj−1f1 ·Δjf2, (57)



Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model 2083

where the discrete Littlewood–Paley blocks ΔG
j are constructed as in Section 2. We also write f1 ✺

G f2 := f2 ✹
G f1.

The discrete resonant term is given by

f1 ✒
G f2 :=

∑

1≤j1,j2≤jG ,|j1−j2|≤1

ΔG
j1
f1 ·Δ

G
j2
f2. (58)

If there is no risk for confusion we may drop the index G on ✹, ✺, and ✒.

In contrast to the continuous theory ✒
G is well defined without any further restrictions since it only involves a finite

sum. All the estimates that are known from the continuous theory carry over.

Lemma 4.2. Given Gε as in Definition 2.2, ρ1, ρ2 ∈ ρ(ω) and p ∈ [1,∞] we have the bounds:

(i) For any α2 ∈R

‖f1 ✹ f2‖Cα2
p (Gε,ρ1·ρ2)

� ‖f1‖L∞(Gε,ρ1)‖f2‖Cα2
p (Gε,ρ2)

∧ ‖f1‖Lp(Gε,ρ1)‖f2‖Cα2
∞ (Gε,ρ2)

,

(ii) for any α1 < 0, α2 ∈R

‖f1 ✹ f2‖Cα1+α2
p (Gε,ρ1·ρ2)

� ‖f1‖Cα1
p (Gε,ρ1)

‖f2‖Cα2
∞ (Gε,ρ2)

∧ ‖f1‖Cα1
∞ (Gε,ρ1)

‖f2‖Cα2
p (Gε,ρ2)

,

(iii) for any α1, α2 ∈R with α1 + α2 > 0

‖f1 ✒ f2‖Cα1+α2
p (Gε,ρ1·ρ2)

� ‖f1‖Cα1
p (Gε,ρ1)

‖f2‖Cα2
∞ (Gε,ρ2)

∧ ‖f1‖Cα1
p (Gε,ρ1)

‖f2‖Cα2
∞ (Gε,ρ2)

,

where all involved constants only depend on G but not on ε. All estimates have the property (E) if the regularity on the
left-hand side is lowered by an arbitrary κ > 0.

Proof. Similarly as in the continuous case SG
ε

j−1f1 · Δ
Gε

j f2 is spectrally supported on a set of the form 2jA ∩ Ĝε ,

where A is an annulus around 0. Similarly, we have for i, j with i ∼ j that the function Δ
Gε

i f1 ·Δ
Gε

j f2 is spectrally

supported in a set of the form 2jB ∩ Ĝε , where B is a ball around 0. We give a proof of these two facts in the

Appendix (Lemma A.6). Using these two observations the proof of the estimates in (i)–(iii) follows along the lines of

[17, Lemma 2.1]) (which in turn is taken from [1, Theorem 2.82, Theorem 2.85]).

We are left with the task of proving the property (E). We show in Lemma 4.3 below that there is an N ∈ N

(independent of ε and j ) such that for −1≤ i ≤ j ≤ jGε −N

Eε
(
Δ
Gε

i f1 ·Δ
Gε

j f2

)
=ΔiE

εf1 ·ΔjE
εf2. (59)

Consequently we can write

Eε
(
f1 ✹

Gε

f2

)
=

∑

1≤j≤jGε

Eε
(
SG

ε

j−1f1 ·Δ
Gε

j f2

)

=
∑

1≤j≤jGε−N

Sj−1E
εf1 ·ΔjE

εf2 +
∑

jGε−N<j≤jGε

Eε
(
S
Gε

j−1f1 ·Δ
Gε

j f2

)
,

where we used (59) and SG
ε

j−1 =
∑
−1≤i<j−1 Δ

Gε

i , Sj−1 =
∑
−1≤i<j−1 Δi . On the other hand we can write

Eεf1 ✹ Eεf2 =
∑

1≤j

Sj−1E
εf1 ·ΔjE

εf =
∑

1≤j≤jGε−N

Sj−1E
εf1 ·ΔjE

εf2 +
∑

j∼jGε

Sj−1E
εf1 ·ΔjE

εf2,

where we used in the second step that Eεf2 = FRd (ψ(ε·)(FGεf2)ext) is spectrally supported in a ball of size ε−1 ≈
2jGε to drop all j with j � jGε . In total we obtain

Eε
(
f1 ✹

Gε

f2

)
− Eεf1 ✹ Eεf2 =

∑

j∼jGε

Eε
(
SG

ε

j−1f1 ·Δ
Gε

j f2

)
−

∑

j∼jGε

Sj−1E
εf1 ·ΔjE

εf2.
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Note that the two sums on the right-hand side are spectrally supported in an annulus of size 2jGε . Using

Lemma 2.24, the fact Δi : L
p(Rd , ρ)→ Lp(Rd , ρ) (by (32)) and that Eε : Lp(Gε, ρ)→ Lp(Rd , ρ) (due to (33)

and Lemma 2.20), with uniform bounds, we can thus estimate

∥∥Δi

(
Eε
(
f1 ✹

Gε

f2

)
− Eεf1 ✹ Eεf2

)∥∥
Lp(Rd ,ρ)

� 1i∼jGε

( ∑

j∼jGε

∥∥SGε

j−1f1 ·Δ
Gε

j f2

∥∥
Lp(Gε,ρ)

+
∑

j∼jGε

∥∥Sj−1E
εf1 ·ΔjE

εf2

∥∥
Lp(Rd ,ρ)

)
.

Assume without loss of generality that the right-hand side of estimate (i) is bounded by 1. We then have using

S
Gε

j−1 : L
q(Gε, ρ)→ Lq(Gε, ρ) (by Lemma 2.25 and Lemma 2.20) and Sj−1 : L

q(Rd , ρ)→ Lq(Rd , ρ) (by (39) and

Young’s inequality) for q ∈ [1,∞], both with uniform bounds,

∥∥Δi

(
Eε
(
f1 ✹

Gε

f2

)
− Eεf1 ✹ Eεf2

)∥∥
Lp(Rd ,ρ)

� 1i∼jGε

∑

j∼jGε

2−jα2 � 1i∼jGε 2−jGεα2 � 2−i(α2−κ)εκ .

In the last step we used that 2−jGε ≈ ε by definition of jGε . This shows the property (E) for estimate (i). If the

right-hand side of estimate (ii) is uniformly bounded by 1 we obtain the bound

∥∥Δi

(
Eε
(
f1 ✹

Gε

f2

)
− Eεf1 ✹ Eεf2

)∥∥
Lp(Rd ,ρ)

� 1i∼jGε

∑

j∼jGε

∑

−1≤j ′<j−1

2−j ′α1 2−jα2

� 1i∼jGε 2−jGε (α1+α2) � 2−i(α1+α2−κ)εκ

and the property (E) for (ii) follows. Considering case (iii) assume once more that the right-hand side is bounded by 1.

We get, by once more applying (59),

Eε
(
f1 ✒

Gε

f2

)
− Eεf1 ✒ Eεf2 =

∑

j,j ′∼jGε :|j−j ′|≤1

Eε
(
Δ
Gε

j f1 ·Δ
Gε

j ′
f2

)
−

∑

j,j ′�jGε :|j−j ′|≤1

ΔjE
εf1 ·Δj ′E

εf2

=
∑

j,j ′∼jGε :|j−j ′|≤1

(
Eε
(
Δ
Gε

j f1 ·Δ
Gε

j ′
f2

)
−ΔjE

εf1 ·Δj ′E
εf2

)
,

where we used in the second line that the spectral support of Eεf1 and of Eεf2 is contained in a ball of size ε−1 ≈ 2jGε

to reduce the sum in the second term to j, j ′ ∼ jGε . Using then that the terms on the right-hand side are spectrally

supported in a ball of size 2j we get for i ≥−1

Δi

(
Eε
(
f1 ✒

Gε

f2

)
− Eεf1 ✒ Eεf2

)
=

∑

j,j ′∼jGε :|j−j ′|≤1

1i�j

(
Eε
(
Δ
Gε

j f1 ·Δ
Gε

j ′
f2

)
−ΔjE

εf1 ·Δj ′E
εf2

)
,

so that we obtain, using once more Eε : Lp(Gε, ρ)→Lp(Rd , ρ) and Δi : L
p(Rd , ρ)→Lp(Rd , ρ),

∥∥Δi

(
Eε
(
f1 ✒

Gε

f2

)
− Eεf1 ✒ Eεf2

)∥∥
Lp(Rd ,ρ)

�
∑

j,j ′∼jGε :|j−j ′|≤1

1i�j · 2
−(jα1+j ′α2)

� 1i�jGε · 2
−jGε (α1+α2−κ)εκ � 2−i(α1+α2−κ)εκ ,

where we chose κ > 0 in the second line small enough so that α1 + α2 − κ > 0. �

Lemma 4.3. Let Gε be as in Definition 2.2, ω ∈ ω and construct Littlewood–Paley blocks as in Section 2.4. Let
ψ,ψε and Eε be as in Section 2.4. There is a N = N(G,ψ) ∈ N such that for all ε and −1 ≤ i ≤ j ≤ jGε −N and
f1, f2 ∈ S ′ω(G

ε)

Eε
(
ΔGε

i f1 ·Δ
Gε

j f2

)
=ΔiE

εf1 ·ΔjE
εf2.
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Proof. Let us fix rε := dist(∂Ĝε,0) so that B(0, rε) ⊆ Ĝε . From Lemma A.6 and the construction of our discrete

partition of unity on page 2065 we know that the spectral support of Δ
Gε

i f1 ·Δ
Gε

j f2 and the support of ϕ
Gε

i ·FGεf1

and ϕGε

j · FGεf2 are contained in a set of the form 2jB ∩ Ĝε , where B is a ball around 0. Choose N ∈ N such that

for j with −1≤ j ≤ jGε −N (if any) we have 2jB ⊆ 2jGε−NB ⊆ B(0, rε/4) (note that N is independent of ε since

rε = c · 2jGε by the dyadic scaling of our lattice). In particular we have 2jB ⊆ Ĝε , 2jB∩ Ĝε = 2jB. Choose N further

so big that we have for the smear function ψε

ψε|2jB =ψ(ε·)|2jB = 1, suppψε ∩
(
2jB+R

ε \ {0}
)
=∅

for −1 ≤ j ≤ jGε − N (independently of ε). Choose a χ ∈ Dω(R
d) such that χ |B(0,rε/4) = 1 and χ = 0 outside

B(0, rε/2). We can then reshape

FRdE
ε
(
ΔGε

i f1 ·Δ
Gε

j f2

)
=ψε ·

(
ϕGε
i FGεf1 ∗Ĝε ϕ

Gε

j FGεf2

)
ext
= χ ·

(
ϕGε
i FGεf1 ∗Ĝε ϕ

Gε

j FGεf2

)
ext

,

where we used the support properties above to replace ψε by χ . Now, note that (using formal notation to clarify the

argument)

χ(x) ·
(
ϕ
Gε
i FGεf1 ∗Ĝε ϕ

Gε

j FGεf2

)
ext

(x)= χ(x) ·

∫

Ĝε

(
ϕ
Gε
i FGεf1

)
(z) ·

(
ϕ
Gε

j FGεf2

)(
[x − z]

)
dz. (60)

Since only x ∈ B(0, rε/2) and z ∈ B(0, rε/4) contribute we have x − z ∈ B(0,3/4r)⊆ Ĝε so that [x − z] = x − z in

(60). Using that suppϕ
Gε

i ∪ suppϕ
Gε

j ⊆ Ĝε we can replace ϕ
Gε

i and ϕ
Gε

j in (60) by ϕi , ϕj (the dyadic partition of unity

on Rd from which ϕGε

j is constructed as on page 2065), replace FGεf1, FGεf2 by their periodic extension and extend

the integral to Rd so that in total

FRdE
ε
(
Δ
Gε

i f1 ·Δ
Gε

j f2

)
(x)= χ(x) ·

∫

Rd

(
ϕi(FGεf1)ext

)
(z) ·

(
ϕj (FGεf2)ext

)
(x − z)dz

=

∫

Rd

(
ϕiψ

ε(FGεf1)ext

)
(z) ·

(
ϕjψ

ε(FGεf2)ext

)
(x − z)dz

=FRd

(
ΔiE

εf1ΔjE
εf2

)
(x),

where we used in the second line that the support of the convolution is once more contained in B(0, rε/4) to drop χ

and that ψε|2jB = 1 to introduce smear functions in the integral. The claim follows. �

The main observation of [17] is that if the regularity condition α1 + α2 > 0 is not satisfied, then it may still be

possible to make sense of f1 ✒ f2 as long as f1 can be written as a paraproduct plus a smoother remainder. The main

lemma which makes this possible is an estimate for a certain “commutator”. The discrete version of the commutator

is defined as

CG(f1, f2, f3) :=
(
f1 ✹

G f2

)
✒
G f3 − f1

(
f2 ✒

G f3

)
.

If there is no risk for confusion we may drop the index G on C.

Lemma 4.4 ([19, Lemma 14]). Given ρ1, ρ2, ρ3 ∈ ρ(ω), p ∈ [1,∞] and α1, α2, α3 ∈ R with α1 + α2 + α3 > 0 and
α2 + α3 �= 0 we have

∥∥CG(f1, f2, f3)
∥∥
C
α2+α3
p (Gε,ρ1ρ2ρ3)

� ‖f1‖Cα1
p (Gε,ρ1)

‖f2‖Cα2
∞ (Gε,ρ2)

‖f3‖C
α3
∞ (Gε,ρ3)

.

