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Paradigms and laboratories 
the core computer science curriculum 

in 

An overview 

Pieter H. Hartel * L. O. Hertzberger * 

A b s t r a c t  

Recent issues of the bulletin of the ACM SIGCSE 
have been scrutinised to find evidence that the use 
of laboratory sessions and different programming 
paradigms improve learning difficult concepts and 
techniques, such as recursion and problem solving. 

Many authors in the surveyed literature be- 
lieve that laboratories are effective because they 
offer a mode of learning that complements class- 
room teaching. Several authors believe that differ- 
ent paradigms are effective when used to support 
teaching mathematics (logic and discrete mathe- 
matics) and computer science (programming, com- 
parative programming languages and abstract ma- 
chines). 

Precious little evidence by way of reported re- 
sults of surveys, interviews and exams was found 
in the ACM SIGCSE bulletins to support these be- 
liefs. 

1 I n t r o d u c t i o n  

Over the years, computer science (CS) has evolved 
from a single discipline into a number of related 
disciplines. The 1991 ACM/IEEE-CS Computing 
Curricula report [29] identifies a number of subjects 
that can be classified either as belonging to the core 
of CS or being peripheral. 

Core CS consists of programming languages, al- 
gorithms and data structures, architecture, operat- 
ing systems, and software engineering. The Com- 
puting Curricula recommendation devotes just un- 
der 90% of the lecture hours to these core subjects. 
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A host of non-core (peripheral) topics are now 
firmly established. These include databases, arti- 
ficial intelligence, symbolic and numeric computa- 
tion and human-computer interaction. The Com- 
puting Curricula report recommends that just over 
10% of the lecture hours should be spent on these 
peripheral subjects. 

The number of applications of CS is on the 
increase. This has caused two separate trends. 
Firstly, some CS curricula are being expanded to 
contain more peripheral CS topics. Secondly, many 
non-CS curricula now include the study of some CS 
topics. Many departments that started out as pure 
CS departments have acknowledged these devel- 
opments and are now offering a number of different 
curricula, often in combination with subjects such 
as psychology, business studies, law, medicine, lan- 
guages, physics etc. While previously a univer- 
sitv would offer onlv one CS curriculum, presently 
manv universities offer several curricula with a CS 
component. 

The diverging trends in CS curricula necessarily 
have an impact on the teaching practice of the CS 
departments. This divergence brings with it a de- 
mand to focus the various curricula. Aspects of this 
focusing activity will be discussed here. To simplify 
the discussion, hopefully without being unjust, we 
claim that core CS is intimatelv related to discrete 
mathematics and logic. Where a relation exists, the 
peripheral CS disciplines are more closely associ- 
ated with other branches of mathematics such as 
calculus, or probability theory. 

The relationship between logic and discrete 
mathematics within the core CS curriculum will be 
highlighted as found in the papers being surveyed. 
All issues of ACM SIGCSE bulletin over the past 
seven years have been scrutinised to find evidence 
of this relationship. 
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An important  e lement  of the above relationship 
is the emphasis  placed on learning through exper- 
imentation. The same literature has been scanned 
to find descriptions of how laboratory sessions are 
used to suppor t  learning. Some 30 papers  were  
found to contain relevant information. 

The present  survey is restricted to papers  pub- 
fished in SIGCSE, hoping  to provide  a view reflect- 
ing that general ly held by those with an interest in 
educat ion proven by publication in this med ium.  

The next section reviews the papers  that discuss 
general  issues. Section 3 covers papers  that use 
p rog ramming  in various parad igms  and / or labora- 
tories for teaching discrete mathemat ics  and logic. 
Teaching core CS topics using laboratories and var- 
ious paradigms is discussed in Section 4. The last 
section presents some discussion and the conclu- 
sions. 

2 G e n e r a l  i s s u e s  

The general  issues of relevance that were found in 
the literature are abstraction, recursion and learn- 
ing with the aid of laboratories. 

