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Paradigms and laboratories in
the core computer science curriculum: An overview

Pieter H. Hartel *

Abstract

Recent issues of the bulletin of the ACM SIGCSE
have been scrutinised to find evidence that the use
of laboratory sessions and different programming
paradigms improve learning difficult concepts and
techniques, such as recursion and problem solving.

Many authors in the surveyed literature be-
lieve that laboratories are effective because they
offer a mode of learning that complements class-
room teaching. Several authors believe that differ-
ent paradigms are effective when used to support
teaching mathematics (logic and discrete mathe-
matics) and computer science (programming, com-
parative programming languages and abstract ma-
chines).

Precious little evidence by way of reported re-
sults of surveys, interviews and exams was found
in the ACM SIGCSE bulletins to support these be-
liefs.

1 Introduction

Over the years, computer science (CS) has evolved
from a single discipline into a number of related
disciplines. The 1991 ACM/IEEE-CS Computing
Curricula report {29] identifies anumber of subjects
that can be classified either as belonging to the core
of CS or being peripheral.

Core CS consists of programming languages, al-
gorithms and data structures, architecture, operat-
ing systems, and software engineering. The Com-
puting Curricula recommendation devotes just un-
der 90% of the lecture hours to these core subjects.
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A host of non-core (peripheral) topics are now
firmly established. These include databases, arti-
ficial intelligence, symbolic and numeric computa-
tion and human-computer interaction. The Com-
puting Curricula report recommends that just over
10% of the lecture hours should be spent on these
peripheral subjects.

The number of applications of CS is on the
increase. This has caused two separate trends.
Firstly, some CS curricula are being expanded to
contain more peripheral CS topics. Secondly, many
non-CS curricula now include the study of some C$
topics. Many departments that started out as pure
CS departments have acknowledged these devel-
opments and are now offering a number of different
curricula, often in combination with subjects such
as psvchology, business studies, law, medicine, lan-
guages, physics etc. While previously a univer-
sity would offer only one CS curriculum, presently
many universities offer several curricula with a CS
component.

The diverging trends in CS curricula necessarily
have an impact on the teaching practice of the CS
departments. This divergence brings with it a de-
mand to focus the various curricula. Aspects of this
focusing activity will be discussed here. Tosimplify
the discussion, hopefully without being unjust, we
claim that core CS is intimately related to discrete
mathematics and logic. Where a relation exists, the
peripheral CS disciplines are more closely associ-
ated with other branches of mathematics such as
calculus, or probability theory.

The relationship between logic and discrete
mathematics within the core CS curriculum will be
highlighted as found in the papers being surveyed.
All issues of ACM SIGCSE bulletin over the past
seven years have been scrutinised to find evidence
of this relationship.



An important element of the above relationship
is the emphasis placed on learning through exper-
imentation. The same literature has been scanned
to find descriptions of how laboratory sessions are
used to support learning. Some 30 papers were
found to contain relevant information.

The present survey is restricted to papers pub-
lished in SIGCSE, hoping to provide a view reflect-
ing that generally held by those with an interest in
education proven by publication in this medium.

The next section reviews the papers that discuss
general issues. Section 3 covers papers that use
programming in various paradigms and /or labora-
tories for teaching discrete mathematics and logic.
Teaching core CS topics using laboratories and var-
ious paradigms is discussed in Section 4. The last
section presents some discussion and the conclu-
sions.

2 General issues

The general issues of relevance that were found in
the literature are abstraction, recursion and learn-
ing with the aid of laboratories.

2.1 Abstraction and generalisation

Navrat [17] argues that teaching abstraction and
generalisation as problem solving concepts can be
supported by the use of appropriate programming
paradigms. His point is that three methodologi-
cal dimensions must be distinguished: abstraction
and concretisation, generalisation and specialisa-
tion, and meta-knowledge. The first two dimen-
sions are often confused. For example, an abstract
solution to a problem should be no more general
than a concrete solution. The third dimension, that
of meta-knowledge, captures programming tools
and techniques that can be applied in specific cir-
cumstances. At various points in the three dimen-
sional space thus established, Navrat finds that spe-
cific programuming paradigms are particularly use-
ful for highlighting the distinctions between the
three dimensions.

Along the same lines, Jarc [10] presents a unified
view of data structures, which can be recognised
as an object hierarchy. In both papers [17, 10] pro-
gramming in different paradigms is mentioned as
a means to make concepts operational.
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2.2 Recursion
It is essential to teach recursion as a concept in its
own right. It is often perceived as a difficult con-
cept so it must be taught properly. Firstly, learning
recursion requires a new mode of thinking. Sec-
ondly, many important algorithms are recursive.
Wiedenbeck [32] reports that to provide exten-
sive examples for students to emulate is vitally im-
portant. Few such examples are available in the
real world. The literature offers two approaches
to learning recursion: plan-based recursion and re-
cursion as a problem solving tool.