Further, property (E) holds for C if the regularity on the left-hand side is reduced by an arbitrary κ > 0.

Proof. The proof of the estimates works line-by-line as in [19, Lemma 14] and the (E)-property follows as in

Lemma 4.2 via a modification of Lemma 4.3 to three factors. �
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4.2. The modified paraproduct

It will be useful to define a lattice version of the modified paraproduct ≺≺ that was introduced in [17] and also used in

[10,21].

Definition 4.5. Fix a function ϕ ∈ C∞c ((0,∞);R+) such that
∫
R
ϕ(s)ds = 1 and define

Qif (t) :=

∫ t

−∞

22idϕ
(
22i(t − s)

)
f (s ∨ 0)ds, i ≥−1.

We then set

f1≺≺
Gf2 :=

∑

−1≤j1,j2≤jG :j1<j2−1

Qj2
Δ
G
j1
f1 ·Δ

G
j2
f2

for f1, f2 : R+→ S ′ω(G) where this is well defined. We may drop the index G if there is no risk for confusion.

Convention 4.6. As in [21] we silently identify f1 in f1≺≺f2 with t �→ f (t)1t>0 if f1 ∈M
γ

T C
α
p(G, ρ) with γ > 0.

Once more the translation to the continuous case f1, f2 : R+→ S ′ω(R
d) is analogous. The modified paraproduct

allows for similar estimates as in Lemma 4.2.

Lemma 4.7. Let β ∈ R, p ∈ [1,∞], γ ∈ [0,1), t > 0, α < 0 and let ρ1, ρ2 : R+→ ρ(ω) with ρ1 pointwise decreas-
ing. Then

tγ
∥∥f≺≺g(t)

∥∥
C
α+β
p (Gε,ρ1(t)ρ2(t))

� ‖f ‖Mγ
t C

α
p (G

ε,ρ1)

∥∥g(t)
∥∥
C
β
∞(Gε,ρ2(t))

∧ ‖f ‖Mγ
t C

α
∞(Gε,ρ1)

∥∥g(t)
∥∥
C
β
p (G

ε,ρ2(t))

and

tγ
∥∥f≺≺g(t)

∥∥
C
β
p (G

ε,ρ1(t)ρ2(t))
� ‖f ‖Mγ

t L
p(Gε,ρ1)

∥∥g(t)
∥∥
C
β
∞(Gε,ρ)

∧ ‖f ‖Mγ
t L

∞(Gε,ρ1)

∥∥g(t)
∥∥
C
β
p (G

ε,ρ2(t))
.

Both estimates have the property (E) if the regularity on the left-hand side is decreased by an arbitrary κ > 0.

Proof. The proof is the same as for [21, Lemma 6.4]. Property (E) is shown as in Lemma 4.2. �

We further have an estimate in terms of the parabolic spaces L
γ,α

p,T (G, ρ) that were introduced in Definition 3.8.

Lemma 4.8. We have for α ∈ (0,2), p ∈ [1,∞], γ ∈ [0,1) and ρ1, ρ2 : R+→ ρ(ω), pointwise decreasing in s, the
estimate

‖f≺≺g‖L γ,α
p,T (Gε,ρ1ρ2)

� ‖f ‖
L

γ,δ
p,T (Gε,ρ1)

(
‖g‖CT C

α
∞(Gε,ρ2) +

∥∥L εg
∥∥
CT C

α−2
∞ (Gε,ρ2)

)

for any δ > 0 and any diffusion operator L ε
μ as in Definition 3.3. This estimate has the property (E) if the regularity

α on the left-hand side is lowered by an arbitrary κ > 0.

Proof. The proof is as in [21, Lemma 6.7] and uses Lemma 4.9 below. The proof of the property (E) is as in

Lemma 4.2. �

The main advantage of the modified paraproduct ≺≺ on Rd is its commutation property with the heat kernel ∂t −

� (or Lμ = ∂t − Lμ) which is essential for the Schauder estimates for paracontrolled distributions, compare also

Section 5.2 below. In the following we state the corresponding results for Bravais lattices.
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Lemma 4.9. For α ∈ (0,2), β ∈R, p ∈ [1,∞], γ ∈ [0,1) and ρ1, ρ2 : R+→ ρ(ω), with ρ1 pointwise decreasing, we
have for t > 0

tγ
∥∥(f≺≺g − f ✹ g)(t)

∥∥
C
α+β
p (Gε,ρ1(t)ρ2(t))

� ‖f ‖L γ,α
p,t (Gε,ρ1)

∥∥g(t)
∥∥
C
β
∞(Gε,ρ2(t))

and

tγ
∥∥(L ε

μ(f≺≺g)− f≺≺L
ε
μg

)
(t)

∥∥
C
α+β−2
p (Gε,ρ1(t)ρ2(t))

� ‖f ‖L γ,α
p,t (Gε,ρ1)

∥∥g(t)
∥∥
C
β
∞(Gε,ρ2(t))

,

where L ε
μ = ∂t −Lε

μ is a discrete diffusion operator as in Definition 3.3. These estimates have the property (E) if the
regularity on the left-hand side is lowered by an arbitrary κ > 0.

Proof. Again we can almost follow along the lines of the proof in [21, Lemma 6.5] with the only difference that in

the derivation of the second estimate the application of the “product rule” of L ε
μ does not yield a term −2∇f≺≺∇g

but a more complex object, namely

∫

Rd

dμ(y)

ε2
Dε

yf≺≺Dε
yg, (61)

where Dε
yf (t, x)= f (t, x + εy)− f (t, x) and similarly for g. The bound for (61) follows from Lemma 4.7 once we

show

∥∥Dε
yϕ
∥∥
C
γ−1
p (Gε,ρ1)

� ‖ϕ‖Cγ
p (Gε,ρ1)

|y| · ε (62)

for any γ ∈R. Note that due to Lemma 2.25 we can write

ΔjD
y
ε ϕ =

(
�̃ε,j (· + εy)− �̃ε,j

)
∗Gε ϕ,

where �̃ε,j = Eε�Gε,j = 2jdφ〈j〉ε (2
j ·) with φ〈j〉ε ∈ Sω(R

d). With

�̃ε,j (x + εy)− �̃ε,j (x)= 2j

∫ 1

0

2jdφ〈j〉ε
(
2j (x + ζεy)

)
dζ · yε

we get (62) by applying Lemma 2.20. The proof of the property (E) is as in Lemma 4.2 and it uses Lemma 3.4. �

5. Weak universality of PAM on R2

With the theory from the previous sections at hand we can analyze stochastic models on unbounded lattices using

paracontrolled techniques. As an example, we prove the weak universality result for the linear parabolic Anderson

model that we discussed in the introduction. For F ∈ C2(R;R) with F(0) = 0 and bounded second derivative we

consider the equation

L
1
μv

ε = F
(
vε
)
· ηε, vε(0)= |G|−11·=0 (63)

on R+ × G, where G ⊆ R2 is a two-dimensional Bravais lattice, L 1
μ = ∂t − L1

μ is a discrete diffusion operator on

the lattice G as described in Definition 3.3, induced by μ ∈ µ(ω) with ω = ω
exp
σ for σ ∈ (0,1). The upper index

“1” indicates that we did not scale the lattice G yet. The family (ηε(z))z∈G ∈ S ′ω(G) consists of independent (not

necessarily identically distributed) random variables satisfying for z ∈ G

E
[
ηε(z)

]
=−F ′(0)cεμε

2, Var
(
ηε(z)

)
=

1

|Gε|
=

1

|G|
ε2,
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where cεμ > 0 is a constant of order O(| log ε|) which we will fix in equation (67) below. We further assume that for

every ε and z ∈ G the variable ηε(z) has moments of order pξ > 14 such that

sup
z∈Gε

E
[∣∣ηε(z)−E

[
ηε(z)

]∣∣pξ
]
� εpξ .

The lower bound 14 for pξ might seem quite arbitrary at the moment, we will explain this choice in Remark 5.6 below.

Note that ηε is of order O(ε) while its expectation is of order O(ε2| log ε|), so we are considering a small shift away

from the “critical” expectation 0.

We are interested in the behavior of (63) for large scales in time and space. Setting uε(t, x) := ε−2vε(ε−2t, ε−1x)

and ξ ε(x) := ε−2(ηε(ε−1x)+ F ′(0)cεμε
2) modifies the problem to

L
ε
μu

ε = F ε
(
uε
)(
ξ ε − F ′(0)cεμ

)
, uε(0)=

∣∣Gε
∣∣−1

1·=0, (64)

where uε : R+ × Gε →R is defined on refining lattices Gε in d = 2 as in Definition 2.2 and where F ε := ε−2F(ε2·).

The potential (ξ ε(x))x∈Gε is scaled so that it satisfies for z ∈ Gε

• E[ξ ε(z)] = 0,

• E[|ξ ε(z)|2] = |Gε|−1 = |G|−1ε−2,

• supz∈Gε E[|ξ ε(z)|pξ ]� ε−pξ for some pξ > 14.

We consider ξ ε as a discrete approximation to white noise in dimension 2. In particular, we expect Eεξ ε to converge

in distribution to white noise on R2, and we will see in Lemma 5.5 below that this is indeed the case. In Theorem 5.13

we show that Eεuε converges in distribution to the solution u of the linear parabolic Anderson model on R2,

Lμu= F ′(0)u
(
ξ − F ′(0)∞

)
, u(0)= δ, (65)

where ξ is white noise on R2, δ is the Dirac delta distribution, “−∞” denotes a renormalization and Lμ is the limiting

operator from Definition 3.3. The existence and uniqueness of a solution to (65) were first established in [25] (for more

regular initial conditions) by using a “partial Cole–Hopf transformation” which turns the equation into a well-posed

PDE. Using the continuous versions of the objects defined in the Sections above we can modify the arguments of [17]

to give an alternative proof of their result, see Corollary 5.12 below. The limit of (64) only sees F ′(0) and forgets

the structure of the non-linearity F , so in that sense the linear parabolic Anderson model arises as a universal scaling

limit.

Let us illustrate this result with a (far too simple) model: Suppose F is of the form F(v)= v(1− v) and let us first

consider the following ordinary differential equation on [0, T ]:

∂tv = η · F(v), v(0) ∈ (0,1),

for some η ∈ R. If η > 0, then v describes the evolution of the concentration of a growing population in a pleasant

environment, which however shows some saturation effects represented by the factor (1− v) in the definition of F .

For η < 0 the individuals live in unfavorable conditions, say in competition with a rival species. From this perspective

equation (63) describes the dynamics of a population that migrates between diverse habitats. The meaning of our

universality result is that if we tune down the random potential ηε and counterbalance the growth of the population

with some renormalization (think of a death rate), then from far away we can still observe its growth (or extinction)

without feeling any saturation effects.

The analysis of (64) and the study of its convergence are based on the lattice version of paracontrolled distributions

that we developed in the previous sections and it will be given in Section 5.2 below. In that analysis it will be important

to understand the limit of Eεξ ε and a certain bilinear functional built from it, and we will also need uniform bounds

in suitable Besov spaces for these objects. In the following subsection we discuss this convergence.

5.1. Discrete Wick calculus and convergence of the enhanced noise

We develop here a general machinery for the use of discrete Wick contractions in the renormalization of discrete,

singular SPDEs with i.i.d. noise which is completely analogous to the continuous Gaussian setting. Moreover, we
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build on the techniques of [6] to provide a criterion that identifies the scaling limits of discrete Wick products as

multiple Wiener–Itô integrals. Our results are summarized in Lemma 5.1 and Lemma 5.4 below and although the use

of these results is illustrated only on the discrete parabolic Anderson model, the approach extends in principle to any

discrete formulation of popular singular SPDEs such as the KPZ equation or the �4
d models. In order to underline the

general applicability of these methods we work in this subsection in a general dimension d .

Take a sequence of scaled Bravais lattices Gε in dimension d as in Definition 2.2. As a discrete approximation to
white noise we take independent (but not necessarily identically distributed) random variables (ξ ε(z))z∈Gε that satisfy

• E[ξ ε(x)] = 0,

• E[|ξ ε(x)|2] = |Gε|−1 = |G|−1ε−d ,

• supz∈Gε E[|ξ ε(z)|pξ ]� ε−d/2·pξ for some pξ ≥ 2.

Note that the family (ξ ε(z))z∈Gε we defined in the introduction of this Section fits into this framework (with d = 2

and pξ > 14).

Let us fix a symmetric χ ∈Dω(R
d), independent of ε, which is 0 on 1

4
· Ĝ and 1 outside of 1

2
· Ĝ and define

Xε
μ :=

χ

lεμ
(DGε )ξ ε :=F

−1
Gε

(
χ

lεμ
·FGεξ ε

)
.

