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Distributed computations are concurrent programs in which processes communicate by
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such ashypercubes). Several paradigms—examples or models—for process interaction

in distributed computations are described. These include networks of filters, clients,

and servers, heartbeat algorithms, probe/echo algorithms, broadcast algorithms,

token-passing algorithms, decentralized servers, and bags of tasks. These paradigms

areapplicable tonumerous practical problems. They areillustrated by solving

problems, including parallel sorting, file servers, computing the topology of a network,

distributed termination detection, replicated databases, and parallel adaptive

quadrature. Solutions toallproblems arederived inastep-wise fashion from a general

specification of the problem to a concrete solution. The derivations illustrate techniques

for developing distributed algorithms.
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INTRODUCTION

Concurrent programming is the activity

of constructing a program containing
multiple processes that cooperate in per-

forming some task. Given a specification

of the problem to be solved, decisions

have to be made about what and how

many processes to use and how they

should interact. These decisions are af-

fected by the application and by the un-

derlying hardware on which the program

will run. Whatever choice is made, a crit-

ical problem is ensuring that commu-

nication between processes is properly

synchronized.
The history of concurrent program-

ming has followed the same stages as

other experimental areas of computer

science. The topic arose due to hardware

developments and has developed in re-

sponse to technological changes. Over

Permission to COPYwithout fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication

and its data appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 0360-0300/91/0300-0049 $01.50

ACM Computing Surveys, Vol. 23, No 1, March 1991



50 9 Gregory R. Andrews

CONTENTS

INTRODUCTION
1 PROGRAMMING NOTATION

2 FILTERS: A SORTING NETWORK

3 CLIENTS AND SERVERS

3 1 Centrahzed Servers: Active Momtors

32 Dmk Scheduhng and Dmk Access

33 File Servers: Conversational Continuity

4 HEARTBEAT ALGORITHMS

41 Network Topology: Shared-Variable

Solutlon

42 Network Topology. Distributed Solution

5 PROBE/ECHO ALGORITHMS

51 Broadcast m a Network

52 Network Topology Revmted

6 BROADCAST ALGORITHMS

61 Logical Clocks and Event Ordering

62 Distributed Semaphores

7 TOKEN-PASSING ALGORITHMS

7 1 Distributed Mutual Exclusion

72 Termmatlon DetectIon in a Ring

73 Termmation DetectIon m a Graph

8 REPLICATED SERVERS

8 1 Decentralized Servers: Rephcated Fdes

82 Replicated Workers andai3ag of Tasks:

Adaptive Quadrature

9 SUMMARY

ACKNOWLEDGMENTS

REFERENCES

time, the initial ad hoc approaches

have evolved into a collection of core

principles and general programming

techniques.

Operating systems were the first

significant examples of concurrent pro-
grams and remain among the most inter-

esting. With the advent of independent

device controllers in the 1960s, it became

natural to organize an operating system

as a concurrent program, with processes
managing devices and execution of user

tasks. Processes in such a single-
processor system are implemented by
multiprogramming, with processes exe-

cuted one at a time in an interleaved
manner.

Technology has since evolved to pro-

duce an amazing variety of multipro-
cessor systems. In a shared-memory

multiprocessor, multiple processors share

a common memory. In a m ulticomputer,

several processors, called nodes, are con-
nected by high-speed message-switching

hardware. In a network system, inde-

pendent processors are connected by a

communication network (e. g., an Ether-

net). Several hybrid combinations also

exist (e. g., networks of multiprocessor

workstations). The operating systems for

multiprocessors are concurrent programs

in which at least some processes can exe-

cute in parallel. The processors them-

selves range in power from microcomput-

ers to supercomputers.

There are many examples of con-

current programs beside operating

systems. They arise whenever the

implementation of an application in-

volves real or apparent parallelism. For

example, concurrent programs are used

to implement

● window systems on personal computers

or workstations,

e transaction processing in multiuser

database systems,

● file servers in a network, and

@scientific computations that manipu-

late large arrays of data.

The last kind of concurrent program is

often called a parallel program since it is

typically executed on a multiprocessor or

multicomputer.

A distributed program is a concurrent

(or parallel) program in which processes

communicate by message passing. The

name results from the fact that such pro-

grams typically execute on distributed
architectures— such as multicomputers or

network computers— in which processors

do not share memory. A distributed pro-

gram can, however, also be executed on a

shared-memory multiprocessor or even on

a single processor.

There are four basic kinds of processes
in a distributed program: filters, clients,

servers, and peers. A filter is a data
transformer; it receives streams of data

values from its input channels, performs
some computation on those values, and
sends streams of results to its output
channels. Many of the user-level com-

mands in the UNIX1 operating system

lUNIX is a trademark of AT&T, Bell Laboratories
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are filters (e. g., the text formatting pro-

grams tbl, eqn, and troff ).

A client is a triggering process; a

server is a reactive process. Clients make

requests that trigger reactions from

servers. Thus, a client initiates activity,

at times of its choosing; it often then

delays until its request has been serv-

iced. On the other hand, a server waits

for requests to be made, then reacts to

them. A server is usually a nonterminat -

ing process and often provides service to

more than one client. For example, a file

server in a distributed system typically

manages a collection of files and services

requests from any client who wants to

access those files.

A peer is one of a collection of identi-

cal processes that interact to provide a

service or compute a result. For example,
two peers might each manage a copy of a

data file and interact to keep the two

copies consistent. Or several peers might

interact to solve a parallel programming

problem, with each solving a piece of the

problem.

The remainder of this paper examines

several process interaction patterns that

occur in distributed programs. Each in-

teraction paradigm is an example or
model of an interprocess-communication

pattern and has an associated program-

ming technique that can be used to solve

a variety of interesting distributed pro-

gramming problems. The following pro-

cess-interaction paradigms are described:

e

e

0

e

@

e

e

e

one-way data flow through networks of

filters,

requests and replies between clients

and servers,

back-and-forth (heartbeat) interaction

between neighboring processes,

probes and echoes in graphs,

broadcasts between processes in com-

plete graphs,

token passing along edges in a graph,

coordination between decentralized

server processes, and

replicated workers sharing a bag of

tasks.

These are illustrated by solving a variety

of problems, including parallel sorting,

disk scheduling, computing the topology

of a network, distributed termination

detection, replicated files, and parallel

adaptive quadrature. Additional exam-

ples are mentioned throughout. (See

Raynal [1988a, 1988bl for discussions of

many of these problems and several addi-

tional ones that can be solved using the

above paradigms. )

The different problems are solved by

starting with a specification of the prob -

lem and proceeding in a series of steps to

a complete solution. This procedure illus-

trates several techniques for developing

distributed algorithms and showing that

the solution is correct. Some problems

are solved by starting with a shared-

variable solution, then developing a dis-

tributed solution. Others are solved by

making simplifying assumptions, then

extending the initial solution to handle

the general case.

The next section presents the program-

ming notation that will be used. Sub-
sequent sections examine the above

interaction paradigms.

1. PROGRAMMING NOTATION

In message-passing programs, processes

share channels. A channel is an abstrac-

tion of a physical communication net-

work in that it provides a communication

path between processes. Channels are ac-

cessed by means of two kinds of primi-

tives: send and receive. To initiate a

communication, a process sends a mes-

sage to a channel; another process later

acquires the message by receiving from
the channel.

All programming notations based on

message-passing provide channels of

some form and primitives for sending to

and receiving from them. Many different

notations have been proposed; see An-

drews and Schneider [19831 for a survey

of different language mechanisms and
Bal et al. [1989] for a survey of specific

distributed programming languages.
These programming notations vary in the
way channels are provided and named,
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the way channels are used, and the way

communication is synchronized. For

example, channels c-an be global to

processes or directly associated with pro-

cesses, and they can provide one-way or

two-way information flow. Also, commu-

nication can be asynchronous (nonblock-

ing) or synchronous (blocking).

Five general combinations of these de-

sign choices have proved the most popu-

lar since each is especially well-suited to

solving some programming problems and

each can be implemented with reason-

able efficiency. With asynchronous mes-

sage passing, channels have conceptually

unbounded capacity, and hence the send

primitive does not cause a process to

block. With synchronous message pass-

ing, on the other hand, communication

and synchronization are tightly coupled.

In particular, a process sending a mes-

sage delays until the other process is

ready to receive the message. Thus, the

exchange of a message represents a syn-

chronization ~oint between two mocesses

and channels’never need to cont~in stored

messages. (In between these two is

buffered message passing in which a

channel has a fixed ca~acitv and hence. .
send delays only when the channel is

full.)

Generative communication [Gelernter
1985] is similar to asynchronous message

passing. The main difference is that with

generative communication, processes

share a single communication channel
called tuple space. With generative com-

munication, associative naming is used

to distinguish different kinds of mes-

sages stored in tuple space, whereas with

asynchronous message passing, different

channels are used for different kinds of
messages.

Remote procedure call (RPC) and ren-

dezvous combine aspects of monitors
[Hoare 1974] and synchronous message

passing. As with monitors, a module or
process exports operations and the opera-
tions are invoked by a call statement. As

with synchronous message passing, exe-

cution of a call is synchronous: The call-.
ing process delays until the invocation
has been serviced and any results have

been returned. An operation is thus a

two-way communication channel, from

the caller to the process that services the

invocation, then back to the caller. An

invocation is serviced in one of two ways.

One approach is to create a new process.

This is called remote procedure call since

the servicing process is declared as a pro-

cedure and might execute on a different
processor than the calling process. The

second approach is to rendezvous with an

existing process. A rendezvous is serv-

iced by means of an input (or accept)

statement that waits for an invocation,

processes it, then returns results.

All five approaches are equivalent in

the sense that a program written in one

notation can be rewritten in any of the

others. Each approach, however, is better

for solving some problems than others.

Moreover, the different mechanisms have

different performance [Atkins and Olsson

1988].

Asynchronous message passing is used

in this paper for three reasons. First, it is

the most flexible mechanism; in essence

it is the lowest common denominator.

Second, asynchronous message passing is

typically what is provided by system rou-

tines in network and multicomputer op-

erating systems. Finally, asynchronous

message passing is the most natural

approach to programming several of

the examples that are considered. Some

of the examples, however, would best be

programmed using one of the other ap-
proaches; this is pointed out in relevant
places.

With asynchronous message passing, a

channel is a queue of messages that has

been sent but not yet received. In this

paper, a channel declaration has the form

than ch( fl : tl, , fn , tn)

Identifier ch is the channel’s name. The

f, and t, are names and types, respec-
tively, of the data fields in messages

transmitted via the channel. The field
names are optional; they will be used

when it is helpful to document what each

field contains. For example,

than input(char)
than disk_ access (cylinder : int, block : int,

count : int, buffer : ptr [*] char)
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declares two channels. The first, input,

contains single-character messages. The

second, disk_ access, contains messages

having four fields, with the field names

indicating the role of each field. In many

examples, arrays of channels will be used.

These are declared by appending sub-

script ranges to the channel identifier.

A process sends a message to channel

ch by executing

send ch(exprl, . . ., expr.)

The expr, are expressions whose tYPes

must be the same as the types of the

corresponding message fields. The effect

of executing send is to evaluate the ex-

pressions, then append a message con-

taining these values to the end of the

queue associated with channel ch. Be-

cause this queue is conceptually un-

bounded, execution of send never causes
delay; hence send is a nonblocking

primitive.

A process receives a message from

channel ch by executing

receive ch( uarl, . . , var. )

The uar, are variables whose types must

be the same as those of the corresponding

fields in the declaration of ch. The effect

of executing receive is to delay the re-

ceiver until there is at least one message
on the channel’s queue. Then the mes-

sage on the front of the queue is removed

and its fields are assigned to the uar,.

Thus, in contrast to send, receive is a

blocking primitive since it might cause

delay. The receive primitive blocks so

the receiving process does not have

to busy-wait polling the channel if it

has nothing else to do until a message

arrives.
In this paper, message delivery is as-

sumed to be reliable and error free. Thus,

every message sent is eventually deliv-

ered, and messages are not corrupted. In

addition, because each channel is a first-

in/first-out queue, two messages sent to
a channel by the same process will be
received in the order in which they were

sent. (See, e.g., Tanenbaum’s [19881 book

on computer networks for how these
attributes can be realized.)

As a simple example, the process below

receives a stream of characters from one

channel, input, assembles the characters

into lines, and sends the resulting lines

to a second channel, output. The car-
riage-return character, CR, indicates the

end of a line; a line is at most MAXLINE

characters long. Both CR and MAXLINE

are symbolic constants. The example

follows:

than input(char)
than output([l :MAXLINE] char)
Char_ towline::

var line[l :MAXLINE] : char
var i : int := 1

do true +
receive input(line[ i])

do line[ i] # CR and i < MAXLINE +
{ line[l: i] contains last i input charac-

ters}
i:= i + 1; receive input(line[ i])

od
send output(line); i:= 1

od

This process is an example of a filter;

namely, it transforms a stream of charac-

ters into a stream of lines.

The above example also illustrates

other aspects of the programming nota-

tion used in this paper. Processes will be

declared as shown, with a capitalized

name followed by a double colon. Decla-

rations and statements are programmed

in a conventional way. (The specific no-

tation used here is that of sll [Andrews

et al. 1988].) Comments are introduced

by a sharp character (#); they are termi-

nated by the encl. of the line. Finally,

assertions are predicates enclosed in

braces; they indicate what is true at the

corresponding point in execution and

can be thought of as another form of

comment.

channels will be declared global to

processes, as above, since they are shared

by processes. Any process may send to or

receive from any channel. When chan-

nels are used in this way, they are some-

times called mailboxes. In many of the

subsequent programs, however, each

channel will have exactly one receiver,

although it may have many senders. In

this case, a channel is often called an

input port since it provides a window
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(port hole) into the receiving process. If a

channel has just one sender and one re-

ceiver, it is often called a link since it
provides a direct path from the sending

to the receiving process.

Usually a process will want to delay

when it executes receive but not always.

For example, the process might have

other useful work to do if a message is

not yet available for receipt. Or a process

such as a scheduler may need to examine

all queued messages in order to select

the best one to service next. To deter-

mine whether a channel’s queue is cur-

rently empty, a process can call the

Boolean-valued function

empty( ch)

This primitive returns true if channel

ch contains no messages; otherwise it
returns false.

