
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Paradigms and laboratories in the core computer science curriculum: An
overview

Hartel, P.H.; Hertzberger, L.O.

Publication date
1995

Published in
SIGCSE bulletin

Link to publication

Citation for published version (APA):
Hartel, P. H., & Hertzberger, L. O. (1995). Paradigms and laboratories in the core computer
science curriculum: An overview. SIGCSE bulletin, 27(4), 13-20.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/paradigms-and-laboratories-in-the-core-computer-science-curriculum-an-overview(e126bb27-2d01-44cf-a9af-9d16a9836f8b).html

Paradigms and laboratories
the core computer science curriculum

in

An overview

Pieter H. Hartel * L. O. Hertzberger *

A b s t r a c t

Recent issues of the bulletin of the ACM SIGCSE
have been scrutinised to find evidence that the use
of laboratory sessions and different programming
paradigms improve learning difficult concepts and
techniques, such as recursion and problem solving.

Many authors in the surveyed literature be-
lieve that laboratories are effective because they
offer a mode of learning that complements class-
room teaching. Several authors believe that differ-
ent paradigms are effective when used to support
teaching mathematics (logic and discrete mathe-
matics) and computer science (programming, com-
parative programming languages and abstract ma-
chines).

Precious little evidence by way of reported re-
sults of surveys, interviews and exams was found
in the ACM SIGCSE bulletins to support these be-
liefs.

1 I n t r o d u c t i o n

Over the years, computer science (CS) has evolved
from a single discipline into a number of related
disciplines. The 1991 ACM/IEEE-CS Computing
Curricula report [29] identifies a number of subjects
that can be classified either as belonging to the core
of CS or being peripheral.

Core CS consists of programming languages, al-
gorithms and data structures, architecture, operat-
ing systems, and software engineering. The Com-
puting Curricula recommendation devotes just un-
der 90% of the lecture hours to these core subjects.

• Department of Computer Systems, University of Amster-
dam, Kruislaan 403, 1098 SJ Amsterdam. The Netherlands
pieter@fwi.uva.nl

A host of non-core (peripheral) topics are now
firmly established. These include databases, arti-
ficial intelligence, symbolic and numeric computa-
tion and human-computer interaction. The Com-
puting Curricula report recommends that just over
10% of the lecture hours should be spent on these
peripheral subjects.

The number of applications of CS is on the
increase. This has caused two separate trends.
Firstly, some CS curricula are being expanded to
contain more peripheral CS topics. Secondly, many
non-CS curricula now include the study of some CS
topics. Many departments that started out as pure
CS departments have acknowledged these devel-
opments and are now offering a number of different
curricula, often in combination with subjects such
as psychology, business studies, law, medicine, lan-
guages, physics etc. While previously a univer-
sitv would offer onlv one CS curriculum, presently
manv universities offer several curricula with a CS
component.

The diverging trends in CS curricula necessarily
have an impact on the teaching practice of the CS
departments. This divergence brings with it a de-
mand to focus the various curricula. Aspects of this
focusing activity will be discussed here. To simplify
the discussion, hopefully without being unjust, we
claim that core CS is intimatelv related to discrete
mathematics and logic. Where a relation exists, the
peripheral CS disciplines are more closely associ-
ated with other branches of mathematics such as
calculus, or probability theory.

The relationship between logic and discrete
mathematics within the core CS curriculum will be
highlighted as found in the papers being surveyed.
All issues of ACM SIGCSE bulletin over the past
seven years have been scrutinised to find evidence
of this relationship.

S I G C S E vol. 27 No. 4 Dec. i995 13
B U L L E T I N

An important e lement of the above relationship
is the emphasis placed on learning through exper-
imentation. The same literature has been scanned
to find descriptions of how laboratory sessions are
used to suppor t learning. Some 30 papers were
found to contain relevant information.

The present survey is restricted to papers pub-
fished in SIGCSE, hoping to provide a view reflect-
ing that general ly held by those with an interest in
educat ion proven by publication in this med ium.