Let us point out that the χ used in the construction of Xε
μ does not depend on ε and only serves to erase the “zero-

modes” of ξ ε to avoid integrability issues. Note that L ε
μX

ε
μ = −Lε

μX
ε
μ = χ(DGε )ξ ε = F

−1
Gε (χ · FGεξ ε) so that Xε

μ

is a time independent solution to the heat equation on Gε driven by χ(DGε )ξ ε . Our first task will be to measure the

regularity of the sequences (ξ ε), (Xε
μ) in terms of the discrete Besov spaces introduced in Section 2.4. For that purpose

we need to estimate moments of sufficiently high order. For discrete multiple stochastic integrals with respect to the

variables (ξ ε(z))z∈Gε , that is for sums
∑

z1,...,zn∈Gε f (z1, . . . , zn)ξ
ε(z1) . . . ξ

ε(zn) with f (z1, . . . , zn) = 0 whenever

zi = zj for some i �= j it was shown in [10, Proposition 4.3] that all moments can be bounded in terms of the ℓ2 norm

of f and the corresponding moments of the (ξ ε(z))z∈Gε . However, typically we will have to bound such expressions

for more general f (which do not vanish on the diagonals) and in that case we first have to arrange our random variable

into a finite sum of discrete multiple stochastic integrals, so that then we can apply [10, Proposition 4.3] for each of

them. This arrangement can be done in several ways, here we follow [29] and regroup in terms of Wick polynomials.

Given random variables (Y (j))j∈J over some index set J and I = (j1, . . . , jn) ∈ J n we set

Y I = Y(j1) · · ·Y(jn)=

n∏

k=1

Y(jk)

as well as Y∅ = 1. According to Definition 3.1 and Proposition 3.4 of [34], the Wick product Y ⋄I can be defined

recursively by Y ⋄∅ := 1 and

Y ⋄I := Y I −
∑

∅ �=E⊂I

E
[
YE

]
· Y ⋄I\E . (66)

For I = (j1, . . . , jn) ∈ J n we also write

Y(j1) ⋄ · · · ⋄ Y(jn) := Y ⋄I .

By induction one easily sees that this product is commutative. In the case j1 = · · · = jn we may write instead

Y(j1)
⋄n.

Lemma 5.1 (see also Proposition 4.3 in [10]). Let Gε be as in Definition 2.2 and let (ξ ε(z))z∈Gε be a discrete
approximation to white noise as above, n ≥ 1 and assume pξ ≥ 2n. For f ∈ L2((Gε)n) define the discrete multiple

stochastic integral w.r.t. (ξ ε(z)) by

Inf :=
∑

z1,...,zn∈Gε

∣∣Gε
∣∣nf (z1, . . . , zn)ξ

ε(z1) ⋄ · · · ⋄ ξ ε(zn).
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It then holds for 2≤ p ≤ pξ/n

‖Inf ‖Lp(P) � ‖f ‖L2((Gε)n).

Proof. In the following we identify Gε with an enumeration by N so that we can write

Inf =
∑

1≤r≤n,a∈An
r

r!
∑

z1<···<zr

∣∣Gε
∣∣nf̃a(z1, . . . , zr) · ξ

ε(z1)
⋄a1 × · · · × ξ ε(zr )

⋄ar ,

where An
r := {a ∈Nr |

∑
i ai = n}, f̃a denotes the symmetrized version of

fa(z1, . . . , zr ) := f
( a1×︷ ︸︸ ︷
z1, . . . , z1, . . . ,

ar×︷ ︸︸ ︷
zr , . . . , zr

)
· 1zi �=zj∀i �=j ,

and where we used the independence of ξ ε(z1), . . . , ξ
ε(zr ) to decompose the Wick product (we did not show this

property, but it is not hard to derive it from the definition of ⋄ we gave above). The independence and the zero mean

of the Wick products allow us to see this as a sum of nested martingale transforms so that an iterated application

of the Burkholder–Davis–Gundy inequality and Minkowski’s inequality as in [10, Proposition 4.3] gives the desired

estimate

‖Inf ‖
2
Lp(P) �

∑

1≤r≤n,a∈An
r

∥∥∥∥
∑

z1<···<zr

∣∣Gε
∣∣n · f̃a(z1, . . . , zr) · ξ

ε(z1)
⋄a1 × · · · × ξ ε(zr )

⋄ar

∥∥∥∥
2

Lp(P)

�
∑

1≤r≤n,a∈An
r

∑

z1<···<zr

∣∣Gε
∣∣2n ·

∣∣f̃a(z1, . . . , zr)
∣∣2 ·

r∏

j=1

∥∥ξ ε(zj )
⋄aj

∥∥2

Lp(P)

�
∑

1≤r≤n,a∈An
r

∑

z1,...,zr

∣∣Gε
∣∣n∣∣f̃a(z1, . . . , zr)

∣∣2 ≤ ‖f ‖2
L2((Gε)n)

,

where we used the bound ‖ξ ε(zr )
⋄aj ‖2

Lp(P)
� |Gε|−aj which follows from (66) and our assumption on ξ ε . �

As a direct application we can bound the moments of ξ ε and Xε
μ in Besov spaces. We also need to control the

resonant term Xε
μ ✒ ξ ε , for which we introduce the renormalization constant

cεμ :=

∫

Ĝε

χ(x)

lεμ(x)
dx, (67)

which is finite for all ε > 0 because Ĝε is compact and χ is supported away from 0. We define a renormalized resonant

product by

Xε
μ • ξ

ε :=Xε
μ ✒ ξ ε − cεμ.

Remark 5.2. Since lεμ ≈ |·|
2 (Lemma 3.5 together with the easy estimate lεμ � |·|2) we have cεμ ≈− log ε in dimen-

sion 2.

Using Lemma 5.1 we can derive the following bounds.

Lemma 5.3. Let ξ ε,Xε and Xε
μ • ξ

ε be defined on Gε as above with pξ ≥ 4 (where pξ is as on page 2089) and let
d < 4. For μ ∈ µ(ω), ζ < 2− d/2− d/pξ and κ > d/pξ we have

E
[∥∥ξ ε

∥∥pξ

Cζ−2(Gε,pκ )

]
+E

[∥∥Xε
μ

∥∥pξ

Cζ (Gε,pκ )

]
+E

[∥∥Xε
μ • ξ

ε
∥∥pξ /2

C2ζ−2(Gε,p2κ )

]
� 1. (68)

The implicit constant is independent of ε.
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Proof. Let us bound the regularity of Xε
μ. Recall that by Lemma 2.22 we have the continuous embedding (with

norm uniformly bounded in ε) B
ζ+d/pξ
pξ ,pξ

(Gε,pκ) ⊆ Cζ (Gε,pκ). To show (68) it is therefore sufficient to bound for

β < 2− d/2

E
[∥∥Xε

μ

∥∥pξ

B
β
pξ ,pξ

(Gε,pκ )

]
=

∑

−1≤j≤jGε

2jpξβ
∑

z∈Gε

∣∣Gε
∣∣E
[∣∣ΔGε

j Xε
μ(z)

∣∣pε
] 1

(1+ |z|)κpξ
.

By assumption we have κpξ > d and can bound
∑

z∈Gε |Gε|(1 + |z|)−κpξ � 1 uniformly in ε (for example by

Lemma A.2). It thus suffices to derive a bound for E[|ΔGε

j Xε
μ(x)|

pε ], uniformly in ε and x. Note that by (7)

ΔGε

j Xε
μ(x) =

∑
z∈Gε |Gε|K ε

j (x − z)ξ ε(z) with K ε
j = F

−1
Gε (ϕ

Gε

j χ/lεμ) so that Lemma 5.1, Parseval’s identity (6)

and lεμ � |·|2 on Ĝε (from Lemma 3.5) imply

E
[∣∣ΔGε

j Xε
μ(x)

∣∣pξ
]
�
∥∥K ε

j (x − ·)
∥∥pξ

L2(Gε)
� 2jpξ (d/2−2),

which proves the bound for Xε
μ. The bound for ξ ε follows from the same arguments or with Lemma 3.4.

Now let us turn to Xε
μ • ξ

ε . A short computation shows that

E
[(
Xε

μ ✒ ξ ε
)
(x)

]
= E

[(
Xε

μ · ξ
ε
)
(x)

]
= cεμ, x ∈ Gε,

and, by a similar argument as above, it suffices to bound Xε
μ • ξ ε in B

β

pξ /2,pξ /2(R
d ,p2κ ) for β < 2 − d . We are

therefore left with the task of bounding the (pξ/2)th moment of

ΔGε

k

( ∑

|i−j |≤1

ΔGε

i Xε
μΔ

Gε

j ξ ε −E
[
ΔGε

i Xε
μΔ

Gε

j ξ ε
])

(x)

=
∑

z1,z2,y

∣∣Gε
∣∣3 ∑

|i−j |≤1

�Gε,k(x − y)K ε
i (y − z1)�

Gε,j (y − z2)
(
ξ ε(z1)ξ

ε(z2)−E
[
ξ ε(z1)ξ

ε(z2)
])

=
∑

z1,z2

∣∣Gε
∣∣2
( ∑

|i−j |≤1

∑

y

∣∣Gε
∣∣�Gε,k(x − y)K ε

i (x − z1)�
Gε,j (x − z2)

)
ξ ε(z1) ⋄ ξ ε(z2),

which with Lemma 5.1 and Parseval’s identity (6) can be estimated by

E

[∣∣∣∣
∑

z1,z2

∣∣Gε
∣∣2
( ∑

|i−j |≤1

∣∣Gε
∣∣�Gε,k(x − y)K ε

i (x − z1)�
Gε,j (x − z2)

)
ξ ε(z1) ⋄ ξ ε(z2)

∣∣∣∣
pξ /2]2/pξ

�

∥∥∥∥
∑

|i−j |≤1

∑

y

∣∣Gε
∣∣�Gε,k(x − y)K ε

i (x − z1)�
Gε,j (x − z2)

∥∥∥∥
L2
z1,z2

((Gε)2)

=

∥∥∥∥
∑

|i−j |≤1

∑

y

∣∣Gε
∣∣�Gε,k(x − y)F(Gε)2

(
K

ε
i (x − ·)⊗�Gε,j (x − ·)

)
(ℓ1, ℓ2)

∥∥∥∥
L2
ℓ1,ℓ2

((Ĝε)2)

=

∥∥∥∥e
−2πı(ℓ1+ℓ2)·x

∑

|i−j |≤1

FGε�Gε,k
(
−(ℓ1 + ℓ2)

)
FGεK

ε
i (−ℓ1)FGε�Gε,j (−ℓ2)

∥∥∥∥
L2
ℓ1,ℓ2

((Ĝε)2)

=

∥∥∥∥
∑

|i−j |≤1

ϕ
Gε

k (ℓ1 + ℓ2)
ϕ
Gε

i (ℓ1)χ(ℓ1)

lεμ(ℓ1)
ϕ
Gε

j (ℓ2)

∥∥∥∥
L2
ℓ1,ℓ2

((Ĝε)2)

,
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where in the last step we used that all considered functions are even. Since ϕGε

k (ℓ1 + ℓ2) = 0 unless |ℓm| � 2k for

m= 1 or m= 2 and since ‖ϕGε

m ‖L2(Gε) � 2md/2, we get

∥∥∥∥
∑

|i−j |≤1

ϕ
Gε

k (ℓ1 + ℓ2)
ϕ
Gε

i (ℓ1)χ(ℓ1)

lεμ(ℓ1)
ϕ
Gε

j (ℓ2)

∥∥∥∥
L2
ℓ1,ℓ2

((Ĝε)2)

�
∑

|i−j |≥1,j�k

2−2i
∥∥ϕGε

k (ℓ1 + ℓ2)ϕ
Gε

j (ℓ2)
∥∥
L2
ℓ1,ℓ2

((Ĝε)2)

�
∑

|i−j |≥1,j�k

2−2i2kd/22jd/2 � 2k(d−2),

using d/2− 2 < 0 in the last step. �

By the compact embedding result in Lemma 2.23 together with Prohorov’s theorem we see that the sequences

(Eεξ ε), (EεXε
μ), and (Eε(Xε

μ • ξ
ε)) have convergent subsequences in distribution – note that while the Hölder space

Cζ (Rd ,pκ) is not separable, all the processes above are supported on the closure of Cζ ′(Rd ,pκ ′) for ζ ′ > ζ and κ ′ < κ ,

which is a separable subspace and therefore we can indeed apply Prohorov’s theorem. We will see in Lemma 5.5

below that Eεξ ε converges to the white noise ξ on Rd . Consequently, the solution Xε
μ to −Lε

μX
ε
μ = χ(DGε )ξ ε should

approach the solution of −LμXμ = χ(DRd )ξ :=F
−1

Rd (χFRd ξ), i.e.

Xμ =
χ(DRd )

(2π)2‖DRd‖2
μ

ξ =F
−1

Rd

(
χ

(2π)2‖ · ‖2
μ

FRd ξ

)
=K

0
μ ∗ ξ, K

0
μ :=F

−1

Rd

χ

(2π)2‖·‖2
μ

. (69)

where ‖ · ‖μ is defined as in Definition 3.1. The limit of Eε(Xε
μ • ξ

ε) will turn out to be the distribution

Xμ • ξ(ϕ) :=

∫

Rd

∫

R2
K

0
μ (z1 − z2)ϕ(z1)ξ(dz1) ⋄ ξ(dz2)− (Xμ ✹ ξ + ξ ✹ Xμ)(ϕ) (70)

for ϕ ∈ Sω(R
d), where the right-hand side denotes the second order Wiener–Itô integral with respect to the Gaussian

stochastic measure ξ(dz) induced by the white noise ξ , compare [32, Section 7.2]. Note that Xμ •ξ is not a continuous

functional of ξ , so the last convergence is not a trivial consequence of the convergence for Eεξ ε . To identify the limit of

Eε(Xε
μ •ξ

ε) we could use a diagonal sequence argument that first approximates the bilinear functional by a continuous

bilinear functional as in [10,29,37]. Here prefer to go another route and instead we follow [6] who provide a general

criterion for the convergence of discrete multiple stochastic integrals to multiple Wiener–Itô integrals, and we adapt

their results to the Wick product setting of Lemma 5.1.