2. FILTERS: A SORTING NETWORK

The key to understanding message-based

programs is to understand communi-

cation assumptions, Hence, the key to

deriving a process that uses message

passing is to specify the communication

assumptions. Since the output of a filter
process is a function of its input, the

appropriate specification is one that re-
lates the value of messages sent on out-

put channels to the values of messages

received on input channels. The actions a

filter takes in response to receiving input

must ensure this relation every time the

filter sends output.

To illustrate how filters are developed

and programmed, consider the problem

of sorting a list of n numbers into as-

cending order. The most direct way to
solve the problem is to write a single

filter process, Sort, that receives the in-
put from one channel, uses one of the

standard sorting algorithms, then writes

the result to another channel. Let input

be the input channel, and let output be
the output channel. Assume the n values

to be sorted are sent to input by some

unspecified process. Then the goal of
the sorting process is to ensure that the

values sent to output are ordered and are

a permutation of the values received from

input. Let sent[ i] indicate the ith value

sent to output. Then the goal is specified

precisely by the predicate:

SORT: (vi: 1 s ~ < n: sent[i] s sent[i + 11A

values sent to output are a permuta-

tion of values received from input

An outline of Sort is as follows:

than iqmt(int), outpzd(int)
Sort:: declarations of local variables

receive all numbers from input

sort the numbers

send the sorted numbers to output

Since receive is a blocking primitive,

a practical concern is for Sort to deter-

mine when it has received all the num-

bers. One solution is for Sort to know the

value of n in advance. A more general

solution is for n to be the first input

value and the numbers themselves to be

the next n input values. An even more

general solution is to end the input

stream with a sentinel, which is a special

value that indicates all numbers have

been received. This solution is the most

general since the process producing the

input does not itself need to know in

advance how many values it will send to

input.

If processes are “heavyweight” objects,

as they are in most operating systems,

the above approach would often be the

most efficient way to solve the sorting

problem. A different approach, however

—which is amenable to direct implemen-

tation in hardware—is to use a network

of small processes that execute in paral-

lel and interact to solve the problem. (A

hybrid approach would be to use a net-

work of medium-sized processes. ) There

are many kinds of sorting networks, just
as there are many different internal sort-
ing algorithms [Akl 1985]. Here, a merge

network is presented.

The idea behind a merge network is to

merge repeatedly— and in parallel—two

sorted lists into a longer sorted list. The
network is constructed out of instances of

Merge filters. Each Merge process re-

ceives values from two ordered input

streams, inl and in2. It merges these

values to produce one ordered output
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Figure 1. Sorting network of Merge processes.

stream, out. Assume the ends of the in-

put streams are marked by a sentinel,

EOS, as discussed above. Also assume

that Merge appends EOS to the end of

the output stream. If there are a total of

n input values (not counting the sen-

tinels), then when Merge terminates the

following should be true:

MERGE:

inl and in2 are empty A sent[ n + 1]=

E(X3 A

(Vi: 1 s i < rz: sent[i] S sent[i + 1]) A

values sent to out are a permutation of
values received from inl and in2

Again, sent is the stream of values sent

to the output channel, The first line of

MERGE says that all input has been

consumed and EOS has been appended to

the end of out; the third line says that

the output is ordered; the fourth line says

that all input data has been output.

One way to implement Merge is to
receive all input values, merge them,

then send the merged list to out. This,

however, requires storing all input val-

ues. Since the input streams are ordered,

a much better way to implement Merge

is repeatedly to compare the next two

values received from inl and in2 and to

send the smaller to out. Let VI and V2 be

these values. This suggests the following

process outline:

than inl(int), in2(int), out(int)
Merge:: var V1, V2 : int

receive inl( u1); receive in2( v2)

do more input to process 4
send smaller of V1 and V2 to out

receive another input value from

inl or in2

od
send out(EOS) { MERGE}

As a special case, after all values from

one input stream have been consumed,

further values from the other input

stream can simply be appended to out.

Expanding the loop and handling the

special cases yields the final program:

than inl(int), in2 (int), out(int)

Merge:: var V1, V2 : int

receive inl( vi); receive in2( v2)

do VI # EOS and V2 # EOS +

ifvlsv2+

send out( vI); receive inl( v1)

DV2S VI+

send 0Z4V2); receive in2( u2)

fi

0U1 # EOS and V2 = EOS +

send out(vl); receive inl(vl)

ovl = EOS and V2 # EOS +

send out(v2); receive in2( v2)

od

send out(EOS) { MERGE}

The above loop is a guarded command

[Dijkstra 1976] with three branches, one

for each of the cases in which there is

more input to process. When the loop

terminates, both VI and U2 are equal to

sentinel value EOS. The Merge process

sends the sentinel to out, then termi-

nates. As required, predicate MERGE is

true when Merge terminates.

To form a sorting network, a collection

of Merge processes and arrays of input
and output channels are connected to-

gether. Assuming the number of input

values n is a power of 2, the processes

and channels are connected so the result-
ing communication pattern forms a tree

as depicted in Figure 1. Information in

the sorting network flows from left to

right. Each node at the left is given two

input values, which it merges to form a

ACM Computing Surveys, Vol 23, No. 1, March 1991
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stream of two sorted values. The second-

level nodes form streams of four sorted

values, and so on. The right-most node

rwoduces the final sorted stream. The.
network contains n – 1 processes; the

depth of the network is logz n.

To realize the sorting network in Fig-

ure 1, the input and output channels need

to be shared. In particular, the output

channel used by one instance of Merge

needs to be the same as one of the in~ut

channels used by the next instance of

Merge in the graph. This can be pro-

grammed in one of two ways. The first

approach is to use static naming: Declare

all channels to be a global array, and
have each instance of Merge receive from

two elements of the array and send to

one other element. The tricky part in

this case is to have the channels accessed
by Merge, be some function of i. The

second approach is to use dynamic nam-

ing: Declare all channels to be global as

above, but parametrize the processes so

that each is passed three channels as

arguments when it is created. This makes

the programming of the Merge processes

easier since each is textually identical.

It, however, requires having a main pro-

cess that dynamically creates and passes

channels to the Merge processes.

A key attribute of filters like Merge is

that thev can be interconnected in differ-

ent way;. All that is required is the out-

put produced by one filter meet the input

assumptions of another. An important
consequence of this attribute is that as

long as the input assumptions and out-

put behaviors are the same, one filter

process—or a network of filters—can be

replaced by a different filter process or

network. For example, the single Sort
process described earlier can be replaced

by a network of Merge processes plus a
process (or network) that distributes the

input values to the merge network. Simi-

larly, Sort could be replaced by a net-
work that implements any other sorting

strategy.
Networks of filters can be used to solve

a variety of other parallel programming

problems. For example, Hoare [1978]

describes a prime number sieve and a

matrix multiplication network.

3. CLIENTS AND SERVERS

Recall that a server is a process that
repeatedly handles requests from clients.

This section shows how to program

servers and their clients. The first exam-

ple shows how to turn monitors into

servers. It shows how to implement re-

source managers using message passing

and also points out the duality between

monitors and message passing: Each can

be directly simulated by the other.
The second example describes different

ways to implement a disk scheduler and

a disk server. One solution illustrates a

programming technique called upcalls;

another solution shows how to imple-

ment a self-scheduling disk server. The

third example shows how to implement a

file server. In this case, the solution il-

lustrates a programming technique called

conversational continuity.

3.1 Centralized Servers: Active Monitors

A centralized server is a resource man-

ager: It has local variables that record

the state of a resource and services re-

quests to access that resource. Thus, a

centralized server is similar to a monitor

[Hoare 19741. The main differences are

that a server is active, whereas a

monitor is passive and that clients com-
municate with a server by sending and

receiving messages, whereas clients call
monitor procedures. To illustrate these

similarities and differences, this section

presents both monitor and server imple-

mentations of a resource allocator.
A monitor is a synchronization mech-

anism that is commonly used in con-

current programs that execute on

shared-memory machines [Hoare 19741.
It encapsulates permanent variables that

record the state of some resource and

exports a set of procedures that are called

to access the resource. The procedures
execute with mutual exclusion; they use

condition variables for internal synchro-
nization. The general structure of a
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monitor Resource_Allocator

{ ALLOC: avail >0 A (avail> O)~ empty(free) )

var avail : int :=MAXUNJTS, units : set of int,
free : condition

code to initialize units to appropriate values

proc acquire( res id : int )
if avail = O+ wait(free)
n avail> O4 avail := avail–l

fi

id := remove(units)

end

proc release{id : int )
insert(id, units)

if empt y~ree)4 avail := avail+l
Dnot empty(free) - signal(j%ee)
fi

end

em%

Figure 2. Resourceallocation monitor.

monitor is

monitor Mname # Invariant MI

var permanent variables
initialization code
proc Opl( formalsl) bodyl end

$POC OP.( formalsJ body. end
end

Associated with each monitor is an in-

variant MI a predicate about the per-

manent variables that is true when no

process is executing in the monitor.

As a concrete example, Figure 2 con-

tains a monitor that manages a multiple
unit resource —such as memory pages or

file blocks. The two operations are ac-
quire and release. For simplicity, clients

acquire and release units one at a time.

The free units of the resource are stored

in a set, which is accessed by insert and

remoue operations. A process that calls

acquire delays if there are no available

units. When a unit is released, if there

is a delayed process it is awakened and

takes the unit. Monitor invariant

ALLOC states the relation between

the number of available units and the

status of condition variable free.

The rmmitor in Figure 2 is pro-

grammed the way it is so that it works

correctly independent of whether signal-

ing is preemptive —as in Hoare [19741 —or

nonpreemptive— as in the Mesa lan -

guage [Mitchell et al. 1979] or the UNIX

operating system [Thompson 19781. If

signaling is preemptive, the bodies of ac-

quire and release can be simplified.

To simulate a monitor using message

passing, one server process is used. The

permanent variables of the monitor be-

come the server’s local variables. After

initializing the variables, the server exe -

cutes a permanent loop in which it re-

peatedly services “calls” of operations.

The monitor invariant becomes the loop

invariant in the server: It is true before

and after each operation is serviced. A
call is simulated by having a client pro-

cess send a message to a request channel,
then receive the result from a reply

channel. The server thus repeatedly re-

ceives from the request channel and sends

results to the reply channel. The formal

parameters in the different monitor oper-

ations become additional variables local

to the server. To avoid having one client

see the result intended for another, each

client needs its own private result chan-

nel. If these are declared as a global

array, a client thus needs to pass the
index of its private element of the result

array to the server as part of the request
message.

Figure 3 contains a resource allocation

server with the same functionality as the

resource allocation monitor in Figure 2.

The server contains an outer if state-

ACM Computing Surveys, Vol. 23, No. 1, March 1991



58 ● Gregory R. Andrews

type op.kind. = enum(ACQULRE, RELEASE)
than request(index : int, op_kind, unitid : int)
than reply[ 1:n ](int)

Allocator:: var avail : int :. MAXUNITS, units : set of int, pending : queue of int
var inakx : int, kind : op_kind, unitid : int

code to initialize units to appropriate values

{ALLOC: a.ail 20 A (avail> O)~ empty(pending) )

do true + receive request(index, kind, unitid)

if kind = ACQUIRE ~
if avail >0 -+ # honor request now

avail := avail–1; unitid := remove(units)

send reply [index](unitid)

U avail = O j # saveindex of requesting process

insert(pending, index)

ti

U kind. RELEASE+
if empty(pending) j # release unitid

avail := avail+l; insert(units, unitid)

O not empty(pending) s # give unitid to first requester

index := remove(pending); send reply [index](unitid)

ti

fi

od

Client[i: l..n]:: var unitid : int

. .
# acquire a unit of the resource

send request(i, ACQUIRE, O) # unitid not needed

receive reply[i](unitid)

# use resource unitid and then later release it

send request(i, RELEASE, unitid)

Fig ure 3. Resource allocator and clients.

ment that serves as a case statement
with branches for each kind of opera-

tion. Within each branch, a nested if

statement implements the body of the

corresponding operation, much as in Fig-

ure 2. A key difference between the

server and monitor, however, is that the

server cannot wait when servicing a re-

quest; it must continue to receive other
operations until a unit is released. Thus,
the server needs to save a request when

no units are available and defer sending

a reply. Later, when a unit is reIeased,
the server needs to honor one saved re-

quest, if there is one, by allocating the

unit to the requester and sending a
reply.

Figure 3 also gives an outline of the

client interface, which illustrates how
calls are simulated using message pass-
ing. After sending an ACQUIRE mes-
sage, a client waits to receive a unit.
After sending a RELEASE message,

however, the client does not wait for the

message to be processed since no reply is
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needed (assuming nothing can go wrong
that the client cares about).

The program in Figure 3 uses static

naming since in this paper channels are

global to the processes and are refer-

enced directly. Consequently, each pro-

cess must be coded carefully so that it

uses the correct channels. For example,

Client[ i] must not use the reply channel

of some other Client[j]. Alternatively,

dynamic naming could be used by having

each client create a private reply chan-

nel, which it then passes to Allocator as
the first field of request in place of the

integer index. This would ensure that

clients could not access each other’s reply

channels. It would also permit the num-

ber of clients to vary dynamically. (Here,

there is a fixed number n of client

processes.)

The Resource_ Allocator monitor and
the Allocator server point out the dual-

ity between monitors and message pass-

ing: There is a direct correspondence
between the various mechanisms in
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Monitor-Based Programs Message-Based Programs

permanent variables local server variables

procedure identifiers request channel and operation kinds
procedurecall send requesfi receive reply

monitor entry receive request

procedure return send reply

wait statement save pending request

signal statement retrieve and process pending request

procedure bodies arms of case statement on operation kind

Figure 4. Duality between monitors and centralized servers

monitors and those in the client and

server [Lauer and Needham 19781. In
particular, as shown in Figure 4, the

mechanisms in monitors serve the same

purpose as do the ones listed opposite

them in a message-based program.