2.2.1 Plan-based recursion

According to Newmarch [18] a plan-based ap-
proach to recursion presupposes a solution to a
given problem. The solution is then matched to
a repertoire of plans that describe the basis of the
recursion and the recursive step(s). Examples are
‘linear recursion” and ‘divide-and-conquer’. New-
march makes plans operational using Prolog. A
small number of plans support a large number
of different programs and algorithms. The plan-
based approach also works with the imperative
programming paradigm.

2.2.2 Recursion as problem solving tool

Instead of presupposing a soiution, recursion can
be presented as a problem solving tool. Hender-
son [8] claims that it is natural to do so in the declar-
ative paradigm (he uses SML). In that paradigm,
recursion can be taught to go hand-in-hand with in-
duction in discrete mathematics. The importance
of laboratories using SML to reinforce the use of
recursion as a problem solving concept is stressed.

Many imperative programming languages re-
quire the use of pointers to manipulate recursive
data structures effectively. Pointers are a rela-
tively low-level concept. They are therefore mostly
taught as an advanced concept, late in a pro-
gramming course, when problem solving has al-
ready been taught. The use of an imperative pro-
gramming language therefore makes it difficult to
teach recursion and recursion-based problem solv-
ing early.

Fractals provide a good example for teaching re-
cursion [5]. Recursion is shown to be present at
three levels: at the visual level (fractals are self-
similar structures), at the analvtic level (dimension-



ality analysis plays an important role in work with
fractals) and in the structure of the programs that
draw fractals (for which Prolog is used). The re-
cursion at each level is essentially the same, thus
reinforcing the concept. The visual aspect stimu-
lates exploratory learning of recursion.

2.3 Laboratories

Laboratories support the learning process by offer-
ing students well-chosen, short, well-paced exer-
cises. Laboratory assignments:

e make the material being studied operational

e allow the student to ascertain that the material
is understood

¢ provide instant feedback to the student
e stimulate experimentation with the material
e raise questions for further lectures and study

e offer the student the opportunity to discover
solutions to problems

Various authors [22, 14] argue tor an experimen-
tal approach to the CS curriculum, using program-
ming assignments. One author goes further: Bier-
nat [2] in his course on algorithms and data struc-
tures uses puzzles and games for class room teach-
ing and home work. He observes that students
understand algorithms faster, remember them bet-
ter and are excited about the course.

3 Discrete mathematics and Logic

Henderson (7] argues that a course on discrete
mathematics should precede the first programming
course. He claims that mastering mathematical
concepts, such as recursion and induction, is a re-
quirement for learning proper programming. The
discrete mathematics course described by Hender-
son concentrates on general problem solving prin-
ciples, such as patterns and symmetries, and recur-
sive and inductive thinking. Course material is re-
inforced through exploratory computer-based lab-
oratory assignments. Henderson uses SML, SETL
and Trilogy (a logic language). The emphasis in
the laboratory is on experimentation with concepts
through the use of interpreted implementations of
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programming languages. This is quite different
from learning to program. The distinction between
experimentation on the one hand and program-
ming on the other is an important one. The ex-
ploratory character of the laboratory stimulates the
students and makes mathematics a fun subject.

Wainwright [31] describes laboratory assign-
ments (using Miranda') to support a discrete math-
ematics course for second year students. The
course is taught to CS students, mathematics stu-
dents and students in Computer Information Sys-
tems (CIS). Some students have no programming
background, so that laboratory assignments have
to be based on languages that are easy to learn. Re-
sponses to a survey were received from 13 CS, 9
CIS and 10 Mathematics students. The survey re-
ports that even without prior exposure to program-
ming, Unix or editing with Vi, all students found
the laboratory assignments useful and recommend
that they be kept as part of the course. The CS
students were slightly more enthusiastic than the
Mathematics and CIS students.

Schoenefeld and Wainwright [25] describe a
summer course in discrete mathematics for teach-
ers at high-school level. This course is taught us-
ing the book bv Skiena [26], which offers extensive
laboratory assignments based on Mathematica. A
number of surveys have been held amongst the
course participants, indicating that they were “ex-
tremely pleased that Mathematica was integrated
into the course”. The use of Mathematica as an ex-
ploratory tool makes operational important math-
ematical concepts such as abstraction and general-
isation.

Myers [15] makes a plea for teaching more logic
as part of the CS curriculum. One of the many
reasons he gives is that the basis of all important
programming paradigms is found in logic.

