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Abstract—Despite the theory of neutrino oscillations being rather old, some of its basic issues are
still being debated in the literature. We discuss a number of such issues, including the relevance of
the “same energy” and “same momentum” assumptions, the role of quantum-mechanical uncertainty
relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure
the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question
of (in)dependence of the oscillation probabilities on the neutrino production and detection processes,
and the applicability limits of the stationary-source approximation. We also develop a novel approach to
calculation of the oscillation probability in the wave-packet approach, based on the summation/integration
conventions different from the standard one, which allows a new insight into the “same energy” vs. “same
momentum” problem. We also discuss a number of apparently paradoxical features of the theory of neutrino
oscillations.
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1. INTRODUCTION

More than 50 years have already passed since the
idea of neutrino oscillations was put forward [1, 2],
and over 10 years have passed since the experimental
discovery of this phenomenon (see, e.g., [3] for re-
views). However, surprisingly enough, a number of
basic issues of the neutrino oscillation theory are still
being debated. Moreover, some features of the theory
appear rather paradoxical. Among the issues that are
still under discussion are:

(1) Why do the often used same-energy and
same-momentum assumptions for neutrino mass
eigenstates composing a given flavor state, which are
known to be both wrong, lead to the correct result for
the oscillation probability?

(2) What is the role of quantum-mechanical un-
certainty relations in neutrino oscillations?

(3) What determines the size of the neutrino wave
packets?
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(4) How do the coherence and localization con-
ditions that ensure the observability of neutrino os-
cillations depend on neutrino energy and momentum
uncertainties?

(5) Are wave packets actually necessary for a con-
sistent description of neutrino oscillations?

(6) When can the oscillations be described by a
universal (i.e., production and detection process in-
dependent) probability?

(7) When is the stationary-source approximation
valid?

(8) Would recoillessly emitted and absorbed neu-
trinos (produced and detected in Mössbauer-type ex-
periments) oscillate?

(9) Are oscillations of charged leptons possible?
In the present paper we consider the first seven is-

sues listed above, trying to look at them from different
perspectives. We hope that our discussion will help
clarify these points and finally put them to rest. For
the last two issues, we refer the reader to the recent
discussions in [4–6] (for oscillations of Mössbauer
neutrinos) and [7] (for oscillations of charged lep-
tons).

2. SAME ENERGY OR SAME MOMENTUM?

In most derivations of the so-called standard for-
mula for the probability of neutrino oscillations in
vacuum (see Eq. (6) below), usually the assumptions
that the neutrino mass eigenstates composing a given
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flavor eigenstate either have the same momentum [8–
11] or the same energy [12–15] are made. The deriva-
tion typically proceeds as follows.

First, recall that in the basis in which the mass
matrix of charged leptons has been diagonalized the
fields describing the massive neutrinos νi and flavor-
eigenstate neutrinos νa and the corresponding states
|νi〉 and |νa〉 are related by

νa =
∑

i

Uaiνi, |νa〉 =
∑

i

U∗
ai|νi〉, (1)

where U is the leptonic mixing matrix. If one now
assumes that all the mass eigenstates composing the
initially produced flavor state |ν(0)〉 = |νa〉 have the
same momentum, then, after time t has elapsed, the
ith mass eigenstate will simply pick up the phase
factor exp(−iEit), and the evolved state |ν(t)〉 will be
given by

|ν(t)〉 =
∑

i

U∗
aie

−iEit|νi〉. (2)

Projecting this state onto the flavor state |νb〉 and
taking the squared modulus of the resulting transition
amplitude, one gets the probability of the neutrino
flavor transition νa → νb after the time interval t:

P (νa → νb; t) =

∣∣∣∣∣
∑

i

Ubie
−iEitU∗

ai

∣∣∣∣∣

2

. (3)

Next, taking into account that the energy Ei of a
relativistic neutrino of mass mi and momentum p is

Ei =
√

p2 + m2
i � p +

m2
i

2p
, (4)

and that for relativistic pointlike particles the distance
L they propagate during the time interval t satisfies

L � t, (5)

one finally finds

P (νa → νb;L) (6)

=

∣∣∣∣∣
∑

i

Ubi exp

(
−i

∆m2
ij

2p
L

)
U∗

ai

∣∣∣∣∣

2

,

where ∆m2
ij = m2

i − m2
j and the index j corresponds

to any of the mass eigenstates. This is the standard
formula describing neutrino oscillations in vacuum.
Note that in this approach neutrino states actually
evolve only in time (see Eq. (3)); the usual coordinate
dependence of the oscillation probability (6) is only
obtained by invoking the additional “time-to-space
conversion” assumption (5). Without this conversion,
one would come to a paradoxical conclusion that
neutrino oscillations could be observed by just putting

the neutrino detector immediately next to the source
and waiting long enough.

Likewise, one could assume that all the mass-
eigenstate neutrinos composing the initially produced
flavor state |νa〉 have the same energy. Using the fact
that the spatial propagation of the ith mass eigenstate
is described by the phase factor eipix and that for a
relativistic neutrino of mass mi and energy E

pi =
√

E2 − m2
i � E − m2

i /2E, (7)

one again comes to the same standard formula (6) for
the oscillation probability. Note that in this case the
neutrino flavor evolution occurs in space and it is not
necessary to invoke the “time-to-space conversion”
relation (5) to obtain the standard oscillation formula.

The above two alternative derivations of the oscil-
lation probability are very simple and transparent, and
they allow one to arrive very quickly at the desired
result. The trouble with them is that they are both
wrong.

In general, there is no reason whatsoever to as-
sume that different mass eigenstates composing a
flavor neutrino state emitted or absorbed in a weak-
interaction process have either the same energy or the
same momentum.5) Indeed, the energies and momen-
ta of particles emitted in any process are dictated by
the kinematics of the process and by the experimental
conditions. Direct analysis of, e.g., 2-body decays
with simple kinematics, such as π± → l± + νl(ν̄l),
where l = e, µ, allows to find the 4-momenta of the
emitted particles and shows that neither energies nor
momenta of the different neutrino mass eigenstates
composing the flavor state νl are the same [16, 17].
One might question this argument on the basis that
it relies on the energy-momentum conservation and
the assumption that the energies and momenta of the
emitted mass eigenstates have well-defined (sharp)
values, whereas in reality these quantities have in-
trinsic quantum-mechanical uncertainties (see the
discussion in Section 5.1). However, the inexactness
of the neutrino energies and momenta does not in-
validate our argument that the “same energy” and
“same momentum” assumptions are unjustified, and
in fact only strengthens it. It should be also noted that
the “same energy” assumption actually contradicts
Lorentz invariance: even if it were satisfied in some
reference frame (which is possible for two neutrino
mass eigenstates, but not in the 3-species case), it
would be violated in different Lorentz frames [17, 18].
The same applies to the “same momentum” assump-
tion.

5)The only exception we are aware of are neutrinos produced or
detected in hypothetical Mössbauer-type experiments, since
for them the “same energy” assumption is indeed justified
fairly well.
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PARADOXES OF NEUTRINO OSCILLATIONS 1365

3. WHY WRONG ASSUMPTIONS LEAD
TO THE CORRECT RESULT?

One may naturally wonder why two completely
different and wrong assumptions (“same energy” and
“same momentum”) lead to exactly the same and
correct result—the standard oscillation formula. To
understand that, it is necessary to consider the wave-
packet picture of neutrino oscillations.

3.1. Wave-Packets Approach to Neutrino
Oscillations

In the discussion in the previous section we were
actually considering neutrinos as plane waves or sta-
tionary states; strictly speaking, this description was
inconsistent because such states are in fact non-
propagating. Indeed, the probability of finding a par-
ticle described by a plane wave does not depend on
the coordinate, while for stationary states this prob-
ability does not depend on time. In quantum theory
propagating particles must be described by moving
wave packets (see, e.g., [19]). Let us recall the main
features of this approach [20–30].