Since the bodies of monitor procedures

have direct duals in the arms of the

server case statement, the relative per-

formance of monitor-based versus mes-

sage-based programs depends only on the

relative efficiency of the implementation

of the different mechanisms. On shared-
memory machines, procedure calls and

actions on condition variables tend to be

more efficient than message-passing

primitives. For this reason, most operat-
ing systems for such machines are based

on a monitor-style implementation. On

the other hand, most distributed systems

are based on message passing since that

is both efficient and the appropriate ab -

straction for such machines.
Although there is a duality between

monitors and centralized servers pro-

grammed using asynchronous message

passing, the duality would be even

stronger if the server were programmed

using RPC or rendezvous. With RPC, a

server module is programmed in almost

the same way as a monitor; the only

difference is that semaphores or some-

thing comparable need to be used to
simulate condition variables. With re~-

dezvous, different operations can be used

for each kind of server request; an enu-
meration type and case statement are
not required. For example, the Allocator

in Figure 3 could be programmed in Ada

using a select statement, with one arm

for each of the acquire and release opera-

tions. Another important consequence of

using RPC or rendezvous is that the

client interface to the server would be
identical to the interface to a monitor. In

particular, a client would call the ac-

quire and release operations. The client

would not first have to send a message

then receive a reply. More importantly,

an array of reply channels would not be

needed and could not be misused.

3.2 Disk Scheduling and Disk Access

Consider now the problem of accessing a
moving-head disk. In a distributed sys-

tem, it is appropriate to use one server

process for each disk, Each disk server
executes on the machine to which the

disk is attached. Clients, which may exe-

cute on any machine, request access by

sending read and write requests to the

server.

The physical address of each data item

includes a cylinder number, a track num-

ber, and an offset. For a moving-head

disk, the largest component of access time

is the time it takes to move the

read/write head to the appropriate cylin-

der. Thus, it is important to reduce

head-seek time by ordering pending

read/write requests. There are several

different disk-scheduling algorithms, as

described in most operating systems texts

[Peterson and Silberschatz 19851. For ex-

ample, the Shortest Seek Time (SST) al-
gorithm minimizes head movement by

always selecting the pending request
whose cylinder is closei+ to the current

head position.
As shown in Figure 5, there are three

main ways to structure a solution to the

disk-scheduling problem. In all cases, the

disk is assumed to be controlled by a
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Separate

Scheduler

(i)
(Q)

Scheduler as
—

Intermediary
=;-?-

1~)

(~1

SeIf-Scheduhng
Disk Driver

-;-

Figure 5. Disk scheduling structures with message passing

server process that performs all disk ac-

cess. The principal differences between

the three structures are the client inter-

face and the number of messages that

must be exchanged per disk access.

One approach is to have the scheduler

be a server separate from the disk server.

Thus clients first “call” the scheduler to
request access, then use the disk, and

finally “call” the scheduler to release

access. Both the scheduler and disk

server are active monitors (there is one

such pair for each physical disk). Hence,

the servers and their clients are pro-

grammed as described in Section 3.1.
In the second structure, the scheduler

is an intermediary between clients and

the disk server. In this case, the sched-

uler is an active monitor with three oper-

ations. One is used by clients to request

disk access. The second is used by the

disk server to acquire the next read,/write
request. The third operation is used by

the server to indicate completion of a

read/write action and to return results,

which the scheduler then sends back to

the appropriate client. (The latter two

operations could be combined. ) When the
scheduler is an intermediary, the disk

server’s “calls” to acquire the next re-

quest and to return results are termed

upcalls [Clark 1985]. This is because they
come up to a higher level server—one

closer to clients—from a lower level

server— one closer to the physical archi -

tectm-e. This upcall structure is needed

since the scheduler cannot know which

request to give the disk server until that

server indicates it is free.

In the third solution structure, the

scheduler and disk server are combined
into a single, self-scheduling server pro-

cess. The disk server now has one opera-
tion, to which clients send requests. To

do scheduling, the driver must examine

all pending requests, which means it

must receive all messages queued on the

request channel. It does this by execut-

ing a loop that terminates when the re-

quest channel is empty and there is at
least one saved request. The driver then

selects the best request according to its

internal scheduling policy, accesses the

disk, and finally sends a reply to the

client who sent the reque~t
When the scheduler is a separate pro-

cess, five messages must be exchanged

per disk access: two to request schedul-

ing and get a reply, two to request disk

access and get a reply, and one to release

the disk. The client is involved in all five

communications. When the scheduler is

an intermediary, four kinds of messages

have to be exchanged: The client has to

send a request and wait to receive one
reply, the disk driver has to ask the
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than request(imiex : int, cylinder : int, other argument types)

# other arguments indicate read or write, disk block, memory buffer, etc.

than reply[ l:n](result types)

Disk_Drive~: var lower, higher: ordered queue of (int, int, other argument types)
# contain index, cylinder, and other argumentsof pending request

var headpos : int:=1, nsaued := O

var index : int,cyl : int, args : other argument types

( ~~~. tower is an orderedqueuefrom largest to smallest cyl A
all values of eyl in lower are 5 headpos A

higher is an orderedqueuefrom smallest to largest cyl A
all values of cyl in higher are 2 heactpos A

(nsaued = O) a (both lower and higher are empty))

do true+
do not empty(request) or nsaved= O+

# wait for first request or receiveanother one,then saveit
receive request(index, cyl, args)

if cyl < headpos := insert(lower, (index, cyl, args))

~ cyl > headpos := insert(higher, (index, cyl, args))

6

nsaved := nsaued+l

od
# selectbest savedrequest; there is at least onein lower or higher

if size(lower) = O+ (index, cjd, args):= remove(higher)

D size(higher) = O ~ (index, CY1, args):= remoue(lower)

0 size(higher) >0 and size(lower) >0 +
removeelement from front of lower or higher depending
on which savedvalue of cyl is closerto headpos

fi

headpos := cyl; nsaved := nsaved-1

accessthe disk
send reply[index](results)

od

Figure 6. Self-scheduling disk driver.

scheduler for the next request and get

the reply. (The driver process can return

the results of one disk access request

when it asks for the next one. ) As can be

seen in Figure 5, a self-scheduling disk

driver presents the most attractive struc-

ture. In particular, only two messages

need to be exchanged.

Figure 6 outlines a self-scheduling disk

driver that uses the SST scheduling pol-

icy. A message sent to the request chan-

nel indicates which cylinder to access.

These values are assumed to be between

zero and the maximum cylinder number.

The driver keeps track of the current

head position in local variable headpos.

To implement the SST policy, the driver
keeps two ordered queues: lower and

higher. When a request arrives, the

driver stores it in queue lower if the

requested cylinder is lower than the cur-

rent head position; otherwise, it stores it

in queue higher. (Either queue is used

for requests for the current head posi-

tion.) Reauests in aueue lower are or-

dered by ~ecreasing ~ylinder value; those

in higher are ordered by increasing

cvlinder value. The invariant for the.
outer loop of the driver process is as indi-

cated; variable nsaued is a count of the

total number of saved reauests.

In Figure 6, the emp~y primitive is

used in the guard of the inner loop to

determine whether there are more mes -
sages queued on the request channel.

This is an example of the programming

technique called polling. In this case,

the disk driver process repeatedly polls
the request channel to determine if there

are pending requests. If there are, an-
other one is received so the driver has

more requests from which to choose. If

there are not (at the time empty is eval-

uated), the driver services the best
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pending request. Polling is also useful in

other situations and is often used within
hardware, such as in the implementation

of communication using a shared bus.

The Disk_ Driuer process in Figure 6

could readily be changed to use other

disk-scheduling strategies such as the el-

evator algorithm [Hoare 1974]. All that

would change are the kinds of sets the

server maintains and the criterion for

selecting the best saved reauest.

When” asynchronous me&age passing

is used, as here, the Disk _Driuer process

has to manage queues of pending re-

quests. With a powerful rendezvous

mechanism that permits requests to be

scheduled—such as that in SR [Andrews

et al. 19881 or Concurrent C [Gehani and

Roome 19861–the server could be greatly

simplified. For example, in SR the body

of the main server loop in Figure 6 could

be simplified to

in request(cylinder, )

by abs(cylinder – headpos) *

headpos := cylinder

access the disk

results := return values

ni

Here, requests are serviced one at a time

in an order that minimizes the distance

between the requested cylinder and the

current head position. As in Section 3.1,

another virtue of using rendezvous is that

the client simply calls the request opera-

tion; it does not explicitly have to send a
request and receive a reply.

3.3 File Servers: Conversational Continuity

As a final exam~le of client Iserver inter-

action, this sec{ion presents one way to
implement file servers, which are pro-
cesses that provide access to files on
secondary storage such as disk files. To

access a disk file, a client first opens the

file. If the open is successful–the file

exists and the client has permission to

access it—the client makes a series of
read and write requests. Eventually the

client closes the file.
Suppose up to n files may be open at

once and access to each open file is pro-

vided by a separate file server process.

Hence, there are n such processes. To

open a file, a client needs to acquire a file

server that is free, then interact with it.
If all file servers are identical, any free

one will do.
File servers could be allocated to clients

by a separate allocator process. Since all

are identical and communication chan-

nels are shared, however, there is a sim-

pler approach. In particular, let open be

a global channel. To acauire a file server,

a ~lient sends a reque~t to open. When

idle, file servers try to receive from open.

A specific open request from a client will

thus be received by any one of the idle

file servers. That server sends a reply to

the client, then proceeds to wait for ac-

cess requests. A client sends these to a
different channel, access[ i], where i is

the index of the file server that allocated
itself to the client. Thus, access is an

array of n channels. Eventually, the

client closes the file, at which time the

file server becomes idle so it again waits

for an open request.

Outlines for the file servers and their

clients are given in Figure 7. The file

access reauests—READ and WRITE—are

sent to the same channel. This is nec-

essary since the file server cannot in

general know the order in which these

requests will be made and hence cannot

use different channels for each. For the

same reason, when a client wants to close

a file, it sends a CLOSE request to the

same access channel.

The interaction between a client and a

server in Fixure 7 is an exam~le of con-

versational continuity. In pa~ticular, a

client starts a “conversation” with a file

server when that server receives the

client’s open request. The client then
continues to converse with the same

server. This is programmed by having

the server first receive from open, then

repeatedly receive from access[ i].

Figure 7 presents one possible way to

implement file servers. It assumes open

is a shared channel from which any file
server can receive a message. If each

channel can have only one receiver, a

separate file allocator process would be

needed. That process would receive open
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type kind = enun@EAD, WRITE, CLOSE)
than open(jname : strin~*], clientid : int)

than access[l:rz](kind, other types) # other types give buffer, number of bytes, etc.
cluan open_rep&[l:nl( int) # field is server index or error indication
than access_reply[l:n](resulttypes) # result types are file data, error flags, etc.

File_Serverfi: l..n]:: var fname : string(*], clientid : int

Client& l..m]::

var k : kind, args : other argument types
var file_open : bool := false
var local buffer, cache,disk address,etc.
do true -+

receive open(jhame, clientid)

# open data fil~ if successfulthem
send open_reply[clientidl(i); file-open := time

do file_open d

receive ucces~i](k, args)

if k = READ -+ processread request
Dk . WRITE+ processwrite request
Uk = CLOSE+ close file; /ile_open := false

fi

send access_reply[clierztidl(resultvalues)
od

od

...
send o~en(’’foo”, 13 # open file “foo”

receive open_replybl(ser~erid) # get back id of server
# use and eventually closefile by executingthe following
send uccess[seruerid]( access arguments)
receive access_reply~l(results)
...

Figure 7. File serversand clients

requests and allocate a free server to a

client: file servers would thus need to tell

the allocator when they are free.

The solution in Figure 7 uses a fixed

number n of file servers. In a language

that supports dynamic process and chan-

nel creation, a better approach would be

to create file servers and access channels

dynamically, as needed, This is better

since at any point in time there would

only be as many servers as are actually

being used, and more importantly, there

would not be a fixed upper bound on the
number of file servers. At the other ex-

treme, there could simply be one file

server per disk. In this case, however,

either the file server or client interface

will be much more complex than shown

in Figure 7. This is because either the

file server has to keep track of the infor-
mation associated with all clients who

have files open, or clients have to pass

file state information with every request.

Yet another approach, used in the Sun

Network File System (NFS) [Sandberg et
al. 19851, is to implement file access

solely by means of remote procedures.

Then, “opening” a file consists of acquir-

ing a descriptor (called a file handle in

NFS) and a set of file attributes. These

are subsequently passed on each call to a

file access procedure. Unlike the File_

Server processes in Figure 7, the access

procedures in NFS are themselves state-
less– all information needed to access a

file is passed as arguments on each call

to a file access procedure. This increases

the cost of argument passing but greatly

simplifies the handling of both client and
server crashes. In particular, if a file

server crashes, the client simply resends

the request until a response is received.

If a client crashes, the server need do

nothing since it has no state information.

(See Sandberg et al. [1985] for further

discussion of these issues.)

4. HEARTBEAT ALGORITHMS

In a hierarchical system, servers at in-

termediate levels are often also clients of

lower level servers. For example, the file
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server in Figure 7 might well process

read and write requests by communicant-

ing with a disk server such as the one in

Figure 6. This and the next several sec-

tions examine additional kinds of server

interaction in which servers at the same

level cooperate in providing a service.

This type of interaction arises in dis-

tributed computations in which no one

server has all the information needed to

service a client request.

Consider the problem of computing the

topology of a network, which consists of

processors connected by bidirectional

communication channels. Each processor
can communicate only with its neighbors

and knows only about the links to its

neighbors. The problem is for each pro-

cessor to determine the topology of the

entire network, that is, the entire set of

links. During the computation, the topol-

ogy is assumed to be static; that is, links

are not added or removed. z

Each processor is modeled by a process,

and the communication links are mod-

eled by shared channels. The problem is

solved by first assuming that all pro-

cesses have access to a shared memory

[~amport 19821. Then the solution is re-
fined into a distributed computation by

replicating global variables and having

neighboring processes interact to ex-

change their local information. In partic-

ular, each process executes a sequence of

iterations. On each iteration, a process
sends its local knowledge of the topology

to all its neighbors, then receives their

information and combines it with its own.

The computation terminates when all
processes have learned the topology of

the entire network.

In this paper, this type of process inter-
action is called a heartbeat algorithm

since the actions of each node are like

the beating of a heart: first expand,

sending information out; then contract,

‘See Lamport [1982] and Elshoff and Andrews

[19881 for discussions of how to handle a dynamic
network for this specific problem, See Afek et al.