Lemma 5.4 (see also [6], Theorem 2.3). Let Gε, n ∈ N and (ξ ε(z))z∈Gε be as in Lemma 5.1. For k = 0, . . . , n

let f ε
k ∈ L2((Gε)k). We identify (Gε)k with a Bravais lattice in k · d dimensions via the orthogonal sum (Gε)k =⊕k

i=1 G
ε ⊆

⊕k
i=1 R

d = (Rd)k to define the Fourier transform F(Gε)kf
ε
k ∈ L2((Ĝε)k) of f ε

k . Assume that there ex-

ist gk ∈ L2((Rd)k) with |1(Ĝε)kF(Gε)kf
ε
k | ≤ gk for all ε and fk ∈ L2((Rd)k) such that limε→0 ‖1(Ĝε)kF(Gε)kf

ε
k −

F(Rd )kfk‖L2((Rd )k) = 0 for all k ≤ n. Then the following convergence holds in distribution

lim
ε→0

n∑

k=0

Ikf
ε
k =

n∑

k=0

∫

(Rd )k
fk(z1, . . . , zk)ξ(dz1) ⋄ · · · ⋄ ξ(dzk),

where ξ(dz1) ⋄ · · · ⋄ ξ(dzk) denotes the Wiener–Itô integral against the Gaussian stochastic measure induced by the
white noise ξ on Rd .

Proof. The proof is contained in the Appendix. �

The identification of the limits of the extensions of ξ ε,Xε
μ and Xε

μ • ξ
ε is then an application of Lemma 5.4.
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Lemma 5.5. In the setup of Lemma 5.3 with ξ,Xμ and Xμ • ξ defined as above and with ζ, κ as in Lemma 5.3 we
have for d < 4

(
Eεξ ε,EεXε

μ,E
ε
(
Xε

μ • ξ
ε
)) ε→0
−→ (ξ,Xμ,Xμ • ξ)

in distribution in Cζ−2(Rd ,pκ)× Cζ (Rd ,pκ)× C2ζ−2(Rd ,p2κ).

Proof. Recall that the extension operator Eε is constructed from ψε = ψ(ε·) where the smear function ψ ∈Dω(R
d)

is symmetric and satisfies ψ = 1 on some ball around 0. Since from Lemma 5.3 we already know that the sequence

(Eεξ ε,EεXε
μ,E

ε(Xε
μ • ξ

ε)) is tight in Cζ−2(Rd ,pκ)× Cζ (Rd ,pκ)× C2ζ−2(Rd ,p2κ), it suffices to prove the conver-

gence after testing against ϕ ∈ Sω(R
d):

(
Eεξ ε(ϕ1), . . . ,E

εξ ε(ϕn),E
εXε

μ(ψ1), . . . ,E
εXε

μ(ψn),E
ε
(
Xε

μ • ξ
ε
)
(f1), . . . ,E

ε
(
Xε

μ • ξ
ε
)
(fn)

)

ε→0
→

(
ξ(ϕ1), . . . , ξ(ϕn),Xμ(ψ1), . . . ,Xμ(ψn),Xμ • ξ(f1), . . . ,Xμ • ξ(fn)

)
,

and by taking linear combinations and applying Lemma 5.4 we see that it suffices to establish each of the following

convergences:

Eεξ ε(ϕ)
ε→0
−→ ξ(ϕ), EεXε

μ(ϕ)
ε→0
−→Xμ(ϕ), Eε

(
Xε

μ • ξ
ε
)
(ϕ))

ε→0
→ Xμ • ξ(ϕ) (71)

for all ϕ ∈ Sω(R
d). We can even restrict ourselves to those ϕ ∈ Sω(R

d) with FRdϕ ∈ Dω(R
d), which implies

suppFRdϕ ⊆ Ĝε and F
−1

Rd (ψ
εFRdϕ) = ϕ for ε small enough, which we will assume from now on. Note that

suppFRdϕ ⊆ Ĝε implies

FGε (ϕ|Gε )= (FRdϕ)|Ĝε (72)

since by definition of F−1
Gε

F
−1
Gε

(
(FRdϕ)|Ĝε

)
=
(
F
−1

Rd FRdϕ
)
|Gε = ϕ|Gε .

To show the convergence of Eεξ ε(ϕ) to ξ(ϕ) note that we have from (33)

Eεξ ε(ϕ)=
∑

z∈Gε

∣∣Gε
∣∣(F−1

Rd ψ
ε ∗ ϕ

)
(z)ξ ε(z)=

∑

z∈Gε

∣∣Gε
∣∣F−1

Rd

(
ψεFRdϕ

)
(z)ξ ε(z)=

∑

z∈Gε

∣∣Gε
∣∣ϕ(z)ξ ε(z),

where we used in the first step that ψε is symmetric and in the last step that F−1

Rd (ψ
εFRdϕ)= ϕ by our choice of ϕ

and ε. Using Lemma 5.4 and relation (72) the convergence of Eεξ ε(ϕ) to ξ(ϕ) follows.

For the limit of EεXε
μ we use the following formula, which is derived by the same argument as above:

EεXε
μ(ϕ)=

∑

z1,z2∈Gε

∣∣Gε
∣∣2ϕ(z1)K

ε
μ (z2 − z1)ξ

ε(z2)

with K ε
μ =F

−1
Gε (χ/lεμ). In view of Lemma 5.4 it then suffices to note that

f̂ ε :=FGε

(
ϕ ∗Gε K

ε
μ

)
=FGεϕ ·

χ

lεμ

(72)
= FRdϕ ·

χ

lεμ

is dominated by a multiple of χ/|·|2 on Ĝε due to Lemma 3.5, and it converges to

FRdϕ ·
χ

(2π)2‖·‖2
μ

by the explicit formula for lεμ in (45).
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We are left with the convergence of the third component. Since Eεξ ε → ξ and EεXε
μ → Xμ we obtain via the

(E)-Property of the paraproduct

lim
ε→0

Eε
(
Xε

μ ✹
Gε

ξ ε
)
= lim

ε→0
EεXε

μ ✹ Eεξ ε =Xμ ✹ ξ

and similarly one gets Eε(ξ ε
✹
Gε

Xε
μ)→ ξ ✹ Xμ. We can therefore show instead

Eε
(
Xε

μξ
ε −E

[
Xε

μξ
ε
])
(ϕ)→ (Xμ • ξ + ξ ✹ Xμ +Xμ ✹ ξ)(ϕ). (73)

Note that we have the representations

Eε
(
Xε

μξ
ε −E

[
Xε

μξ
ε
])
(ϕ)=

∑

z1,z2∈Gε

∣∣Gε
∣∣2ϕ(z1)K

ε
μ (z1 − z2)ξ

ε(z1) ⋄ ξ ε(z2),

(Xμ • ξ + ξ ✹ Xμ +Xμ ✹ ξ)(ϕ)=

∫

R2

∫

R2
ϕ(z1)K

0
μ (z1 − z2)ξ(dz1) ⋄ ξ(dz2)

with K ε
μ as above and K 0

μ as in (69). The (Gε)2-Fourier transform of ϕ(z1)K
ε
μ (z1−z2) is ϕ̂ext(x1−x2)χ(x2)/ l

ε
μ(x2)

for x1, x2 ∈ Ĝε , where ϕ̂ext denotes the periodic extension from (12) for FRdϕ|Ĝε ∈ Dω(Ĝ
ε) (recall again that

suppFRdϕ ⊆ Ĝε). We can therefore apply Lemma 5.4 since for d < 4 the function (χ(x2)/ l
ε(x2))

2 � 1|x|�1/|x|
4

is integrable on Ĝε and thus we obtain (73).

We have shown the convergence in distribution of all the components in (71). By Lemma 5.4 we can take any linear

combination of these components and still get the convergence from the same estimates, so that (71) follows from the

Cramér–Wold Theorem. �

5.2. Convergence of the lattice model

We are now ready to prove the convergence of Eεuε announced at the beginning of this section. The key statement

will be the a priori estimate in Lemma 5.9. The convergence of Eεuε to the continuous solution on R2, constructed in

Corollary 5.12, will be proven in Theorem 5.13. We first fix the relevant parameters.

Preliminaries
Throughout this subsection we use the same p ∈ [1,∞], σ ∈ (0,1),μ ∈ µ(ω

exp
σ ), a polynomial weight pκ for some

κ > 2/pξ > 1/7 and a time dependent sub-exponential weight (eσl+t )t∈[0,T ]. We further fix an arbitrarily large time

horizon T > 0 and require l ≤−T for the parameter in the weight eσl . Then we have 1≤ eσl+t ≤ (eσl+t )
2 for any t ≤ T ,

which will be used to control a quadratic term that comes from the Taylor expansion of the non-linearity F ε . We take

ξ ε as in the beginning of this section with pξ > 14 (see Remark 5.6 below) and construct Xε
μ as in Section 5.1. We

further fix a parameter

α ∈ (2/3− 2/3 · κ/σ,1− 2/pξ − 2κ/σ) (74)

with κ/σ ∈ (2/pξ ,1) small enough such that the interval is non-empty, which (as we will discuss in the following

remark) is possible since 2/pξ < 1/7.

Remark 5.6 (Why 14+moments). Let us sketch where the boundaries of the interval (74) come from. The parameter

α will measure the regularity of uε below. The upper boundary, that is 1− 2/pξ − 2κ/σ , arises due to the fact that

we cannot expect uε to be better than Xε , which has regularity below 1− 2/pξ due to Lemma 5.3. The correction

−2κ/σ is just the price one pays in the Schauder estimate in Lemma 3.10 for the “weight change”. The lower bound

2/3− 2/3 · κ/σ is a criterion for our paracontrolled approach below to work. We increase below the regularity α of

our solutions, by subtraction of a paraproduct, to 2α. By Lemma 4.2 this allows us to uniformly control products with

ξ ε provided

2α + (α + 2κ/σ − 2) > 0,



Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model 2095

because ξ ε ∈ C
α+2κ/σ−2
pκ . This condition can be reshaped to α > 2/3− 2/3 · κ/σ , explaining the lower bound. The

interval (74) can only be non-empty if

2/3− 2/3 · κ/σ < 1− 2/pξ − 2κ/σ ⇔ 2/3 < 1− 2/pξ − 4/3 · κ/σ.

Lemma 5.3 forces us to take κ/σ > 2/pξ so that the the right-hand side can only be true provided 2/3 < 1− 2/pξ −

4/3 · 2/pξ , which is equivalent to

pξ > 14.

Let us mention the simple facts 2α+2κ/σ,2α+4κ/σ ∈ (0,2), α+κ/σ,α+2κ/σ ∈ (0,1) and 3α+2κ/σ −2 > 0

which we will use frequently below.

We will assume that the initial conditions uε
0 are uniformly bounded in C0

p(G
ε, eσl ) and are chosen such that Eεuε

0

converges in S ′ω(R
2) to some u0. For uε

0 = |G
ε|−11·=0 it is easily verified that this is indeed the case and the limit is

the Dirac delta, u0 = δ.

Recall that we aim at showing that (the extension of) the solution uε to

L
ε
μu

ε = F
(
uε
)(
ξ ε − F ′(0)cεμ

)
, uε(0)= uε

0 =
∣∣Gε

∣∣−1
1·=0 (75)

converges to the solution of

Lμu= F ′(0)u � ξ, u(0)= u0 = δ, (76)

where u � ξ is a suitably renormalized product defined in Corollary 5.12 below.

Our solutions will be objects in the parabolic space L
α,α
p,T which does not require continuity at t = 0. A priori

there is thus no obvious meaning for the Cauchy problems (75), (76) (although of course for (75) we could use

the pointwise interpretation). We use the common interpretation of (75), (76) as equations for distributions uε, u ∈

D′
ω(R

1+2) (compare for example [45, Definition 3.3.4]) by requiring suppuε, suppu⊆R+ ×R2 and

L
ε
μu

ε = F
(
uε
)(
ξ ε − F ′(0)cεμ

)
+ δ⊗ uε

0,

Lμu= F ′(0)u � ξ + δ⊗ u0,

in the distributional sense on (−∞, T ) × R2, where ⊗ denotes the tensor product between distributions. Since we

mostly work with the mild formulation of these equations the distributional interpretation will not play a crucial role.

Some care is needed to check that the only distributional solutions are mild solutions, since the distributional Cauchy

problem for the heat equation is not uniquely solvable [46]. However, under generous growth conditions for u,uε for

x →∞ (compare [14]) there is a unique solution. In our case this fact can be checked by considering the Fourier

transform of u,uε in space.

A priori estimates
We will work with the following space of paracontrolled distributions.

