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Abstract. We study the problem of the laser heating of plasmonic nanoparticles

and demonstrate that, in sharp contrast to the common belief, a particle with a

small dissipative constant absorbs much more energy than the particle with a

large value of this constant. Even higher effective absorption may be achieved

for core–shell nanoparticles. Our analysis uses the exact Mie solutions, and

optimization of the input energy is performed at a fixed fluence with respect

to the particle size, wavelength and duration of the laser pulse. We introduce

a new quantity, the effective absorption coefficient of a particle, which allows

one to compare quantitatively the light absorption by nanoparticles with that of
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a bulk material. We describe a range of parameters where a giant absorption

enhancement can be observed and give practical examples of metals whose

optical properties vary from weak (potassium) to strong (platinum) dissipation.
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1. Introduction

Absorption of light by small plasmonic nanoparticles is a key effect for numerous applications

of nanostructures in data storage technology, nanotechnology, chemistry, biophysics and

bioengineering. The absorption characteristics depend on the material of the particle and its

shape. It is relevant to mention the absorption enhancement in amorphous silicon nanocone

arrays [1]. The properties of such black silicon are useful for a wide range of commercial

devices. In recent years, the problem of laser heating of plasmonic nanoparticles has attracted

much attention (see, e.g., [2–11] and references therein). A similar problem appears in

astrophysics with thermal noise in interstellar dust where temperature fluctuations for small

particles of interstellar dust may be about 1000 K [12].

The problem of the effective absorption of light by particles stimulated a great deal of

research and posed many non-trivial questions. In one of his famous papers, see [13], Bohren

tried to answer the question: ‘how can a particle absorb more than the light incident on it?’. He

was puzzled by the fact that the absorption cross section may be larger than the geometrical cross

section of the same particle. The answer was quite simple: since the light is an electromagnetic

wave, a small particle can disturb the flow of electromagnetic energy in its neighborhood and act

as a funnel. In this paper, we refine this question and ask: ‘can a particle with a small dissipative

constant absorb more than one with a large value of this constant?’. By doing a systematic

analysis, we demonstrate that the answer is: ‘yes, it can’; namely, counter-intuitively, in the

vicinity of the localized surface plasmon resonances the maximal absorption is achieved at a

certain small value of the dissipative constant of the particle. This effect might have a large

impact on the laser heating and related phenomena.

In this paper, we discuss the problem of optimization of the energy input of a laser

pulse into a nanoparticle. Our study gives rise to a number of paradoxical, counter-intuitive

conclusions, which shed new light on this important problem. The structure of the paper is as

follows: first, we discuss the origin of the mentioned paradoxes; then, we perform a general

analysis of the optimization problem based on the exact Mie solution [14]; next, we present the

results of the optimization for six cases of nanoparticles made of different materials; and then

study the effect of heat diffusion from a particle to a host medium (figure 1). Finally, in section 5

we summarize the obtained results and conclude.
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Figure 1. Schematic diagram of laser heating of nanoparticles embedded in a

transparent host medium. For short laser pulses, the heated layers of the medium

in the vicinity of the nanoparticles are thin, and the corresponding energy losses

may be neglected.

2. Absorption enhancement

Dissipation of energy is given by divergence of the Poynting vector (see, e.g., section 80 in the

book [15]). For non-magnetic media with µ = 1, this value is proportional to the imaginary part

of complex dielectric permittivity, Im ǫ. Therefore, it seems that, in order to increase the energy

release at the particle, one has to increase the value Im ǫ for the particle’s material: the larger the

Im ǫ, the larger the energy release. However, this simple reasoning does not take into account

the concentration of the electromagnetic energy in the particle due to diffraction. Meanwhile,

close to the frequencies of the plasmon (polariton) resonances, i.e. the frequencies of the

eigenmodes of electromagnetic oscillations in the particle regarded as a resonator, this

concentration may be very large. Bearing in mind that the amplitude of the oscillations at the

resonant points decreases with an increase of Im ǫ, one arrives at the conclusion that the problem

of optimization of the energy release of a nanoparticle irradiated by a laser beam is not so

straightforward, and requires a more accurate investigation.