Let a flavor eigenstate νa be born at time t = 0 in a
source centered at x = 0. The wave packet describing
the evolved neutrino state at a point with the coordi-
nates (t,x) is then

|νa(x, t)〉 =
∑

i

U∗
aiΨi(x, t)|νi〉. (8)

Here Ψi(x, t) is wave packet describing a free propa-
gating neutrino of mass mi:

Ψi(x, t) =
∫

d3p

(2π)3/2
fS

i (p − pi)eipx−iEi(p)t, (9)

where fS
i (p− pi) is the momentum distribution

function with pi being the mean momentum, and

Ei(p) =
√

p2 + m2
i . The superscript “S” at fS

i (p −
pi) indicates that the wave packet corresponds to
the neutrino produced in the source. We will assume
the function fS

i (p − pi) to be sharply peaked at or
very close to zero of its argument (p = pi), with the
width of the peak σp � pi.6) No further properties
of fS

i (p − pi) need to be specified. If fS
i (p − pi) is

normalized according to
∫

d3p|fS
i (p − pi)|2 = 1, (10)

6)For symmetric wave packets (i.e., when fS
i (p − pi) is an

even function of its argument), the position of the center
of the peak coincides with the mean momentum pi. For
asymmetric wave packets, it may be displaced from pi.

then the wave function Ψi(x, t) has the standard
normalization

∫
d3x|Ψi(x, t)|2 = 1. We will, however,

use a different normalization convention, which yields
the correct normalization of the oscillation probability
(see Eq. (20) below). Expanding Ei(p) around the
mean momentum,

Ei(p) = Ei(pi) +
∂Ei(p)

∂pj

∣∣∣∣
pi

(p − pi)j (11)

+
1
2

∂2Ei(p)
∂pj∂pk

∣∣∣∣
pi

(p − pi)j(p − pi)k + . . . ,

one can rewrite Eq. (9) as

Ψi(x, t) � eipix−iEi(pi)tgS
i (x − vgit), (12)

where

gS
i (x − vgit) =

∫
d3p

(2π)3/2
fS

i (p)eip(x−vgit) (13)

is the shape factor and

vgi =
∂Ei

∂p

∣∣∣∣
pi

=
p
Ei

∣∣∣
pi

(14)

is the group velocity of the wave packet. Here we have
retained only the first and the second terms in the ex-
pansion (11), since the higher order terms are of sec-
ond and higher order in the small neutrino mass and
so can be safely neglected in practically all situations
of interest. This approximation actually preserves the
shape of the wave packets (and, in particular, neglects
their spread). Indeed, the shape factor (13) depends
on time and coordinate only through the combination
(x − vgit); this means that the wave packet prop-
agates with the velocity vgi without changing its
shape.

If the momentum dispersion corresponding to the
momentum distribution function fS

i (p− p0) is σp,
then, according to the Heisenberg uncertainty rela-
tion, the length of the wave packet in the coordinate
space σx satisfies σx � σ−1

p ; the shape-factor func-
tion gS

i (x − vgit) decreases rapidly when |x − vgit|
exceeds σx. Equation (12) actually justifies and cor-
rects the plane-wave approach: the wave function of a
propagating mass-eigenstate neutrino is described by
the plane wave corresponding to the mean momen-
tum pi, multiplied by the shape function gS

i (x− vgit)
which makes sure that the wave is strongly sup-
pressed outside a finite space–time region of width σx

around the point x = vgit.

In the approximation, where the wave packet
spread is neglected, the evolved neutrino state is given
by Eq. (8) with Ψi(x, t) from Eq. (12). Note that
the wave packets corresponding to different neutrino
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mass eigenstates νi are in general described by dif-
ferent momentum distribution functions fS

i (p − pi)
and therefore by different shape factors gS

i (x − vgit).

Next, we define the state of the detected flavor
neutrino νb as a wave packet peaked at the coordinate
L of the detector:

|νb(x − L)〉 =
∑

i

U∗
biΨ

D
i (x − L)|νi〉. (15)

It will be convenient for us to rewrite ΨD
i (x − L)

pulling out the factor eipi(x−L):

|νb(x − L)〉 (16)

=
∑

i

U∗
bi[e

ipi(x−L)gD
i (x − L)]|νi〉.

Here gD
i (x− L) is the shape factor of the wave packet

corresponding to the detection of the ith mass eigen-
state. The transition amplitude Aab(L, t) is obtained
by projecting the evolved state (8) onto (15):

Aab(L, t) =
∫

d3x〈νb(x − L)|νa(x, t)〉 (17)

=
∑

i

U∗
aiUbi

∫
d3xΨD∗

i (x− L)Ψi(x, t).

Substituting here expressions (12) and (16) yields

Aab(L, t) (18)

=
∑

i

U∗
aiUbiGi(L − vgit)e−iEi(pi)t+ipiL,

where

Gi(L − vgit) (19)

=
∫

d3xgS
i (x − vgit)gD∗

i (x − L).

That this integral indeed depends on L and vgit only
through the combination (L − vgit) can be easily
shown by shifting the integration variable in (19).
Gi(L − vgit) is an effective shape factor whose width
σx depends on the widths of both the production
and detection wave packets σxS and σxD. Indeed,
since the moduli of the shape-factor functions gS,D

i
quickly decrease when the argument exceeds the cor-
responding wave-packet widths σxS or σxD, from
Eq. (19) it follows that the function Gi(L − vgit)
decreases when |L − vgit| becomes large compared
to max{σxS , σxD}. Actually, since σx characterizes
the overlap of the wave packets describing the pro-
duction and detection states, it exceeds both σxS and
σxD. In particular, for Gaussian and Lorentzian (in
the coordinate space) wave packets one has σx =√

σ2
xS + σ2

xD and σx = σxS + σxD, respectively. If the

production and detection wave packets are symmet-
ric in the coordinate space, i.e., the shape factors
gS
i (x − vgit) and gD

i (x − L) are even functions of
their arguments, then so is Gi(L − vgit). In that case
the modulus of Gi(L − vgit) reaches its maximum at
L = vgit; otherwise the maximum may be displaced
from this point.

The probability Pab(L, t) ≡ P (νa → νb;L, t) of
finding a flavor eigenstate neutrino νb at the detector
site at time t is given by the squared modulus of
the amplitude Aab(L, t) defined in Eq. (17). Since in
most experiments the neutrino emission and arrival
times are not measured, the standard procedure in
the wave-packet approach to neutrino oscillations
is then to integrate Pab(L, t) over time. In doing so
one has to introduce a normalization factor which is
usually not calculated,7) and in fact is determined
by imposing “by hand” the requirement that the
probabilities Pab(L) satisfy the unitarity condition.
This is an ad hoc procedure which is not entirely
consistent; the proper treatment would require to
consider the temporal response function of the de-
tector and would automatically lead to the correct
normalization of the oscillation probabilities. Since
we are primarily interested here in the oscillation
phase which is practically insensitive to the detector
response function, we follow the same procedure of
integration over time. The proper normalization of
the oscillation probability is achieved by imposing the
normalization condition

∞∫

−∞

dt|Gi(L − vgit)|2 = 1. (20)

For simplicity, from now on we neglect the trans-
verse components of the neutrino momentum, i.e.,
the components orthogonal to the line connecting the
centers of the neutrino source and detector; this is
a very good approximation for neutrinos propagating
macroscopic distances. The probability of finding a νb

at the detector site, provided that a νa was emitted by
the source at the distance L from the detector, is then

Pab(L) =

∞∫

−∞

dt|Aab(L, t)|2 (21)

=
∑

i,k

U∗
aiUbiUakU∗

bkIik(L),

where

Iik(L) ≡
∞∫

−∞

dtGi(L − vgit) (22)

7)For an exception, see [26].
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× G∗
k(L − vgkt)e−i∆φik(L,t).

Here, Gi(L − vgit) is the effective shape factor corre-
sponding to the ith neutrino mass eigenstate defined
in (the 1-dimensional version of) Eq. (19). The quan-
tity ∆φik(L, t) is the phase differences between the
ith and kth mass eigenstates:

∆φik = (Ei − Ek)t − (pi − pk)L (23)

≡ ∆Eikt − ∆pikL,

where

Ei =
√

p2
i + m2

i . (24)

Note that this phase difference is Lorentz invariant.
To calculate the observable quantities—the num-

bers of the neutrino detection events—one has to
integrate the oscillation probability (folded with the
source spectrum, detection cross section and detector
efficiency and energy resolution functions) over the
neutrino spectrum and over the macroscopic sizes of
the neutrino source and detector.

3.2. Oscillation Phase: the Answer to the Question

We are now in a position to present our argument.
To simplify the notation, we suppress the indices i
and k, where it cannot cause a confusion, so that
∆E ≡ ∆Eik, ∆m2 ≡ ∆m2

ik, etc. Consider the case
∆E � E which corresponds to relativistic or quasi-
degenerate neutrinos. In this case one can expand the
difference of the energies of two mass eigenstates in
the differences of their momenta and masses. Retain-
ing only the leading terms in this expansion, one gets

∆E =
∂E

∂p
∆p +

∂E

∂m2
∆m2 (25)

= vg∆p +
1

2E
∆m2,

where vg is the average group velocity of the two mass
eigenstates and E is the average energy. Substituting
this into Eq. (23) yields [31]

∆φ =
∆m2

2E
t − (L − vgt)∆p. (26)

Note that our use of the mean group velocity and
mean energy of the two mass eigenstates in Eq. (26)
is fully legitimate. Indeed, going beyond this approx-
imation would mean retaining terms of second and
higher order in ∆m2 in the expression for ∆φ. These
terms are small compared to the leading O(∆m2)
terms; moreover, though their contribution to ∆φ can
become of order one at extremely long distances, the
leading contribution to ∆φ is then much greater than
one, which means that neutrino oscillations are in

the averaging regime and the precise value of the
oscillation phase is irrelevant.

Let us now consider expression (26) for the phase
difference ∆φ. If one adopts the same-momentum
assumption for the mean momenta of the wave pack-
ets, ∆p = 0, the second term on the right-hand side
disappears, which leads to the standard oscillation
phase in the “evolution in time” picture. If, in addition,
one assumes the “time-to-space conversion” rela-
tion (5), the standard formula for neutrino oscillations
is obtained.