2.1 Abstraction and generalisation 

N~vrat [17] argues that teaching abstraction and 
generalisation as problem solving concepts can be 
suppor ted  bv the use of appropria te  p rogramming  
paradigms. His point is that three methodologi-  
cal dimensions must  be distinguished: abstraction 
and concretisation, generalisation and specialisa- 
tion, and meta-knowledge.  The first two dimen-  
sions are often confused. For example, an abstract 
solution to a problem should be no more general 
than a concrete solution. The third dimension, that 
of meta-knowledge,  captures  p rogramming  tools 
and techniques that can be applied in specific cir- 
cumstances. At various points in the three dimen-  
sional space thus established, N~ivrat finds that spe- 
cific p rog ramming  parad igms  are particularly use- 
ful for highlighting the distinctions be tween the 
three dimensions.  

Along the same lines, Jarc [10] presents a unified 
view of data structures, which can be recognised 
as an object hierarchy. In both papers [17, 10] pro- 
g ramming in different pa rad igms  is ment ioned  as 
a means to make concepts operational.  

2.2 Recursion 

It is essential to teach recursion as a concept in its 
own right. It is often perceived as a difficult con- 
cept so it mus t  be taught  properly. Firstly, learning 
recursion requires a new m o d e  of thinking. Sec- 
ondly, m a n y  important  algori thms are recursive. 

Wiedenbeck [32] reports that to provide exten- 
sive examples for s tudents  to emula te  is vitally im- 
portant. Few such examples are available in the 
real world. The literature offers two approaches 
to learning recursion: plan-based recursion and re- 
cursion as a problem solving tool. 

2.2.1 P lan-based  recursion 

According to N e w m a r c h  [18] a plan-based ap- 
proach to recursion presupposes  a solution to a 
given problem. The solution is then matched  to 
a repertoire of plans that describe the basis of the 
recursion and the recursive step(s). Examples are 
"linear recursion" and 'd ivide-and-conquer ' .  New- 
march makes plans operational using Prolog. A 
small number  of plans support  a large number  
of different programs and algorithms. The plan- 
based approach also works with the imperat ive 
p rog ramming  paradigm. 

2.2.2 Recurs ion as prob lem s o l v i n g  tool 

Instead of presupposing a solution, recursion can 
be presented as a problem solving tool. Hender -  
son [8] claims that it is natural  to do so in the declar- 
ative parad igm (he uses SML). In that paradigm,  
recursion can be taught  to go hand- in-hand  with in- 
duct ion in discrete mathematics.  The importance 
of laboratories using SML to reinforce the use of 
recursion as a problem solving concept  is stressed. 

Manv imperat ive p rogramming  languages re- 
quire the use of pointers to manipula te  recursive 
data structures effectively. Pointers are a rela- 
tively low-level concept. They are therefore mostly 
taught  as an advanced  concept, late in a pro- 
g r amming  course, when  problem solving has al- 
readv been taught. The use of an imperat ive  pro- 
grarnming language therefore makes it difficult to 
teach recursion and recursion-based problem solv- 
ing early. 

Fractals provide a good example for teaching re- 
cursion [5]. Recursion is shown to be present  at 
three levels: at the visual level (fractals are self- 
similar structures), at the analytic level (dimension- 
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alitv analysis  p lays  an impor tan t  role in w o r k  with  
fractals) and  in the s t ructure  of the p r o g r a m s  that 
d r a w  fractals (for which  Prolog is used).  The re- 
curs ion  at each level is essential ly the same,  thus 
re inforcing the concept .  The visual  aspect  s t imu- 
lates explora tory  learning of recursion.  

2.3 Laboratories  

Laborator ies  suppor t  the learning process  by  offer- 
ing s tudents  well-chosen,  short, wel l -paced  exer- 
cises. Labora tory  assignments:  

• make  the mater ia l  being s tud ied  opera t ional  

• al low the s tuden t  to ascertain that  the mater ia l  
is u n d e r s t o o d  

• p rovide  instant  feedback to the s tuden t  

• s t imulate  exper imenta t ion  wi th  the mater ia l  

• raise quest ions for fur ther  lectures and  s t udy  

• offer the s tuden t  the oppor tun i ty  to discover  
solutions to problems  

Various authors  [22, [4] a rgue  for an exper imen-  
tal approach  to the CS cur r icu lum,  using program-  
ming  assignments .  One  au thor  goes further: Bier- 
nat [21 in his course on a lgor i thms and data  struc- 
tures uses puzzles  and  games  for class room teach- 
ing and  home work. He observes  that s tudents  
u n d e r s t a n d  a lgor i thms faster, r e m e m b e r  them bet- 
ter and  are excited about  the course.  