To be specific, let us consider the laser heating of a thermally isolated spherical particle.

From the energy balance, neglecting heat diffusion, one can write a linear relation for the

conversion of light energy (laser fluence 8 (J cm−2)) into the density of the internal absorbed

energy E (J cm−3) of a material [16]:

E =
3

4

Qabs

R
8. (1)

Here R is the particle radius and Qabs is the so-called absorption efficiency [14] (the absorption

cross section σabs normalized over the geometrical cross section, Qabs = σabs/π R2). Employing

the exact Mie solution for the scattering of a plane electromagnetic wave by a spherical particle,
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this quantity can be written as follows:

Qabs = Qext − Qsca, Qext =
2

q2

∞
∑

ℓ=1

(2ℓ + 1)Re(aℓ + bℓ), Qsca =
2

q2

∞
∑

ℓ=1

(2ℓ + 1)
{

|aℓ|2 + |bℓ|2
}

,

where q is the so-called size parameter. In the case of a particle placed in vacuum, q = k R =
ωR/c = 2π R/λ. Here k, ω and λ stand for the light wavenumber, frequency and wavelength,

respectively. For nanoparticles at the optical frequencies, we have q ≪ 1. The scattering

amplitudes aℓ (electric) and bℓ (magnetic) are defined by the Mie formulae

aℓ =
F

(a)

ℓ

F
(a)

ℓ + i G
(a)

ℓ

, bℓ =
F

(b)

ℓ

F
(b)

ℓ + i G
(b)

ℓ

, (2)

and quantities F
(a,b)

ℓ and G
(a,b)

ℓ are expressed in terms of the Bessel and Neumann functions [14].

Under the validity of the Rayleigh approximation [14, 15], the dominant absorption

efficiency is given by the dipole mode

Qabs = q
12 ǫ ′′

(ǫ ′ + 2)2 + ǫ ′′ 2
, (3)

where ǫ ′ = Re ǫ and ǫ ′′ = Im ǫ.

As follows from equation (3), the absorption efficiency has a singularity when ǫ ′ → −2

and ǫ ′′ → 0. Specifically, at ǫ ′ → −2, ǫ ′′ → 0 the efficiency does not have a definite limit, and

may have any value depending on the shape of a trajectory along which one approaches the

point ǫ ′ = −2, ǫ ′′ = 0 on the (ǫ ′, ǫ ′′) plane.

To see that, we assume that the trajectory is described by the expression ǫ ′ + 2 = B(ǫ ′′)θ ,

where B and θ are constants. Then, Qabs diverges at ǫ ′′ → 0 and θ > 1/2, vanishes at θ < 1/2

and may be equal to any value (depending of the value of B) at θ = 1/2.

Singularity of Qabs at ǫ ′ = −2, ǫ ′′ → 0 may bring about a paradoxical conclusion opposite

to the naı̈ve one mentioned above (the larger the ǫ ′′, the larger the absorption), namely that

non-dissipating plasmonic nanoparticles with ǫ ′′ = 0 exhibit the most efficient heating [2, 6].

However, this conclusion is erroneous too. The problem is that in the vicinity of the

plasmon resonances for weakly dissipating materials the Rayleigh scattering is replaced by the

anomalous scattering [17], whose analysis requires the study of the complete Mie solution [14]

(see also [18, 19]). Such a study is performed below.

To begin we note that the dimension of the quantity

αeff =
3Qabs

4R

in equation (1) is (1 cm−1). Therefore, this quantity may play the role of an effective absorption

coefficient for a particle. To understand whether the particle has any advantage in the light

absorption relative to the same material in a bulk, it is convenient to compare αeff with the

absorption coefficient of the latter. The absorption coefficient α, describing the spatial decay of

the Poynting vector at the normal light incidence on a surface of a semi-infinite medium with

complex dielectric permittivity ǫ, is given by the expression

α = 2k Im
√

ǫ ≡ 2κk, (4)

where κ is the imaginary part of the refractive index of the medium,
√

ǫ = n + i κ .