The next section reviews the papers that discuss
general issues. Section 3 covers papers that use
p rog ramming in various parad igms and / or labora-
tories for teaching discrete mathemat ics and logic.
Teaching core CS topics using laboratories and var-
ious paradigms is discussed in Section 4. The last
section presents some discussion and the conclu-
sions.

2 G e n e r a l i s s u e s

The general issues of relevance that were found in
the literature are abstraction, recursion and learn-
ing with the aid of laboratories.

2.1 Abstraction and generalisation

N~vrat [17] argues that teaching abstraction and
generalisation as problem solving concepts can be
suppor ted bv the use of appropria te p rogramming
paradigms. His point is that three methodologi-
cal dimensions must be distinguished: abstraction
and concretisation, generalisation and specialisa-
tion, and meta-knowledge. The first two dimen-
sions are often confused. For example, an abstract
solution to a problem should be no more general
than a concrete solution. The third dimension, that
of meta-knowledge, captures p rogramming tools
and techniques that can be applied in specific cir-
cumstances. At various points in the three dimen-
sional space thus established, N~ivrat finds that spe-
cific p rog ramming parad igms are particularly use-
ful for highlighting the distinctions be tween the
three dimensions.

Along the same lines, Jarc [10] presents a unified
view of data structures, which can be recognised
as an object hierarchy. In both papers [17, 10] pro-
g ramming in different pa rad igms is ment ioned as
a means to make concepts operational.

2.2 Recursion

It is essential to teach recursion as a concept in its
own right. It is often perceived as a difficult con-
cept so it mus t be taught properly. Firstly, learning
recursion requires a new m o d e of thinking. Sec-
ondly, m a n y important algori thms are recursive.

Wiedenbeck [32] reports that to provide exten-
sive examples for s tudents to emula te is vitally im-
portant. Few such examples are available in the
real world. The literature offers two approaches
to learning recursion: plan-based recursion and re-
cursion as a problem solving tool.

2.2.1 P lan-based recursion

According to N e w m a r c h [18] a plan-based ap-
proach to recursion presupposes a solution to a
given problem. The solution is then matched to
a repertoire of plans that describe the basis of the
recursion and the recursive step(s). Examples are
"linear recursion" and 'd ivide-and-conquer ' . New-
march makes plans operational using Prolog. A
small number of plans support a large number
of different programs and algorithms. The plan-
based approach also works with the imperat ive
p rog ramming paradigm.

2.2.2 Recurs ion as prob lem s o l v i n g tool

Instead of presupposing a solution, recursion can
be presented as a problem solving tool. Hender -
son [8] claims that it is natural to do so in the declar-
ative parad igm (he uses SML). In that paradigm,
recursion can be taught to go hand- in-hand with in-
duct ion in discrete mathematics. The importance
of laboratories using SML to reinforce the use of
recursion as a problem solving concept is stressed.

Manv imperat ive p rogramming languages re-
quire the use of pointers to manipula te recursive
data structures effectively. Pointers are a rela-
tively low-level concept. They are therefore mostly
taught as an advanced concept, late in a pro-
g r amming course, when problem solving has al-
readv been taught. The use of an imperat ive pro-
grarnming language therefore makes it difficult to
teach recursion and recursion-based problem solv-
ing early.

Fractals provide a good example for teaching re-
cursion [5]. Recursion is shown to be present at
three levels: at the visual level (fractals are self-
similar structures), at the analytic level (dimension-

S I G C S E v o l 27 No . 4 Dec . 1995 1 4
B U L L E T I N

alitv analysis p lays an impor tan t role in w o r k with
fractals) and in the s t ructure of the p r o g r a m s that
d r a w fractals (for which Prolog is used). The re-
curs ion at each level is essential ly the same, thus
re inforcing the concept . The visual aspect s t imu-
lates explora tory learning of recursion.