3 Discrete mathematics and Logic 

H e n d e r s o n  [7] argues  that a course  on discrete 
ma themat ics  should  p recede  the first p r o g r a m m i n g  
course. He claims that mas te r ing  mathemat ica l  
concepts,  such as recurs ion and  induct ion,  is a re- 
qu i r emen t  for learning proper  p rog ramming .  The 
discrete mathemat ics  course  descr ibed  bv Hende r -  
son concentra tes  on genera l  p rob lem solving prin- 
ciples, such as pat terns  and  symmet r i e s ,  and  recur- 
sive and  induct ive  thinking.  Course  mater ia l  is re- 
inforced th rough  explora tory  compu te r -based  lab- 
ora tory  assignments .  H e n d e r s o n  uses SML, SETL 
and  Trilogy (a logic language).  The emphas is  in 
the labora tory  is on exper imen ta t ion  wi th  concepts  
th rough the use of in te rpre ted  implementa t ions  of 

p r o g r a m m i n g  languages.  This is qui te  different  
f rom learning to p rogram.  The dist inct ion b e t w e e n  
exper imenta t ion  on the one h a n d  and  p rog ram-  
ming  on the o ther  is an impor t an t  one. The ex- 
p lora tory  charac ter  of the labora tory  s t imulates  the 
s tuden ts  and  makes  ma thema t i c s  a fun subject. 

Wainwr igh t  [31] descr ibes  labora tory  assign- 
ments  (using Mi randa  1) to suppor t  a discrete math-  
ematics  course  for second vear  s tudents .  The 
course is taught  to CS students ,  ma themat i c s  stu- 
dents  and  s tuden ts  in C o m p u t e r  Informat ion  Sys- 
tems (CIS). Some s tuden ts  have  no  p r o g r a m m i n g  
background ,  so that  labora tory  ass ignments  have  
to be based  on l anguages  that  are easy  to learn. Re- 
sponses to a su rvey  were  rece ived  f rom 13 CS, 9 
CIS and  10 Mathemat ics  s tudents .  The su rvey  re- 
ports  that  even wi thout  prior  exposure  to p rogram-  
rning, Unix or edi t ing with  Vi, all s tuden ts  found  
the labora tory  ass ignments  usefu l  and  r e c o m m e n d  
that they  be kept  as par t  of the course. The CS 
s tudents  were  slightly m o r e  enthusiast ic  than the 
Mathemat ics  and  CIS s tudents .  

Schoenefe ld  and  Wainwr igh t  [25] describe a 
s u m m e r  course  in discrete ma thema t i c s  for teach- 
ers at high-school  level. This course  is taught  us- 
ing the book  bv Skiena [26], which  offers extensive 
labora tory  ass ignments  based  on Mathemat ica .  A 
n u m b e r  of survevs  have  been held  amongs t  the 
course  part icipants,  indicat ing that  they  were  "ex- 
t remely  pleased that Mathemat i ca  was integrated 
into the course".  The use of Ma themat i ca  as an ex- 
p lora tory  tool makes  opera t ional  impor tan t  math-  
emat ical  concepts  such as abstract ion and  general-  
isation. 

Myers  [15] makes  a plea for teaching m o r e  logic 
as par t  of the CS cur r icu lum.  One  of the m a n y  
reasons he gives is that  the basis of all impor tan t  
p r o g r a m m i n g  p a r a d i g m s  is found  in logic. 