Definition 5.7 (Paracontrolled distribution for 2d PAM). We identify a pair

(
uε,X, uε,♯

)
: [0, T ]→ S ′ω

(
Gε
)2

with uε := uε,X≺≺Xε
μ + uε,♯ and introduce a norm

∥∥uε
∥∥

D
γ,δ
p,T (Gε,eσ̃l )

:=
∥∥(uε,X, uε,♯

)∥∥
D

γ,δ
p,T (Gε,eσ̃l )

:=
∥∥uε,X

∥∥
L

γ /2,δ
p,T (Gε,eσ̃l )

+
∥∥uε,♯

∥∥
L

γ,δ+α
p,T (Gε,eσ̃l )

(77)

for α as above, σ̃ ∈ (0,1) and γ ≥ 0, δ ∈ (0,2−α). We denote the corresponding space by D
γ,δ

p,T (G
ε, eσ̃l ). If the norm

(77) is bounded for a sequence (uε = uε,X≺≺Xε
μ + uε,♯)ε we say that uε is paracontrolled by Xε

μ.
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Remark 5.8. In view of Remark 3.9 we can also define a continuous version D
γ,δ

p,T (R
d , eσ̃l ) of the space above.

As in [21] it will be useful to have a common bound on the stochastic data: Let

Mε :=
∥∥ξ ε

∥∥
C
α+2κ/σ−2
∞ (Gε,pκ )

∨
∥∥Xε

μ

∥∥
C
α+2κ/σ
∞ (Gε,pκ )

∨
∥∥Xε

μ • ξ
ε
∥∥
C

2α+4κ/σ−2
∞ (Gε,p2κ )

(78)

(compared to Lemma 5.3 we have ζ = α + 2κ/σ ). The following a priori estimates will allow us to set up a Picard

iteration below.

Lemma 5.9 (A priori estimates). In the setup above consider γ ∈ {0, α} and u0 ∈ C0
p(G

ε). If γ = 0 we require further
that u0 ∈ Cα

p(G
ε, ρ) and u

♯
0 := u0 − F ′(0)u0 ✹ Xε

μ ∈ C2α
p (Gε, eσl ). Define a map

M
ε
γ,u0

: D
γ,α

p,T

(
Gε, eσl

)
∋
(
uε,X, uε,♯

)
�−→

(
vε,X, vε,♯

)
∈D

γ,α

p,T

(
Gε, eσl

)

for uε = uε,X≺≺Xε
μ + uε,♯ with uε(0)= u0 via vε,X := F ′(0)uε and vε,♯ := vε − vε,X≺≺Xε

μ, where vε is the solution
to the problem

L
ε
μv

ε := F ε
(
uε
)
ξ ε − F ε

(
uε,X/F ′(0)

)
F ′(0)cεμ, vε(0)= u0. (79)

The map M ε
γ,u0

is well defined for γ ∈ {0, α} and we have the bound

∥∥(vε,X, vε,♯
)∥∥

D
γ,α
p,T (Gε,eσl )

≤Cu0
+CMε · T

(α−δ)/2
(∥∥uε

∥∥
D

γ,α
p,T (Gε,eσl )

+ εν
∥∥uε

∥∥2

D
γ,α
p,T (Gε,eσl )

)

for δ ∈ (2− 2α− 2κ/σ,α) and some ν > 0, where CMε = c0(1+M2
ε ) and

Cu0
= 1γ=αc0‖u0‖C0

p(G
ε,eσl )

+ 1γ=0c0

(∥∥u♯
0

∥∥
C2α
p (Gε,eσl )

+
∥∥uε,X(0)

∥∥
Cα
p (G

ε,eσl )
+
∥∥uε,♯(0)

∥∥
C2α
p (Gε,eσl )

)
, (80)

for some c0 > 0 that does not depend on ξ ε , cεμ or u0.

Remark 5.10. The complicated formulation of (79) is necessary because when we expand the singular product on

the right-hand side we get

F ε
(
uε
)
ξ ε = F ′(0)

(
C
(
uε,X,Xε

μ, ξ
ε
)
+ uε,X

(
Xε

μ ✒ ξ ε
))
+ · · · ,

so to obtain the right renormalization we need to subtract F ′(0)uε,Xcεμ, which is exactly what we get if we Taylor

expand the second addend on the right-hand side of (79).

If uε = vε = M ε
γ,u0

uε is a fixed point, then uε,X = vε,X = F ′(0)uε and the “renormalization term” is just

F ε(uε)F ′(0)cεμ. Moreover we have in this case

L
ε
μu

ε = F ε
(
uε
)(
ξ ε − F ′(0)cεμ

)
, uε(0)= u0.

Proof. We assume for the sake of shorter formulas (1 +M2
ε ) � 1, the general case can be easily included in the

reasoning below. The solution to (79) can be constructed using the Green’s function F
−1
Gε e

−t lεμ and Duhamel’s princi-

ple. To uncluster the notation a bit, we will drop the upper index ε on u,v,Xμ,Lμ, . . . in this proof. We show both

estimates at once by denoting by γ either 0 or α.

Throughout the proof we will use the fact that

‖u‖
L

γ /2,α
p,T (Gε,eσl )

=
∥∥uX≺≺Xμ + u♯

∥∥
L

γ /2,α
p,T (Gε,eσl )

� ‖u‖
D

γ,β
p,T (Gε,eσl )

(81)
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for all β ∈ (0, α] which follows from Lemma 4.8. In particular (with β = δ) we have

∥∥vX
∥∥

L
γ /2,α
p,T (Gε,eσl )

=
∥∥F ′(0)u

∥∥
L

γ /2,α
p,T (Gε,eσl )

(81)

� ‖u‖
D

γ,δ
p,T (G

ε,eσl )

Lem. 3.11

� 1γ=0

(∥∥uX(0)
∥∥
Cα
p (G

ε,eσl )
+
∥∥u♯(0)

∥∥
C2α
p (Gε,eσl )

)
+ T

α−δ
2 ‖u‖Dγ,α

p,T (Gε,eσl )
. (82)

This leaves us with the task of estimating ‖v♯‖
L

γ,2α
p,T (Gε,eσl )

. We split

Lμv
♯ =Lμ

(
v − F ′(0)u≺≺Xμ

)
(83)

= F ε(u)ξ − F ε
(
uY /F ′(0)

)
F ′(0)cμ − F ′(0)Lμ(u≺≺Y)

= F ′(0)uξ − F ′(0)uXcμ − F ′(0)Lμ(u≺≺Xμ)+R(u)u2ξ −R
(
uX/F ′(0)

) (uX)2

F ′(0)
cμ

= F ′(0)
[
u ✹ (ξ − ξ̄ )+ u ✹ ξ̄ − u≺≺ξ̄ + u≺≺ξ̄ −Lμ(u≺≺Xμ)+ u ✺ ξ (✹)

+C
(
uX,Xμ, ξ

)
+ uX(Xμ • ξ) (✒)

+ u♯
✒ ξ

]
(♯)

+R(u) · u2ξ (Ru)

−R
(
uX/F ′(0)

) (uX)2

F ′(0)
cμ, (RuX )

where ξ = χ(D)ξ so that LμXμ = ξ̄ with ξ − ξ̄ ∈
⋂

β∈R C
β
∞(Gε,pκ) and where R(x)= ε2

∫ 1
0 (1− λ)F ′′(λε2x)dλ.

We have by Lemmas 4.2, 4.9

∥∥(✹)
∥∥
M

γ
T C

2α+2κ/σ−2
p (Gε,eσl p

κ )
� ‖u‖

L
γ /2,α
p,T (Gε,eσl )

(81)

� ‖u‖
D

γ,δ
p,T (Gε,eσl )

and further with Lemma 4.4 and Lemma 4.2

∥∥(✒)
∥∥
M

γ
T C

2α+4κ/σ−2(Gε,eσl p
2κ )

� ‖u‖
D

γ,δ
p,T (Gε,eσl )

,

while the term (♯) can be bounded with Lemma 4.2 by

∥∥u♯
✒ ξ

∥∥
M

γ
T C

2α+2κ/σ−2
p (Gε,eσl p

κ )
�
∥∥u♯

∥∥
L

γ,α+δ
p,T (Gε,eσl )

≤ ‖u‖
D

γ,δ
p,T (Gε,eσl )

.

To estimate (Ru) we use the simple bounds ‖εβ
′
f ‖

C
β+β′

q (Gε,ρ)
� ‖f ‖

C
β
q (G

ε,ρ)
for β ∈R, β ′ > 0, q ∈ [1,∞], ρ ∈ ρ(ω)

and

∥∥ε−βf
∥∥
Lq (Gε,ρ)

� ε−β
∑

j�jGε

2−jβ‖f ‖
C
β
q (G

ε,ρ)
� ‖f ‖

C
β
q (G

ε,ρ)

for β < 0, q ∈ [1,∞], ρ ∈ ρ(ω), together with the assumption F ′′ ∈ L∞, and obtain for ν′ > 0

∥∥(Ru)
∥∥
M

γ
T C

2α+2κ/σ−2
p (Gε,eσl p

κ )
�
∥∥F ′′

∥∥
∞

∥∥εα+2κ/σu2
∥∥
MγLp(Gε,eσl )

∥∥ε2−(α+2κ/σ)ξ
∥∥
L∞(Gε,pκ )

�
∥∥εα+2κ/σu2

∥∥
M

γ
T Lp(Gε,(eσl )

2)
‖ξ‖

C
α+2κ/σ−2
∞ (Gε,pκ )

�
∥∥εα/2+κ/σu

∥∥2

M
γ /2
T L2p(Gε,eσl )

�
∥∥εα/2+κ/σu

∥∥2

M
γ /2
T C

d/2p+ν′

p (Gε,eσl )
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≤
∥∥εα/2+κ/σu

∥∥2

M
γ /2
T C

1+ν′
p (Gε,eσl )

�
∥∥εα/2+κ/σ−(1+ν′−α)u

∥∥2

M
γ /2
T Cα

p (G
ε,eσl )

� ε3α+2κ/σ−2(1+ν′)‖u‖2

D
γ,δ
p,T (Gε,eσl )

≤ εν‖u‖2

D
γ,δ
p,T (G

ε,eσl )

for all ν ∈ (0,3α + 2κ/σ − 2(1+ ν′)] (which is nonempty if ν′ is sufficiently small). Similarly we get for ν′ ∈ (0, δ)

∥∥(RuX )
∥∥
M

γ
T C

2α+2κ/σ−2
p (Gε,eσl p

κ )
�
∥∥F ′′

∥∥
L∞(R)

· cμ
∥∥εuX

∥∥2

M
γ /2
T L2p(Gε,eσl )

� cμ
∥∥εuX

∥∥2

M
γ /2
T C1+ν′

p (Gε,eσl )

� ε2(δ−ν′)
∣∣log(ε)

∣∣∥∥uX
∥∥2

M
γ /2
T Cδ

p(G
ε,eσl )

� εν‖u‖2

D
γ,δ
p,T (G

ε,eσl )

for all ν ∈ (0, δ − ν′]. In total we have

∥∥Lμv
♯
∥∥
M

γ
T C

2α+2κ/σ−2
p (Gε,eσl p

κ )
� ‖u‖

D
γ,δ
p,T (Gε,eσl )

+ εν‖u‖2

D
γ,δ
p,T (Gε,eσl )

, vε,♯(0)= 1γ=0u
♯
0 + 1γ=αu0,

where we used for the initial condition that by Definition 4.5 and Convention 4.6 we have (F ′(0)u≺≺Xμ)(0) =

F ′(0)u0 ✹ X for γ = 0 and (F ′(0)u≺≺Xμ)(0) = 0 for γ = α > 0. The Schauder estimates of Lemma 3.10 yield

on these grounds

∥∥v♯
∥∥

L
γ,2α
p,T (Gε,eσl )

� 1γ=α‖u0‖C0
p(G

ε,eσl )
+ 1γ=0

∥∥u♯
0

∥∥
C2α
p (Gε,eσl )

+ ‖u‖
D

γ,δ
p,T (G

ε,eσl )
+ εν‖u‖2

D
γ,δ
p,T (Gε,eσl )

� 1γ=α‖u0‖C0
p(G

ε,eσl )
+ 1γ=0

(∥∥u♯
0

∥∥
C2α
p (Gε,eσl )

+
∥∥u♯(0)

∥∥
C2α
p (Gε,eσl )

+
∥∥uX(0)

∥∥
Cα
p (G

ε,eσl )

)

+ T (α−δ)/2
(
‖u‖Dγ,α

p,T (G
ε,eσl )

+ εν‖u‖2
D

γ,α
p,T (Gε,eσl )

)
,

where in the last step we used Lemma 3.11. Together with (82) the claim follows. �

As we mentioned in Remark 5.10 we aim at finding fixed points of M ε
γ,a0

which is achieved by the following

corollary.

Corollary 5.11. With the notation of Lemma 5.9 choose T loc
ε := 1

2
(CMε+CMεε

νr(u0))
−2/(α−δ) for a sufficiently large

r(u0) > 0, depending on u0. Then the map M ε
γ,u0

from Lemma 5.9 has a unique fixed point uε = uε,X≺≺Xε
μ+ uε,♯ on

D
γ,α

p,T loc
ε

(Gε, eσl ). This fixed point solves

L
ε
μu

ε = F ε
(
uε
)(
ξ ε − F ′(0)cεμ

)
, uε(0)= u0, (84)

and uε,X = F ′(0)uε . Moreover, we have
∥∥uε

∥∥
D

γ,α

p,T loc
ε

(Gε,eσl )
≤ r(u0).