2.3 Laboratories

Laborator ies suppor t the learning process by offer-
ing s tudents well-chosen, short, wel l -paced exer-
cises. Labora tory assignments:

• make the mater ia l being s tud ied opera t ional

• al low the s tuden t to ascertain that the mater ia l
is u n d e r s t o o d

• p rovide instant feedback to the s tuden t

• s t imulate exper imenta t ion wi th the mater ia l

• raise quest ions for fur ther lectures and s t udy

• offer the s tuden t the oppor tun i ty to discover
solutions to problems

Various authors [22, [4] a rgue for an exper imen-
tal approach to the CS cur r icu lum, using program-
ming assignments . One au thor goes further: Bier-
nat [21 in his course on a lgor i thms and data struc-
tures uses puzzles and games for class room teach-
ing and home work. He observes that s tudents
u n d e r s t a n d a lgor i thms faster, r e m e m b e r them bet-
ter and are excited about the course.

3 Discrete mathematics and Logic

H e n d e r s o n [7] argues that a course on discrete
ma themat ics should p recede the first p r o g r a m m i n g
course. He claims that mas te r ing mathemat ica l
concepts, such as recurs ion and induct ion, is a re-
qu i r emen t for learning proper p rog ramming . The
discrete mathemat ics course descr ibed bv Hende r -
son concentra tes on genera l p rob lem solving prin-
ciples, such as pat terns and symmet r i e s , and recur-
sive and induct ive thinking. Course mater ia l is re-
inforced th rough explora tory compu te r -based lab-
ora tory assignments . H e n d e r s o n uses SML, SETL
and Trilogy (a logic language). The emphas is in
the labora tory is on exper imen ta t ion wi th concepts
th rough the use of in te rpre ted implementa t ions of

p r o g r a m m i n g languages. This is qui te different
f rom learning to p rogram. The dist inct ion b e t w e e n
exper imenta t ion on the one h a n d and p rog ram-
ming on the o ther is an impor t an t one. The ex-
p lora tory charac ter of the labora tory s t imulates the
s tuden ts and makes ma thema t i c s a fun subject.

Wainwr igh t [31] descr ibes labora tory assign-
ments (using Mi randa 1) to suppor t a discrete math-
ematics course for second vear s tudents . The
course is taught to CS students , ma themat i c s stu-
dents and s tuden ts in C o m p u t e r Informat ion Sys-
tems (CIS). Some s tuden ts have no p r o g r a m m i n g
background , so that labora tory ass ignments have
to be based on l anguages that are easy to learn. Re-
sponses to a su rvey were rece ived f rom 13 CS, 9
CIS and 10 Mathemat ics s tudents . The su rvey re-
ports that even wi thout prior exposure to p rogram-
rning, Unix or edi t ing with Vi, all s tuden ts found
the labora tory ass ignments usefu l and r e c o m m e n d
that they be kept as par t of the course. The CS
s tudents were slightly m o r e enthusiast ic than the
Mathemat ics and CIS s tudents .

Schoenefe ld and Wainwr igh t [25] describe a
s u m m e r course in discrete ma thema t i c s for teach-
ers at high-school level. This course is taught us-
ing the book bv Skiena [26], which offers extensive
labora tory ass ignments based on Mathemat ica . A
n u m b e r of survevs have been held amongs t the
course part icipants, indicat ing that they were "ex-
t remely pleased that Mathemat i ca was integrated
into the course". The use of Ma themat i ca as an ex-
p lora tory tool makes opera t ional impor tan t math-
emat ical concepts such as abstract ion and general-
isation.

Myers [15] makes a plea for teaching m o r e logic
as par t of the CS cur r icu lum. One of the m a n y
reasons he gives is that the basis of all impor tan t
p r o g r a m m i n g p a r a d i g m s is found in logic.

Hein [6] describes tools to teach discrete mathe-
matics and logic using a large var ie ty of shor t and
re levant laboratory ass ignments . S imple assign-
men t s are descr ibed to expe r imen t wi th laws of
logic (using Prolog). Other ass ignments suppor t
learning about funct ions and funct ion composi t ion
(using FP) and learning about types (using SML).
The use of different l anguages is not seen as a prob-
lem, as the languages that are used fai thful lv reflect
the notat ions used in the course and emula te in a
na tura l w a y the not ions of discrete ma themat i c s
and logic. Hein notes that a course s u p p o r t e d bv
extra laboratory ass ignments does requi re s tuden ts

1Miranda is a t r ademark of Research sof tware Ltd.