Alternatively, instead of expanding the energy dif-
ference of two mass eigenstates in the differences
of their momenta and masses, one can expand the
momentum difference of these states in the differences
of their energies and masses:

∆p =
∂p

∂E
∆E +

∂p

∂m2
∆m2 (27)

=
1
vg

∆E − 1
2p

∆m2,

where p is the average momentum. Substituting this
into Eq. (23) yields [32]

∆φ =
∆m2

2p
L − 1

vg
(L − vgt)∆E. (28)

Note that this relation could also be obtained directly
from Eq. (26) by making use of Eq. (25). If one now
adopts the same energy assumption for the mean
energies of the wave packets, ∆E = 0, the second
term on the right-hand side vanishes, and one arrives
at the standard oscillation formula.

However, as we shall show now, Eqs. (26) and (28)
actually lead to the standard oscillation phase even
without the same-energy or same-momentum as-
sumptions. For this purpose, let us generically write
Eqs. (26) and (28) in the form

∆φ = ∆φst + ∆φ′, (29)

where ∆φst is the standard oscillation phase either
in “evolution in time” or in “evolution in space” ap-
proach, and ∆φ′ is the additional term (the second
term in Eq. (26) or (28)). The first thing to notice is
that ∆φ′ vanishes not only when ∆p = 0 (in Eq. (26))
or ∆E = 0 (in Eq. (28)), but also at the center of the
wave packet, where L = vgt. Away from the center,
the quantity L − vgt does not vanish, but it never ex-
ceeds substantially the length of the wave packet σx,
since otherwise the shape factors would strongly sup-
press the neutrino wave function; thus, |L − vgt| �
σx. The physical meaning of the two terms in Eq. (29)
is then clear: ∆φst is the oscillation phase acquired
over the distance L between the centers of the neu-
trino emitter and absorber wave functions, whereas
∆φ′ is the additional phase variation along of the wave
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packet. Note that in the wave-packet approach the
effective spatial length of the neutrino wave packet
is determined by the sizes of the neutrino production
and detection regions8), so that the phase ∆φ′ is
related to the condition of localization of the neutrino
emitter and absorber. In what follows we shall show
that explicitly.

Since ∆E and ∆p are the differences of, respec-
tively, the mean energies and mean momenta of differ-
ent neutrino mass eigenstates, for relativistic neutri-
nos they are both of the order of ∆m2/2E or smaller;
recalling that the neutrino oscillation length is losc =
4πE/∆m2, we conclude that the additional phase
∆φ′ can be safely neglected (and the oscillation phase
takes its standard value) when the effective length of
the wave packets is small compared to the neutrino
oscillation length, i.e., σx � losc.

We shall show now that under very general as-
sumptions the oscillation phase takes the standard
value. For this we need the wave-packet treatment of
neutrino oscillations. We start with the expression for
∆φ in Eq. (28). Substituting it into (22), we find

Iik(L) = exp
(
−i

∆m2
ik

2p
L

)
(30)

×
∞∫

−∞

dtGi(L − vgit)G∗
k(L − vgkt)

× exp
(

i
1
vg

∆Eik(L − vgt)
)

.

Let us first neglect the difference between the group
velocities of the wave packets describing different
mass eigenstates, i.e., take vgi = vgk = vg and Gk =
Gi. In this approximation (which neglects the deco-
herence effects due to the wave-packet separation,
see Appendix), the integral in (30) does not depend
on L; this can be readily shown by changing the in-
tegration variable according to t → (L − vgt). Thus,
in the case when the difference of the group veloc-
ities of different mass eigenstates is negligible, we
arrive at the standard oscillation phase. The integral
in Eq. (30) is then just the Fourier transform of the
squared modulus of the shape factor:

1
vg

∞∫

−∞

dx′|Gi(x′)|2 exp
(

i
1
vg

∆Eikx
′
)

. (31)

8)In the more general quantum field theoretic framework the
length of the neutrino wave packet is related to the time
scales of the neutrino emission and detection processes
rather than to the localization properties of the neutrino
emitter and absorber, see Section 5.4.

It is essentially a localization factor, which takes into
account effects of suppression of oscillations in the
case when the localization regions of the neutrino
emitter and/or absorber are not small compared to the
neutrino oscillation length (see Section 5.2 and Ap-
pendix for a more detailed discussion). If localization
condition (A.8) is fulfilled, one can replace the oscil-
lating phase factor in the integrand by unity; the re-
sulting integral is then simply the normalization fac-
tor, which has to be set to 1 in order for the oscillation
probability to be properly normalized (see Eq. (20)).
If, on the contrary, the condition opposite to the local-
ization condition (A.8) is satisfied, the integral (31) is
strongly suppressed due to the fast oscillations of the
factor exp(i∆Eikx′/vg) in the integrand, leading to
the suppression of the oscillations. In the borderline
case ∆EikσX/vg ∼ 1, a partial decoherence due to
the lack of localization occurs.

If one now allows for vgi �= vgk, then, as shown in
Appendix, the dependence of the integral in Eq. (30)
on L is still negligible provided that L∆vg/vg � σx,
or

L � lcoh = σx
vg

∆vg
, (32)

where ∆vg = |vgi − vgk|. This is nothing but the con-
dition of the absence of decoherence due to the wave-
packet separation: the distance traveled by neutrinos
should be smaller than the distance over which the
wave packets corresponding to different mass eigen-
states separate, due to the difference of their group
velocities, to such an extent that they can no longer
interfere in the detector9). If the condition opposite to
that in Eq. (32) is satisfied, the integral in Eq. (30)
is strongly suppressed because of the lack of overlap
between the factors Gi(L − vgit) and G∗

k(L − vgkt)
in the integrand (if Iik is written as a momentum-
space integral, the suppression is due to the fast os-
cillations of the integrand, see Eq. (A.7) of Appendix).
The L independence of the integral in Eq. (30) in
the absence of decoherence due to the wave packet
separation means that the neutrino oscillation phase
takes its standard value in that case.

Thus we conclude that the standard oscillation
phase is obtained if neutrinos are relativistic or quasi-
degenerate in mass and the decoherence effects due
to the wave-packet separation or lack of the emitter
or absorber localization are negligible. No unjustified
“same energy” or “same momentum” assumptions
are necessary to arrive at this result.

9)We reiterate that σx is an effective spatial width of the wave
packet, which depends on the widths of both the production
and detection wave packets σxS and σxD . Condition (32)
therefore automatically takes into account possible restora-
tion of coherence at detection, as discussed in Section 5.3.
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One may wonder why these assumptions are ac-
tually so popular in the literature and even made their
way to some textbooks, though there is no good rea-
son to believe that the different mass eigenstates have
either same momentum or same energy. One possible
reason could be the simplicity of the derivation of
the formula for the oscillation probability under these
assumptions. However, we believe that simplicity is
no justification for using a wrong argument to arrive
at the correct result.

4. ANOTHER STANDPOINT

In this section we outline a more general approach
to the calculation of the oscillation probability, which
gives an additional insight into the issues discussed in
the present paper. Here we just illustrate some points
relevant to our discussion rather than presenting a
complete formalism, which is beyond the scope of our
paper.

The flavor transition amplitude is given by (the
1-dimensional version of) Eq. (17). The function
ΨS

i (x, t) can be represented as the integral over
momenta of Eq. (9). Inserting this expression and a
similar formula for ΨD

i (x − L) into the expression for
the amplitude and performing the integral over the
coordinate, we obtain

Aab(L, t) (33)

=
∑

i

U∗
aiUbi

∫
dqihi(qi)eiqiL−iEi(qi)t,

where

hi(q) ≡ fS
i (q − pi)fD∗

i (q − pi). (34)

Here, the momenta qi are the integration variables,
whereas pi are, as before, the mean momenta of the
corresponding wave packets.

The amplitude (33) is the sum of plane waves with
different momenta and different masses. The integra-
tion over momenta can be formally substituted by a
summation to make this point clearer. The oscillation
probability is then

Pab(L, t) ≡ |Aab(L, t)|2 (35)

=

∣∣∣∣∣
∑

i

∑

qi

U∗
aiUbihi(qi)eiqiL−iEi(qi)t

∣∣∣∣∣

2

.

The waves with all momenta and masses should be
summed up; the resulting expression for the oscil-
lation probability includes the interference of these
waves.

The standard approach to the calculation of the
oscillation amplitude (33) (or probability (35)) is to
sum up first the waves with different momenta but

the same mass, and then sum over the mass eigen-
states. In this way first the wave packets correspond-
ing to different mass eigenstates are formed, and then
the interference of these wave packets is considered.
Since ∫

dqihi(qi)eiqiL−iEi(qi)t (36)

= Gi(L − vgit)eipiL−iEi(pi)t,

Eq. (33) then directly reproduces the results of Sec-
tion 3.

Another possibility is to sum up first the plane
waves with different masses but equal (or related)
momenta and then perform the integration over the
momenta. In particular, one can select the waves with
equal energies. Clearly, the final result should not de-
pend on the order of summation if no approximations
are made, and should be almost independent of this
order if the approximations are well justified. How-
ever, different summation conventions allow different
physical interpretations of the result. In what fol-
lows we will perform computations using the “equal
momenta” and “equal energy” summation rules and
identify the conditions under which they lead to the
standard result for the oscillation probability.