For a majority of metals in the optical range, α ≈ 105–106 cm−1 [16]. However, if we try to

use this expression for α to define a characteristic scale for the energy release in a medium, we
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face a paradox once more. The paradox is seen clearly if we consider a medium with Re ǫ < 0

and Im ǫ = 0. Such a medium is non-dissipating, so the energy release there should be zero and

obviously does not have any characteristic scale. On the other hand, equation (4) in this case

provides quite a finite value of α.

The paradox is resolved easily if we recollect that only a part of the incident fluence is

absorbed, while the other part is reflected. Taking into account this fact, one should conclude

that, an analogue of equation (1) for the semi-infinite medium in the immediate vicinity of its

boundary reads as

E =Aα8, (5)

whereA stands for absorptivity. In the aforementioned case (Re ǫ < 0 and Im ǫ = 0) the particle

does not absorb any radiation,A= 0, and no energy is released in the medium, indeed. If a plane

electromagnetic wave propagating in a vacuum is incident on a medium with complex refractive

index n + i κ , the absorptivity is given by the following well-known expression:

A=
4n

(n + 1)2 + κ2
. (6)

In practical cases, A depends also on the quality of the surface, the way it was treated, etc.

All these effects may be incorporated into the developed analysis if required. To this end,

phenomenological (experimental) values of A should be employed instead of equation (6).

To compare quantitatively the light absorption by the particle and the same bulk material,

it is convenient to introduce the net absorption enhancement factor

βeff =
β

A
, β =

αeff

α
, (7)

where A is defined either by equation (6) or by an experimental value. Since 06A6 1,

the quantity β presents the minimal value of the absorption enhancement. The condition βeff>

β ≫ 1 means that the nanoparticle absorbs light much more efficiently than the corresponding

bulk material. To distinguish the role of partial resonances, we introduce also the partial

enhancement factors β
(ℓ)

eff and β(ℓ) with replacement in the definition of αeff in equation (7),

Qabs → Q
(ℓ)

abs, where the partial absorption efficiencies Q
(ℓ)

abs read as

Q
(ℓ)

abs = Q(ℓ)
ext − Q(ℓ)

sca, Q(ℓ)
ext =

2

q2
(2ℓ + 1)Re(aℓ + bℓ), Q(ℓ)

sca =
2

q2
(2ℓ + 1)(|aℓ|2 + |bℓ|2).

Examples of the dipole (ℓ = 1) and quadrupole (ℓ = 2) plasmon resonances in absorption are

shown in figure 2 for the size parameter q = 0.5. From this figure, one can easily find the

corresponding values of the real and imaginary parts of dielectric permittivity ǫ for each partial

resonance.

Similar maxima exist in the absorption efficiencies Q
(ℓ)

abs(ǫ) for all orders of the resonances.

For small size parameter q ≪ 1, they follow trajectories of the surface plasmon resonances given

by an approximate formulae [20]:

Re ǫ ≈ −
[

ℓ + 1

ℓ
+ q2 2(2ℓ + 1)(ℓ + 1)

ℓ2(2ℓ − 1)(2ℓ + 3)

]

, Im ǫ ≈ q2ℓ+1 ℓ + 1

[ℓ(2ℓ − 1)!!]2
. (8)

The corresponding maximal value of Q
(ℓ)

abs at q ≪ 1 is [20]

Q
(ℓ)

abs max =
1

q2

(

ℓ +
1

2

)

. (9)
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Figure 2. Absorption enhancement β(1) (a), β(2)(b) and total β (c) for the size

parameter q = 0.5. Calculations are performed in accord with the complete Mie

solution for a particle irradiated in a vacuum.