Hein [6] describes tools to teach discrete mathe-
matics and logic using a large variety of short and
relevant laboratory assignments. Simple assign-
ments are described to experiment with laws of
logic (using Prolog). Other assignments support
learning about functions and function composition
(using FP) and learning about types (using SML).
The use of different languages is not seen as a prob-
lem, as the languages that are used faithfully reflect
the notations used in the course and emulate in a
natural way the notions of discrete mathematics
and logic. Hein notes that a course supported by
extra laboratory assignments does require students

!Miranda is a trademark of Research software Ltd.



to do more work. One should thus not forget to
award more credits for such a course than for a
course without a laboratory.

4 Core Computer Science

In the laboratories that support teaching gen-
eral and mathematical concepts an experimen-
tal approach to programming and programming
paradigms is used. Teaching core CS subjects
requires a different, more fundamental approach
to programming and programming paradigms.
However, there is again a relationship between par-
ticular subjects and the choice of paradigm that is
most suited to teach that subject. In the SIGCSE bul-
letins, the following subjects were discussed with a
relationship to paradigms and/or laboratories: the
first programming course, the comparative study
of programming languages and the study of ab-
stract machines.

4.1 First programming course

Sanchez-Calle and Velazquez-Iturbide [23] teach
the declarative paradigm (using Hope+) in the first
programming course, with a strong emphasis on
synthesis and analysis of programs using logic to
reason about programs. The authors report, with-
out presenting the evidence, that their students
“enjoy building programs while they are also able
to analyse them rigorously”.

Louden [12] reports on an experiment with two
different streams of students. The first stream con-
sists of first year CS students. The other stream
consists of more mature students. The CS students
learn Logo first, “emphasizing the role of functional
programming in a manner similar to Abelson and
Sussman [1]”. They then learn Pascal. The mature
students frequently bypass the Logo and Pascal-
based classes. Both streams then learn Lisp. Does
the declarative (Logo) background improve the ex-
amination results for the Lisp course? Possibly:
based on the responses received for a survey (69
CS and 100 mature students), it was found that the
examination results of the mature students were
slightly better. Louden points out that the relative
maturity of this stream might explain this effect and
concludes that more study should be done.

Clancy and Linn [3] report on their experience
with students who were taught Lisp as a first
language. During the subsequent data structures
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course, these students produce “much better code
than their procedurally-brainwashed class mates”.
The paper does not provide supporting evidence
for this rather strong and tendentious claim.

Stanchev and Radensky [23] teach functional
programming using an FP-like language to gradu-
ate and under-graduate students. They report that
their course was found difficult. This is a ques-
tionable conclusion for it is based on the number
of students that actually took the exam (15 out of
26 the first year, 7 out of 14 the next). The authors
hold responsible the “one word at a time” thinking
habits induced by prolonged exposure to impera-
tive languages.

The evidence found thus far in the SIGCSE bul-
letins, for or against using different paradigms in
the first programming course barely transcends the
anecdotal. A more comprehensive survey would
have to include a vast amount of other literature,
such as special issues of various journals [28] that
are devoted to education.

4.2 The comparative study of program-
ming languages

The comparative study of programming languages
is moving away from particular languages towards
the study of paradigms. in much the same way as
the core CS field as a whole is moving in that direc-
tion. In his survey, King [11] notes that one of the
goals of a comparative study must be to prepare
the students for the future. This implies that some
historical perspective and a deep understanding of
current concepts are essential. The comparative
study of programming languages thus becomes
more fundamental [13], as a deep understanding
of paradigms is only possible with an understand-
ing of the foundations of the paradigms.

One way to teach comparative programming lan-
guages is via their formal semantics. Nielson and
Nielson [19] provide a thorough introduction to the
subject, supported by many exercises, both using
pencil and paper and using Miranda for labora-
tory assignments. This subject is worthy of study
as a separate, but perhaps advanced subject, but
it also has its place in the comparative study of
programming languages. As part of a course on
programming languages, Hoft [9] presents the se-
mantics of the loop-construct in a precise way us-
ing Dijkstra’s calculus of guarded commands. The
material is supported by declarative laboratory as-



signments using Mathematica. The graphical ca-
pabilities of Mathematica in particular are used to
reinforce learning by studying possible behaviours
of non-deterministic semantics. The increased pre-
cision offered by Hoéfts approach gives deeper in-
sights than those offered by the usual natural lan-
guage descriptions.

4.3 Abstract machines and translations

Abstract machines and translations between ab-
stract machines are topics that appear in such di-
verse contexts as computer archifecture, semantics
of programming languages, compiler construction
and the theory of computation. A thorough treat-
ment supported with well-constructed laboratory
assignments will therefore be beneficial to all of
these subjects at once. Such recurring concepts are
identified as extremely useful in the ACM curricu-
lum [29].