Hein  [6] describes tools to teach discrete  mathe-  
matics  and  logic using a large var ie ty  of shor t  and 
re levant  laboratory ass ignments .  S imple  assign- 
men t s  are descr ibed to expe r imen t  wi th  laws of 
logic (using Prolog). Other  ass ignments  suppor t  
learning about  funct ions and  funct ion composi t ion  
(using FP) and  learning about  types  (using SML). 
The use of different  l anguages  is not  seen  as a prob- 
lem, as the languages  that  are used  fai thful lv reflect 
the notat ions used  in the course  and  emula te  in a 
na tura l  w a y  the not ions  of discrete  ma themat i c s  
and  logic. Hein notes  that  a course  s u p p o r t e d  bv 
extra  laboratory ass ignments  does  requi re  s tuden ts  

1Miranda is a t r ademark  of Research sof tware  Ltd. 
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to do more work. One should  thus not forget to 
award  more credits for such a course than for a 
course without  a laboratory. 

4 Core Computer  Science 

In the laboratories that suppor t  teaching gen- 
eral and mathemat ica l  concepts an exper imen-  
tal approach to p r o g r a m m i n g  and p r o g r a m m i n g  
pa rad igms  is used. Teaching core CS subjects 
requires a different, more  fundamen ta l  approach  
to p r o g r a m m i n g  and p r o g r a m m i n g  paradigms.  
However ,  there is again a relationship be tween  par- 
ticular subjects and the choice of p a r a d i g m  that is 
most  suited to teach that subject. In the SIGCSE bul- 
letins, the following subjects were  discussed with a 
relationship to pa rad igms  a n d / o r  laboratories: the 
first p rog ramming  course, the compara t ive  s tudy  
of p rog ramming  languages  and the s tudy  of ab- 
stract machines.  

course, these s tudents  p roduce  " m u c h  better code 
than their p rocedura l ly -bra inwashed  class mates".  
The paper  does not provide suppor t ing  evidence 
for this rather strong and tendent ious  claim. 

Stanchev and Radenskv [23] teach functional  
p rog ramming  using an FP-tike language to gradu-  
ate and under -g radua te  students.  They report  that 
their course was found difficult. This is a ques- 
tionable conclusion for it is based on the n u m b e r  
of s tudents  that actually took the exam (15 out of 
26 the first year, 7 out  of 14 the next). The authors  
hold responsible the "one w o r d  at a t ime" thinking 
habits induced  by prolonged exposure  to impera-  
tive languages.  

The evidence found thus far in the SIGCSE bul- 
letins, for or against using different  pa rad igms  in 
the first p rog ramming  course barely t ranscends the 
anecdotal.  A more comprehens ive  survey  would  
have to include a vast a m o u n t  of other  literature, 
such as special issues of var ious journals [28] that 
are devoted  to education.  

4.1 Firs t  p r o g r a m m i n g  c o u r s e  

S~nchez-Calle and  Vel~zquez-i turbide [23] teach 
the declarat ive p a r a d i g m  (using Hope+)  in the first 
p r o g r a m m i n g  course, with a s trong emphas is  on 
synthesis  and analysis of p rograms  us ing logic to 
reason about programs.  The authors  report ,  with- 
out  present ing the evidence,  that their  s tudents  
"enjoy bui lding p rograms  while they are also able 
to analyse them rigorously".  

Louden  [t21 reports  on an exper iment  wi th  two 
different  s t reams of s tudents .  The first s t ream con- 
sists of first year  CS students .  The other  s t ream 
consists of more mature  students .  The CS s tudents  
learn Logo first, "emphas iz ing  the role of functional 
p rog ramming  in a manner  similar to Abelson and 
Sussman [1]'. Thev then learn Pascal. The mature  
s tudents  frequently bypass  the Logo and Pascal- 
based classes. Both streams then t eam Lisp. Does 
the declarative (Logo) background  improve the ex- 
aminat ion results for the Lisp course? Possibly: 
based on the responses received for a survey  (69 
CS and 100 mature  students),  it was found that the 
examinat ion results of the mature  s tudents  were  
slightly better, Louden points out  that the relative 
matur i ty  of this s t ream might  exptain this effect and 
concludes that more s tudy  should  be done. 