Figure 3. Values of dielectric permittivity corresponding to the maximal

absorption of a nanoparticle irradiated by a plane electromagnetic wave in a

vacuum versus the size parameter, according to equation (8) and calculated from

the complete Mie solution: Re ǫ(q) (a) and Im ǫ(q) (b). Maximal values of Qabs

and the ratio αeff/α = β along the optimal material parameters (c). The inset

in panel (c) illustrates the variation of the coefficient q2 Q
(ℓ)

abs max at the maximal

absorption versus the size parameter.

In figure 3, we present the trajectories of these maxima according to the complete Mie solution.

Equations (8) and (9) agree excellently with the exact solution up to the size parameter q ≈ 0.5.

In figure 3(c) one can see that Q
(ℓ)

abs max ∝ q−2, in agreement with equation (9), and β ∝ q−3, in

agreement with equations (7) and (9). Deviations of the coefficients from the values defined

by equation (8) with an increase in the size parameter are shown in the inset of figure 3(c).

Naturally, for larger values of the size parameter, we approach the absorptivity of a bulk

New Journal of Physics 14 (2012) 093022 (http://www.njp.org/)
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Figure 4. The Poynting vector distribution in the xz plane for the maximal

absorption in the vicinity of the dipole resonance for particles irradiated in a

vacuum. The plane, linearly polarized incident wave propagates along the z-

axis with the vector E lying in the xz plane. The size parameter q = 0.5 (a)

and q = 0.1 (b). For the corresponding values of dielectric permittivity, see

figures 3(a) and (b). Color density plots present the modulus of the Poynting

vector |S|2 (in log scale). The Poynting vector lines are blue. The surface of the

particle is marked with a black circle. Inside the particle div S < 0; outside the

particle, in free space div S = 0. Red lines in the plots designate separatrixes

illustrating the funnel effect [13]. Red circles indicate singular points, namely

one saddle point above the particle, two singular points on the particle surface

and a few stable nodes inside the particles, which correspond to the positions of

‘absorption attractors’. Note the difference in the scales of panels (a) and (b).

material. At the same time, for small values of the size parameter, it is possible to obtain a

huge enhancement in the absorption, e.g. by three or four orders of magnitude, compared to the

absorption of a bulk material (see figure 3(c)). This allows us to term the effect of absorption

enhancement for weakly dissipating plasmonic nanoparticles as the anomalous light absorption.

The physical grounds for the absorption enhancement near the surface plasmon resonances

are related to an increase in the effective cross section of the nanoparticle, which may greatly

exceed its geometrical cross section π R2. The latter can be clearly seen from the Poynting vector

distribution [13, 21–23]. To illustrate the difference in the Poynting vector distributions at the

maximal absorption for ‘small’ and ‘large’ particles, in figure 4 we show the corresponding

plots for the dipole resonance. Outside the particle in a vacuum div S = 0, while inside the

absorbing particle div S < 0. It allows us to select the whole energy flux into two distinct parts.

The Poynting vector lines that penetrate the particle and end inside it belong to one group, and

those that bypass the particle and continue to infinity belong to the other group. The two groups

are separated by separatrixes marked in red in figure 4. A part of the energy flux of the first group

results in the funnel effect—when the particle acts as an attractor collecting light from a large

area and delivering it to the particle. As a result, the effective absorption area π R2
eff becomes

much larger than the geometric cross section. The smaller the particle the more pronounced the

effect. In the discussed example (Reff/R)2 ≈ 10 at q = 0.5 (figure 4(a)), while at q = 0.1 it is

about 300 (figure 4(b)).
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These results have a simple explanation, namely, owing to the diffractive limit, the maximal

diameter of the ‘funnel’ inlet cannot exceed λ. Then, taking into account that, if ℓ is not too large,

q is the only small parameter in the problem, and that at q ≪ 1 all the three partial resonant

cross sections σ
(ℓ)
ext max, σ

(ℓ)
sca max and σ

(ℓ)

abs max approach certain finite, q-independent limits [17–20],

we arrive at the conclusion that the three quantities should be of the same order of magnitude:

σ
(ℓ)
ext max ∼ σ (ℓ)

sca max ∼ σ
(ℓ)

abs max ∼ πλ2/4. It brings about the following estimates:

Q(ℓ)
ext max ∼ Q(ℓ)

sca max ∼ Q
(ℓ)

abs max ∼ (Reff/R)2 ∼ (π/q)2,

which agree with the results discussed in the preceding paragraph, see also equation (11) below

and the corresponding expressions in [17–20].

It has been shown above that under the Rayleigh approximation for Qabs, the point

ǫ ′ = −2, ǫ ′′ = 0 is singular. It is interesting to elucidate the actual behavior of Qabs(ǫ
′, ǫ ′′) in

the vicinity of this point as well as in the vicinity of the maximum of the anomalous absorption

based upon the exact Mie solution. Then, a problem about the lineshape for the discussed

resonant absorption arises. A general analytical expression for this lineshape has been obtained

in a recent publication of one of the authors [20]. It has been shown therein that the lineshape

of Qabs(ǫ
′, ǫ ′′) in the region of anomalous absorption is described by the following universal

function:

q2 Qabs

2(2ℓ + 1)
=

ζ

(1 + ζ )2 + ξ 2
, (10)

regardless of the order of the resonance (i.e. the value of ℓ). Here ξ = 1(ℓ)ǫ ′/ fℓ(q), ζ = ǫ ′′/ fℓ(q)

and 1(ℓ)ǫ ′ stand for departure of ǫ from its resonant value, defined by equation (8).

Although shapes of the cross sections of the surface defined by equation (10) by the planes

ξ = const and ζ = const are substantially different, in the vicinity of the maximum the surface

is reduced to the paraboloid of revolution:

q2 Qabs

2(2ℓ + 1)
=

1

4
−

r 2

16
.

Here r 2 = ξ 2 + (1ζ)2 and 1ζ denotes a deviation of ζ from the value ζ = 1, where the latter

corresponds to the maximum of Qabs. Regarding the behavior of Qabs at ǫ ′′ → 0, it is seen

straightforwardly that in this limit Qabs is a linear function of ǫ ′′ at any fixed ǫ ′.

Completing this section, let us discuss a seeming analogy between the light scattering

of a particle with ǫ ′′ → 0 and light reflection by an ‘ideal’ conductor, whose conductivity σ

tends to infinity. It seems that an analogy does exist: at σ → ∞ ǫ ≃ i ǫ ′′ = i 4πσ/ω → ∞, hence

n = κ =
√

ǫ ′′/2 → ∞ and A→ 0, see equation (6). It means that the ideal conductor reflects

100% of incident light and does not absorb any. A particle with ǫ ′′ = 0 just scatters incident

light and does not absorb it too. However, the analogy is seeming indeed. Firstly, note that

these two cases correspond to the opposite limits, since in our case ǫ is almost purely real

with a small imaginary part. Secondly, the skin-layer δ = 1/α for the ideal conductor vanishing

(δ ∼ c/
√

σω → 0 at σ → ∞). In contrast, in our case the field penetrates the entire particle,

see figure 5, and all the phenomena discussed above are based upon this effect. The list of

differences may be extended. These differences bring about different physics. Thus, in fact,

the two phenomena are dissimilar. The analogy between them is forced and may give rise to

erroneous conclusions.
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Figure 5. Contour plots for the effective absorption coefficients of different

nanoparticles irradiated in a vacuum.

3. Optimization

It is clear that the discussed huge enhancement in absorption is attractive for many applications.