Proof. We construct the fixed point uε by a Picard type iteration. To avoid notational clashes with the initial condition

u0, we start the iteration with n=−1 for which we define uε
−1 := F ′(0)u0≺≺Xε

μ+u
♯
0 = u0 ✹ Xε

μ+u
♯
0 = u0 for γ = 0

and uε
−1 := 0≺≺Xε

μ + etL
ε
μu0 for γ = α (which is in D

γ,α

p,T (G
ε, eσl ) due to Lemma 3.10). Define recursively for n≥ 0

the sequence uε
n :=M ε

γ,u0
uε
n−1 (with uε

n = u
ε,X
n ≺≺Xε

μ + u
ε,♯
n to be read as a pair as in Definition 5.7). Choose now

r(u0) so big that ‖uε
−1‖Dγ,α

p,1 (Gε,eσl )
≤ r(u0) and such that

Cu0
≤

1

2
r(u0)

with Cu0
as in Lemma 5.9. Note that for uε

n+1 the constant Cu0
in principle depends on uε

n(0), but in fact we can choose

it independently of n since u
ε,X
n (0)= F ′(0)u0 for all n≥−1 (by definition of M ε

γ,u0
) and u

ε,♯
n (0)= 1γ=0u

♯
0+1γ=αu0

(by Definition 4.5 and Convention 4.6) in the second term of (80).
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Since T loc
ε ≤ 1 we already know for n=−1 that

∥∥uε
n

∥∥
D

γ,α

p,T loc
ε

(Gε,eσl )
≤ r(u0). (85)

We show recursively that (85) is in fact true for any n≥−1. Suppose we have already shown the statement for n− 1,

we then obtain by Lemma 5.9

∥∥uε
n

∥∥
D

γ,α

p,T loc
ε

(Gε,eσl )
≤ Cu0

+
(
T loc
ε

) α−δ
2 ·CMε

(
r(u0)+ εν

(
r(u0)

)2)

≤
r(u0)

2
+
(
T loc
ε

) α−δ
2
(
CMε +CMεε

νr(u0)
)
· r(u0)=

r(u0)

2
+

r(u0)

2
= r(u0).

By Lemma A.7 in the Appendix inequality (85) implies that for α′ ∈ (0, α) and σ ′ ∈ (0, σ ) there is a subsequence

(uε
nk
)k≥0, convergent in D

γ,α′

p,T loc
ε

(Gε, eσ
′

l ) to some uε ∈D
γ,α

p,T loc
ε

(Gε, eσl ), and

∥∥uε
∥∥

D
γ,α

p,T loc
ε

(Gε,eσl )
≤ lim inf

k→∞

∥∥uε
nk

∥∥
D

γ,α

p,T loc
ε

(Gε,eσl )
≤ r(u0).

In particular uε is a fixed point of M ε
γ,u0

that satisfies (84). It remains to check uniqueness. Choose two fixed points

uε , vε , which then satisfy

L
ε
μ

(
uε − vε

)
=
(
F ε

(
uε
)
− F ε

(
vε
))(

ξ ε − cεμF
′(0)

)
=

∫ 1

0

F ′
(
uε + λ

(
vε − uε

))
dλ

︸ ︷︷ ︸
=:F

·
(
vε − uε

)(
ξ ε − cεμF

′(0)
)
.

We will use that for ρ ∈ ρ(ω) and ζ, ζ ′ ∈R with ζ ′ ≥ ζ

‖f ‖
C
ζ ′
p (Gε,ρ)

� ε−(ζ ′−ζ )‖f ‖
C
ζ
p(G

ε,ρ)
, (86)

which is an easy consequence of Definition 2.17 and which we essentially already used in the proof of Lemma 5.9.

In other words, we can consider our objects as arbitrarily “smooth” if we are ready to accept negative powers of ε. In

particular, we can consider the initial condition u0 as paracontrolled, that is u0 ∈ Cα
p(G

ε, eσl ), u
♯
0 ∈ C2α

p (Gε, eσl ) (and

thus uε,X(0)= vε,X(0)= F ′(0)u0 ∈ Cα
p(G

ε, eσl )), so that with Lemma 5.9 we obtain uε, vε ∈D
0,α

p,T loc
ε

(Gε, eσl ). Conse-

quently, since also eσl ≥ 1, we get uε, vε ∈ CT loc
ε

L∞(Gε) which implies that the integral term F is in CT loc
ε

L∞(Gε)

and, by using once more (86), we can consider it as an element of CT loc
ε
C
β
∞(Gε) for any β ∈ R. The product

(vε − uε)(ξ ε − cεμF
′(0)) can then be estimated as in the proof of Lemma 5.9. Since multiplication by F only con-

tributes an (ε-dependent) factor we obtain for T ′ ≤ T loc
ε a bound of the form

∥∥uε − vε
∥∥

D
0,α

p,T ′
(Gε,eσl )

�ε

(
T ′
) α−δ

2
∥∥uε − vε

∥∥
D

0,α

p,T ′
(Gε,eσl )

,

which shows ‖uε − vε‖
D

0,α

p,T ′
(Gε,eσl )

= 0 for T ′ small enough. Iterating this argument gives uε = vε on all of [0, T loc
ε ].

�

Convergence to the continuum
It is straightforward to redo our computations in the continuous linear case (i.e. F(x)= cx), which leads to the exis-

tence of a solution to the continuous linear parabolic Anderson model on R2, a result which was already established

in [25]. Since the continuous analogue of our approach is a one-to-one translation of the discrete statements and

definitions above from Gε to Rd we do not provide the details.
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Corollary 5.12. Let u0 ∈ C0
p(R

d , eσl ). Let ξ be a white noise on R2, and let Lμ be defined as in Section 3. Then there

is a unique solution u= F ′(0)u≺≺Xμ + u♯ ∈D
α,α
p,T (R

d , eσl ) to

Lμu= F ′(0)u � ξ, u(0)= u0, (87)

on [0, T ], where

u � ξ := ξ ✹ u+ u ✹ ξ + F ′(0)C(u,Xμ, ξ)+ F ′(0)u(Xμ • ξ)+ u♯
✒ ξ

with Xμ,Xμ • ξ as in (69), (70).

Sketch of the proof. As in Lemma 5.9 we can build a map Mα,u0
: D

α,α
p,T (R

d , eσl )→D
α,α
p,T (R

d , eσl ) : u= uXμ≺≺Xμ+

u♯ �→ v = F ′(0)u≺≺Xμ + v♯ via

Lμv := F ′(0)u � ξ, v(0)= u0. (88)

As in Corollary 5.11 there is a time T loc such that Mα,u0
has a (unique) fixed point u(0) = F ′(0)u(0)≺≺Xμ + u(0),♯ in

D
α,α

p,T loc(R
d , eσl ) that solves

Lμu
(0) = F ′(0)u(0)

� ξ, u(0)(0)= u0.

on [0, T loc]. Since the right-hand side of (88) is linear, this time can be chosen of the form T loc = 1
2
K−2/(α−δ), where

K > 0 is a (random) constant that only depends on ξ , Xμ, Xμ • ξ , but not on the initial condition. Proceeding as above

but starting in u(0)(T loc) we can construct a map M0,u(0)(T loc) : D
0,α

p,T loc(R
d , eσl )→D

0,α

p,T loc(R
d , eσl ) by (the continuous

version of) Lemma 5.9 and Lemma 4.9. The map M0,u(0)(T loc) has again a fixed point on [0, T loc] which we call u(1).

Starting now in u(1)(T loc) we can construct u(2) as the fixed point of M0,u(1)(T loc) on [0, T loc] and so on. As in [21,

Theorem 6.12]) the sequence of local solutions u(0), u(1), u(2), . . . can be concatenated to a paracontrolled solution

u= F ′(0)u≺≺Xμ + u♯ ∈D
α,α
p,T (R

d , eσl ) on [0, T ].

To see uniqueness take two solutions u,v in D
α,α
p,T (R

d , eσl ) and consider h = u − v. Using that h(0) = 0 and

Lμh= h � ξ one derives as in Lemma 5.9

‖h‖Dα,α
p,T (Rd ,eσl )

≤ C · T (α−δ)/2‖h‖Dα,α
p,T (Rd ,eσl )

so that choosing T first small enough and then proceeding iteratively yields h= 0. �

We can now deduce the main theorem of this section. The parameters are as on page 2094.

Theorem 5.13. Let uε
0 be a uniformly bounded sequence in C0

p(G
ε, eσl ) such that Eεuε

0 converges to some u0 in

S ′ω(R
2). Then there are unique solutions uε ∈D

α,α
p,T ε (G

ε, eσl ) to

L
ε
μu

ε = F ε
(
uε
)(
ξ ε − cεμF

′(0)
)
, uε(0)= uε

0, (89)

on [0, T ε] with random times T ε ∈ (0, T ] that satisfy P(T ε = T )
ε→0
−→ 1. The sequence uε = F ′(0)uε≺≺Xμ + uε,♯ ∈

D
α,α
p,T ε (G

ε, eσl ) is uniformly bounded and the extensions Eεuε converge in distribution in D
α,α′

p,T (Rd , eσ
′

l ), α′ < α,σ ′ <

σ , to the solution u of the linear equation in Corollary 5.12.

Remark 5.14. Since T ε is a random time for which it might be true that P(T ε < T ) > 0 the convergence in distribu-

tion has to be defined with some care: We mean by Eεuε → u in distribution that for any f ∈ Cb(D
α,α′

p,T (Gε, eσl );R),

we have E[f (Eεuε)1T ε=T ]→ E[f (u)] and further P(T ε < T )→ 0.
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Proof. The local existence of a solution to (89) is provided by Corollary 5.11. Proceeding as in the proof of

Corollary 5.12 we can in fact construct a sequence of local solutions (uε,(n))n≥0 on intervals [0, T
loc,(n)
ε ] with

uε,(n)(0)= uε,(n−1)(T
loc,(n−1)
ε ), where we set T

loc,(−1)
ε := 0 and uε,(−1) := u0. Due to Corollary 5.11 the time T

loc,(n)
ε

is given by

T loc,(n)
ε :=

1

2

(
CMε +CMεε

νr
(
uε,(n−1)

(
T loc,(n−1)
ε

)))−2/(α−δ)
. (90)

Note that, in contrast to the proof of Corollary 5.12, T
loc,(n)
ε now really depends on n and we might have∑

n≥0 T
loc,(n)
ε <∞. As in [21, Theorem 6.12] we can concatenate the sequence uε,(0), uε,(1), . . . to a solution uε

to (89) which is defined up to its “blow-up” time

T
blow-up
ε =

∑

n≥0

T loc,(n)
ε

(which might be larger than T or even infinite). Let us set

T ε := T ∧
T

blow-up
ε

2
. (91)

To show P(T ε = T )
ε→0
−→ 1 we prove that for any t > 0 we have P(T

blow-up
ε < t)→ 0. By inspecting the definition

of r(. . .) in the proof of Corollary 5.11 we see that given the (bounded) sequence of initial condition uε
0 the size of

T
blow-up
ε can be controlled by the quantity Mε . More precisely there is a deterministic, decreasing function T det

ε :

R+→R+ such that

T
blow-up
ε ≥ T det

ε

(
Mε

)

and such that for any K > 0 (due to the presence of the factor εν in (90))

T det
ε (K)

ε→0
−→∞. (92)

Let t > 0 and Kε
t := sup{K > 0 | T det

ε (K) ≥ t}. Note that we must have Kε
t

ε→0
−→∞ since otherwise we contradict

(92). But this already implies the desired convergence:

P
(
T

blow-up
ε < t

)
≤ P

(
T det
ε

(
Mε

)
< t

)
≤ P

(
Mε ≥Kε

t

) Kε
t →∞
−→ 0,

where we used in the last step the boundedness of the moments of Mε due to Lemma 5.3.