[19871 for a general discussion of dynamic network
protocols.

gathering new information in. (For

this specific problem, this kind of inter-

action has been called a wave algorithm

[McCurley and Schneider 1986] since in-
formation spreads out in waves from a

node to its neighbors, then to the neigh-

bor’s neighbors, and so on, until it

reaches all processes. ) The same type of

algorithm can be used to solve many

other problems, especially those arising

from parallel iterative computations. For

example, a grid computation can be pro-

grammed by partitioning the grid into

blocks; each block is handled by a differ-
ent process, which communicates with its

neighbors to exchange boundary values.

Grid computations are used to solve
problems such as elliptic partial differen-

tial equations by finite differences [Fox

et al. 19881.

4.1 Network Topology: Shared-Variable

Solution

In the network topology problem, there is

a set of n nodes, one per processor. Each

node can communicate only with its

neighbors, and initially all it knows

about the topology is its set of neighbors.

The neighbor relationship is assumed to

be symmetric: For each pair of nodes p

and q, p is a neighbor of q if and only if

q is a neighbor of p. The problem is to

compute the set top of all links, namely,

all pairs (p, q) such that p is a neighbor
of q.

Each node is represented by a process

Nodelp: 1.. n]. Within each process, the

neighbors of a node can be represented

by a Boolean (bit) vector links[l: n], with

element links[ q] being true in Node[ p]

if q is a neighbor of p. These vectors are
assumed to be initialized to the appropri-

ate values. The final topology top can

then be represented by an adjacency ma-

trix, with top[ p, q] being true if p and q

are neighboring nodes. Specifically, when
the computation terminates, the follow-

ing predicate is to be true:

TOPOLOGY: (vp, q: 1 s p s n, 1< q < n:

top[ p, q] @ linksP[ 91)

In TOPOLOGY, linksP is the neighbor
set of node p.
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var top[l:n, l:n] : bool := ([n*n] false) # topologyto be stored as set of all links

No&~: l..n]:: var ltnks[l:n] : bool
# initialized so links[q] is true if q is a neighbor ofNode@]

topp, 1:?2]:= links # fill in p’th row of top

{ top~, l:n] = links[l:n] )

Figure 8. Network topology using shared variables.

To solve the network topology problem,

assume for now that top is global to all

Node processes and that initially all ele-

ments of top are false. Then all that each

process need do is store the value of its

neighbor set in the appropriate row in

top. In fact, since each process assigns to

a different row of top, the assignments to

top can execute in parallel without inter-

ference. This yields the shared-variable

solution shown in Figure 8. When each
process Node[ p] terminates, top[ p, q] is

true if q is a neighbor of p and is false

otherwise. The final state of the program

is the union of the final state of each

process; hence upon termination,

TOPOLOGY is true as required.

4.2 Network Topology: Distributed Solution

One way to turn the solution in Figure 8

into a distributed program is to have a

single process T compute the topology.

This would be done by having each node

send its value of links to T, which would

copy the message into the appropriate
row of top. This approach uses a minimal

number of messages but has a drawback:

How does a node communicate with T if

T is not one of its neighbors? Nodes that

are neighbors of T could forward mes-

sages from other nodes, but the resulting
algorithm would be very asymmetric. A

symmetric algorithm in which each node

executes the same program is generally

preferable since it is usually easier to
develop and understand. Moreover, a

symmetric algorithm is easier to modify

to cope with potential failures of proces-
sors or communication links.

To get a symmetric, distributed algo-

rithm to solve the network topology prob-

lem, each node needs to be able to

compute for itself the entire topology.

Initially node p knows about the links to

its neighbors. If it asks those nodes for

their neighbor links—by sending a mes-

sage to and receiving a reply from

each— after one round of messages, p will

have learned about the topology within

two links of it; that is, it will know its
links and those of its neighbors. If every

node does the same thing, after one full

round each node will know about the

topology within two links of it. If each

node now executes another round in
which it again exchanges what it knows

with its neighbors, after two rounds each

node will know about the topology within

three links of it. In general, after r

rounds the following will be true in each

node p:

ROUND: (’dq: 1< q s n: (dist(p, q) s r) *

top[ q, *] filled in)

Here dist( p, q) is the distance from node

p to node q; that is, the length of the

shortest path between them. In words,

ROUND says that after r rounds, the

links to neighbors of’ every node q within

distance r of node p are stored in p’s set

of links top.

If each node executes an adequate
number of rounds, then from ROUND it

follows that each node will have com-

puted the entire topology. Assume for
now that the diameter D of the network

is known. (This is the distance between

the farthest pair of nodes.) Then the net-
work topology problem is solved by the

program in Figure 9. As indicated,

ROUND is the loop invariant in each

node. It is made true initially by setting
top to the node’s neighbors and initializ-

ing local variable r to O. It is preserved

on each iteration since every node ex-

changes all its local information with its
neighbors on each round. When a node
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cban topology[l:rz](top [l:n, l:rz] : bool) # one channel per node

Node@: l..rz]:: var W&s[l:n] : bool
# initialized so link.s[q] is true if q is a neighbor of Node~]

var top[l:rz, l:rz] : bool := ([n*n] false) # local view of topology
varr:int:=O
var rzewtop[l:rs,l:n] : bool
tOP~, l..n] := links # fill in row for my neighbors

( top~, l:n] = lirzks[l:n] A r = O )

(ROUND: ( V q: 1s q < n: (dist(p, q) < r) a top[q, *] filled in )

dor<D+

# sendlocal knowledgeof topologyto all neighbors
fa q := 1to n st links[q] + send topology[q](top) af

# receive their Iwal topologies and or it with top

fa q := 1to n st lirzks[q] -+

receive topology~](newtop)

top := top or newtop

af

F := r+l

od
{ROUND A r = D} { TOPOLOGY)

Figure 9. Heartbeat algorithm for network topology; first refinement

terminates, it has executed D rounds.

Since by the definition of D no node is

further than D links away, top contains

the entire topology.
In Figure 9, the for-all statements

(fa . ..) are iterative statements that

execute their body once for each different

value of the bound variable (q) such that

(st) the indicated Boolean expression

(links[ q]) is true. Logical “or” is used to
union a neighbor’s topology, which is re-

ceived into newtop, with the local topol-

ogy, which is stored in top. To simplify

channel naming, the communication

channels in Figure 9 are declared global

to all the processes. Each process
Node[ p], however, only receives from its

private channel topology[ p] and only

sends messages to the channels of its
neighbors,

There are two problems with the algo-
rithm in Figure 9. First, a node cannot

know a priori the value of diameter D.

Second, there is excessive message ex-
change. This is because nodes near the

center of the network will know the en-
tire topology as soon as they have exe-
cuted enough rounds to have received

information from nodes at the edges of

the network. On subsequent rounds these

nodes will not learn anything new, yet

they will continue to exchange informa-

tion with every neighbor. As a concrete

example, consider a network that is a

chain of five nodes. The node in the cen-

ter will have learned the topology of the

chain after two rounds. After one more

round, the nodes between the centers and

the ends will know the topology. After

the fourth round, the nodes at the ends

will finally know the topology.

Loop invariant ROUND and the above

observations suggest how to overcome

both problems. After r rounds, node p

will know the topology within distance r

of itself. In particular, for every node q

within distance r of p, the neighbors of

q will be stored in row q of top. Since the

network is connected, every node has at

least one neighbor. Thus, node p has

executed enough rounds to know the

topology as soon as every row in top has
some true value. At this point, p can
terminate after sharing top with its
neighbors. This last round is necessary

since some neighbors may be one further
link away from the edge of the network

than p, as in the above example of a

chain. To avoid leaving unprocessed mes-
sages in message channels, neighboring

nodes also need to let each other know

when they are done and need to receive

one last round of messages before termi-
nating. In particular, after learning the

ACM Computing Surveys, Vol 23, No 1, March 1991



Paradigms for Process Interaction in Distributed Programs g 67

than topology[l:n](sender : int, done: bool, top[l:n, l:n] : bool)

Node@: l..n]:: var Enks[l:n] : bool
# initialized sothat links[q] true if q is a neighbor of Node@]

var active[1:n] : bool := links # neighbors who are still active

var top[l:n, l:n] : bool := ([n*n] false) # local view of topology
var r : int := O, done : bool := false

var sender: int, qa!one : bool, newtop[l:n, l:rz] : bool
top~, l..n] := links # fill in raw for my neighbors
{ topb, h]= links[l:nl A r = O A --done)

( ROUND A (done a all rows in top are filled in)]

do not done +

# send local knowledge of topology to all neighbors

fag := 1 to n st links[q] ~ send topology[q](p, false, top) af
# receive their local topologies and or it with top

fa q := 1to n st links[q] +

receive topology ~](sender, qdone, newtop)

top := top or newtop

if qdone + actiue[sender] := false fi

d

if all rows of top have some tree entry+ done := true fi

r := r+l

od
(ROUND A all rows in top are filled in ) ( TOPOLOGY]

# send topology to all neighbors who are still active

fa q := 1to n at actiue[q] + send topology[g](p, true, top) of

# receiveonemessage from each to clear up message queue

fa q := 1to n at active[q] + receive topology ~](sender, qdone, newtop) af

Figure 10. Heartbeat algorithm for network topology; final version

topology, node p should exchange a round

of messages only with those neighbors

who did not finish on the previous round.
The final proWam for the network

topology problem is shown in Figure 10.

The comments indicate what is going on

at each stage. In the program, r is now

an auxiliary variable [Owicki and Gries

19761. In particular, r is used only to

facilitate specification of predicate

ROUND. The loop invariant in the solu-

tion is ROUND and a predicate specify-
ing that done is true only if all rows of

top are filled in. Thus, when the loop

terminates, every other process has been
heard from so top contains the complete

network topology.

The program in Figure 10 is deadlock
free since sends are executed before re-

ceives and a node receives only as many

messages on each round as it has active

neighbors. The loop terminates in each
node since the network is connected and
information is propagated to each neigh-

bor on every round. The final round of

sends and receives ensures that every

neighbor sees the final topology and that

no unreceived messages are left buffered.

If the algorithm were run only once, this

would probably not be a problem (de-
pending on what the underlying imple-

mentation does about nonempty buffers).

An algorithm like this, however, might

well be run periodically on a real net-
work since the topology invariably

changes over time.

The main loop in any heartbeat algo-

rithm will have the same basic structure

shown in Figures 9 and 10: Send mes-

sages to all neighbors then receive mes-
sages from them. What the messages

contain and how they are processed de-
pends on the application. For example, in

a grid computation, nodes would ex-

change boundary values with their

neighbors and the computation in each

round would be to compute new values

for local grid points
Another difference between instances

of heartbeat algorithms is the termina-
tion criterion and how it is checked. For

the network topology problem, each node
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can determine for itself when to termi -

nate. This is because a node acquires

more information on each round and the

information it already has does not

change. In many grid computations, the

termination criterion is also based on lo-

cal information—for example, the values

of grid points after one round are within
epsilon of their values after the previous

round.

Termination cannot always be decided

locally, however. For example, consider
using a grid computation to label regions

of an image, with each node in the grid

being responsible for a block of the im-

age. Since a region might “snake” across

the image, a node might see no change

on one round and get new information

several rounds later. Such a computation

can terminate only when there is no

change anywhere after a round. Thus,

the processes need to communicate with

a central controller or exchange addi -

tional messages with each other.

5. PROBE 1 ECHO ALGORITHMS

Trees and graphs are used in many com-

puting problems (e.g., game playing,

databases, and expert systems). They are

especially important in distributed com-

puting since the structure of many dis-

tributed computations is a graph in which
m-ocesses are nodes and communication

~inks are edges.
Depth first search (DFS) is one of

the classic sequential programming

paradigms for visiting all the nodes in a

tree or graph. In a tree, the DFS strategy

for each node is to visit the children of

that node and then to return to the par-

ent. This is called derkh first search since.
each search path reaches all the way

down to a leafi for example, the path in

the tree from the root to the left-most

leaf is traversed first. In a general graph

—which may have cycles—the same ap-

proach is used, except nodes need to be

marked as they are visited so edges out

of a node are traversed only once.
This section describes the probe/echo

paradigm for distributed computations on

graphs. A probe is a message sent by one

node to its successor; an echo is a subse-

quent reply. Since processes execute con-

currently, probes are sent in parallel to

all successors. The probe/echo paradigm

is thus the concurrent programming ana-

log of DFS. First, the probe paradigm is

illustrated by showing how to broadcast

information to all nodes in a network.

Then, the full probe/echo paradigm is

illustrated by a different algorithm for

constructing the topology of a network.

Additional examples of the use of the

paradigm are given in Chang [1979,
1982], Dijkstra and Scholten [1980], and

Francez [1980].

5.1 Broadcast in a Network

Assume as in Section 4 that there is one

node per processor and that each node

can communicate only with its neigh-

bors. Suppose one initiator node i wants

to broadcast a message—that is, to send

some information to all other nodes. For

example, i might be the site of the net-

work coordinator, which wants to broad-

cast new status information to all other

sites.

If every other node is a neighbor of i,

broadcast would be trivial to implement:

Node i would simply send a message

directly to every other node. In the more
realistic situation in which each node

has only a few neighbors, however, the

nodes need to forward information they
receive until all have seen it. In short, i

needs to send a probe that reaches all

nodes.
If node i has a local copy top of the

entire network topolo~—computed for

example as shown in Figure 10—then an

efficient way for i to broadcast a message
is first to construct a spanning tree of the

network, with itself as the root of the

tree. (A spanning tree of a graph is a tree

whose nodes are all those in the graph
and whose edges are a subset of those in

the graph [Aho et al. 1974].) For exam-
ple, node i might construct a spanning

tree T that contains the shortest ~aths

from i to every other node. Giv& T,

node i can then broadcast a message msg

by sending msg together with T to all
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than probe[ I :n](span_tree[l:n, l:nl : bool, message–type)

Noo!e~: l..n]:: var span_tree[l:n, l:n] : bool, msg: message_type
receive probe~](span_tree, msg)

fa q := 1 to n st q is a child ofp in span_tree -+

send probe[q](span_tree, m.sg)

af

Initiator:: var i : int := index of node that is to initiate broadcast

var top[l:n, l:rt]:bool # initialized with topology of the network

var span[l:n, 1:n] : bool, msg : message_type

compute spanning tree of top rooted at i and store it in span
msg := messageto be broadcast

send probe[i](span, msg)

Figure 11. Broadcast using a spanning tree.

its children in T. Upon receiving the

message, every node examines T to de-

termine its children in the spemning tree,

then forwards both T and msg to all of

them. The spanning tree is sent along

with msg since nodes other than i would

not otherwise know what spanning tree

to use.