At the same time, in order to obtain this enhancement, one needs an extremely small value of

Im ǫ; for example, for the dipole resonance at q = 0.1 the corresponding value of Im ǫ ≈ 10−3,

see figure 3(c). The importance of weak dissipation for plasmonic materials was emphasized in

many papers, and some ideas to create weakly dissipating plasmonic materials were suggested

(see, for example, [24]). To understand to what extent this reasoning may be applied to natural

materials, we performed numerical calculations for six metals: potassium, aluminum, sodium,

silver, gold and platinum, whose properties cover a vast range from weak dissipation at the

optical frequencies (potassium) to strong dissipation (platinum). For these calculations, we use

the optical properties of the materials from Palik’s book [25], which are approximated with the

help of the Drude formula:

ǫ = ǫ ′ + i ǫ ′′ = 1 −
ω2

p

ω2 + γ 2

(

1 − i
γ

ω

)

, (11)

where ωp and γ stand for the plasma and collision frequencies, respectively. Equation (11) can

be applied to any material provided the plasma and collision frequencies are functions of ω.

These functions are calculated at every point in the table [25] with polynomial interpolation

between the points. The effect of the nanoparticle size was taken into account with the help

of renormalization of the corresponding collision frequency of free electrons, γ = γ∞ + vF/R,

where γ∞ is the collision frequency for a bulk material (at a given ω) and vF is the Fermi velocity

of electrons [26]. The diffraction problem is treated within the framework of the complete Mie

solution. For practical materials, we are more interested in the values of the effective absorption

coefficient αeff rather than in dimensionless parameters β or βeff. Examples of such calculations

are summarized in table 1. The second column λ0, nm, shows the wavelength where the

New Journal of Physics 14 (2012) 093022 (http://www.njp.org/)
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Table 1. Values of the parameters maximizing the absorption of nanoparticles

made of different metals irradiated by a plane electromagnetic wave in a vacuum.

Fermi velocity, Optimal Optimal αmax
eff , α, cm−1

Metal λ0, nm Im ǫ(λ0) vF, cm s−1 R, nm λ, nm cm−1 (bulk) A(λoptimal) βeff

K 542 0.138 0.86 × 108 14.1 547.6 5.02 × 106 3.29 × 105 0.063 242

Al 138.8 0.16 2.02 × 108 4.4 140.7 1.38 × 107 1.29 × 106 0.073 147

Na 377 0.178 1.07 × 108 10.3 381 5.75 × 106 4.74 × 105 0.080 151

Ag 354 0.6 1.39 × 108 12.2 356 2.40 × 106 5.2 × 105 0.240 19.2

Au 485 3.97 1.39 × 108 40.8 505.2 4.22 × 105 4.83 × 105 0.578 1.51

Pt 276 5.64 1.45 × 108 17.9 213.3 6.48 × 105 9.1 × 105 0.576 1.24

infinitesimal particle (q → 0) has the dipole plasmon resonance: Re ǫ = −2. The third column

indicates Im ǫ(λ0). This column allows one to distinguish the weakly dissipating materials with

Im ǫ(λ0) ≪ 1 from strongly dissipating with Im ǫ(λ0) of the order of unity, or larger than that.

The values of the Fermi velocity were taken from [27]. The next three columns summarize

the results of calculations of the maximal effective absorption according to the complete Mie

solution. We present also the absorption coefficient of the corresponding bulk materials at the

wavelengths of the maximal effective absorption of the nanoparticles and the parameter βeff for

the corresponding absorption enhancement with A calculated in accord with equation (6). As

one can see, for weakly dissipating metals (K, Al, Na), it is possible to obtain enhancement

in absorption by more than two orders of magnitude. For strongly dissipating materials (Au

and Pt), the effective absorption coefficient αeff is even below the absorption coefficient for the

bulk material. For Ag with ‘intermediate’ dissipation the ratio αeff/α ≈ 4.6. Nonetheless,

the net enhancement factor βeff for Ag is about 20, owing to a small value of absorptivity for

the bulk material. Examples of distributions of the efficient absorption coefficient for a number

of metals in the vicinity of the optimal parameters are shown in figure 5. The dependences

αeff(R, λ) for the other metals are similar. Note that while for weakly dissipating materials the

wavelengths, maximizing the absorption and scattering efficiencies, practically coincide with

each other [20] (the difference between them for potassium is less than 1 nm), there exists a

pronounced mismatch between the two quantities for strongly dissipating materials. Thus, for

gold the mismatch is equal to 15 nm.