S I G C S E v o l 27 No 4 Dec 1995 1 5
B U L L E T I N " " "

to do more work. One should thus not forget to
award more credits for such a course than for a
course without a laboratory.

4 Core Computer Science

In the laboratories that suppor t teaching gen-
eral and mathemat ica l concepts an exper imen-
tal approach to p r o g r a m m i n g and p r o g r a m m i n g
pa rad igms is used. Teaching core CS subjects
requires a different, more fundamen ta l approach
to p r o g r a m m i n g and p r o g r a m m i n g paradigms.
However , there is again a relationship be tween par-
ticular subjects and the choice of p a r a d i g m that is
most suited to teach that subject. In the SIGCSE bul-
letins, the following subjects were discussed with a
relationship to pa rad igms a n d / o r laboratories: the
first p rog ramming course, the compara t ive s tudy
of p rog ramming languages and the s tudy of ab-
stract machines.

course, these s tudents p roduce " m u c h better code
than their p rocedura l ly -bra inwashed class mates".
The paper does not provide suppor t ing evidence
for this rather strong and tendent ious claim.

Stanchev and Radenskv [23] teach functional
p rog ramming using an FP-tike language to gradu-
ate and under -g radua te students. They report that
their course was found difficult. This is a ques-
tionable conclusion for it is based on the n u m b e r
of s tudents that actually took the exam (15 out of
26 the first year, 7 out of 14 the next). The authors
hold responsible the "one w o r d at a t ime" thinking
habits induced by prolonged exposure to impera-
tive languages.

The evidence found thus far in the SIGCSE bul-
letins, for or against using different pa rad igms in
the first p rog ramming course barely t ranscends the
anecdotal. A more comprehens ive survey would
have to include a vast a m o u n t of other literature,
such as special issues of var ious journals [28] that
are devoted to education.

4.1 Firs t p r o g r a m m i n g c o u r s e

S~nchez-Calle and Vel~zquez-i turbide [23] teach
the declarat ive p a r a d i g m (using Hope+) in the first
p r o g r a m m i n g course, with a s trong emphas is on
synthesis and analysis of p rograms us ing logic to
reason about programs. The authors report , with-
out present ing the evidence, that their s tudents
"enjoy bui lding p rograms while they are also able
to analyse them rigorously".

Louden [t21 reports on an exper iment wi th two
different s t reams of s tudents . The first s t ream con-
sists of first year CS students . The other s t ream
consists of more mature students . The CS s tudents
learn Logo first, "emphas iz ing the role of functional
p rog ramming in a manner similar to Abelson and
Sussman [1]'. Thev then learn Pascal. The mature
s tudents frequently bypass the Logo and Pascal-
based classes. Both streams then t eam Lisp. Does
the declarative (Logo) background improve the ex-
aminat ion results for the Lisp course? Possibly:
based on the responses received for a survey (69
CS and 100 mature students), it was found that the
examinat ion results of the mature s tudents were
slightly better, Louden points out that the relative
matur i ty of this s t ream might exptain this effect and
concludes that more s tudy should be done.

Clancy and Linn [3] report on their experience
with s tudents who were taught Lisp as a first
language. Dur ing the subsequent data structures

4.2 The comparative study of program-
ming languages

The compara t ive s tudy of p r o g r a m m i n g languages
is mov ing away from part icular languages towards
the s tudy of paradigms, in m u c h the same w a y as
the core CS field as a whole is mov ing in that direc-
tion. In his survey, King [11] notes that one of the
goals of a comparat ive s t udy mus t be to prepare
the s tudents for the future. This implies that some
historical perspective and a deep unde r s t an d in g of
current concepts are essential. The compara t ive
s tudy of p r o g r a m m i n g languages thus becomes
more fundamenta l [13], as a deep unde r s t and ing
of pa rad igms is only possible with an under s t and-
ing of the foundat ions of the paradigms.