The full algorithm is given in Figure

11. Since T is a spanning tree, eventu-

ally the message will reach every node;

moreover, each node will receive it ex-

actly once, from its parent in T. A sep-

arate process on node i initiates

the broadcast. This makes the broadcast

part of the algorithm on each node
symmetric.

The broadcast algorithm in Figure 11

assumes that the initiator node knows

the entire topology, which it uses to com-

pute a spanning tree that guides the

broadcast. Suppose instead that each
node knows only its neighbors. In this

case, a message msg is broadcast to all

nodes as follows. First, node i sends msg

to all its neighbors. Upon receiving msg,

a node sends it along to all its other
neighbors. If the links defined by the

neighbor sets happen to form a tree, the

effect of this approach is the same as

before. In general, however, the network

will contain cycles. Thus, some node
might receive msg from two or more

neighbors. In fact, two neighbors might
send the message to each other at about

the same time.
It might appear that it would be suffi-

cient to ignore multiple copies of msg

that a node might receive. This, how-

ever, leads to the following problem. Af-

ter receiving msg for the first time and

sending it along, a node cannot know

how many times tc) wait to receive msg

from a different neighbor. If the node

does not wait at all, extra messages could

be left buffered on some of the probe

channels. If a node waits some fixed

number of times, it might wait forever

unless at least that many messages are

sent; even so, there might be more.
The solution to the problem of unpro-

cessed messages is again to have a fully

symmetric algorithm. In particular, when

a node receives msg for the first time, it
sends msg to all its neighbors, including

the one from whom it received msg. Then

the node waits to receive redundant

copies of msg from all its other neigh-

bors; these it ignores. The algorithm is

given in Figure 12,

The broadcast algorithm using a span-

ning tree (Figure 11) causes n – 1 mes-

sages to be sent, one for each parent/child

edge in the spanning tree. The algorithm

using neighbor sets (Figure 12) causes
two messages to be sent over every link

in the network, one in each direction.

The exact number depends on the topol-

ogy of the network, but in general it will

be much larger than n – 1. For example,

for a tree rooted at the Initiator process,

2. (n – 1) messages will be sent; for a
complete graph, 2 “ n “ ( n – 1) will be

sent. The neighbor-set algorithm does

not, however, require that the initiator
node know the topology and compute and
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than probe[1:n](message_type)

Node@: l..rz]:: var lirzks[l:rz] : bool := neighbors of node p

var rwrn : int := number of neighborsofp, msg : message_type
receive probe~](msg)
# sendmsgto all neighbors
fa q := 1 to n st links[q] + send probe[q](msg) af
# receive num–1 redundant copies of msg

fa q := 1 to num-1 + receive pmbe~](msg) af

Initiator:: var i : int:=index of node that is to initiate broadcast

var msg : message_type := message to be broadcast

send probe[i](msg)

Figure 12. Broadcast using neighbor sets

disseminate a spanning tree. Instead, a

spanning tree is constructed dynami -

tally; it consists of the links along which

the first copies of msg are sent. Also, the

messages are shorter in the neighbor-set

algorithm since the spanning tree ( n2

bits) need not be sent in each message.

Both broadcast algorithms assume the

topology of the network does not change.

In particular, neither works correctly if

there is a processor or communication

link failure while the algorithm is exe-

cuting. If a node fails, obviously it cannot

receive the message being broadcast; if a

link fails, it might or might not be ~ossi-

ble to reach th~ nodes c&nected b; the

link. Several people have investigated

the problem of reliable or fault-tolerant

broadcast, which is concerned with en-

suring that every functioning and reach-

able processor receives the message

being broadcast and that all agree upon
the same value. For example, Schneider

et al. [1984] present an algorithm for

fault-tolerant broadcast in a tree, assum-

ing that a failed processor stops execut-

ing and that failures are detectable (i. e.,

that failures are fail stop [Schlichting
and Schneider 1983]). On the other hand,
Lamport et al. [1982] show how to cope

with failures that can result in arbitrary

behavior (i. e., so-called Byzantine
failures).

5.2 Network Topology Revisited

Section 4 presented an algorithm for

computing the topology of a network by
starting with a shared-memory algo -

rithm, then generating multiple copies of

the shared data. In this section, the same

problem is solved in a different manner.

In particular, one node first gathers the

local topology data of every other node,

then disseminates the full topology back

to the other nodes. The topology is gath-

ered in two phases. First, each node sends

a probe to its neighbors, much as in Fig-

ure 12. Later, each node sends an echo

containing local topology information

back to the node from which it received
the first probe. Eventually, the initiating

node has gathered all the echoes. It can

then broadcast the complete topology us-

ing either the algorithm in Figure 11 or

the one in Figure 12.

Assume for now that the topology of

the network is acyclic; since it is an undi-

rected graph, this means the structure is

a tree. Let node i be the node that initi-
ates a topology computation. Then the

topology is gathered as follows. First, i

sends a probe to all its neighbors. When

these nodes receive a probe, they send it

to all their other neighbors, and so on.

Thus, probes propagate through the tree.

Eventually they will reach leaf nodes.
Since these nodes have no other neigh-

bors, they begin the echo phase. In par-
ticular, each leaf sends an echo contain-

ing its neighbor set to its parent in the
tree. Upon receiving echoes from each of

its children, a node combines them and
its own neighbor set and echoes this

information to its parent. Eventually
the root node will receive echoes from all

its children. The union of these will con-

tain the entire topology since the initial
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conat source= i # index of nodethat initiates the algorithm
than probe[l :n](sender: int)
than echo[l:n](links[l:n, l:n] : bool) # contents are part of the topology
chnn jincdecho(links[l:n, l:n] : bool) # final echoto Initiator

Node~: l..n]:: var links[l:n] : bool := neighborsof nodep
var locahop[l:n, l:n] : bool := ([n*n] false)
loca.ltop~, l:n] := links # put neighbor set in localtop

var newtop[l:n, l:n]:bool
var parent : int # will be nodefi-omwhom probeis received
receive probe~](parent)

# probeon to to all other neighbors,who arep’s children

fa q := 1to n st links[q] and q #parent -+ aend probe[q](p) af

# reeeiveechoesfor all children and union them into localtop

fa q := 1to n st links[q] and q #parent +
receive echo~](newtop); laealtop := localtop or newtop

af

ifp = source -+ send finalecho(lacaltop) # this node is the root

Up # source + send echo~arent](localtop)

fi

Initiator:: var top[l:n, l:n]:bool # network topology as set of links

send probe[source](source)

receive finalecho(top)

Figure 13. Probe/echo algorithm for topology of a tree

probe will reach every node and every

echo contains the neighbor set of the

echoing node together with those of its

descendants in the tree.

The full probe/echo algorithm for gath-

ering the network topology in a tree

is shown in Figure 13. The probe phase

is essentially the broadcast algorithm

from Figure 12, except that no message

is broadcast; probe messages merely indi-

cate the identity of the sender. The echo

phase returns local topology information

back up the tree, In this case, the

algorithms for the nodes are not fully

symmetric since the instance of Node[ PI

executing on node i needs to know to

send its echo to the Initiator. After Ini-

tiator receives the final topology into top,

it can broadcast the topology back to the
other nodes using the algorithm in either
Figure 11 or 12.

To compute the topology of a network

that contains cycles, the above algorithm

is generalized as follows. After receiving

a probe, a node sends it on to all its other

neighbors, then waits for an echo from
each. Because of cycles and because nodes

execute concurrently, however, two

neighbors might send each other probes

at about the same time. Probes other
than the first one can be echoed immedi -

ately. In particular, if a node receives a

subsequent probe while waiting for

echoes, it immediately sends an echo con-

taining a null topology (this is sufficient
since the local neighbor set of the node

will be contained in the echo sent in

response to the first probe). Eventually,

a node will receive an echo in response to

every probe it sends. At this point, it

echoes the union of its neighbor set and
the echoes it received.

The general probe/echo algorithm for

computing the network topology is shown

in Figure 14. BecaLuse a node might re-

ceive subsequent probes while waiting

for echoes, the two types of messages are

merged into one channel. (If they came

in on separate channels, a node would

have to use empty and polling to know

when to receive from a channel. )
The correctness of the algorithm in

Figure 14 results from the following facts.

Since the network is connected, every

node eventually receives a probe. Dead-

lock is avoided since every probe is

echoed—the first one just before a Node

process terminates, others while node is

waiting to receive echoes in response to

all its probes (this avoids leaving mes-

sages buffered on the probe_ echo chan-
nels). The last echo sent by a node
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conat source= i # index of node that initiates the algorithm

type kind . enum(PROBE, ECHO)

than pro be_echo[l:n](khzd, sender : int, links[l:n, l:n] : beol)
than finalecho(lirzks[ l:rz, l:rz] : bool) # final echoto Znitiator

Node@: l..n]:: var links[l:n] : bool
# initialized sothat links[q] is true ifq is a neighbor of Node@]

var loccdtop[lm, l:n] : bool := ([n*n] false)

localtop~, l:n] := links # put neighbor set in localtop

var nezotop[l:n, l:rz]:bool
var first : int # node from whom first probe is received

var k : kind, sender : int

var need.echo : int:=number of neighbors – 1
receive probe_echo~](k, first, newtop) # first message will be a probe

# send probe on to to all other neighbors

fa q := I to n st links[q] and q #parent + send probe_echo[gl(k,P, 0) af
do need_echo >0 +

# receiveechoesor probes from neighbors

receive probe_echo@l(k, sender, newtop)

if k . PROBE + send probe_echo[sender](E CHO, p, 0)

0 k = ECHO + localtop := localtop or newtop; need_echo := need_ech~l

fi

od
if p = source -+ send finalecho(loealtop)

Up # source + send probe_echo&st](ECHO, p, bcaltop)

fi

Initiator:: var top[l:n, l:n] : bool # network topology as set of links

send probe[source](PROBE, source, 0) # no topology sent with probes

receive /inalecho(tap)

Figure 14. Probe/echo algorithm for topology of a network

contains its local neighbor set. Hence,

the union of the neighbor sets eventually

reaches Node[ i], which sends the topol-

ogy to the Initiator. As with the algo-

rithm in Figure 12, the links along which

first probes are sent form a (dynamically

computed) spanning tree; the network
topology is echoed back up this spanning
tree, with the echo from a node contain-
ing the topology of the subtree rooted at

that node.

This algorithm for computing the

topology of a network requires fewer

messages than the heartbeat algorithm
in Figure 10 Two mes~ages ~re sent

along each link that is an edge in the

spanning tree of first probes— one for the

probe and another for the echo. Other
links carry four messages—one probe and

one echo in each direction. To dissemi-
nate the topology from the Initiator back

to all nodes using the broadcast algo-
rithm in Figure 11 would require an-

other n messages. In any event, the

number of messages is proportional to

the number of links. For computations

that disseminate or gather information

on graphs, probe/echo algorithms are

thus more efficient than heartbeat algo-

rithms. In contrast, heartbeat algorithms

are appropriate and necessary for many

parallel iterative algorithms in which
nodes need to exchange information until

they converge on an answer.

6. BROADCAST ALGORITHMS

In most local area networks, processors

share a common communications chan-

nel such as an Ethernet or token ring. In
this case, each processor is directly con

netted to every other one. In fact, such

communications networks often support
a special network primitive called broad-

cast, which transmits a message from
one processor to all others. Whether
supported by the communications hard-

ware or not, broadcast is a useful

programming technique.

Let P[l: n] be an array of processes and

let ch[l: n] be an array of channels, one
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per process. Then a process P[ i] broad-

casts a message m by executing

broadcast ch( m)

Execution of broadcast places one copy

of m on each channel ch[l: n], including

that of P[ i]. The effect is thus the same

as executing n send statements in paral -
lel, with each sending m to a different

channel. Process i receives a message

from its private channel CMi] by execut -

ing receive as usual. The broadcast

primitive is not assumed to be indivisi-

ble. In particular, messages broadcast by

two processes A and B could be seen by

two other processes C and D in different

orders. (See Birman and Joseph [19871

for a discussion of how to implement to-

tally ordered broadcast, which simplifies

many algorithms.)

Broadcast can be used to disseminate

or gather information; for example, it is

often used to exchange processor state

information in local area networks.
Broadcast can also be used to solve many

distributed synchronization problems

[Schneider 19821. This section illustrates
the power of broadcast by developing
a distributed implementation of sema.

phores. The basis for distributed sem-

aphores— and many other decentralized

synchronization protocols— is a total

ordering of communication events. Thus,

the next section describes how to imple-

ment logical clocks, then shows how to

use such clocks to order events [Lamport

1978].

&l Logical Clocks and Event Ordering

Processes in a distributed program exe-

cute local actions and communication
actions. Communication actions are

sending and receiving messages. These
affect the execution of other processes

since they communicate information and

are the basic synchronization mecha-

nism. Communication actions are thus
the significant euents in a distributed

program. Hence, below, the term event

refers to execution of send and receive
statements.

If two processes A and B are execut-

ing local actions, there is no way to know

the relative order in which the actions

are executed. If A sends a message to B,

however, the send action in A must hap-

pen before the corresponding receive ac-

tion in B. If B subsequently sends a

message to process C, the send action in

B must happen before the receive action

in C. Moreover, since the receive action

in B happens before the send action in

B, there is a total ordering between the

four communication actions: The send by

A happens before the receive by B, which

happens before the send by B, which

happens before the receive by C. “Hap-

pens before” is thus a transitive relation

between causally related events.
There is a total ordering between

events that causally affect each other, as

described above. There is, however, only

a partial ordering between the entire
collection of events in a distributed

program. This is because unrelated

sequences of events-for example, com-

munications between different sets of

processes—might occur before, after, or

concurrently with each other.
If there were a single, central clock,

communication actions could be totally

ordered by giving each event a unique

timestamp. In particular, when a process

sends a message it could read the clock

and append the clock value to the mes-

sage. When a process receives a message,

it could read the clock and record the

time at which the receive event occurred.