Note also that for the ‘ideal’ optimization, when ǫ ′ and ǫ ′′ may be regarded as two

independent tuning parameters, αeff increases monotonically with an increase of the order of

resonance ℓ, at least as long as the particle may be regarded as small, see equation (9) and

figure 3. In fact, for the discussed real metals, when instead of ǫ ′ and ǫ ′′ the actual tuning

parameter is ω the absolute maximum of αeff corresponds to the dipole mode (ℓ = 1).

Bearing in mind that for a thermally isolated particle E = CρT , where C stands for the

specific heat and ρ is the density, it is easy to estimate the fluence 8 which is required to

achieve a desired temperature rise, e.g. T = 100 K. It is clear that weakly dissipating particles

need a smaller fluence than strongly dissipating particles. For instance, to heat a potassium

particle to the same temperature as a gold particle, we need almost 50 times smaller fluence.

Further enhancement of absorption can be achieved for weakly dissipating particles embedded

in transparent media. For example, for K in a KCl host medium at the optimal parameters
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(R = 13.5 nm and λ = 738.6 nm) the effective absorption can reach 6.91 × 106 cm−1. It is about

40% larger than that for the same particle in a vacuum and 20 times larger than the absorption

coefficient for a bulk material. However, the largest increase in the effective absorption

coefficient may be obtained for a core–shell particle with the optimized core radius, shell radius

and incident wavelength. For K particle inside a KCl shell in a vacuum, it is possible to reach

the effective absorption coefficient 2.05 × 107 cm−1. Such optimized core–shell structures may

be very attractive for biomedical and other applications.

4. Heat transfer

When a nanoparticle is heated inside a host medium, it is important to select a suitable pulse

duration for the heating. To this end, one should solve the heat-transfer equation. In our recent

paper [28], this problem was inspected for a broad range of different parameters. However, for

a majority of typical cases one can neglect the temperature gradient within the particle and

consider a homogeneous particle temperature rise Tρ(t). In this case, the problem of the laser

heating is simplified. For example, we discuss the spherically symmetric problem for a particle

embedded in some medium with heat diffusivity χ . We consider a non-absorbing (transparent)

medium, which is heated by heat diffusion from the particle solely. The solution of the heat

diffusion equation (see, e.g., [29]) yields

Tp(t) =
1

2π i

∫ γ +i∞

γ−i∞
Tp(s)e

st ds, (12)

where Tp(s) is the Laplace image

Tp(s) =
3

4

I (s)Qabs R

CρR2s + 3κm

(

1 + R
√

s/χ
) . (13)

Here κm stands for the thermal conductivity of the host medium and I (s) is the Laplace

image of the laser beam intensity I (t) (W cm−2). For example, for a smooth laser pulse with

I (t) = (t/t2
ℓ )8 exp(−t/tℓ), t > 0 [30], one obtains

I (s) = 8
1

(1 + stℓ)2
. (14)

The parameter tℓ in equation (14) is related to the pulse duration tp (full-width at half-maximum)

as follows: tℓ = tp/2.446. The corresponding temperature rise of the nanoparticle may be found

from equations (12)–(14) by numerical integration. In figure 6, we show an example of these

calculations for the temperature rise of a gold particle heated by a smooth laser pulse. It is a

typical setup for biomedical applications [31]. We can see that heat transfer to the environment

suppresses the temperature rise dramatically. To reach temperatures comparable with that for

thermally isolated particles, one needs very short laser pulses.