One way to teach compara t ive p r o g r a m m i n g lan-
guages is via their formal semantics. Nielson and
Nietson [19] provide a thorough in t roduct ion to the
subject, suppor ted by many exercises, both using
pencil and paper and using Miranda for labora-
tory assignments. This subject is wor thy of s tudy
as a separate, but perhaps advanced subject, but
it also has its place in the compara t ive s tudy of
p r o g r a m m i n g languages. As part of a course on
p r o g r a m m i n g languages, H6ft [9] presents the se-
mantics of the loop-construct in a precise way us-
ing Dijkstra's calculus of g u a r d e d commands . The
mater ia l is suppor ted by declarat ive laboratory as-

SIGCSE Vol 27 No. 4 Dec. ~995 16
B U L L E T I N

signments using Mathematica. The ~aph ica l ca-
pabilities of Mathematica in particular are used to
reinforce learning by s tudying possible behaviours
of non-deterministic semantics. The increased pre-
cision offered by H6fts approach gives deeper in-
sights than those offered by the usual natural lan-
guage descriptions.

4.3 A b s t r a c t m a c h i n e s a n d t r a n s l a t i o n s

Abstract machines and translations between ab-
stract machines are topics that appear in such di-
verse contexts as computer archit%cture, semantics
of programming languages, compiler construction
and the theory of computation. A thorough treat-
ment supported with well-constructed laboratory
assignments will therefore be beneficial to all of
these subjects at once. Such recurring concepts are
identified as extremely useful in the ACM curricu-
lum [29].

Some authors describe abstract machines in
terms of declarative programs. Protog [4] even en-
ables 'reverse execution" (i.e. given a finite state
machine and its output, the Prolog system will re-
construct the possible inputs). Piotrowski states
that Miranda [20] is less versatile, but offers more
elegant and robust (typed) specifications of abstract
machines. Both of these declarative approaches to
experimenting with abstract machines offer readily
executable specifications of formal systems.

The translations between different levels of ab-
stract machines can be presented as straight for-
ward function compositions [21]. The functions
being composed retain their validity regardless of
the context in which they are used.

Cigas [30] uses abstract machines (finite state ma-
chines - FSM) as a schema for developing algo-
rithms. His main point is that the visual represen-
tation of an FSM is powerful aid in unders tanding
and analysing problems, with p rogramming solu-
tions (in Pascal) immediately available.

5 D i s c u s s i o n and c o n c l u s i o n s

A survev of recent issues of the ACM SIGCSE has
been presented, with an emphasis on the use of
different programming paradigms and laboratory
sessions in the CS curriculum. Discrete mathemat-
ics and logic are ment ioned by many authors as
having an important relation with the core CS cur-

riculum. A summary of the literature mav be found
in Table 1.

Five years ago Luker [13] wrote that teaching CS
means to look to the future. He argued for teach-
ing principles and theory, and against training stu-
dents to be C programmers. He notes that there
exist two schools. The 'theoretical school' would
be interested only in teaching principles and the-
ory. The 'practical school" would be interested in
training C programmers. Based on what has been
found during this literature survev one gets the
impression that the situation is improving. On the
part of the 'theoretical school' there is a trend to-
wards learning concepts using experimental meth-
ods. This stresses the practical aspects of concepts
learned and makes them operational in more wavs
than before. The laboratories are used to reinforce
learning and to offer different wavs of learning.

On the part of the 'practical school', there is still
a certain hesitation to embrace theory but not to
the same extent as before. Many would now con-
sider the studv of comparat ive programming lan-
guages less important than the comparative study
of programming paradigms. The use of different
programming paradigms is widely believed to be
useful both for their intrinsic interest and for their
use in making important concepts operational. In-
terpreters are often used to support laboratory ex-
periments with concepts from logic and discrete
mathematics.

Most authors state that courses supported by
short and relevant laboratory assignments are more
effective than courses without such laboratories.
They argue that the increase is more than that which
may be expected simply from requiring more time
to be spent on the course. The fact that different
people learn in different ways enables some stu-
dents to learn most from the laboratories and some
to concentrate on the pencil and paper aspects of a
course.

The search of the SIGCSE bulletins for the sup-
port of claims that laboratories are useful and that
using different paradigms is beneficial, has yielded
precious little evidence. More study is needed in
this area.