Assuming the granularity of the clock is

such that it “ticks” between any send

and the corresponding receive, an action

that happens before another will thus
have an earlier timestamp. Moreover, if

processes have unique identities, commu-

nication actions could be totally ordered

by, for example, using the smallest pro-

cess identity to break ties if unrelated

actions in two processes happen to have

the same tirnestamp.
Unfortunately, it is quite restrictive to

assume the existence of a single, central
clock. In a local area network, for exam-

ple, each processor has its own clock. If
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these were perfectly synchronized, the lo-

cal clocks could be used for timestamps.

Physical clocks are never perfectly syn-

chronized, however. Clock synchroniza-

tion algorithms exist for keeping two

clocks fairly close to each other, but per-

fect synchronization is impossible

[Marzullo and Owicki 19831. Thus, physi-
cal clocks have to be simulated.

A logical clock is a simple integer

counter that is incremented when events

occur. Let each process have a logical

clock and assume that every message

contains a timestamp. The logical clocks

are then incremented according to the

following logical clock update rules:

Let lC be the logical clock in process A.

(1)

(2)

When A sends or broadcasts a mes-

sage, it sets the timestamp in the

message to the current value of lc,

then increments lC by 1.

When A receives a message with

timestamp ts from any process B, it

sets lC to the maximum of lC and

ts + 1,then increments lC by 1.

Since lc is increased after every event,

every message sent by A will have a

different timestamp and these values will

increase in the order in which the mes-

sages were sent. Since a receive event

sets k to be larger than the timestamp

in the received message, the timestamp

in any message subsequently sent by A

will have a larger time stamp.

Using logical clocks, a clock value can
be associated with each event as follows.

For a send event, the clock value is the

timestamp in the message; that is, the

local value of lC at the start of the send.

For a receive event, the clock value is the

value of /c after it is set to be at least as
big as ts + 1 but before it is incre-

mented. The above rules for updating

logical clocks ensure that if event a hap-

pens before event b, the clock value asso-
ciated with a will be smaller than that

associated with b. This induces a partial

ordering on the set of causally related
events in a program. If each process has
a unique identity, then a total ordering

between all events results from using the

smaller process identity as a tie breaker

in case two events happen to have the

same timestamp.

6.2 Distributed Semaphores

Semaphores are normally implemented

using shared variables and are normally

used for synchronizing access to other

shared variables. They can be imple-
mented in a message-based program us-

ing a server process (active monitor)

using the techniques shown in Section

3.1. They can also be implemented in a

distributed way as shown below.

A semaphore s is an abstract data type

accessed by means of two operations: P

and V. These operations are synchro-

nized so that at all times they maintain

the following semaphore invariant: The

number of completed P operations is at

most the number of completed V opera-

tions plus the semaphore’s initial value.

In a shared-variable program, s is usu-

ally represented by a nonnegative inte-

ger. Execution of V(s) increments s as

an atomic action; execution of P(s) de-

lays until s is positive then decrements

it, again as an atomic action. A different

technique, however, is needed in a dis-

tributed program for representing the

value of a semaphore and maintaining

the semaphore invariant. In particular,

what is required are a way to count P

and V operations and a way to delay P

operations. Moreover, the processes that
“share” a semaphore need to cooperate
so they maintain the semaphore invari-

ant even though the program state is

distributed.

These requirements can be met by

having processes broadcast messages

when they want to execute P and V oper-
ations and by having them examine the
messages they receive to determine when

to proceed. In particular, each process

has a local message queue mq and a

logical clock le. To simulate execution of
a P or V operation, a process broadcasts

a message to all the user processes, in-
cluding itself. The message contains the
sender’s identity, a tag (P or V), and a

timestamp. The timestamp in every copy
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of the message is the current value of lc,
which is updated according to the logical

clock update rules.

When a process receives a P or V mes-

sage, it stores the message in its message

queue mq. This queue is kept sorted in

increasing order of the timestamps in the

messages; sender identities are used to

break ties. Assume for the moment that

every process receives broadcast mes-

sages in the same order and in increas-

ing order of time stamps. Then every

process would know exactly the order in

which P and V messages were sent. Thus,

each could count the number of corre -

spending P and V operations and main-
tain the semaphore invariant.

Unfortunately, it is unrealistic to as-

sume that broadcast is an atomic opera-

tion. Two messages broadcast by two

different processes might be received by

others in different orders. Moreover, a

message with a smaller timestamp might

be received after a message with a larger

timestamp. Different messages broadcast

by one process, however, will be received

by the other processes in the order they

were broadcast by the first process; these

messages will also have increasing

timestamps. This is because execution of

broadcast is the same as concurrent ex-

ecution of send—which is assumed to

provide ordered, reliable delivery—and

because a process increases its logical

clock after every communication event.

The fact that two messages from a pro-

cess are ordered and have increasing

timestamps provides a way to make syn-

chronization decisions. Suppose a pro-

cess’s message queue mq contains a mes-
sage m with time stamp ts. Then once

the -process has received a message with

a larger time stamp from every other pro-

cess, it is assured that it will never see a
message with a smaller timestamp. At

this point, message m is said to be fully

acknowledged. Moreover, once m is fully

acknowledged, then every other message
in front of it in mq will also be fully

acknowledged since they all have smaller
timestamps. Thus, the part of mq con-

taining fully acknowledged messages is a

stable prefix: No new messages will ever

be inserted into it.

Whenever a process receives a P or V

message, it broadcasts an acknowledg-

ment (ACK) message. Acknowledgments

are broadcast rather than merely sent to

the sender of the P or V message so that

every process sees the acknowledgment.

The ACK messages have timestamps as

usual, but they are not stored in the

message queues nolc are they themselves

acknowledged. They are used simply to
determine when a message in mq has

become fully acknowledged.
To complete the implementation of dis-

tributed semaphores, each process simu-

lates the execution of P and V messages

stored in the stable prefix of mq in the

order in which the messages are stored

in mq. In particular, each process keeps

local counters nP and nV of the number

of fully acknowledged P and V opera-

tions it has processed. (Actually, only

one counter is needed and would avoid
potential overflow; two are used here to

simplify specification of the loop invari-

ant. ) When a V message becomes fully

acknowledged, the process increments

nV. When a P message becomes fully

acknowledged and nV > nP, the process

increments nP. After incrementing the

appropriate counter, the process can

delete the V or P message from its mes-

sage queue. In short, each process main-

tains the following predicate, which is its

loop invariant:

DS’EM: nV = number of fully acknowledged
V messages A

nP = number of fully acknowledged P
messages such that nV ? nP A

mg is totally ordered by the time-
stamps in V and P messages

The different processes might be at dif-

ferent stages in handling P and V mes-

sages—since messages might become
fully acknowledged in different orders—

but every process will handle fully ac-
knowledged messages in the same order.

The full algorithm for distributed
semaphores is given in Figure 15. The

User processes initiate V and P opera-
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type kind = enum(V, P, ACK)

than sem[l:rz](serzcie~ int,kind,timestamp: int)

cbango[l:n](i%rzestamp : int)

User[i: l..n]:: var lC : int := O # logical clock

Var ts : int # timestamp in go messages

# execute a V operation

broadcast sem(i,V, lc); lc := lc+l

# execute a P operation

broadcast sem(i, P, lc); lc := lc+l

receive go[i](ts); lC:= max(lc, ts+l); lC:= lc+l
...

Helper[i: l..n]:: var mq : queue of (int, kind, int) # ordered by timestamps

var lc : int := O # logical clock

varnV:int:= O,nP:int:= O # semaphorecounters
var sender : int,k : kind, ts : int # values in messages

do true ~ ( loop invariant DSEM )

receive sem[i](sender, k, ts); lC := max(k, t.s+l); lC:= lc+l
ifk=Pork=V+

insert (sender, k, ts) at appropriate place in mq

broadcast sem(i,ACK, lc); lc := lc+I
Ok= ACK+

recordthat another AC!Khas beenseen
fa fully acknowledgedV messages+

removethe messagefrom mq; nV:= nV+l
af
fa fully acknowledged P messages st nV > nP +

remove the message from mq; nP := nP+l

if sender = i + send go[i](lc); lC:= lc+l fi
af

ti
od

Figure 15. Distributed semaphores algorithm.

tions by broadcasting messages on the

sem channels. The Helper processes im-

plement the V and P operations. There
is one Helper for each User. Each re-
ceives messages from the appropriate sem

channel, manages its local message

queue, broadcasts ACK messages, and
tells its User process when to proceed

after a P operation. As shown, each pro-

cess also maintains a logical clock? which
it uses to place timestamps on messages.

Distributed semaphores can be used to
synchronize processes in a distributed
program in essentially the same way they

are used in shared-variable programs.
For example, they can be used to solve

mutual exclusion problems such as lock-
ing files or database records [Schneider

1980]. The same basic approach—broad-

cast messages and ordered queues—can

also be used to solve additional problems.

For example, Schneider [1982] presents a

broadcast algorithm to implement

guarded input /output commands of GSP

[Hoare 19781 (although more efficient so-
lutions exist for that problem [Bernstein

1980; Silberschatz 1979]). Also, Section 8

mentions how broadcast can be used to

coordinate the actions of replicated file

servers. Broadcast, however, does not
scale well to interactions between large

numbers of processes since every one has
to handle every message.

When broadcast algorithms are used to
make synchronization decisions, every

process must participate in every deci-
sion. In particular, a process cannot

determine when a message is fully ac-

knowledged until it hears from every

other process. Thus, a basic algorithm
such as the one in Figure 15 needs to be

modified if it is to cope with failures.

Schneider [1982] shows how this can be

accomplished. That paper also describes
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how to reintegrate a repaired processor

and process into an ongoing algorithm.

7. TOKEN-PASSING ALGORITHMS

This section illustrates yet another com-

munication pattern: token passing be-

tween processes. A token is a special kind

of message that can be used either to

convey permission to take an action or to

gather state information. Token passing
is illustrated by presenting solutions to

two additional synchronization problems.
The next section develops a simple, dis-

tributed solution to the critical section
problem. The two succeeding sections de-

velop algorithms for detecting when a

distributed computation has terminated.

Token passing is also the basis for sev-

eral other algorithms; for example, it is

used for fair conflict resolution in Chandy

and Misra [19841 and for determining

global states in Chandy and Lamport

[1985]. Section 8.1 describes how tokens

can be used to synchronize access to
replicated files.

7.1 Distributed Mutual Exclusion

The critical section problem is a classic

synchronization problem concerned with
ensuring that at most one process at a

time executes code that accesses a shared

resource. Although the problem arises

primarily in shared-variable programs, it

also arises in distributed programs.

Moreover, a solution to the critical sec-

tion problem is often a component of a

solution to a larger problem such as en-
suring consistency in a distributed file or

database system (see Section 8.1).
One way to solve the critical section

problem is to use an active monitor that

grants permission to access the critical

section. For many problems, such as im-

plementing locks on nonreplicated files,

this is the simplest and most efficient
approach. At the other extreme, the criti-
cal section problem can be solved using
distributed semaphores, implemented as

shown in Section 6.2. That approach
yields a decentralized solution in which

no one process has a special role, but it

requires exchanging a large number of

messages for each semaphore operation

since broadcasts have to be acknowl-

edged, (More efficient broadcast-based
approaches are described in Lamport

[19781, Ricart and Agrawala [19811,
Maekawa [19851, and Suzuki and Kasami

[19851; these approaches are also de-
scribed in books by Ray~al [1986] and
Maekawa et al. [19871.

Here a token ring is used to solve the

problem in a third way [LeLann 19771.
The solution is decentralized, like one

using distributed semaphores, but it re -

quires the exchange of far fewer mes-

sages. Moreover, the basic approach can

be generalized to solve other synchro-

nization problems not easily solved in

other ways.

Let P[l: n] be a collection of processes

that contain critical and noncritical sec-

tions of code. As mentioned, the critical

sections access a shared resource; hence

at most one process at a time is permit-

ted to execute its critical section. The

noncritical sections access noncritical re-

sources and hence can execute concur-

rently. The task is to develop entry and

exit protocols that the processes execute

before and after their critical sections.

These protocols must ensure that critical

sections execute with mutual exclusion.

They should also avoid deadlock and

unnecessary delay and should ensure

eventual entry (fairness).

Entry to the critical section will be

controlled by means of a circulating to-

ken. In particular, let Helper[l: n] be a

collection of additional processes, one per

P[l: n]. The helpers form a ring and share

one token, possession of which signifies
permission for the corresponding process

to execute its critical section. The token

circulates between the helpers, being

passed from IIelper[l] to ~ezper[z] to
Helper[31, and so on, to Helper[ n], which
passes it back to Helper[l]. When

Helper[ i] receives the token, it checks to
see whether its client P[ Z] wants to enter

its critical section. If not, Helper[ i] passes
the token on. Otherwise, Helper[ i] tells

P[ i] that it may enter its critical section,

then waits until P[ i] exits; at this point
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than token [l:n]( )

than enter[l:n]( ), go[l:nl( ), exit[l:rzl( )

Helper[i: l..nl:: do true -i ( DMUT=)

receive token[i]( ) # acquire the token

if not(empty(enterfi])) 4 # P[i] wants to enter

receive enter[i](); sendgo[i]()
receive exit[i]( )

fi
send token[i mod n + 1]() # pass the token on

od

P[i: l..n]:: dotrne -+

send entetiil( ) # entry protocol

receive go[il( )

critical section

send exit[t]( ) # exit protocol

non-critical section

od

Figure 16. Mutual exclusion with a token ring.

Helper[ i] passes the token on. Thus, the

processes cooperate to ensure that the

following predicate is always true:

DMUTEX: @ i: 1< L < n:

Hi] is in its critical section

* Helper[ i ] has the token) A

there is exactly one token

The full solution is shown in Figure

16. The token ring is represented by an

array of token channels, one per Helper.

For this problem, the token itself carries

no data so it is represented by a “null”

message. The other channels are used

for communication between each client

P[ i] and its server 13elper[ il. The
client/server pairs communicate as in

Figure 2, with empty being used to de-

termine whether P[ i] wishes to enter its

critical section.