Clancy and Linn [3] report  on their experience 
with s tudents  who were  taught  Lisp as a first 
language.  Dur ing the subsequent  data  structures 

4.2 The comparative study of program- 
ming languages 

The compara t ive  s tudy  of p r o g r a m m i n g  languages  
is mov ing  away  from part icular  languages  towards  
the s tudy  of paradigms,  in m u c h  the same w a y  as 
the core CS field as a whole  is mov ing  in that direc- 
tion. In his survey, King [11] notes that one of the 
goals of a comparat ive  s t udy  mus t  be to prepare  
the s tudents  for the future. This implies that some 
historical perspective and  a deep  unde r s t an d in g  of 
current  concepts are essential. The compara t ive  
s tudy  of p r o g r a m m i n g  languages  thus becomes 
more fundamenta l  [13], as a deep  unde r s t and ing  
of pa rad igms  is only possible with an under s t and-  
ing of the foundat ions  of the paradigms.  

One way  to teach compara t ive  p r o g r a m m i n g  lan- 
guages  is via their formal semantics.  Nielson and 
Nietson [19] provide a thorough in t roduct ion  to the 
subject, suppor ted  by many  exercises, both using 
pencil and paper  and using Miranda  for labora- 
tory assignments.  This subject is wor thy  of s tudy  
as a separate,  but  perhaps  advanced  subject, but  
it also has its place in the compara t ive  s tudy  of 
p r o g r a m m i n g  languages. As part  of a course on 
p r o g r a m m i n g  languages,  H6ft [9] presents  the se- 
mantics  of the loop-construct  in a precise way  us- 
ing Dijkstra's calculus of g u a r d e d  commands .  The 
mater ia l  is suppor ted  by declarat ive laboratory as- 
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signments using Mathematica. The ~aph ica l  ca- 
pabilities of Mathematica in particular are used to 
reinforce learning by s tudying possible behaviours 
of non-deterministic semantics. The increased pre- 
cision offered by H6fts approach gives deeper  in- 
sights than those offered by the usual natural  lan- 
guage descriptions. 

4.3 A b s t r a c t  m a c h i n e s  a n d  t r a n s l a t i o n s  

Abstract machines and translations between ab- 
stract machines are topics that appear in such di- 
verse contexts as computer  archit%cture, semantics 
of programming languages, compiler construction 
and the theory of computation. A thorough treat- 
ment  supported with well-constructed laboratory 
assignments will therefore be beneficial to all of 
these subjects at once. Such recurring concepts are 
identified as extremely useful in the ACM curricu- 
lum [29]. 

Some authors describe abstract machines in 
terms of declarative programs. Protog [4] even en- 
ables 'reverse execution" (i.e. given a finite state 
machine and its output,  the Prolog system will re- 
construct the possible inputs). Piotrowski states 
that Miranda [20] is less versatile, but  offers more 
elegant and robust (typed) specifications of abstract 
machines. Both of these declarative approaches to 
experimenting with abstract machines offer readily 
executable specifications of formal systems. 

The translations between different levels of ab- 
stract machines can be presented as straight for- 
ward  function compositions [21]. The functions 
being composed retain their validity regardless of 
the context in which they are used. 

Cigas [30] uses abstract machines (finite state ma- 
chines - FSM) as a schema for developing algo- 
rithms. His main point is that the visual represen- 
tation of an FSM is powerful  aid in unders tanding 
and analysing problems, with p rogramming  solu- 
tions (in Pascal) immediately available. 

5 D i s c u s s i o n  and  c o n c l u s i o n s  

A survev of recent issues of the ACM SIGCSE has 
been presented, with an emphasis on the use of 
different programming paradigms and laboratory 
sessions in the CS curriculum. Discrete mathemat-  
ics and logic are ment ioned by many authors as 
having an important relation with the core CS cur- 

riculum. A summary  of the literature mav be found 
in Table 1. 