Exper ience will tell w h e t h e r l abo ra to ry -
suppor ted learning of theoretical concepts will
make these concepts sufficiently operational to a
large enough proportion of our students to prepare
them properly for the future.

S I G C S E v o l 27 N o . 4 D e c . 1 9 9 5 17
B U L L E T I N

t Ref. Year !
[41 88
[5] 88

[32] 88
[8] 89

[12] 89
[13] 89
[141 89
[201 89

[3] 90
[71 90

[15] 90
[9] 91

[16] I 91
[23] 91
[27] 91

[30] 92 1
[11] 92
[211 92
[22] 92
[31] 9 2 !

i [21 93
[6] 93

[18] 93
[24] 93
[10] 94
[1 7] 94
Paradigms:

Where [Subject(s) Paradigms(s)
Belfast Abstract machines L
Michigan Recursion L
Nebraska Recursion EI
Stony Brook
San Jose State
California State
City, New York
N e w South Wales
Berkeley
Stony Brook
San Antonio
E. Michigan
Poona
Polit~cnica Madr id
Sofia
Rockhurst, Kansas
Georgia State
N e w South Wales
San Antonio
Tulsa
AT&T, Illinois
Port land state
Canberra
Tulsa

Recursion
First course
Methodology
Algori thms
Abstract machines
First course
First course
Mathematical logic
P rogramming languages
Software engineer ing
First course
P rogramming languages
P rogramming techniques
P rogramming languages
Abstract machines
Cur r icu lum
First course
Data struct., Algor i thms
First course
Recursion
Discrete Mathematics

F
F
C,F,I,O
I
F
F
F,L,S

F,M/ithematica
I
F
F
State machines
C,D,F,I,L,O
F
EI
F
Games, Puzzles I
F,L
L
Mathemat ica

Mary land Methodology F,I
Bratislava Methodology F,I,L,O
C = Concur ren t L = Logic
D = Data base or iented O = Object Or iented
F = Funct ional S = Set-based
I = Impera t ive

Lab.
yes
n o

n o

yes
n o

n o

yes
yes
no
yes
n o

yes
n o

yes
yes
n o

n o

v e s

yes
yes
n o

y e s

n o

y e s

n o

n o

Stats.
n o

n o

yes
no

yes

no

no
no

no

no

no

no
no

no

yes
no

no

no

no

yes
no

no

no

yes
no

no

Table 1: A survev of the papers reviewed.

6 A c k n o w l e d g e m e n t s

We thank Marcel Beemster, H u g h McEvoy, Hans
van der Meet and Jon Mount joy for their comments
on draft versions of the paper.

R e f e r e n c e s

[1] H. Abelson and G. J. Sussman. Stmlcture and
interpretation of computer programs. ~vtIT Press,
Cambridge, Massachusetts , 1985.

[2] M. J. Biernat. Teaching tools for data struc-
tures and algorithms. ACM SIGCSE bulletin,
25(4):9-12, Dec 1993.

[31 M.J. Clancv and NI. C. Linn. Functional fun. In
D. T. Joyce, editor, 21st Computer science educa-
tion, pages 63-67, Washington, DC, Feb 1990.
ACM SIGCSE bulletin, 22(1).

[4] D. Crookes. Using Prolog to present abstract
machines. A C M SIGCSE bulletin, 20(3):8--12,
Sep 1988.

[5] B. C. Elenbogen and M. R. O 'Kennon. Teach-
ing recursion using fractals in Prolog. In H. L.
Dersham, editor, 19th Computer science edu-
cation, pages 263-266, Atlanta, Georgia, Feb
1988. AC•I SIGCSE bulletin, 20(1).

[6] J. L. Hein. A declarat ive laboratory approach
for discrete structures, logic and computabi l -
ity. ACM SIGCSE bulletin, 25(3):19-24, Sep
1993.

S I G C S E v o l 27 N o . 4 Dec 1995 1 8
B U L L E T I N "

[7] P. B. Henderson . Discrete m a them a t i c s as a
precursor to p r o g r a m m i n g . In D. T. Joyce, ed-
itor, 21st Computer science education, pages 17-
21, Washington, DC, Feb 1990. A C M SIGCSE
bulletin, 22(1).