The solution in Figure 16 is fair—as-

suming processes eventually exit critical

sections. This is because the token con-
tinuously circulate~, and when Helper

has it, P[ i] is permitted to enter if it

wants to do so. As programmed, the to-
ken moves continuously between the

helpers. This is, in fact, what happens in
a physical token-ring network. In a soft-

ware token ring, however, it is probably

best to add some delay in each helper so
that the token moves more slowly around
the ring.

Again, this algorithm does not work if
failures occur. In particular, every Helper

process must continuously pass the to-

ken, and the token must not be lost.

Since control is distributed, however, the

algorithm can once again be modified to
cope with failures. In particular, LeLann

[1977] describes how to bypass some node

on the ring if it should fail and how to

regenerate the token. LeLann’s method

requires knowledge of maximum commu-

nication delays and of process identities.

More recently, Misra [1983] has devel-

oped an algorithm that overcomes these
requirements by using two tokens that

circulate around the ring in opposite

directions.

7.2 Termination Detection in a Ring

It is trivial to detect when a sequential

program has terminated. It is equally

simple to detect when a concurrent

program on a single processor has termi-
nated: Every process is blocked or termi-
nated and no 1/0 operations are pending.

It is not at all simple, however, to detect

when a distributed program has termi-

nated, This is because the global state is

not visible to any one processor. More-

over, there may be messages in transit

between processors.

The problem of detecting when a dis-

tributed computation has terminated can

be solved in several ways. For example,
Dijkstra and Scholten [1980], Francez

[19801, and Misra and Chandy [1982]
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present probe/echo algorithms for differ-

ent kinds of computations; also, Rana

[19831 and Morgan [19851 show how to
use logical clocks and time stamps. This

section develops a token-passing algo-
rithm for detecting termination, assum-

ing all communication between the pro-

cesses goes around a ring [Dijkstra et al.

1983]. The next section generalizes the

algorithm for a complete communication

graph [Misra 19831. In both cases, token

passing is used to signify state changes.

(See Raynal [1988bl for a description and

comparison of several of these algo-
rithms; see also Chandrasekaran and

Venkatesan [19901 for a message-optimal

algorithm that combines the probe/echo

and token-passing paradigms. )

Let P[l: n] be the process in some dis-

tributed computation, and let ch[l: n] be

an array of communication channels, one

per process. Assume that the computa-

tion is such that the interprocess com-

munication in the computation forms a
ring. In particular, process P[ i] receives

messages only from channel ch[ i] and

P[ i] sends messages only to channel

ch[ i mod n + 1]. As usual, it is assumed

that messages from a process are re-

ceived by its neighbor in the ring in the

order in which they were sent.

At any point in time, each process P[ i]

is active or idle. Initially, every process

is active. It is idle if it has terminated

or is delayed at a receive statement. (If

a process is temporarily delayed while

waiting for an 1/0 operation to termi-
nate, it is considered to be active since it

has not terminated and will eventually

be awakened.) After receiving a mes-

sage, an idle process becomes active.
Thus, a distributed computation has ter-

minated if two conditions hold:

DTERM: every process is idle and
no messages are in transit

A message is in transit if it has been sent

but not yet delivered to the destination

channel. The second condition is neces-
sary since when the message is deliv-

ered, it could awaken a delayed process.
The task is to superimpose a termina-

tion detection algorithm on an arbitrary

distributed computation, subject only to

the above assumption that the processes

in the computation communicate in a

ring. Clearly termination is a property

of the global state–-that is, the union of

the states of individual processes plus

the states of the message channels. Thus,

the processes have to ~ommunicate with

each other to determine if the compu-

tation has terminated.

To detect termination, let there be one

token, which is a special message that is

not part of the computation proper. The

process that holds the token passes the

token on when it becomes idle. (If a pro-

cess has terminated its commutation. it is.
idle with respect to the distributed com-

putation but continues to participate in

the termination-detection algorithm. In

particular, the process passes the token

on and ignores any regular messages it

receives. )

The token is passed using the same

ring of communication channels the com-

putation uses. For example, P[l] passes

it to P[21 by sending a message to chan-
nel ch[2]. When a process receives the

token. it knows the sender was idle at

the time it sent the token. Moreover,

when a process receives the token it has

to be idle since it is delayed receiving

from its channel /and will not become

active again until it receives a regular

message that is part of the computation

proper. Thus, upon receiving the token, a

process passes it cm to its neighbor by

sending it to the neighbor’s channel.
The auestion now is how to detect that

the en~ire computation has terminated.

When the token has made a complete

circuit of the communication ring, it
means every process was idle at some

point. But how can the holder of the

token determine if all other mocesses are.
still idle and there are no messages in

transit?

Suppose one process, P[ll say, initially
holds the token and hence initiates the

termination-detection al~orithm when it
becomes idle. Suppose the token gets back

to P[ll and P[ll has been continuously

idle since it first passed the token t;

P[2]. Then P[ll can conclude the
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computation has terminated. This is be-

cause the token goes around the same

ring regular messages do and messages

are delivered in the order in which they

are sent. Thus, when the token gets back

to P[ll there cannot be any regular mes-

sages either queued or in transit. In

essence, the token has “flushed” the

channels clean, pushing all regular mes-

sages ahead of it.

The algorithm and its correctness can

be made more precise as follows. First,

associate a color with every process: blue

(cold) for idle and red (hot) for active.

Initially, all processes are active, so all

are colored red. When a process receives
the token, it is idle, so it colors itself blue

and passes the token on. If the process
later receives a regular message, it colors

itself red. Thus, a process that is blue
has become idle, passed the token on,

and remained idle since passing the

token.

Second, associate a value, token, with

the token to indicate how many channels

are empty if P[ll is still idle, When P[ll

becomes idle, it colors itself blue, sets

token to 0, then sends token to P[21.

When P[21 receives the token, it is idle.

Hence, P[2] colors itself blue, increments

token (to 1), and sends the token to P[31.

Each process P[ i] in turn colors itself

blue and increments token before passing

it on.

These token-passing rules are listed in
Figure 17. As indicated, the rules ensure

the invariance of predicate RING. This

follows from the fact that if P[l] is blue,

it has not sent any regular messages

since sending the token, and hence there
are no regular messages in any channel

up to where the token resides. Moreover,
all these processes have remamed idle

since passing the token on. Thus, if P[l]
is still blue when the token gets back to

it, all processes are blue and all channels

are empty. Hence, P[l] can announce

that the computation has terminated.

7.3 Termination Detection in a Graph

The previous section made a simplifying

assumption: that all communication goes

around a ring. In general, the communi-

cation structure of a distributed compu-

tation will form an arbitrary directed

graph. The nodes of the graph are the

processes in the computation; the edges

represent communication paths. There is

an edge from one process to another if

the first process sends to a channel from

which the second receives.

Suppose the communication graph is

complete: There is one edge from every

process to every other. In particular,

there are n processes P[l: n] and n chan-

nels ch[l: nl. Each m-ocess H il receives

from its pr;vate inp’ut channel ‘ch[ i]; ev-

ery other process can send messages to

ch[ il. Under these assumptions, the pre -

vious termination detection algorithm

can be extended as described below. The
resulting algorithm is adequate to detect
termination in any network in which

there is a direct communication ~ath from.
each processor to every other. It can

readily be extended to arbitrary commu-

nication graphs and multiple channels

[Misra 19831.
Detecting- termination in a complete

graph is more difficult than in a ring

since messages can arrive over any edge.

For example, consider the complete graph

of three processes P[l :31 shown in Figure
18. Suppose the processes pass a token

only from P[ll to P[2] to P[3] and back

to P[l]. Suppose P[l] holds the token;

when it becomes idle, it passes the token
to P[2]. When P[2] becomes idle, it passes

the token to P[3]. But before P[3] re-

ceives the token and becomes idle. it

could send a regular message to ~[2].

Thus, when the token gets back to P[l],

it cannot conclude that the com~utation

has terminated even if it has r~mained
continuously idle. 18

The key to the ring algorithm in Fig-
ure 17 is that all communication uses the

same channels and hence the token

flushes out regular messages. In particu-

lar. the token traverses everv edge of the
.’,

ring. To extend that algorithm to a com-

plete graph, it is sufficient to ensure that

the token traverses every edge of the

graph, which means that it visits every
process multiple times. If every process
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(RING P[l] blue * ( P[l] ... P[l+token] blue A ch[2] ... ch[l + token mod n] empty ) ]

actions of P[l] when it first becomes idle

color[l] := blue; token := O; send ch[2](token)

actions of P[i: 1. .n] upon receiving a regular message:

color[i] := red

actions of P[i: 2. .n] upon receiving the token:

color[i] := blue; token := token+l; send ch[i mod n + ll(token)

actions of P[ 1]upon receiving the token:

if color[l] = blue + announce termination and halt fi

CO1OF[1] := blue; token := O; send ch[2](token)

Figure 17. Termination detection in a ring

Figure 18. Complete communication graph.

has remained continuously idle since it

first saw the token, the computation has

terminated.

As before, each process is colored red

or blue, with all processes initially red.

When a process receives a regular mes-

sage, it colors itself red. When a process

receives the token, it is blocked, waiting

to receive the next message on its input

channel. (Again, if a process terminates

its regular computation, it continues to
handle token messages.) Hence the pro-

cess colors itself blue—if it is not already
blue—and passes the token on.

Any complete directed graph contaiins

a cycle that includes every edge. Let c be

a cycle in the communication graph and
let nc be its length. Each process keeps

track of the order in which its outgoing
edges occur in c. Upon receiving the to-

ken along one edge in c, a process sends
it out over the next edge in c. This en-

sures that the token traverses every edge

of the communication graph.
Also as before, the token carries a value

that indicates how many times in a row
it has been passed on by idle processes.

As the above example illustrates, how-

ever, in a complete graph a process that

was idle might become active again, even

if P[l] remains idle. This requires a dif-

ferent set of token-passing rules and a

different invariant predicate.

The token starts at any process and
initially has value O. When that process

becomes idle for the first time, it colors

itself blue then passes the token along

the first edge in cycle c. Upon receiving

the token, a process takes the actions

shown in Figure 19. As shown, if a pro-

cess is red when it receives the

token— and hence was active since last

seeing it—the process colors itself blue

and sets the value of token to O before

passing it along the next edge in c. This
effectively reinitiates the termination-

detection process. If, however, the pro-

cess is blue when it receives the

token—and hence has been continuously

idle since last seeing the token—the pro-

cess increments the value of token before

passing it on.

The token-passing rules ensure the in-

variance of predicate GRAPH. Once the

value of token gets to nc, the length of

cycle c, the computation is known to have

terminated. In particular, at that point

the last nc channels the token has tra-
versed were empty. Since a process only

passes the toker~ when it is idle– and
since it only increases token if it has

remained idle since last seeing the token
—all channels are empty and all pro-

cesses are idle. In fact, the computation
had actually terminated by the time the
token started its last circuit around the

graph. No process could possibly know
this, however, until the token has made

another complete cycle around the graph

ACM Computing Surveys, Vol. 23, No. 1, March 1991



82 “ Gregory R. Andrews

( GRAPH token has value T ~ ( the last T channels token was received from were empty A
all P[i] that passed it were blue when they passed it ) )

actions of P[i: l..n]upon rweiving a regular message:

color[i] := red

actions of Hi: 1. .n] upon receiving the token:

if token = nc -+ announcetermination and halt fi
if color[i] = red --+color[i] := blue; token := O

U color[i] = blue ~ token := token+l

fi

set j to the channel corresponding to the next edge to use in cycle c

send ch~](token)

Figure 19. Termination detection in a complete graph,

to verify that all processes are still idle

and that all channels are empty. Thus,

the token has to circulate a minimum of

two times around the cycle after any ac-

tivity: once to turn processes blue, the

other to verify they have remained blue.

8. REPLICATED SERVERS

The final two process-interaction

paradigms involve the use of replicated

servers; that is, multiple server processes

that each do the same thing. Replication

serves one of two purposes. First, it can

increase the accessibility of data or serv-

ices by having more than one process

provide the same service. These decen-
tralized servers interact to provide clients

with the illusion there is just one, cen-

tralized service. Second, replication can

sometimes be used to speed up finding a
solution to a problem by dividing the

problem into independent subproblems

that are solved concurrently. This is done

by having multiple worker processes
share a bag of subproblems. This section

illustrates both of these applications by

first showing how to implement a rep-

licated file, then developing an adap-
tive quadrature algorithm for numerical

integration.

8.1 Decentralized Servers: Replicated Files

A simple way to increase the likelihood

that a critical data file is accessible is to
keep a backup copy of the file on another

disk, usually one that is attached to a
different machine. The user can do this

manually by periodically making a

backup copy of a file. Or the backup copy

could be maintained automatically. In

either case, however, users wishing to

access the file would have to know

whether the primary copy was available

and if not, access the backup copy in-

stead. (A related problem is bringing the

primary copy back up to date when it

becomes reaccessible.)

A third approach is for the file system

to provide transparent and automatic

replication. In particular, suppose there

are n copies of a data file and that each

is managed by a separate server process,

which handles client requests to read and

write the file. Each server provides an
identical client interface such as that

shown in Figure 7. Thus, a client sends

an open request to any server and subse-

quently continues to converse with that

server, sending it read and write re-
quests and eventually sending it a close

request. The servers themselves interact

to present clients with the illusion there
is a single copy of the file. The structure

of this interaction pattern is shown in
Figure 20.

To present clients with the illusion
there is a single file, the file servers need

to synchronize with each other. In partic-
ular, the file consistency problem has to

be solved: The results of client read and

write requests have to appear to be the

same independent of which copy of the
file is accessed. Thus, file consistency is

an instance of the classic readers/writers

problem [Courtois et al. 1971]: Two

clients can read the file at the same time,

but a client requires exclusive access
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Figure 20. Replicated file server interaction pattern.

when writing the file. There are several
ways to implement file consistency as

described below. Here it is assumed that

entire files are to be kept consistent. The

same techniques can be used to ensure

consistency at the level of records in files,

which is more appropriate in database

applications.

One way to solve the file consistency

problem is to ensure that at most one

client at a time can access any copy of

the file. This can be implemented by, for

example, the distributed solution to the

critical section problem in Figure 16.

When a client asks any one of the servers

to open the file, that server first interacts

with the others to acquire exclusive ac-
cess. The server then processes the

client’s read and write requests. For a

read request, the server reads the local

copy of the file. For a write request, the
server updates all copies of the file. When

the client closes the file, the server re-
leases exclusive control.