Five years ago Luker [13] wrote that teaching CS 
means to look to the future. He argued for teach- 
ing principles and theory, and against training stu- 
dents to be C programmers.  He notes that there 
exist two schools. The 'theoretical school' would 
be interested only in teaching principles and the- 
ory. The 'practical school" would be interested in 
training C programmers.  Based on what has been 
found during this literature survev one gets the 
impression that the situation is improving. On the 
part of the 'theoretical school' there is a trend to- 
wards learning concepts using experimental  meth- 
ods. This stresses the practical aspects of concepts 
learned and makes them operational in more wavs 
than before. The laboratories are used to reinforce 
learning and to offer different wavs of learning. 

On the part of the 'practical school', there is still 
a certain hesitation to embrace theory but not to 
the same extent as before. Many would  now con- 
sider the studv of comparat ive programming lan- 
guages less important  than the comparative study 
of programming paradigms. The use of different 
programming paradigms is widely believed to be 
useful both for their intrinsic interest and for their 
use in making important  concepts operational. In- 
terpreters are often used to support  laboratory ex- 
periments with concepts from logic and discrete 
mathematics. 

Most authors state that courses supported by 
short and relevant laboratory assignments are more 
effective than courses without  such laboratories. 
They argue that the increase is more than that which 
may be expected simply from requiring more time 
to be spent on the course. The fact that different 
people learn in different ways enables some stu- 
dents to learn most from the laboratories and some 
to concentrate on the pencil and paper  aspects of a 
course. 

The search of the SIGCSE bulletins for the sup- 
port of claims that laboratories are useful and that 
using different paradigms is beneficial, has yielded 
precious little evidence. More study is needed in 
this area. 

Exper ience  will tell w h e t h e r  l abo ra to ry -  
suppor ted  learning of theoretical  concepts  will 
make these concepts sufficiently operational to a 
large enough proportion of our students to prepare 
them properly for the future. 
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t Ref. Year ! 
[41 88 
[5] 88 

[32] 88 
[8] 89 

[12] 89 
[13] 89 
[141 89 
[201 89 

[3] 90 
[71 90 

[15] 90 
[9] 91 

[16] I 91 
[23] 91 
[27] 91 

[30] 92 1 
[11] 92 
[211 92 
[22] 92 
[31] 9 2 !  

i [21 93 
[6] 93 

[18] 93 
[24] 93 
[10] 94 
[1 7] 94 
Paradigms:  

Where  [ Subject(s) Paradigms(s)  
Belfast Abstract machines  L 
Michigan Recursion L 
Nebraska Recursion EI 
Stony Brook 
San Jose State 
California State 
City, New York 
N e w  South Wales 
Berkeley 
Stony Brook 
San Antonio 
E. Michigan 
Poona 
Polit~cnica Madr id  
Sofia 
Rockhurst,  Kansas 
Georgia State 
N e w  South Wales 
San Antonio 
Tulsa 
AT&T, Illinois 
Port land state 
Canberra  
Tulsa 

Recursion 
First course 
Methodology 
Algori thms 
Abstract machines  
First course 
First course 
Mathematical  logic 
P rogramming  languages  
Software engineer ing  
First course 
P rogramming  languages  
P rogramming  techniques 
P rogramming  languages  
Abstract machines  
Cur r icu lum 
First course 
Data struct., Algor i thms 
First course 
Recursion 
Discrete Mathematics  

F 
F 
C,F,I,O 
I 
F 
F 
F,L,S 

F,M/ithematica 
I 
F 
F 
State machines  
C,D,F,I,L,O 
F 
EI 
F 
Games,  Puzzles  I 
F,L 
L 
Mathemat ica  

Mary land  Methodology  F,I 
Bratislava Methodology  F,I,L,O 
C = Concur ren t  L = Logic 
D = Data base or iented O = Object Or iented  
F = Funct ional  S = Set-based 
I = Impera t ive  

Lab. 
yes 
n o  

n o  

yes 
n o  

n o  

yes 
yes 
no 
yes 
n o  

yes 
n o  

yes 
yes 
n o  

n o  

v e s  

yes 
yes 
n o  

y e s  

n o  

y e s  

n o  

n o  

Stats. 
n o  

n o  

yes 
no 

yes 

no 

no 
no 

no 

no 

no 

no 
no 

no 

yes 
no 

no 

no 

no 

yes 
no 

no 

no 

yes 
no 

no 
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