Let us first consider the “equal momenta” sum-
mation. Setting qi = p for all i, one can write the
amplitude (33) as

Aab(L, t) =
∫

dp
∑

i

U∗
aiUbihi(p)eipL−iEi(p)t. (37)

Next, we note that, for ultrarelativistic neutrinos, to
an extremely good approximation

hi(p) = h(p,Ei(p)), (38)

i.e., the functions hi(p) depend on the index i only
through their dependence on the neutrino energy

Ei(p) =
√

p2 + m2
i . Indeed, hi(p) depend on i

through the neutrino mass dependence of the phase-
space volumes and amplitudes of the neutrino emis-
sion and detection processes. The phase-space vol-
umes depend on mi only through Ei(p); the pro-
duction and detection amplitudes can in principle
depend directly on mi due to the chiral suppression,
as, e.g., in the case of π± or K± decays. However, the
corresponding contributions to the total amplitudes
are completely negligible compared to the main
contributions, which in this case are proportional to
the masses of charged leptons.

Let us expand hi in power series in ∆m2
i3:

hi(p) = h(p,Ei) = h(p,E3) (39)

+ Ei
∂hi

∂Ei

∣∣∣∣
mi=m3

∆m2
i3

2E2
3

+ . . .
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Inserting this expression into (37), we obtain

Aab(L, t) =
∫

dph(p,E3(p))eipL−iE3(p)t (40)

×
∑

i

U∗
aiUbie

−i[Ei(p)−E3(p)]t + A∆
ab(L, t),

where

A∆
ab(L, t) ≡

∫
dpeipL−iE3(p)t (41)

×
∑

i

U∗
aiUbie

−i[Ei(p)−E3(p)]t Ei∂hi

∂Ei

∣∣∣∣
mi=m3

∆m2
i3

2E2
3(p)

.

It is easy to see that the termA∆
ab(L, t) is typically very

small:

A∆
ab(L, t) ∼ ∆m2

i3

EσE
A1, (42)

where A1 is the first term on the right hand side of
Eq. (40). Indeed, if the width of the effective momen-
tum distribution function h(p) is σp, one has ∂h/∂p ∼
h/σp, so that

E∂h

∂E
=

E

vg

∂h

∂p
∼ Eh

vgσp
=

Eh

σE
, (43)

which immediately leads to (42). Thus, if

σE 	 ∆m2

2E
, (44)

A∆
ab(L, t) can safely be neglected.

Consider now the first term in Eq. (40). For a fixed
momentum the phase difference is ∆φi3 = (Ei −
E3)t ≈ ∆m2

i3t/2E3
10). If the width of the effective

momentum distribution function h(p,E3) is small
enough, so that the change of the phase within the
wave packet is small, we can pull the oscillatory
factor out of the integral at some effective momentum
(corresponding to an energy E):

Aab(L, t) �
[
∑

i

U∗
aiUbi exp

(
−i

∆m2
i3

2E
t

)]
(45)

×
∫

dph(p,E3(p))eipL−iE3(p)t

=

[
∑

i

U∗
aiUbi exp

(
−i

∆m2
i3

2E
t

)]

× G3(L − vg3t)eip3L−iE3(p3)t.

10)This approximation breaks down at very small momenta.
Note, however, that the small-p contribution to the inte-
gral in (40) is strongly suppressed because of the effective
momentum distribution function h(p, E3), which is strongly
peaked at a relativistic momentum p = p3. This justifies
using the approximation for ∆φi3 in (40).

Here the factor in the square brackets gives the stan-
dard oscillation amplitude in the “evolution in time”
approach. Integrating the squared modulus of ampli-
tude (45) over time and using once again Eq. (44),
one arrives at the standard expression for the oscilla-
tion probability.

Thus, we obtain the standard oscillation formula
by first summing up the waves with equal momenta
and different masses and then integrating over the
momenta provided that the following two conditions
are satisfied:

(i) The variation of the oscillation phase within
the wave packet due to the energy spread is small:
σE � (2πE2/∆m2

ik)L
−1; this condition allows one

to pull the oscillatory factor out of the integral over the
momenta, as discussed above. Note that it is actually
equivalent to the condition of no wave-packet sep-
aration, Eq. (32) (recall that ∆vg � ∆m2/2E2 and
σx � vg/σE).

(ii) The momentum distribution functions hi(p)
are not too narrow: σE 	 ∆m2/2E. This condition,
in particular, allows one to neglect the contribution
A∆

ab(L, t) in Eq. (40). It is essentially the localization
condition in the wave-packet picture, as it actually
ensures that the neutrino wave-packet length σx �
vg/σE is small compared to the neutrino oscillation
length.11)

These conditions for obtaining the standard oscil-
lation formula coincide with the conditions found in a
different framework in Section 3.2.

To describe the possible decoherence effects due to
the separation of the wave packets and reproduce the
localization factor in the oscillation probability explic-
itly, one should lift conditions (i) and (ii) and consider
the corresponding corrections to the oscillation am-
plitude. This is discussed in detail in Section 5.

Similarly, we can consider summation of waves
with equal energies and different masses, with the
subsequent integration over energies (or momenta).

Requiring Ei(qi) = E3(p) yields qi = ±
√

p2 + ∆m2
3i,

q3 = p. Taking into account that dqi =

±dp/
√

1 + ∆m2
3i/p

2, we obtain

Aab(L, t) (46)

=
∫

dp
∑

i

U∗
aiUbi

hi(qi(p), E3(p))√
1 + ∆m2

3i/p
2
eiqi(p)L−iE3(p)t.

Here, it is assumed that ν3 is the heaviest mass
eigenstate, so that ∆m2

3i ≥ 0 and no singularities

11)Note that the oscillation probability may take the standard
form even if this condition is violated, as it is the case, e.g.,
for Mössbauer neutrinos [4, 6].
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appear in the integrand. Note that our change of the
integration variables qi → p excludes, for i = 1, 2, the
small regions of momenta qi around zero; this, how-
ever, introduces only a tiny error, because the main
contributions to the integral come from the regions
around the points qi = pi, where the functions hi(qi)
are strongly peaked.

Expanding hi(qi(p), E3(p)) as

hi(qi(p), E3(p))√
1 + ∆m2

3i/p
2
� h(p,E3(p)) (47)

+
(

h(p,E3(p)) − p
∂h(p,E3(p))

∂p

)
∆m2

3i

2p2

and inserting this expression into (46), we obtain

Aab(L, t) =
∫

dph(p,E3(p))eipL−iE3(p)t (48)

×
∑

i

U∗
aiUbie

i[qi(p)−p]L + Ā∆
ab,

where

Ā∆
ab(L, t) ≡

∫
dpeipL−iE3(p)t (49)

×
∑

i

U∗
aiUbie

i[qi(p)−p]L

(
h − p∂h

∂p

)
∆m2

3i

2p2
.

Just as in the previous case, one can show that the
amplitude Ā∆

ab(L, t) can be neglected if condition (44)
is satisfied. Assuming this to be the case and that
the variation of the oscillation phase within the wave
packet due to the momentum spread is small, and
taking into account that (qi − p)L = (qi − q3)L �
∆m2

3iL/2p, one finds

Aab(L, t) �
[
∑

i

U∗
aiUbi exp

(
i
∆m2

3i

2p
L

)]
(50)

× G3(L − vg3t)eip3L−iE3(p3)t,

where p is the average neutrino momentum. This
is the standard oscillation amplitude multiplied by
the effective shape factor of the wave packet of ν3

(note that in our current approximation we actually
neglect the difference between the wave packets of
different mass eigenstates). Integrating the squared
modulus of the amplitude in Eq. (50) over time and
using normalization condition (20), we again arrive at
the standard expression for the oscillation probability,
just as in the previous case when we first summed
the terms with equal momenta and different masses
and then integrated over the momenta. In deriving
this result we once again used conditions (i) and (ii)
discussed above.

Our discussion of the new summation rules for
calculating the oscillation probability presented here

leads to an alternative explanation of why the “same
energy” and “same momentum” assumptions even-
tually lead to the correct physical observables, as
discussed in Section 6.

5. QUANTUM-MECHANICAL UNCERTAINTY
RELATIONS AND NEUTRINO

OSCILLATIONS

Neutrino oscillations, being a quantum-mecha-
nical interference phenomenon, owe their very exis-
tence to quantum-mechanical uncertainty relations.
The coordinate–momentum and time–energy uncer-
tainty relations are implicated in the oscillations phe-
nomenon in a number of ways. First, it is the energy
and momentum uncertainties of the emitted neutrino
state that allow it to be a coherent superposition of
the states of well-defined and different mass. The
same applies to the detection process—for neutrino
detection to be coherent, the energy and momen-
tum uncertainties inherent in the detection process
should be large enough to prevent a determination
of the absorbed neutrino’s mass in this process. The
uncertainty relations also determine the size of the
neutrino wave packets and therefore are crucial to the
issue of the loss of coherence due to the wave-packet
separation. In addition, these relations are important
for understanding how the produced and detected
neutrino states are disentangled from the accompa-
nying particles. Let us now discuss these issues in
more detail.