[8] P. B. H e n d e r s o n and E J. Romero. Teaching re-
curs ion as a p rob lem-so lv ing tool u s ing stan-
da rd ML. In R. A. Barrett and M. J. MansfieId,
editors, 20th Computer science education, pages
27-31, Louisville, Kentucky, Feb 1989. A C M
SIGCSE bulletin, 21(1).

[91 H. HOlt. I m p l e m e n t a t i o n of a non-
determinis t ic loop. ACM SIGCSE bulletin,
23(2):24-28, Jun 1991.

[10] D.J. Jarc. Data structures: a unif ied view. A C M
SIGCSE buUetin, 26(2):2-8, Jun 1994.

[111 K. N. King. The evolu t ion of the p r o g r a m m i n g
language course. In M. J. Mansfield, C. M.
White, and J. Har tman , editors, 23rd Computer
science education, pages 213-219, Kansas, Mis-
souri, Mar 1992. A C M SIGCSE bulletin, 24(1).

[121 K. Louden. LOGO as a p re lude to Lisp:
Some surpr is ing results. ACM SIGCSE bul-
letin, 21(3):35-38, Sep 1989.

[13] P. A. Luker. Never m i n d the language, w h a t
about the pa rad igm? In R. A. Barrett and M. J.
Mansfield, editors, 20th Computer science ed-
ucation, pages 252-256, Louisville, Kentucky,
Feb 1989. ACM SIGCSE bulletin, 21(1).

[141 D. D. McCracken. Three "lab ass ignments" for
an algorithrnics course. ACM SIGCSE bulletin,
21(2):61--64, Jun 1989.

[151 J. P. Meyers Jr. The central role of ma themat ica l
logic in c o m p u t e r science. In D. T. Joyce, edi-
tor, 2Ist Computer science education, pages 22-
26, Washington, DC, Feb 1990. ACM SIGCSE
bulletin, 22(1).

[161 R. P. Modv. C in educa t ion and sof tware en-
gineering. ACM SIGCSE bulletin, 23(3):45-56,
Sep 1991.

[17] P. Navrat . Hierarchies of p r o g r a m m i n g con-
cepts: abstraction, generality, and beyond .
A C M S/GCSE bulletin, 26(3):17-28, Sep 1994.

[18]

[19]

[201

[211

[22]

[23]

[24]

[251

[26]

[27]

[28]

J. Newmarch . A p lan-based approach to Pro-
log recursion. A C M SIGCSE bulletin, 25(2):12-
18, Jun 1993.

H. R. Nielson and F. Nielson. Semantics with
applications: A/ormal introduction. John Wiley
& Sons, Chichester, England , 1991.

J. A. Piotrowski. Abstract machines in Mi-
randa. A C M SIGCSE bulletin, 21(3):44-47, Sep
1989.

J. A. Piotrowski. Translat ion - an in t roduc to ry
exercise. ACM SIGCSE bulletin, 24(2):20-28,
Jun 1992.

R. E. Prather. C o m p u t e r science in an under -
g radua te liberal arts and sciences setting. In
23rd Computer science education, pages 59--64.
A C M SIGCSE bulletin, 24(2), Jun 1992.

A. S&nchez-Calle and J. A. Velazquez-Iturbide.
Fun, r igour and p r a g m a t i s m in funct ional pro-
g r amming . ACM SIGCSE bulletin, 23(3):11-16,
Sep 1991.

D. A. Schoenefeld and R. L. Wainwright . In-
tegrat ion of discrete mathemat ics topics into
the secondarv mathemat ics cu r r i cu lum us ing
rnathematica - a s u m m e r insti tute for h igh
school teachers. In B. J. Klein, C. Laxter, and
F. H. Young, editors, 24th Compt, ter science ed-
ucation, pages 78-82, Indianapol is , Indiana,
Mar 1993. ACM SIGCSE bulletin, 25(1).

W. Schreiner. Parallel funct ional p rog ram-
ruing - - an anno ta ted bibliography. Techni-
cal Report 93-24, RISC-Linz, Johannes Kepler
Univ, Linz, Austria, May 1993.