Some authors describe abstract machines in
terms of declarative programs. Prolog [4] even en-
ables ‘reverse execution’ (i.e. given a finite state
machine and its output, the Prolog system will re-
construct the possible inputs). Piotrowski states
that Miranda [20] is less versatile, but offers more
elegant and robust (typed) specifications of abstract
machines. Both of these declarative approaches to
experimenting with abstract machines offer readily
executable specifications of formal systems.

The translations between different levels of ab-
stract machines can be presented as straight for-
ward function compositions [21}. The functions
being composed retain their validity regardless of
the context in which they are used.

Cigas [30] uses abstract machines (finite state ma-
chines — FSM) as a schema for developing algo-
rithms. His main point is that the visual represen-
tation of an FSM is powerful aid in understanding
and analysing problems, with programming solu-
tions (in Pascal) immediately available.

5 Discussion and conclusions

A survey of recent issues of the ACM SIGCSE has
been presented, with an emphasis on the use of
different programming paradigms and laboratory
sessions in the CS curriculum. Discrete mathemat-
ics and logic are mentioned by many authors as
having an important relation with the core CS cur-
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riculum. A summary of the literature may be found
in Table 1.

Five years ago Luker [13] wrote that teaching CS
means to look to the future. He argued for teach-
ing principles and theory, and against training stu-
dents to be C programmers. He notes that there
exist two schools. The ‘theoretical school” would
be interested only in teaching principles and the-
ory. The ‘practical school’ would be interested in
training C programmers. Based on what has been
found during this literature survey one gets the
impression that the situation is improving. On the
part of the ‘theoretical school’ there is a trend to-
wards learning concepts using experimental meth-
ods. This stresses the practical aspects of concepts
learned and makes them operational in more ways
than before. The laboratories are used to reinforce
learning and to offer different ways of learning.

On the part of the ‘practical school’, there is still
a certain hesitation to embrace theory but not to
the same extent as before. Many would now con-
sider the study of comparative programming lan-
guages less important than the comparative study
of programming paradigms. The use of different
programming paradigms is widely believed to be
useful both for their intrinsic interest and for their
use in making important concepts operational. In-
terpreters are often used to support laboratory ex-
periments with concepts from logic and discrete
mathematics.

Most authors state that courses supported by
short and relevant laboratory assignments are more
effective than courses without such laboratories.
They argue that the increase is more than that which
may be expected simply from requiring more time
to be spent on the course. The fact that different
people learn in different ways enables some stu-
dents to learn most from the laboratories and some
to concentrate on the pencil and paper aspects of a
course.

The search of the SIGCSE bulletins for the sup-
port of claims that laboratories are useful and that
using different paradigms is beneficial, has yielded
precious little evidence. More study is needed in
this area.

Experience will tell whether laboratory-
supported learning of theoretical concepts will
make these concepts sufficiently operational to a
large enough proportion of our students to prepare
them properly for the future.



| Ref. | Year | Where | Subject(s) Paradigms(s) Lab. | Stats.
(4] | 88 | Belfast Abstract machines L yes | no
[5] | 88 | Michigan Recursion L no no
[32] | 88 | Nebraska Recursion FI no yes
(8] | 89 | Stony Brook Recursion F yes | no
[12] | 89 | San Jose State First course F no ves
[13] | 89 | California State Methodology CELO no no
(14] | 89 | City New York Algorithms I ves | no
[20] | 89 | New South Wales | Abstract machines F yes | no
(3] S0 Berkeley First course F no no
[7} | 90 | Stony Brook First course FL,S yes | no
[15] | 90 | San Antonio Mathematical logic no no
9] | 91 | E.Michigan Programming languages | FMathematica | yes | no
[16] | 91 | Poona Software engineering I no no
[23] | 91 | Politecnica Madrid | First course F yes | no
[27]1 | 91 | Sofia Programming languages | F yes | yes
[30] | 92 | Rockhurst, Kansas | Programming techniques | State machines | no no
[11] | 92 | Georgia State Programming languages | C,D,ELL,O no no
[21] | 92 | New South Wales | Abstract machines F ves | no
22] 92 San Antonio Curriculum El ves no
(31] | 92 | Tulsa First course F yes | ves
[2] | 93 | AT&T, Illinois Data struct., Algorithms | Games, Puzzles | no no
[6] | 93 | Portland state First course EL ves | no
[18] 93 | Canberra Recursion L no no
(24] | 93 | Tulsa Discrete Mathematics Mathematica ves | yes
[10] 94 Maryland Methodology Fl no no
[17] | 94 | Bratislava Methodology ELLO no no
Paradigms: C = Concurrent L = Logic
D = Data base oriented O = Object Oriented
F = Functional S Set-based
I = Imperative

Table 1: A survey of the papers reviewed.
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