5.1. Uncertainty Relations and Disentanglement
of Neutrino States

In the majority of analyses of elementary-particle
processes it is assumed that the energies and mo-
menta of all the involved particles have well-defined
(sharp) values and obey the exact conservation laws.
However, for this description to be exact, the consid-
ered processes (and the particles involved) should be
completely delocalized in space and in time, whereas
in reality these processes occur in finite and relatively
small spatial volumes and during finite time intervals.
For this reason, the energy and momenta of all the
participating particles have intrinsic quantum me-
chanical uncertainties, and the particles should be de-
scribed by wave packets rather than states of definite
momentum—plane waves (see, e.g., [19]). The con-
servation of energy and momentum for these particles
is also fulfilled up to these small uncertainties.

This does not, of course, mean that the energy–
momentum conservation, which is a fundamental law
of nature, is violated: it is satisfied exactly when one
applies it to all particles in the system, including those
whose interactions with the particles directly involved
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in the process localize the latter in a given space–time
region. Schematically speaking, if we consider the
process as occuring in a box, the interactions with the
walls of the box and the contributions of these walls
to the energy–momentum balance have to be taken
into account. In reality, this is never done; however,
the resulting inaccuracy of the energy and momen-
tum conservation as well as the intrinsic quantum-
mechanical uncertainties of the energies and momen-
ta of the involved particles are usually completely
negligible compared to their energies and momenta
themselves, and therefore can be safely ignored in
most processes.

This is, however, not justified when neutrino os-
cillations are considered, since the neutrino energy
and momentum uncertainties, as tiny as they are, are
crucially important for the oscillation phenomenon. In
this respect, we believe that the attempts to use the
exact energy–momentum conservation in the analy-
ses of neutrino oscillations are inconsistent. In some
analyses the exact energy–momentum conservation
is assumed for the neutrino production and detection
processes in order to describe neutrinos as being
entangled with accompanying particles. The subse-
quent disentanglement, which is necessary for neu-
trino oscillations to occur, is assumed to be due to
the interaction of these accompanying particles (such
as, e.g., electrons or muons produced in decays of
charged pions) with medium. This localizes those
particles and creates the necessary energy and mo-
mentum uncertainties for the neutrino state. The de-
scribed approach misses the fact that the parent par-
ticles are already localized in the neutrino production
and detection processes, and so no additional disen-
tanglement through the interaction of the accompa-
nying particles with medium is necessary. Indeed, it
is clear that neutrinos produced, for example, in π±

decays oscillate even if the accompanying charged
leptons do not interact with medium, i.e., are not
“measured”. The measurement of the flavor of these
charged leptons that discriminates between e± and
µ± and makes neutrino oscillations possible is ac-
tually provided by the decoherence of the charged
leptons due to their very large mass difference [7].

5.2. Coherence of the Produced and Detected
Neutrino States

In order for a neutrino state produced in a charged-
current weak interaction process to be a coherent su-
perposition of different neutrino mass eigenstates, it
should be in principle impossible to determine which
mass eigenstate has been emitted. This means that
the intrinsic quantum-mechanical uncertainty of the
squared mass of the emitted neutrino state σm2 must
be larger than the difference ∆m2 of the squared

masses of different neutrino mass eigenstates [21,
23]: σm2 � ∆m2. Conversely, if σm2 � ∆m2, one can
determine which mass eigenstate has been emitted,
i.e., the coherence of different mass eigenstates is
destroyed. This situation is quite similar to that with
the electron interference in double-slit experiments:
If there is no way to find out which slit the detected
electron has passed through, the detection probabil-
ity will exhibit an interference pattern, but if such a
determination is possible, the interference pattern will
be washed out.

Assume that by measuring energies and momenta
of the other particles involved in the production pro-
cess we can determine the energy E and momentum
p of the emitted neutrino state, and that the intrinsic
quantum-mechanical uncertainties of these quanti-
ties are σE and σp. From the energy–momentum
relation E2 = p2 + m2 we can then infer the squared
mass of the neutrino state with the uncertainty σm2 =
[(2EσE)2 + (2pσp)2]1/2, where it is assumed that σE

and σp are uncorrelated. Therefore the condition that
the neutrino state be emitted as a coherent superpo-
sition of different mass eigenstates is [21, 23]

σm2 ≡
[
(2EσE)2 + (2pσp)2

]1/2 	 ∆m2. (51)

This condition has a simple physical meaning. Note
first that in many cases the two terms in the square
brackets in Eq. (51) are of the same order of mag-
nitude: EσE ∼ pσp (more generally, EσE ≤ pσp, see
Section 5.4). Therefore the condition in Eq. (51) es-
sentially reduces to 2pσp 	 ∆m2, or σp 	 ∆m2/2p =
2π/losc. Since the momentum uncertainty σp is
related to the coordinate uncertainty of the neutrino
source σxS by σp ∼ σ−1

xS , we finally get

σxS � losc. (52)

This is nothing but the obvious requirement that the
neutrino production be localized in a spatial region
that is small compared to the neutrino oscillation
length; if it is not satisfied, then neutrino oscillations
will be averaged out upon the integration over the
neutrino emission coordinate in the source, which is
equivalent to decoherence. For this reason the condi-
tion in Eq. (51) is often called the localization condi-
tion. Similar argument applies to the detection pro-
cess, i.e., the spatial size of the neutrino absorber σxD

should satisfy

σxD � losc. (53)

Since both (52) and (53) have to be fulfilled for neu-
trino oscillations to be observable, one can refor-
mulate the localization condition as the requirement
that the oscillation length losc be large compared to
σX ≡ max{σxS , σxD}, i.e., essentially compared to
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the effective size of the wave packet σx which is of
order of σX :

σx � losc. (54)

That this directly follows from the wave packet for-
malism is shown in Appendix.

In real situations one always deals with large en-
sembles of neutrino emitters, and the detectors also
consist of a large number of particles. Therefore, in
calculating the observable quantities—the numbers
of the neutrino detection events—one always has to
integrate over the macroscopic volumes of the neu-
trino source and detector. In some situations (e.g.,
for solar or reactor neutrinos) the source and detector
are much larger than the localization domains of the
wave functions of individual neutrino emitters and
absorbers. In these cases the integration over the
source and detector volumes modifies the localization
conditions: instead of depending on the spatial sizes
of the individual neutrino emitter and absorber, σxS
and σxD, they contain the macroscopic lengths of the
source and detector in the direction of the neutrino
beam, LS , and LD. In other words, a necessary con-
dition for the observability of neutrino oscillations is

LS,D � losc, (55)

which is much more restrictive than the conditions
in Eqs. (52) and (53). If this condition is violated,
neutrino oscillations are averaged out.

5.3. Wave Packet Separation and Restoration
of Coherence at Detection

Let us now assume that a neutrino flavor state
was produced coherently in a weak interaction pro-
cess and consider its propagation. The wave packet
describing a flavor state is a superposition of the wave
packets corresponding to different mass eigenstates.
Since the latter propagate with different group veloc-
ities, after some time tcoh they will separate in space
and will no longer overlap. If the spatial width of
the wave packet is σx, this time is tcoh � σx/∆vg .
The distance lcoh that the neutrino state travels dur-
ing this time is lcoh � vg(σx/∆vg). If the distance L
between the neutrino emission and detection points
is small compared to the coherence length, i.e., if
condition (32) is satisfied, then the coherence of the
neutrino state is preserved, and neutrino oscillations
can be observed. If, on the contrary, L ∼ lcoh or L 	
lcoh, partial or full decoherence should take place.

If the wave-packet width σx in the above discus-
sion is assumed to be fully determined by the emission
process, then this is not the full story yet: even if
the coherence is lost on the way from the source to
the detector, it still may be restored in the detector if
the detection process is sufficiently coherent, i.e., is

characterized by high enough energy resolution [33].
According to the quantum-mechanical time–energy
uncertainty relation, high energy resolution requires
the detection process to last sufficiently long; in that
case, the different wave packets may arrive during the
detection time interval and interfere in the detector
even if they have spatially separated on their way
from the source to the detector. One can take into
account this possible restoration of coherence in the
detector by considering σx to be an effective width
of the wave packet, which exceeds the width of the
emitted wave packet and takes the coherence of the
detection process into account. This effective wave-
packet width is actually the width that character-
izes the shape factors Gi(L − vgit), as discussed in
Section 3.1. With σx being the effective wave-packet
width, coherence condition (32) includes the effects of
possible coherence restoration at detection.

It is well known that coherence plays a crucial role
in observability of neutrino oscillations. It is inter-
esting to note, however, that even non-observation
of neutrino oscillations at baselines that are much
shorter than the oscillation length is a consequence
of and a firm evidence for coherence of the neu-
trino emission and detection processes: if it were bro-
ken (i.e., if the different neutrino mass eigenstates
were emitted and absorbed incoherently), the survival
probability of neutrinos of a given flavor, instead of
being practically equal to 1, would correspond to av-
eraged neutrino oscillations.