In biomedical applications, it is important to localize the heating area of a host medium

in the immediate vicinity of the nanoparticle. When the particle temperature rise Tρ(t) is

known, the temperature rise distribution in the surrounding medium is given by the following

expression [29]:

T (r, t) =
2

√
π

R

r

∫ ∞

r−R
2
√

χ t

Tp

(

t −
(r − R)2

4χµ2

)

e−µ2

dµ, r > R. (15)
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Figure 6. Temperature rise for a gold nanoparticle (R = 21.5 nm) in water, which

corresponds to the parameters for the maximal effective absorption by a laser

pulse with tp = 10 ps and fluence 8 = 236.7 µJ cm−2 (a). The red line presents

the temperature rise for the thermally isolated particle. The maximal temperature

rise of the particle heated by fluence 8 = 236.7 µJ cm−2 versus pulse durations

tp (b).

Figure 7. Temperature rise for a gold nanoparticle (R = 21.5 nm) in water;

a laser pulse with tp = 1 ps and fluence 8 = 236.7 µJ cm−2. Different curves

correspond to different distances r , monotonically varying from r = R to 1.1R.

It is seen that the maximal heating decreases sharply with a small increase in r.

Some results of the calculations of the temperature rise profile described by equations (12)–(15)

are shown in figure 7.

The huge increase in the effective absorption for a weakly dissipating plasmonic particle

in a shell permits us to deliver the laser energy through a thick layer of biological tissue without

significant heating of the tissue itself. In the optical range of the spectrum, the absorption

coefficient for different tissues varies from αtissue = 10 to 100 cm−1 [32]. This is by a few orders

of magnitude smaller than the effective absorption coefficient which can be reached for weakly
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dissipating plasmonic particles. This permits us to administrate considerable heating of weakly

dissipating nanoparticles situated in the tissue in the depth range from 1 mm to 1 cm, depending

on the αtissue value, without damage of the tissue by a laser beam.

The heating may be enhanced considerably if it is produced by an aggregate of

nanoparticles. If the characteristic distance between the particles in the aggregate is sufficiently

long, one may consider the heating effect produced individually by each particle. However, the

problem becomes more complicated when the particles are placed sufficiently close to each

other. In this case, the temperature distribution depends on the number of particles within the

cluster [33] and effects related to overlap of thermal fields produced in the host medium by each

individual particle [34–36]. Another idea to enhance the heating may be based on the black-hole

effect for touching spherical particles [37].

5. Conclusions

Thus, we have obtained a counter-intuitive result that the largest effective absorption coefficient

can be achieved for weakly dissipating plasmonic nanoparticles, in spite of the fact that

the conversion of the light energy into the internal absorbed energy is proportional to the

dissipation parameter Im ǫ. Our calculations based on the exact Mie solution have revealed that

weakly dissipating plasmonic nanoparticles may exhibit giant absorption enhancement growing

proportionally to the inverse cube of the particle size. For example, at the size parameter q = 0.1

and optimized values of other parameters of the problem, one can achieve an effective absorption

three orders of magnitude larger than that for bulk samples. For natural materials, the full

optimization of absorption cannot be performed because of a fixed dependence of complex ǫ(ω)

for every given material, which does not allow us to employ Re ǫ and Im ǫ as independent tuning

parameters. Nonetheless, for nanoparticles made of weakly dissipating metals, the effective

absorption coefficient may exceed that for the same bulk materials by two orders of magnitude.

It permits us to use efficient heating of nanoparticles embedded in a host medium, e.g. in liquids

or solids. To minimize heat diffusion, very short laser pulses (in typical cases shorter than 10 ps)

should be employed. We note that, for the sake of simplicity, in this paper most calculations have

been performed for a particle irradiated in a vacuum. The calculations can be easily extended

to the case when a particle is embedded in a transparent medium with a purely real refractive

index nm . To this end, we should just take into account a complex refractive index of the particle

as the relative index, namely n → n/nm . We believe that our results may be useful in optimizing

many experiments on laser heating of nanoparticles, and will stimulate further experimental

studies of this important effect.
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