The above approach is of course more

restrictive than necessary. Clients can-

not be reading and writing the file at the

same time, but they can read it concur-

rently. Assume when a client asks a

server to open the file, it indicates

whether it will be reading only or will be

both reading and writing. To permit con-

current reading, the servers can use a

variation on the token-passing algorithm
for mutual exclusion (Figure 16). In par-

ticular, let there be one token that has

an initial value equal to the number ns

of file servers. Then when a client opens
the file for reading, its server waits

for the token, decrements it by 1, sends it

to the next server (helper process actu-
ally), then handles the client’s read re-

quests. After the client closes the file,

the server increments the value of the

token the next time it comes around the

ring. On the other hand, when a client

opens the file for writing, its server waits

for the token to have value ns, then holds

onto the token while handling the client’s

read and write requests. After the client

closes the file, tlhe server updates all

copies, then puts the token back into

circulation.
The problem with the above token-

passing scheme is that write requests

will never get serviced if there is a steady
stream of read reqpests. A somewhat dif-

ferent approach ~ields a fair solution.

Instead of using Just one token, use ns

different tokens. Initially, each server

has one token. When a client wants to

read a file, its server must acquire one

token; when a client wants to write a

file, its server must acquire all ns to-
kens. Thus, when a server wants to write

the file, it sends a message to all other

servers requesting their tokens. Once it

has gathered all the tokens, the server

handles its client’s read and write re-

quests, propagatilmg updates to the other
servers as above. When a server wants to

read the file, it can do so immediately if

it holds a token. If not, it asks the other

servers for one of the tokens.
This multiple-token scheme does, how-

ever, have two potential problems. First,
two servers could at about the same time

try to acquire all the tokens. If each is

able to acquire some but not all, neither

write will ever get executed. Second,
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while a server is acquiring all tokens

preparatory to writing the file, another

server might ask for a token so it can

read the file. Both m-oblems can be over-

come by using Io&ical clocks to place

timestamps on each request for a token.

Then a server gives up a token if it re-

ceives a request with a timestamp earlier

than the time at which it wanted to use

the token. For example, if two servers

want to write at about the same time.

the one that initiated the write request

earlier will be able to gather the tokens. 3

An attractive attribute of using multi-

ple tokens is that they will congregate at

active servers. For exam~le, after a. .
server gathers all tokens to perform a

write, it can continue to process write

requests until some other server requires

a token. Thus, if the replicated file is

being heavily written by one client, the

overhead of token passing can be avoided.

Similarly, if the file is mostly read and

only rarely updated—which is quite com-
monly the case—the tokens will gener-

ally be distributed among the servers and

hence read requests will be able to be

handled immediately.

A variation on the multiple-token

scheme is weighted voting [Gifford 1979;

Maekawa 1985; Thomas 1979]. Above, a

server requires one token to read but all

ns to write. This in essence assisms a

weight of 1 to reading and a weight of ns

to writing. Instead, a different set of
weights can be used. Let rw be the read

wei~ht and let ww be the write weight.

Then, if ns is 5, rw could be set to 2 and

w w to 4. This means a server must hold

at least two tokens to read the file and at

least four to write the file. Any assign-
ment of weights can be used as long as

3A variation on having ns tokens is to have ns

locks, one per copy of the file. To read the file, a

server acquires the lock for its local copy, To write
the file, a server acquires the locks for all copies, If

every server acquires the locks in the same

order— and if lock requests are handled in first-

come, first-served order —then the solution will be

fair and deadlock free. This use of locks avoids the

need to put time stamps in messages.

the following two requirements are met:

(1) ww > ns/2 (to ensure that writes are

exclusive).

(2) rw + ww > ns (to ensure that reads

and writes exclude each other).

With weighted voting, not all copies of

the file need be updated when a write is

processed. It is only necessary to update

ww copies. Then, however, it is neces-

sary to read rw copies. In particular,

every write action must set a timestamp

on the copies to which it writes, and a
read action must use the file with the

most recent timestamp. By reading rw

copies, a reader is assured of seeing at

least one of the files changed by the most

recent write action.

As mentioned at the start of this sec-

tion, one of the rationales for replicating

files is to increase availability. Yet each

of the synchronization schemes above de-

pends on every server being available

and reachable. Each scheme can, how-

ever, be modified to be fault tolerant. If

there is one circulatinsr token and it is

lost, it can be regenera~d as described in

LeLann [19771 ~r Misra [1983]. If there

are multiple tokens and a server crashes,

the other servers can interact to deter-

mine how many tokens were lost, then

can hold an election to determine which

one will get the lost tokens. (See Garcia-

Molina [19821, Raynal [1988 b], and
Schneider and Lamport [1985] for de-

scriptions of numerous election algo-

rithms. ) Finally, with weighted voting it

is only necessary that max(rw, WW)

copies of the file are accessible, since only

that many are needed to service any read

or write.
Independent of the synchronization

scheme, after recovery of a server or of a

disk holding a copy of the file, the copy

needs to be brought up to date before it

can be accessed by clients. In essence, a

recovered server needs to pretend it is a

writer and gain write permission to the

other co~ies of the file: it then reads an

up-to-da~e copy into its local copy of the

file and releases write permission. The

server can then resume handling client
requests.
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8.2 Replicated Workers and a Bag of Tasks:

Adaptive Quadrature

Section 8.1 considered an example of

data replication, Section 8.2 considers
function replication. In particular, this

section presents an adaptive, parallel so-

lution to the quadrature problem for nu-
merical integration [Grit and McGraw

19851. The solution illustrates how to

parallelize any divide-and-conquer algo-
rithm, subject only to the requirement

that subproblems be independent. (See

Carriero et al. [19861, Finkel and Manber

[1987], Gentleman [1981], and Thomas

and Crowther [19881 for additional exam-

ples of problems that can be solved in

this way and additional techniques for

implementing the solution. The bag-of-

tasks approach illustrated here is also

used in the implementation of Multilisp
[Halstead 1985] and PTRAN [Allen et al.

1988].)

The solution to the adaptive quadra-
ture problem uses a shared channel,

which contains a bag of tasks. Initially,

there is one task corresponding to the

entire problem to be solved. Multiple
worker processes take tasks from the bag

and process them, often generating

new tasks— corresponding to sub-

problems—that are put into the bag. The

computation terminates when all tasks

have been processed.

In the quadrature problem, given is a
continuous, nonnegative function f(x).

Also given are two values 1 and r, with

1< r. The problem is to compute the area

bounded by f(x), the x axis, and vertical
lines through 1 and r. Thus, the problem

is to approximate the integral of f(x)

from 1 to r.

The typical way to approximate the

area under a curve is to divide the inter-
val [1, r] into a series of subintervals,

then to use a trapezoid to approximate

the area of each subinterval. In particu-

lar, let [a, b] be a subinterval. Then an

approximation to the area under ~ from
a to b is the area of the trapezoid with

base b – a and sides of height f(a) and

f(b).

The quadrature problem can be solved
either statically or dynamically. The

-n-,(x

Imrx

Figure 21. Quadrature problem,

static approach uses a fixed number of

equal-sized intervals, computes the area

of the trapezoid for each interval, then

sums the results. This process is then

repeated —typically by doubling the

number of intervals-until two succes-

sive approximations are close enough to

be accep~able.

The dynamic approach starts with one

interval from 1 to r and computes the

midpoint m between 1 and r. It then

calculates the areas of three trapezoids:

(1) the large one bounded by 1, r, f(l),

and f(r); (2) the slmall one bounded by 1,

m, f(1), and f(m); and (3) the small one
bounded by m, r, f(m), and f’(r). Figure

21 illustrates this. Next, the dynamic

approach compares the area of the larger

trapezoid with the sum of the areas of

the two smaller ones. If these are suffi-

ciently close, it takes the area of the

larger trapezoid as an acceptable approx-

imation of the area under f. Otherwise,

the process is repeated by solving the two

subproblems of computing the area from

1 to m and from m to r. This process is

repeated recursively until the solution to

each subproblem is acceptable. The ap-
proach then sums the answers to the sub-

problems to yield the final answer.

The dynamic approach is called adap-

tiue quadrature since the solution adapts

itself to the shape of the curve. In partic-
ular, in places where the curve is flat, a

wide trapezoid will closely approximate

the area. Hence new subproblems will

not be generated. In places where the
curve is changing shape, however— and

especial ly in places where the tangent of

f(x) is nearly vertical–smaller and

smaller subproblems will be generated as

needed.
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than bag(a, b, fa, fb, area : real)
than result(a, b, area : real)

Administrator: var 1, F, /7, fr, a, b, area, total : reel
other variables to record finished intervals

fl := f(l); fr :=flr)

area := (f7+fr)*(l+r)f2

send bag(l, r, /l, fr, area)

do entire area not yet computed+

receive result(a, b, area)

total := total + area

record that have calculated the area from a to b

od

Worker[l:n]:: var a, b, m, fa, fb, fm : real
var larea, rarea, tarea, cliff: real
do true + receive bag(a, b, fa, /3, tarea)

m := (a+b)/2; fm := flm)

compute larea and rarea using trapezoids

cliff:= tarea – (larea + rarea)

if cliff small + send result(a, b, tarea)

U cliff too large A send bag(a, m, fa, fm, larea)

send bag(rn, b, fm, P, rarea)

fi

od

Figure 22. Adaptive quadrature algorithm

With either the static or dynamic ap-

proach, every subproblem is independent
of the others. Hence either algorithm

can readily be parallelized. Following

is a parallel algorithm that uses adap-

tive quadrature since that approach is

generally preferred.

One way to solve a parallel divide-
and-conquer problem is to use one ad-

ministrator process and several worker

processes [Carriero et al. 1986; Gentle-

man 1981]. The administrator generates
the first problem and gathers results.

Workers solve subproblems, generating

further subproblems when that is re-

quired. The workers share a single chan-
nel, bag, which contains the problems to

be solved. In this case, a problem is char-
acterized by five values: a left point a, a

right point b, the values of f(a) and

f(b), and the area of the trapezoid de-
fined by these four points. (The area is

included to avoid recomputation. ) When

a worker computes an acceptable answer
to a sub-problem, it sends that answer

to the administrator over channel result.

The program terminates when the ad-

ministrator detects that the area of the

entire interval [1, r] has been computed

(or, equivalently, when bag is empty

and all workers are idle; however, this

is difficult to detect).

Figure 22 contains the algorithm for

the adaptive quadrature problem. An es-

pecially interesting aspect of the algo-

rithm is that there can be any number of

worker processes. If there is only one, the

algorithm is essentially an iterative, se-

quential algorithm. If there are more
workers, subproblems can be solved in

parallel. Thus, the number of workers

can be tuned to match the hardware on

which the algorithm executes.

The quadrature algorithm assumes all

workers can receive from the same chan-

nel, bag. In many distributed program-
ming languages, a channel can have only
one receiver. If this is the case, the shared
channel can be simulated by a server

process with which the workers commu-
nicate. In fact, the administrator itself

can serve this role.

9. SUMMARY

This paper has examined the use of sev-

eral communication structures in dis-
tributed computations, including trees,
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graphs, rings, and grids. It has also ex-

amined several process interaction

paradigms that can be used to solve dis-

tributed programming problems. Each

paradigm illustrates a different use of
the send and receive primitives:

e

@

●

e

0

0

e

In networks of filters, data flows in one
direction through an acyclic graph.

With clients and servers, a client sends

a request, then waits to receive a re-
ply; a server receives a request and

eventually sends back a reply.

In heartbeat algorithms, processes first

send information out to their neigh-

bors, then receive messages from their

neighbors.

In probe/echo algorithms, requests are

forwarded along edges of a graph and

turned into replies when they reach

nodes at the other side of the graph.

In broadcast algorithms, messages are

sent to all other processes.

In token-passing algorithms, addi-

tional messages (tokens) circulate

among processes to carry permission or

to gather information about state

changes.

Finally, with replicated servers, the

server- processes “either interact with

each other to manage replicated data

or share a bag of tasks.

The examples used to illustrate the

paradigms are both interesting in their

own right and representative of the broad

spectrum of distributed programming

problems.

In addition to illustrating the different

interaction paradigms, the examples

have illustrated different ways in which
to develop solutions to distributed pro-

gramming problems:

e

6+

A filter is developed as an independent

process whose output is a function of

its input; filters can thus be connected

into networks as long as each filter’s

input /output assumptions are met.

A server is developed by specifying the

operations it provides and specifying a
predicate that characterizes the state

of the server’s local variables when it

●

●

m

e

is idle. Each operation must then be

implemented so the predicate is true at

communication points.

The development of the heartbeat algo-

rithm for computing the topology of a

network started with a shared variable

solution, then refined the solution into

one in which each process computed

the topology by exchanging informa-

tion with its neighbors.

Both the heartbeat and probe/echo al-

gorithms for the network topology

problem were solved by first making

simplifying assumptions, then extend-

ing the initial solutions to handle the

general case. The algorithm for termi-

nation detection was also developed

this way.

For most of the examples in Sections

4-7, the starting point in solving the

problem was specifying a predicate that

characterized the answer. Then the

actions of each process were designed

so they led to a state in which the

predicate was true.

Finally, the adalptive quadrature prob-

lem illustrated ‘how ~o parallel~ze a

divide-and-conquer algorithm.

The examples have been programmed

using asynchronous message passing.

Hence the programs are appropriate for

execution on multiple instruction, muki -
ple data (MIMD) machines. Some of the

techniques, however—such as networks

of filters, heartbeat, broadcast, and repli-

cated workers—are also applicable to

programs that execute on single instruc-

tion, multiple data (SIMD) machines such

as the Connection Machine [Hillis 19851.

Networks of fillters and heartbeat

algorithms are also appropriate for
systolic machines such as the WARP

[Annaratone et al. 19861.
The material in this paper is developed

further in Andrews [19911. That book

contains numerous additional examples.

It also illustrates how to program these

interaction paradigms using the other
kinds of message passing: synchronous,

remote procedure call, rendezvous, and

generative communication. Many of the
implementation details differ, but the
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basic interaction patterns and program BIRMAN,K P., ANDJOSEPH,T. A. 1987. Rehable

development techniques are the same. communication in the presence of failures.
ACM Trans Comput. Syst. 5, 1 (Feb.), 47-76.
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