5.4. What Determines the Size of the Wave Packet?

According to the quantum-mechanical uncer-
tainty relations, the energy and momentum uncer-
tainties of a neutrino produced in some process are
determined by, correspondingly, the time scale of the
process and spatial localization of the emitter. These
two quantities are in general independent; on the
other hand, for a free on-shell particle of definite mass
the dispersion relation E2 = p2 + m2 immediately
leads to

EσE = pσp. (56)

Since this relation is satisfied for each mass eigen-
state component of the emitted flavor state, it must
also be satisfied for the state as a whole (provided that
the energies and momenta of different components
as well as their uncertainties are nearly the same,
which is the case for relativistic or quasi-degenerate
neutrinos). Thus, we have an apparently paradoxical
situation: on the one hand, σE and σp should be
essentially independent, while on the other hand they
must satisfy Eq. (56).

The resolution of this paradox comes from the ob-
servation that at the time of their production neutrinos
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are actually not on the mass shell and therefore do
not satisfy the standard dispersion relation. Therefore
their energy and momentum uncertainties need not
satisfy (56). However, as soon as neutrinos move
away from their production point and propagate dis-
tances x such that px 	 1, they actually go on the
mass shell, and their energy and momentum uncer-
tainties start obeying Eq. (56). This happens because
the bigger of the two uncertainties shrinks towards
the smaller one, so that Eq. (56) gets fulfilled. Indeed,
when the neutrinos go on the mass shell, the standard
relativistic dispersion relation connecting the ener-
gies and momenta of their mass eigenstate compo-
nents allows to determine the less certain of these
two quantities through the more certain one, thus
reducing the uncertainty of the former. As a result, the
two uncertainties get related by Eq. (56), with the one
that was smaller at production retaining its value also
on the mass shell. Note that for neutrino energies in
the MeV range neutrinos go on the mass shell as soon
as they propagate distances x � 10−10 cm from their
birthplace.

From the above discussion it follows that the spa-
tial width of the neutrino wave packet, which de-
termines the neutrino coherence length lcoh through
Eq. (32), is determined by the smaller of the two
uncertainties at production, σE and σp. This comes
about because lcoh is a characteristic of neutrinos
that propagate macroscopic distances and therefore
are on the mass shell. At the same time, localization
condition (54) always depends on the spatial localiza-
tion properties of the neutrino emitter and detector,
which are related to the corresponding momentum
uncertainties at production and detection.

Which of the two uncertainties, σp or σE , is actu-
ally the smaller one at production and so determines
the spatial width of the neutrino wave packet? Quite
generally, this happens to be the energy uncertainty
σE . Indeed, consider, e.g., an unstable particle, the
decay of which produces a neutrino. In reality, such
particles are always localized in space, so one can
consider them to be confined in a box of a linear
size LS . The localizing “box” is actually created by
the interactions of the particle in question with some
other particles. Assume first that the time interval TS

between two subsequent collisions of the decaying
particle with the walls of the box (more precisely, the
interval between its collisions with the surrounding
particles) is shorter than its lifetime τ = Γ−1. Then
the energy width of the state produced in the decay
is given by the so-called collisional broadening and
is actually �T−1

S . This width directly gives the neu-
trino energy uncertainty, i.e., σE � T−1

S . On the other
hand, the neutrino momentum uncertainty is σp �

L−1
S . Since TS is related to LS through the velocity

of the parent particle v as TS � LS/v, one finds

σE < σp, (57)

which is actually a consequence of v < 1.
Consider now the situation when the lifetime of

the parent particle is shorter than the interval between
two nearest collisions with the walls of the box. In this
case the decaying particle can be considered as quasi-
free, and the energy uncertainty of the produced neu-
trino is given by the decay width of the parent particle:
σE � Γ.12) The momentum uncertainty of neutrino
is then the reciprocal of its coordinate uncertainty
σx, which in turn is just the distance traveled by
neutrino during the decay process: σx � (p/E)τ =
(p/E)Γ−1 � (p/E)σ−1

E . Thus we find pσp � EσE ,
i.e., Eq. (56) is approximately satisfied in this case.
Once again condition (57) is fulfilled. It can be shown
that this inequality is also satisfied when neutrinos
are produced in collisions rather than in decays of
unstable paricles [34].

Thus, we conclude that the spatial width σx of
the wave packets describing the flavor neutrino states
is always determined by the energy uncertainty of
the state as the smaller one between σp and σE ,
i.e., σx ∼ vg/σE . This is in accord with the known
fact that for stationary neutrino sources (for which
σE = 0) the neutrino coherence length is infinite [33,
35]. On the other hand, the localization conditions for
neutrino production and detection are determined by
the corresponding momentum uncertainties.

It then follows that the parameters σx that enter
into the coherence condition and into the localization
condition, discussed in Sections. 3.2 and 5.2 and in
Appendix (see Eqs. (32) and (54)), are in general dif-
ferent; they only coincide (or nearly coincide) when at
production σp ∼ σE , so that Eq. (56) is approximately
satisfied from the very beginning. As we discussed
above, such a situation is not uncommon, but it is not
the most general one.

This observation underlines a shortcoming of the
simple wave-packet approach to neutrino oscilla-
tions: it does not take into account the neutrino pro-
duction and detection processes, except by assigning
to the neutrino state a momentum uncertainty, which
is supposed to be determined by these processes. In
particular, the neutrino wave-packet picture assumes
the mass eigenstate components of the flavor neutrino
states to be always on the mass shell, so that their en-
ergy and momentum uncertainties are always related

12)This only holds for slow parent particles. In the case of rela-
tivistic decaying particles, σE depends on the angle between
the momenta of the parent particle and of neutrino [28]. Still,
condition (57) holds in that case as well.
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by Eq. (56). Obviously, this approach is adequate in
the cases when at production and detection σp � σE ,
but is not satisfactory when this condition is strongly
violated. In the latter cases one has to resort to the
more consistent quantum field theoretical (QFT)
treatment of neutrino oscillations, in which neutrino
production, propagation and detection are considered
as one single process. For QFT approach to neutrino
oscillations see, e.g., [4, 23, 26, 34–38].

An interesting case in which the condition σp �
σE is strongly violated both at production and de-
tection is the proposed Mössbauer neutrino exper-
iment, for which σE ∼ 10−11 eV and σp ∼ 10 keV
are expected [4, 6], so that σE ∼ 10−15σp. This case
also gives a very interesting example of coherence
restoration at detection, which resolves another para-
dox of neutrino oscillations. In a Mössbauer neutrino
experiment neutrinos are produced coherently due to
their large momentum uncertainty [4]. However, as
soon as the emitted neutrino goes on the mass shell,
its momentum uncertainty shrinks to satisfy Eq. (56),
i.e., essentially becomes equal to the tiny energy un-
certainty. Therefore, for on-shell Mössbauer neutri-
nos σp ∼ 10−11 eV � ∆m2/2E � 10−7 eV, i.e., the
momentum uncertainty is much smaller than the dif-
ference of the momenta of different mass eigenstates.
This means that coherence of different mass eigen-
states in momentum space is lost. However, the fact
that in this case both the energy and momentum un-
certainties of the propagating neutrino state are much
smaller than ∆m2/2E does not mean that oscilla-
tions cannot be observed. In fact, it has been shown
in [4] that the Mössbauer neutrinos should exhibit
the usual oscillations. The resolution of the paradox
lies in the detection process: the large momentum
uncertainty at detection, σpD ∼ 10 keV 	 ∆m2/2E,
restores the coherence by allowing the different mass
eigenstates composing the flavor neutrino state to be
absorbed coherently.

Our final comment in this section is on the case
when σp ∼ σE at production, in which the coherence
and localization conditions depend on the same pa-
rameter σx ∼ σ−1

p . While the localization condition
requires relatively large σp (σp 	 ∆m2/2p) for the
emitted and detected neutrino states to be coherent
superpositions of mass eigenstates, the condition of
no decoherence due to the wave-packet separation,
on the contrary, requires long wave packets, i.e., rel-
atively small σp. Is there any clash between these two
requirements? By combining the two conditions we
find ∆m2/2p � σp � (vg/∆vg)L−1, which can only
be satisfied if

∆m2/2p � (vg/∆vg)L−1. (58)

This can be rewritten as the following condition on
the baseline L:

2π
L

losc
� vg

∆vg
. (59)

Since vg/∆vg 	 1, this condition is expected to be
satisfied with a large margin in any experiment which
intends to detect neutrino oscillations: if it were vio-
lated, neutrino oscillations would have been averaged
out because of the very large oscillation phase (except
for unrealistically good experimental energy resolu-
tion δE/E < ∆vg/vg ∼ ∆m2/2E2).

6. WHEN IS THE STATIONARY-SOURCE
APPROXIMATION JUSTIFIED?

It has been pointed out in [23, 33] and greatly elab-
orated and exploited in [14] that for stationary neu-
trino sources the following two situations are physi-
cally indistinguishable:

(a) a beam of plane-wave neutrinos, each with a
definite energy E and with an overall energy spectrum
Φ(E);

(b) a beam of neutrinos represented by wave pack-
ets, each of them having the energy shape factor h(E)
such that |h(E)|2 = Φ(E).