S. Skiena. Implementing discrete mathematics -
Combinatorics and Graph theory with Mathemat-
ica. Addi son Wesley, Reading, Massachuset ts ,
1990.

S. Stanchev and A. Radenskv. Teaching some
m o d e m functional p r o g r a m m i n g concepts:
an approach based on an ex t ended FP-like lan-
guage. ACM SIGCSE bulletin, 23(4):31-40, Dec
1991.

S. T h o m p s o n and P. L. Wadler. Funct ional pro-
g r a m m i n g in educat ion. /. functional program-
ruing, 3(1):1-115, Jan 1993.

S I G C S E vol. 27 No 4 Dec. 1995 19
B U L L E T I N

[29] A.J. Turner. A summary of the ACM/IEEE-CS
joint curriculum task force report: Comput ing
curricula 1991. CACM, 34(6):69-84, Sun 1991.

[30] J. F. Cigas. The art of state. In M. J. Mans-
field, C. M. White, and J. Hartman, editors,
23rd Computer science education, pages 153-156,
Kansas, Missouri, Mar 1992. ACM SIGCSE
bulletin, 24(1).

[31] R. L. Wainwright. Int roducing functional pro-
g ramming in discrete mathematics. In M. J.
Mansfield, C. M. White, and J. Hart-man, ed-
itors, 23rd Computer science education, pages
147-152, Kansas, Missouri, Mar 1992. ACM
SIGCSE bulletin, 24(1).

[32] S. Wiedenbeck. Learning recursion as a con-
cept and as a programming technique. In H. L.
Dersham, editor, 19th Computer science edu-
cation, pages 275-278, Atlanta, Georgia, Feb
1988. ACM SIGCSE bulletin, 20(1).

******************************* Language Continued From Page ****************************

Hymes, D. (1972)
Competence" in
Selected Readings",
(eds.)

"On Communicative
"Sociolinguistics,
Pride & Holmes

Krashen, S et al (1977) "Age, rate and
eventual attainment in second language
acquisition" TESOL Quarterly, 13, 4,
573-582.

Ledgard, H., Whiteside, J. A., Singer,
A. & Seymour, W. (1980) ~The natural
language of interactive systems"
Communications of the A.C.M., 23, I0,
556-563.

Lee, M. P., Peacock, D. & Jeffreys, S.
(1989) "dBASE as a first programming
language" Collegiate Microcomputer, VII,
2, 111-116.

Lee, M. P., Harrison, A. & Kent, A. E.
(1991) "Group projects for the software
engineering of knowledge based systems"
pp 95-107 IN King, G. A. (ed.) "Software
engineering in higher education"
Southampton Institute, 1-874011-00-1.

Lee, M. P., Pryce, J.D. & Harrison, A.
(1994) "Prolog as a first programming
language" pp 275-281 IN King, G. A. et
alia (eds.) "Software engineering in
higher education" Computational Mechnics
Publications, 1-85312-289-0.

Peacock, D., Ralhan, V. K., Jeffreys, S.
& Lee, M. P. (1988) "The use of a
structured project to teach program
development" ACM SIGCSE Bulletin, 19, 4,
10-18.

Peacock, D., Ralhan, V. K. & Lee, M. P.
(1988) "A first year course in software
design and use" ACM SIGCSE Bulletin, 20,
4, 2-8.

Schank, P. K., Linn, M. C. & Clancy, M.
J. (1993) "Supporting Pascal programming
with an on-line template library and
case studies" Int. J. Man-Machine
Studies, 38, 1031-1048.

Shaw, Guise & Reddy (1989) "What a
software engineer needs to know: program
vocabulary" Software Engineering
Institute Technical Report 30, Carnegie-
Mellon University, Pittsburgh.

Stern, H. H., (1986) ~Fundamental
Concepts of Language Teaching" OUP.

Thomas, E. J. & Oman, P. W. (1990) "A
bibliography of programming style" ACM
SIGPLAN Notices, 25, 2, 7-16.

SIGCSE vol 27 No. 4 Dec. 1995 20
BULLETIN