It remains to show that the extensions Eεuε converge to u. By Skohorod representation we know that

Eεξ ε,EεXε
μ,E

ε(Xε
μ • ξ ε) in Lemma 5.5 converge almost surely on a suitable probability space. We will work on

this space from now on. The application of the Skohorod representation theorem is indeed allowed since the limiting

measure of these objects has support in the closure of smooth compactly supported functions and thus in a sepa-

rable space. We can further assume by Skohorod representation that (a.s.) T
blow-up
ε →∞ so that almost surely we

have T ε = T for all ε ≤ ε0 with some (random) ε0. Having proved that the sequence uε is uniformly bounded in

D
α,α
p,T ε (G

ε, eσl ) we know, by Lemma 2.24, that Eεuε is uniformly bounded in D
α,α
p,T ε (Rd , eσl ). Due to (the continuous

version of) Lemma A.7 there is at least a subsequence of Eεnuεn that converges to some u ∈ D
α,α
p,T (R

d , eσl )(R
d) in

the topology of D
α,α′

p,T (Rd , eσ
′

l ). If we can show that this limit solves (87) we can argue by uniqueness that (the full

sequence) Eεuε converges to u. We have

L
εn
μ Eεnuεn = EεnL

εn
μ uεn = Eεn

(
F εn

(
uεn

)(
ξ εn − cεnμ F ′(0)

))
, (93)

where L ε
μE

εuε should be read as in (43). Note that the left-hand side of (93) converges as

L
ε
μE

εnuεn =
(
L

εn
μ −Lμ

)
Eεnuεn +LμE

εnuεn
εn→0
−→ 0+Lμu=Lμu
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due to Lemma 3.4. For the right-hand side of (93) we apply the same decomposition as in (83) = (✹) + (✒) +

(♯)+ (Ru)+ (RuX ). While (the extensions of) the terms (Ru), (RuX ) of (83) vanish as ε tends to 0, we can use the

property (E) of the operators acting in the terms (✹), (✒), (♯) to identify their limits. Consider for example the product

uε,Xε
μ(Xε

μ • ξ
ε)= F ′(0)uε(Xε

μ • ξ
ε) in (✒) whose extension we can rewrite as

Eεn
(
F ′(0)uεn

(
Xεn

μ • ξ εn
))

= F ′(0)Eεn
(
uεn ✹

(
Xεn

μ • ξ εn
)
+ uεn ✺

(
Xεn

μ • ξ εn
)
+ uεn ✒

(
Xεn

μ • ξ εn
))

(E)
= F ′(0)

[
Eεnuεn ✹ Eεn

(
Xεn

μ • ξ εn
)
+ Eεnuεn ✺ Eεn

(
Xεn

μ • ξ εn
)
+ Eεnuεn ✒ Eεn

(
Xεn

μ • ξ εn
)]
+ oεn(1),

where we applied the property (E) of ✹, ✺, ✒ (Lemma 4.2) in the second step. By continuity of the involved operators

and Lemma 5.5 we thus obtain

lim
εn→0

Eεn
(
F ′(0)uεn

(
Xεn

μ • ξ εn
))
= F ′(0)

[
u ✹ (X • ξ)+ u ✺ (X • ξ)+ u ✒ (X • ξ)

]

= F ′(0)u(X • ξ).

Proceeding similarly for all terms in the decomposition of the right-hand side of (93) one arrives at

Lμu= lim
εn→0

EεnL
εn
μ uεn = lim

εn→0
Eεn

(
F εn

(
uεn

)(
ξ εn − cεnμ F ′(0)

))
= F ′(0)u � ξ,

which finishes the proof. �

Since the weights we are working with are increasing, the solutions uε and the limit u are actually classical tem-

pered distributions. However, since we need the Sω spaces to handle convolutions in eσl weighted spaces it is natural

to allow for solutions in S ′ω . In the linear case, F = Id, we can allow for sub-exponentially growing initial conditions

u0 since the only reason for choosing the parameter l in the weight eσl+t smaller than −T was to be able to estimate

eσl+t ≤ (eσl+t )
2 to handle the quadratic term. In this case the solution will be a genuine ultra-distribution.

Appendix

Results related to Section 2

Lemma A.1. The mappings (FG,F
−1
G

) defined in Section 2.3 map the spaces (Sω(G),Sω(Ĝ)) and (S ′ω(G),S
′
ω(Ĝ))

to each other.

Proof. We only consider the non-standard case ω= | · |σ . Given f ∈ Sω(Ĝ) the sequence

FGf (x)= |G|
∑

k∈G

f (k)e2πıkx

obviously converges to a smooth function that is periodic on Ĝ. We estimate on Ĝ (and thus by periodicity uniformly

on Rd )

∣∣∣∣∂
α
∑

k∈G

|G|f (k)e2πıkx

∣∣∣∣�λ

∑

k∈G

|G||k||α|e−λ|k|σ .

We can use Lemma A.2 for | · ||α|e−λ|·|σ with � = G and c > 0 of the form c = C(λ) · C|α| (C denoting a positive

constant that may change from line to line) which yields

∣∣∣∣∂
α
∑

k∈G

|G|f (k)e2πıkx

∣∣∣∣�λ C|α|
∫

Rd

|x||α|e−λ|x|σ dx.
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We now proceed as in [31, Lemma 12.7.4] and estimate the integral by the Ŵ−function

∫

Rd

|x||α|e−λ|x|σ dx �

∫ ∞

0

r |α|+d−1e−λrσ dr �λ λ−|α|/σ
∫ ∞

0

r |α|+d−1e−rσ dr

� λ−|α|/σŴ
((
|α| + d − 1

)
/σ

) Stirling

� λ−|α|/σC|α||α||α|/σ .

Since we can choose λ > 0 arbitrarily large we see that indeed f ∈ C∞ω (Ĝ).

For the opposite direction, f ∈ Sω(Ĝ), we use that by integration by parts |zli · F
−1
G

f (z)| � Cl supĜ(∂
i)lf �

Clεl ll/σ for all z ∈ G, l ≥ 0, i = 1, . . . , d . With Stirling’s formula and Lemma 3.7 we then obtain |F−1
G

f (z)| �

eλ|z|
σ

. This shows the statement for the pair (Sω(G),Sω(Ĝ)). The estimates above show that FG,F
−1
G

are in fact

continuous w.r.t. to the corresponding topologies so that the statement for the dual spaces (S ′ω(G),S
′
ω(Ĝ)) immediately

follows. �

Lemma A.2. Given a lattice G as in (2) we denote the translations of the closed parallelotope G := [0,1]a1 +

· · · + [0,1]ad by G := {g + G | g ∈ G}. Let � ⊆ G and set � :=
⋃

G′∈G,G′∩��=∅G′. If for a measurable function

f :�→R+ there exists c ≥ 1 such that for any g ∈� there is a G′(g) ∈G, g ∈G′(g) with f (g)≤ c ·ess infx∈G′f (x)

then it also holds

∑

g∈�

|G|f (g)≤ c · 2d

∫

�

f (x)dx.

Proof. Indeed

∑

g∈�

|G|f (g)≤ c
∑

g∈�

∫

G′(g)

f (x)dx ≤ c
∑

g∈�

∑

G′∈G:g∈G′

∫

G′(g)

f (x)dx

≤ c
∑

G′⊆�

∑

g∈�:g∈G′

∫

G′
f (x)dx

(△)
= 2dc

∑

G′∈�

∫

G′
f (x)dx

= 2dc

∫

�

f (x)dx,

where we used in (△) that the d-dimensional parallelotope has 2d vertices. �

Lemma A.3 (Mixed Young inequality). For f : Rd →C and g : G→C we set for x ∈Rd

f ∗G g(x) :=
∑

k∈G

|G|f (x − k)g(k).

Then for r,p, q ∈ [1,∞] with 1+ 1/r = 1/p+ 1/q

‖f ∗G g‖Lr (Rd ) ≤ sup
x∈Rd

∥∥f (x − ·)
∥∥1−

p
r

Lp(G)
· ‖f ‖

p
r

Lp(Rd )
‖g‖Lq (G)

(with the convention 1/∞= 0, ∞/∞= 1).



2104 J. Martin and N. Perkowski

Proof. We assume p,q, r ∈ (1,∞). The remaining cases are easy to check. The proof is based on Hölder’s inequality

on G with 1
r
+ 1

rp
r−p

+ 1
rq
r−q

= 1

∣∣f ∗G g(x)
∣∣≤

∑

k∈G

|G|
(∣∣f (x − k)

∣∣p∣∣g(k)
∣∣q)1/r

·
∣∣f (x − k)

∣∣ r−p
r
∣∣g(k)

∣∣ r−q
r

Hölder
≤

∥∥(∣∣f (x − ·)
∣∣p∣∣g(·)

∣∣q)1/r∥∥
Lr (G)

·
∥∥∣∣f (x − ·)

∣∣ r−p
r
∥∥
L

rp
r−p (G)

·
∥∥∣∣g(·)

∣∣ r−q
r
∥∥
L

rq
r−q (G)

≤

(∑

k∈G

|G|
∣∣f (x − k)

∣∣p∣∣g(k)
∣∣q
)1/r

sup
x′∈Rd

∥∥f
(
x′ − ·

)∥∥ r−p
r

Lp(G)
‖g‖

r−q
r

Lq (G)
.

Raising this expression to the r th power and integrating it shows the claim. �

Results related to Section 3

Lemma A.4. For T ≥ 0, p ∈ [1,∞], ρ ∈ ρ(ω) we have uniformly in t ∈ [0, T ] and ε ∈ (0,1]

∥∥etLε
μf

∥∥
Lp(Gε,ρ)

� ‖f ‖Lp(Gε,ρ),

and for β > 0

∥∥etLε
μf

∥∥
Lp(Gε,ρ)

� t−β/2‖f ‖
C
−β
p (Gε,ρ)

.

Proof. With the random walk (Xε
t )t∈R+ which is generated by Lε

μ on Gε we can express the semigroup as etL
ε
μf (x)=

E[f (x +Xε
t )], so that

∥∥ρetLε
μf

∥∥
Lp(Gε)

=

∥∥∥∥E
[

ρ(·)

ρ(· +Xε
t )

ρ
(
· +Xε

t

)
f
(
· +Xε

t

)]∥∥∥∥
Lp(Gε)

≤ E

[
sup
x∈Gε

ρ(x)

ρ(x +Xε
t )
‖f ‖Lp(Gε,ρ)

]
� E

[
eλω(Xε

t )
]
‖f ‖Lp(Gε,ρ)

An application of the next lemma finishes the proof of the first estimate. The second estimate follows as in Lemma 6.6.

of [21]. �

Lemma A.5. The random walk generated by Lε
μ on Gε satisfies for any λ > 0 and t ∈ [0, T ]

E
[
eλω(Xε

t )
]
�λ,T 1.

Proof. We assume ω = ω
exp
σ , if ω is of the polynomial form the proof follows by similar, but simpler arguments. In

this proof we write shorthand s = 1/σ . By the Lévy-Khintchine-formula we have E[eıθX
ε
t ] = e−t/ε2

∫
G
(1−eıθεx )dμ(x) =

e−t lεμ(θ) for all θ ∈R. We want to bound first for k ≥ 1

E
[∣∣Xε

t,1

∣∣k + · · · +
∣∣Xε

t,d

∣∣k]=
d∑

j=1

∣∣∂k
θj
|θ=0E

[
eıθX

ε
t
]∣∣.

To this end we apply Faá-di-Brunos formula with u(v) = e−tv , v(θ) = lεμ(θ). Note that with Lemma 3.5 for m ∈ N

and j = 1, . . . , d

u(m)(0)= (−t)m,
∣∣∂m

θj
v(0)

∣∣�δ δ
m(m!)s .
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Thus with Am,k = {(α1, . . . , αm) ∈Nm |
∑m

i=1 αi · i = k} we get for any δ ∈ (0,1]

∣∣∂k
θj
|θ=0E

[
eıθX

ε
t
]∣∣=

∣∣∣∣∣
∑

1≤m≤k,α∈Am,k

k!

α!
u(m)(0)

m∏

i=1

(
1

i!
∂ i
θj
v(0)

)αi

∣∣∣∣∣

�δ

∑

1≤m≤k,α∈Am,k

k!

α!
tm

m∏

i=1

(i!)αi (s−1)δi·αi
Stirling
≤ δkCk

∑

1≤m≤k,α∈Am,k

k!

α!
tm

m∏

i=1

Ciαi iiαi (s−1)

i≤m≤k
≤ δkCk

∑

1≤m≤k,α∈Am,k

k!

α!
tmkk(s−1)

Stirling
≤ δkCk

∑

1≤m≤k,α∈Am,k

(k!)s

α!
tm

(α!)−1≤1
≤ δkCk(k!)s

∑

1≤m≤k

|Am,k|t
m = δkCk(k!)s

∑

1≤m≤k

(
k− 1

m− 1

)
tm

= δkCk(k!)s t (1+ t)k−1 ≤ δkCk(k!)s(1+ t)k,

where C > 0 denotes as usual a generic constant that changes from line to line. With |x|kk := |x1|
k +· · ·+ |xd |

k we get

E
[∣∣Xε

t

∣∣k
k

]
� δkCk(k!)s(1+ t)k

and therefore, using once more Stirling’s formula and |x|k � Ck · |x|kk ,

E
[
eλ|X

ε
t |

σ ]
� 1+E

[
eλ|X

ε
t |

σ

1|Xε
t |≥1

]
≤ 1+

∞∑

k=0

λk

k!
E
[∣∣Xε

t

∣∣⌈kσ⌉]

� 1+

∞∑

k=0

Ck(1+ t)⌈kσ⌉

kk
δ⌈kσ⌉⌈kσ⌉⌈kσ⌉s � 1+ (1+ t)

∞∑

k=0

Ckδkσ (1+ t)kσ

kk
kk � 1,

where in the last step we chose δ > 0 small enough to make the series converge. �

Results related to Section 4

Lemma A.6. Let Gε as in Definition 2.2, let ω ∈ ω, and let (ϕGε

j )j=−1,...,jGε be a partition of unity as on page 2065.

For −1≤ i ≤ j ≤ jGε the function

Δ
Gε

i f1 ·Δ
Gε

j f2 ∈ S ′ω

(
Gε
)

is spectrally supported in a set of the form 2jB ∩ Ĝε , where B is a ball around 0 that can be chosen independently of
i, j and ε. For f1, f2 ∈ S ′ω(G

ε) and 0 < j ≤ jGε the function

S
Gε

j−1f1 ·Δ
Gε

j f2 ∈ S ′ω

(
Gε
)
,

is spectrally supported in a set of the form 2jA∩ Ĝε , where A is an annulus around 0 that can be chosen independently
of j and ε.