As was stressed in [14], this actually follows from
the fact that in stationary situations the spectrum
Φ(E) fully determines the neutrino density matrix and
therefore contains the complete information on the
neutrino system.

This, in fact, gives an alternative explanation of
why the “same energy” approach, though based on
an incorrect assumption, leads to the correct result. It
has been shown in Section 4 that, within the proper
wave-packet formalism, one can choose to sum up
first the states of different mass but the same energy,
and then integrate over the energy (or momentum)
distributions described by the effective energy or mo-
mentum shape factors of the wave packets, h(E) or
h(p). In the light of the physical equivalence of situa-
tions (a) and (b), it is obvious that the integration over
the spectrum of neutrinos, which is inherent in any
calculation of the event numbers, leads to the same
result as the integration over the energy spread within
the wave packets (provided that the corresponding
energy distributions coincide). Thus, the “same en-
ergy” assumption, though by itself incorrect, leads
to the correct number of events upon the integration
over the neutrino energy spectrum. The same is true
for the “same momentum” assumption. This actually
means that the wave-packet description becomes un-
necessary in stationary situations, when the temporal
structure of the neutrino emission and detection pro-
cesses is irrelevant and the complete information on

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 8 2009



1376 AKHMEDOV, SMIRNOV

neutrinos is contained in their spectrum Φ(E), as was
first pointed out in [14].

Let us derive the results of stationary source ap-
proximation in terms of the wave-packet picture de-
scribed in this paper. We start with Eq. (17) for the
oscillation amplitude and Eq. (9) for the evolved wave
function ΨS

i (x, t). Notice that the shape factor fS
i (p−

pi) in (9) does not depend on time, and furthermore
this expression is determined for all moments t from
−∞ to +∞. The only time dependence in (9) is in the
form of the plane waves in the integrand. This is pre-
cisely what corresponds to the stationarity condition:
the source has no special time feature, and there is no
tagging of neutrino emission and detection times.

Substituting Eqs. (9) and (15) into Eq. (17) we
obtain, upon neglecting the transverse components of
the neutrino momenta,

Aab(L, t) (60)

=
∑

i

U∗
aiUbi

∫
dpfS

i (p − pi)f̃D
i (p)eipL−iEi(p)t,

where

f̃D
i (p) ≡

∫
dxΨD∗

i (x − L)eip(x−L) (61)

is the Fourier transform of the detection state. Note
that Ri ≡ |f̃D

i (p)|2 characterizes the momentum (en-
ergy) resolution of the detector.

The oscillation probability is obtained by integrat-
ing the squared modulus of the amplitude over time.
We have

|Aab(L, t)|2 =
∑

i,k

U∗
aiUbiU

∗
bkUak (62)

×
∫

dp

∫
dp′fS

i (p − pi)fS∗
k (p′ − pk)f̃D

i (p)

× f̃D∗
k (p′)ei(p−p′)Le−i[Ei(p)−Ek(p′)]t.

The integration over time is trivial:
+∞∫

−∞

dt e−i[Ei(p)−Ej(p′)]t (63)

= 2πδ[Ei(p) − Ek(p′)],

which means that only the waves with equal energies
interfere. We stress once again that this is a con-
sequence of the fact that no time structure appears
in the detection and production processes, which is
reflected in the time independence of the momentum
distribution functions fS

i (p − pi) and f̃D
i (p), and in

the integration over the infinite interval of time. The
equality Ei(p) = Ek(p′) leads to

p − p′ = ∆m2
ki/2p (64)

to the leading order in the momentum difference. The
δ function (63) can be used to remove one of the
momentum integrations in (62), so that we finally
obtain

Pab(L) =

+∞∫

−∞

dt|Aab(L, t)|2 (65)

= 2π
∫

dp|fS(p − p̄)|2|f̃D(p)|2

×
∑

i,k

U∗
aiUbiU

∗
bkUak exp

(
−i

∆m2
ik

2p
L

)
.

Here we have neglected the dependence of the shape
factors on the neutrino mass. Replacing the integra-
tion over momenta by the integration over energies,
we can rewrite the oscillation probability as

Pab(L) =

+∞∫

−∞

dt|Aab(L, t)|2 (66)

=
2π
vg

∫
dEΦ(E)R(E)Pab(E,L),

where
Pab(E,L) (67)

=
∑

i,k

U∗
aiUbiU

∗
bkUak exp

(
−i

∆m2
ik

2E
L

)

is the standard expression for the oscillation proba-
bility, Φ(E) ≡ |fS(E − Ē)|2 is the energy spectrum
of the source, and R(E) ≡ |f̃D(E)|2 is the resolution
function of the detector (note that we have substituted
the momentum dependence of these quantities by
the energy dependence using the standard on-shell
dispersion relation).

The expression in Eq. (66) corresponds to the
stationary-source approximation: the oscillation prob-
ability is calculated as an incoherent sum of the
oscillation probabilities, computed for the same-
energy plane waves, over all energies.

Notice that we have performed integration over the
spatial coordinate at the level of the amplitude and
over time at the probability level. Apparently, such
an asymmetry of space and time integrations is not
justified from the QFT point of view. In QFT com-
putations the integration over time is performed in
the amplitude, and this leads (in the standard setup)
to the δ function which expresses the conservation
of energy in the interaction process. To match our
picture with that of QFT we need to consider the
detection process and take into account the energies
of all the particles that participate in the process.
Suppose that the algebraic sum of the energies of
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all the accompanying particles (taken with the “−”
sign for all incoming paricles and the “+” sign for the
outgoing ones) is ED. Then instead of (63) we will
have in the probability

+∞∫

−∞

dte−i[Ei(p)−ED ]t

+∞∫

−∞

dt′ei[Ek(p′)−ED ]t′ (68)

= 4π2δ[Ei(p) − Ek(p′)]δ[Ei(p) − ED],

where the second δ function on the right-hand side
reflects the energy conservation in the detection pro-
cess. Using (68) we again obtain the “same energy”
interference, as before.

In the above calculation we have not introduced
any time structure at detection and performed the
integration over t from −∞ to +∞. In reality, cer-
tain time scales are always involved in the detection
processes (even if we do not perform any time tag-
ging in the emission process). For example, we can
measure with some accuracy the appearance time of
a charged lepton produced by the neutrino capture in
the detection process. In this case, the neutrino state
of detection will have a time dependence:

ΨD
i = ΨD

i (x − L, t − t0), (69)

where ΨD
i has a peak at t0 with a width σt that is

determined by the accuracy of the measurement of
the time of neutrino detection. Since in practice the
spatial characteristics of neutrino detection do not
change with time, the dependences of ΨD

i on x and
t factorize: ΨD

i = ΨD
xi(x − L)ΨD

ti (t − t0). Integrating
over time in the amplitude, we will have

∫
dx

∫
dtΨD∗

i (x − L, t − t0)eipx−iEit (70)

= eipL−iEit0 f̃D
i (p)fD

ti (E),

where f̃D
i (p) was defined in (61) and

fD
ti (E) ≡

∫
dtΨD∗

ti (t − t0)e−iEit (71)

is the Fourier transform of ΨD∗
ti (t − t0). As we have

mentioned, ΨD
ti (t − t0) has a peak of width σt at t =

t0. Taking for σt the value σt ∼ 10−9 s (which is prob-
ably the best currently achievable time resolution), we
obtain δE ∼ σ−1

t ∼ 10−6 eV. This is many orders of
magnitude smaller than the typical energy resolution
in the oscillation experiments. Therefore one can sub-
stitute fD

ti (E) → δ(E −ED), which brings us back to
our previous consideration.

7. WHEN CAN NEUTRINO OSCILLATIONS
BE DESCRIBED BY PRODUCTION
AND DETECTION INDEPENDENT

PROBABILITIES?

In most analyses of neutrino oscillations it is as-
sumed that the oscillations can be described by uni-
versal, i.e., production and detection process inde-
pendent probabilities. In other words, it is assumed
that by specifying the flavor of the initially produced
neutrino state, its energy and the distance between
the neutrino source and detector, one fully determines
the probability of finding neutrinos of all flavor at
the detector site (for known neutrino mass squared
differences and leptonic mixing matrix). The standard
formula for neutrino oscillations in vacuum, Eq. (6), is
actually based on this assumption. Such an approach
is very often well justified, but certainly not in all
cases. It is, therefore, interesting to study the appli-
cability limits and the accuracy of this approximation.

A natural framework for this is that of QFT, which
provides the most consistent approach to neutrino
oscillations. In this approach the neutrino production,
propagation, and detection are considered as a sin-
gle process with neutrinos in the intermediate state.
This allows one to avoid any discussion of the prop-
erties of the neutrino wave packets since neutrinos
are actually described by propagators rather than by
wave functions. The properties of neutrinos in the
intermediate state are fully determined by those of the
“external” particles, i.e., of all the other particles that
are involved in the neutrino production and detection
processes. The wave functions of these external par-
ticles have to be specified. Usually, these particles are
assumed to be described by wave packets; for this
reason the QFT-based treatment is often called the
“external wave packets” approach [30], as opposed to
the usual, or “internal wave packets” one, which was
discussed in Sections 3, 4, 6 and Appendix and which
does not include neutrino production and detection
processes. The results of the QFT-based approach
turn out to be similar, but not identical, to those
of a simple wave-packet one; in particular, possible
violations of the on-shell relation (56) between the
neutrino energy and momentum uncertainties is now
automatically taken into account. Moreover, the val-
ues of these uncertainties, which specify the proper-
ties of the neutrino wave packet in the “internal wave
packets” approach and which have to be estimated
in that approach, are now directly derived from the
properties of the external particles.