Proof. We can rewrite

FGε

(
Δ
Gε

i f1 ·Δ
Gε

j f2

)
=
(
ϕ
Gε

i FGεf
)
∗Ĝε

(
ϕ
Gε

j FGεf2

)

=

∫

Ĝε

(
ϕ
Gε

i FGεf
)
(z) ·

(
ϕ
Gε

j FGεf2

)(
[· − z]Ĝε

)
dz,
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where we used formal notation in the last step and [·]
Ĝε as in (8). From this one sees that the spectral support of

ΔGε

i f1 ·Δ
Gε

j f2 is contained in

(
suppϕ

Gε

i + suppϕ
Gε

j +R
ε
)
∩ Ĝε, (94)

where we recall that suppϕGε

i = {x ∈ Ĝε | ϕGε

i (x) �= 0} is a subset of (the closure of) Ĝε ⊆ Rd , while the sum of sets

in the parentheses should be read as a subset of Rd . Now, by the dyadic scaling of ϕGε

j we have for all i ≤ j

suppϕ
Gε

i + suppϕ
Gε

j ⊆ B
(
0,2jb

)

for some b > 0, independent of ε and j . Set: B1 := B(0, b) and consider first the case 2jB1 = B(0,2jb)⊆ Ĝε . In this

case we have

(
suppϕ

Gε

i + suppϕ
Gε

j +R
ε
)
∩ Ĝε ⊆

(
2jB1 +R

ε
)
∩ Ĝε = 2jB1 ∩ Ĝε = 2jB1.

On the other hand, if 2jB1 = B(0,2jb) � Ĝε we are in the regime j ∼ jGε and take a ball B2 around 0 such that

2jB2 ⊇ Ĝε and hence 2jB2 ∩ Ĝε = Ĝε for all j ∼ jGε (by the dyadic scaling of Gε from Definition 2.2 we have

2jGε = c · ε−1 so that we can choose B2 independently of ε). Choosing then B = B1 ∪ B2 shows the first part of the

claim.

Let us now consider SG
ε

j−1f1 ·Δ
Gε

j f2. With ϕGε

<j−1 :=
∑

j ′<j−1 ϕ
Gε

j ′
we see as above that the spectral support of

S
Gε

j f1 ·Δ
Gε

j f2 is contained in

(
suppϕ

Gε

<j−1 + suppϕ
Gε

j +R
ε
)
∩ Ĝε. (95)

We already know from above that this set is contained in a ball of size 2j so that is enough to show that (95) is bounded

away from 0. Since suppϕ
Gε

<j−1 and suppϕ
Gε

j are symmetric and disjoint, we have due to the scaling from (38) and

(39), which we observed in the proof of Lemma 2.25, that

dist
(
suppϕGε

<j−1 + suppϕGε

j ,0
)
≥ 2ja

for some a > 0 and

suppϕ
Gε

<j−1 + suppϕ
Gε

j ⊆ B
(
0,2j · b′

)
, (96)

for some b′ > 0. Note, that we can choose b′ > 0 small enough such that B(0,2jGε b′)∩Rε = {0}. Indeed, otherwise

there are x1 ∈ suppϕ
Gε

<jGε−1, x2 ∈ suppϕ
Gε

jGε
such that x1+ x2 = r for some r ∈Rε \ {0}. But from |x1|< dist(∂Ĝε,0)

one sees that |x2| = |r−x1|> diam(Ĝε)/2 which contradicts x2 ∈ suppϕ
Gε

j ⊆ Ĝε . This choice of the parameter b′ can

be done independently of ε due to the dyadic scaling of our lattice (Definition 2.2).

Consequently, there exists r > 0 such that dist(B(0,2jb′)+Rε \ {0},0)= 2j r (to see that r > 0 is independent of

ε, use once more the dyadic scaling of the sequence Gε). But then we have

dist
((

suppϕ
Gε

<j−1 + suppϕ
Gε

j +R
ε
)
∩ Ĝε,0

)
≥ (a ∧ r) · 2j ,

which closes the proof. �

Results related to Section 5

Proof of Lemma 5.4. We will write shorthand f̂ ε
k := F(Gε)kf

ε
k and f̂k := F(Rd )kfk . The claimed convergence is a

consequence of the results in [6]. For z ∈ Gε let Gε(z)= z+ [−ε/2, ε/2)a1 + · · · + [−ε/2, ε/2)ad , where a1, . . . , ad
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denote the vectors that span G. For x ∈ Rd let [x]ε be the (unique) element in Gε such that x ∈ Gε([x]ε) and for

x ∈ (Rd)k set [x]ε = ([x1]ε, . . . , [xk]ε). We will start by showing

lim
ε→0

∥∥f ε
k

(
[·]ε

)
− fk

∥∥
L2((Rd )k)

= 0 (97)

for all k.

By Parseval’s identity we have ‖f ε
k ([·]ε)− fk‖L2((Rd )k) = ‖F(Rd )k (f

ε
k ([·]ε))− f̂k‖L2((Rd )k), where F(Rd )k denotes

the Fourier transform on (Rd)k for which one easily checks that

F(Rd )k
(
f ε
k

(
[·]ε

))
=
(
f̂ ε
k

)
ext
· pε

k,

where we recall that (f̂ ε
k )ext is the periodic extension of the discrete Fourier transform of f ε

k (on (Rd)k) as in (12) and

where

pε
k(y1, . . . , yk)=

∫

G1(0)k

dz1 · · · dzk

|G1|k
e−2πıε(y1•z1+···+yk •zk).

The function pε
k is uniformly bounded and tends to 1 as ε goes to 0. Now we apply Parseval’s identity, once on (Rd)k

and once on (Ĝε)k , and obtain

∫

(Rd )k
dx1 · · · dxk

∣∣((f̂ ε
k

)
ext

pε
)
(x1, . . . , xk)

∣∣2 =
∑

z1,...,zk∈Gε

∣∣Gε
∣∣k∣∣f ε

k (z1, . . . , zk)
∣∣2

=

∫

(̂Gε)k
dx1 · · · dxk

∣∣f̂ ε
k (x1, . . . , xk)

∣∣2

and thus
∫

((Ĝε)k)c
dx1 · · · dxk

∣∣((f̂ ε
k

)
ext

pε
)
(x1, . . . , xk)

∣∣2 =
∫

(̂Gε)k
dx1 · · · dxk

(∣∣f̂ ε
k

∣∣2(1−
∣∣pε

∣∣2))(x1, . . . , xk).

Since 1(Ĝε)k f̂
ε
k is uniformly in ε bounded by gk ∈ L2((Rd)k) and since 1 − |pε|2 converges pointwise to zero, it

follows from the dominated convergence theorem that 1((Ĝε)k)c (f̂
ε
k )extp

ε
k converges to zero in L2((Rd)k). Thus, we

get

lim
ε→0

∥∥(f̂ ε
k

)
ext

pε
k − f̂k

∥∥
L2((Rd )k)

= lim
ε→0

∥∥1(Ĝε)k f̂
ε
k p

ε
k − f̂k

∥∥
L2((Rd )k)

≤ lim
ε→0

∥∥(1(Ĝε)k f̂
ε
k − f̂k

)
pε
k

∥∥
L2((Rd )k)

+ lim
ε→0

∥∥f̂k

(
1− pε

k

)∥∥
L2((Rd )k)

= 0,

where for the first term we used that pε
k is uniformly bounded in ε and that by assumption 1(Ĝε)k f̂

ε
k converges to

f̂k in L2((Rd)k) and for the second term we combined the fact that pε
k converges pointwise to 1 with the dominated

convergence theorem. We have therefore shown (97). Note that this implies

∥∥f ε
k

(
[·]ε

)
1∀i �=j [zi ]ε �=[zj ]ε − fk

∥∥
L2(Rd )

→ 0 and
∥∥f ε

k

(
[·]ε

)
1∃i �=j [zi ]ε=[zj ]ε

∥∥
L2(Rd )

→ 0. (98)

As in the proof of Lemma 5.1 we identify Gε with an enumeration N→ Gε and use the set Ak
r = {a ∈Nr |

∑
i ai =

k} so that we can write

Ikf
ε
k =

∑

1≤r≤k,a∈Ak
r

r!
∑

z1<···<zr

∣∣Gε
∣∣kf̃ k

ε,a(z1, . . . , zr) ·

r∏

j=1

ξ ε(zj )
⋄aj ,

where we denote as in the proof of Lemma 5.1 by f̃ k
ε,a the symmetrized restriction of f k

ε to (Rd)r . By Theorem 2.3

of [6] we see that due to (98) the r = k term of Ikf
ε
k converges in distribution to the desired limit, so that we only
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have to show that the remaining terms vanish as ε tends to 0. The idea is to redefine for fixed a ∈ Ak
r the noise as

ξ
ε

j (z) = ξ ε(z)⋄aj /rεj (z) where rεj (z) :=
√

Var(ξ ε(z)⋄aj ) · |Gε| � |Gε|(1−aj )/2, so that in view of [6, Lemma 2.3] it

suffices to show that

∑

z1<···<zr

∣∣Gε
∣∣r

r∏

j=1

rεj (zj )
2 ·

∣∣f̃ ε
k,a(z1, . . . , zr )

∣∣2 �
∑

z1<···<zr

∣∣Gε
∣∣k ·

∣∣f̃ ε
k,a(z1, . . . , zr )

∣∣2 → 0,

but this follows from (98). �

Lemma A.7. Let (fn)n≥0 be a sequence which is bounded in the space L
γ,α

p,T (G, eσl ) and let α′ ∈ (0, α) and σ ′ ∈

(0, σ ). There is a subsequence (fnk
)k≥0, convergent in L

γ,α′

p,T (G, eσ
′

l ), with limit f such that

‖f ‖L γ,α
p,T (G,eσl )

≤ lim inf
k→∞

‖fnk
‖L γ,α

p,T (G,eσl )
(99)

Proof. Take in the following α̃ = α+α′

2
and σ̃ = σ+σ ′

2
. By definition of L

γ,α

p,T (G, eσl ) we know that (gn)n≥0 :=

((t, x) �→ tγ fn(t, x))n≥0 is bounded in C
α/2
T Lp(G, eσl ) ∩ CT C

α
p(G, e

σ
l ). Interpolation then shows that (gn)n≥0 is

bounded in C
α̃/2
T C

δx
p (G, eσl ) ∩ C

δt
T C

α̃
p(G, e

σ
l ) for some δx, δt > 0. We obtain by compact embedding (Lemma 2.22)

for δ′x ∈ (0, δx), δ
′
t ∈ (0, δt ) the existence of a convergent subsequence (gnk

)k≥0 in Cα′

T C
δ′x
p (G, eσ

′

l ) ∩ C
δ′t
T C

α′

p (G, eσ
′

l )

with some limit g. From the convergence of gnk
→ g in Cα′

T C
δ′x
p (G, eσ

′

l )∩C
δ′t
T C

α′

p (G, eσ
′

l ) it follows that for f := t−γ g

we have fnk
→ f in L

γ,α′

p,T (G, eσ
′

l ).

The estimate (99) is then just an iterative application of Fatou like arguments for the norms from which

‖ · ‖L γ,α
p,T (G,ρ) is constructed. �

Glossary

✹ Paraproduct, either on Rd or on a Bravais lattice 2083

≺≺ Modified paraproduct 2086

✒ Resonant term, either on Rd or on a Bravais lattice 2083

• Renormalized resonant term 2090

� Renormalized product for PAM (on R2) 2100

⋄ Wick product 2089

[·]
Ĝ

Periodic map from Rd to Ĝ 2063

Bα
p,q Besov space 2070

Cα
p Besov space with q =∞ 2070

C∞ω Ultra-differentiable functions 2067

D
γ,α

p,T Space of paracontrolled distributions for PAM 2096

ΔG
j Discrete Littlewood–Paley block 2065

Eε Extension from Bravais lattices Gε to Rd 2072

eσl Time-dependent, sub-exponential weight 2081

FG Fourier transform on a Bravais lattice G 2062

ϕ
G
j (discrete) Dyadic partition unity 2065

G, Gε Bravais lattices, Gε = ε · G denotes the scaled lattice 2061

Ĝ Fourier cell for a Bravais lattice G 2061

jG The index where suppϕj touches ∂Ĝ 2065



Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model 2109

lεμ Fourier multiplier for the diffusion operator Lε
μ 2078

L
(ε)
μ , L

(ε)
μ (discrete) Diffusion operator and its associated operator L

(ε)
μ = ∂t −L

(ε)
μ 2076

L
γ,α

p,T Parabolic space 2081

M
γ

T X Weighted space 2081

µ(ω) Set of jump measures for symmetric random walks 2075

ω Set of functions ωpol, ω
exp
σ that classify weights 2066

pκ Polynomial, decaying weight pκ(x)= (1+ |x|)−κ 2081

ψ Smear function 2072

�G,j Fourier transform of ϕG
j 2070

�G,<j Abbreviation for
∑

i<j �
G,i 2070

R Reciprocal Lattice 2061

ρ(ω) The set of weights, whose growth/decay is controlled by ω ∈ ω 2066

Sω Ultra-differentiable Schwartz functions 2067
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