The results of the QFT approach can be summa-
rized as follows. For neutrinos propagating macro-
scopic distances the overall probability of the
production—propagation—detection process for rel-
ativistic or quasi-degenerate neutrinos can to a very
good accuracy be represented as a product of the
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individual probabilities of neutrino production, propa-
gation (including oscillations), and detection13). The
oscillation probability, however, is not in general inde-
pendent of production and detection processes, which
means that the factorizability of the probability of the
entire production–propagation–detection process
and the universality of the oscillation probability (or
lack thereof) are in general independent issues. The
oscillation probability can be generically represented
as

P (νa → νb;L) =
∑

i,k

U∗
aiUbiUakU∗

bk (72)

× exp
(
−i

∆m2
ik

2p
L

)
Scoh(L/lcoh

ik )Sloc(σloc
x /losc

ik ).

Here, Scoh(L/lcoh
ik ) and Sloc(σloc

x /losc
ik ) are, respec-

tively, the coherence and localization factors, which
account for possible suppression of the oscillations
due to wave-packet separation and violation of the lo-
calization conditions. They both are equal to unity at
zero argument and quickly decrease (typically expo-
nentially) when their arguments become large. Note
that these factors depend on the indices i and k
because so do the partial oscillation and coherence
lengths losc

ik and lcoh
ik . The simple “internal wave pack-

ets” approach leads to an expression for the oscil-
lation probability that is similar in form to that in
Eq. (72); however, unlike in that simple approach,
in the QFT-based framework the coherence and lo-
calization lengths entering into Eq. (72) depend in
general on different length parameters, σcoh

x and σloc
x .

This is related to the fact that the energy and mo-
mentum uncertainties at production and detection
need not satisfy (56), as discussed in Section 5.4. In
addition, the form of the coherence and localization
factors Scoh(L/lcoh

ik ) and Sloc(σloc
x /losc

ik ) in Eq. (72),
rather than being postulated, is derived from the prop-
erties of the external particles and of the detection and
production processes.

For the oscillation probability to be independent of
the production and detection processes, the following
conditions have to be fulfilled:

(i) Decoherence effects due to wave-packet sepa-
ration and due to violation of the localization condi-
tions should be negligible;

(ii) The energy release in the production and de-
tection reactions should be large compared to the
neutrino mass (or compared to mass differences).

13)A notable exception from this rule is the case of the
Mössbauer effect with neutrinos, in which the probabilities
of neutrino production and detection do not factorize but are
instead entangled with each other [4]. Still, even in this case,
the oscillation (actually, ν̄e survival) probability can to a very
good accuracy be factored out of the expression for the overall
probability of the process.

The necessity of (i) is clear from the discussion
above: if this condition is fulfilled, the coherence and
localization factors in Eq. (72) are both equal to
unity, and the standard neutrino-oscillation formula
is recovered. If, on the contrary, (i) is violated, the
oscillations will suffer from the production and detec-
tion dependent decoherence effects. As to the condi-
tion (ii), it ensures that the production and detection
probabilities are essentially the same for all mass
eigenstate components of the emitted or detected
flavor neutrino states (modulo the different values of
|Uai|2); if this condition is violated, the phase space
available in the production or detection process will
depend on the mass of the participating neutrino mass
eigenstate, and the mass eigenstate composition of
the flavor eigenstates will no longer be given by simple
formula (1).

8. DISCUSSION AND SUMMARY

In the present paper we discussed a number of
subtle issues of the theory of neutrino oscillations
which are still currently under debate or have not
been sufficiently studied yet. For each problem we
discussed, we were trying to present our analysis from
different perspectives and obtained consistent results.
We have also developed a new approach to calculating
the oscillation probability in the wave-packet picture,
in which we changed the usual order of integration
over the momenta (or energies) and summation over
the mass eigenstate components of the wave packets
representing the flavor neutrino states. This allowed
a new insight into the question why the unjustified
“same energy” and “same momentum” assumptions
lead to the correct result for the oscillation probability.

We have also presented an alternative derivation
of the equivalence between the results of the sharp-
energy plane-wave formalism and of the wave-packet
approach in the case of stationary neutrino sources,
as well as discussed the applicability conditions for
the stationary-source approximation.

Below we give a short summary of our answers to
the first seven questions listed in Introduction.

(1) The standard formula for the probability of neu-
trino oscillations is obtained if the decoherence effects
due to the wave-packet separation are negligible and
the neutrino emitter and absorber are sufficiently well
localized. Under these conditions the additional os-
cillation phase ∆φ′ which is acquired in the neutrino
production and detection regions is negligible. The
“same energy” and “same momentum” assumptions,
which allow one to nullify this additional phase, are
then unnecessary. They still lead to the correct result
because their main effect is essentially just to remove
this extra phase. An alternative explanation of the fact
that the “same energy” assumption gives the correct
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result comes from the observation that in going from
the oscillation probability to the observables such as
event numbers, one has to integrate over the neutrino
spectra. As discussed in [14, 33] and in Section 6,
for stationary neutrino sources this is equivalent to
integration over the energy distribution within wave
packets (provided that this energy distribution coin-
cides with the spectrum of plane-wave neutrinos). In
Section 4 we have shown that the integration over
the spectrum of plane-wave neutrinos is just a cal-
culational convention in the wave-packet approach,
which does not involve any additional approxima-
tions.

(2) Quantum-mechanical uncertainty relations
are at the heart of the phenomenon of neutrino
oscillations. For neutrino production and detection to
be coherent, its energy and momentum uncertainties
must be large enough to prevent a determination of
the neutrino’s mass in these processes. These un-
certainties are governed by the quantum-mechanical
uncertainty relations, which also determine the size
of the neutrino wave packets and therefore are pivotal
for the issue of the coherence loss due to the wave-
packet separation.

(3) The spatial size of the neutrino wave packets
is always determined by their energy uncertainty σE .
(4) The coherence condition ensures that the wave
packets corresponding to the different mass eigen-
states do not separate to such an extent that they
can no longer interfere in the detector. This condition
is therefore related to the spatial size of the neutrino
wave packets, which is determined by the neutrino
energy uncertainty σE . Note that this is an effective
uncertainty which depends on the energy uncertain-
ties both at neutrino production and detection. At
the same time, the localization conditions are de-
termined by the effective momentum uncertainty σp,
which depends on the momentum uncertainties at
production and detection. In the simple wave-packet
approach, the neutrino energy and momentum un-
certainties are related to each other due to the on-
shellness of the propagating neutrino, whereas in a
more general quantum field theoretic framework they
are in general unrelated.

(5) Wave-packet approach (or a superior QFT
one) are necessary for a consistent derivation of the
expression for the oscillation probability. Once this
has been done, wave packets can be forgotten in all
situations except when the decoherence effects due
to the wave-packet separation or due to the lack of
localization of the neutrino source or detector be-
come important. Even in those cases, though, the
decoherence effects can in most situations be reliably
estimated basing on the standard oscillation formula
and simple physical considerations. In addition, the

wave packets are unnecessary in the case of sta-
tionary problems [14]. Thus, the wave-packet ap-
proach is mainly of pedagogical value. It is also useful
for analysing certain subtle issues of the neutrino-
oscillation theory.

(6) The oscillation probability is independent of the
production and detection processes provided the fol-
lowing conditions are satisfied: (i) decoherence effects
due to wave-packet separation and due to violation of
the localization conditions are negligible, and (ii) the
energy release in the production and detection reac-
tions is large compared to the neutrino mass (or com-
pared to mass differences). Note that if the condition
opposite to (i) is realized, the probabilities of flavor
transitions also take a universal form, as in that case
they simply correspond to averaged oscillations.

(7) The stationary-source approximation is valid
when the time-dependent features of the neutrino
emission and absorption processes are either absent
or irrelevant, so that one essentially deals with steady
neutrino fluxes. Integration over the neutrino detec-
tion time then results in the equivalence of the oscil-
lation picture to that in the “same energy” approxi-
mation.

APPENDIX

INTEGRAL Iik AND ITS PROPERTIES

Let us consider the properties of the integral Iik(L)
defined in Eq. (22). Expressing the shape factors
gS,D
i (x) of the wave packets through the correspond-

ing momentum distribution functions according to
(the 1-dimensional version of) Eq. (13) and substi-
tuting the result into (19), we find the following rep-
resentation for Gi(L − vgit):

Gi(L − vgit) (A.1)

=

∞∫

−∞

dpfS
i (p)fD∗

i (p)eip(L−vgit).

Consider now the integral

Ĩik(L) ≡
∞∫

−∞

dtGi(L − vgit)G∗
k(L − vgkt) (A.2)

=

∞∫

−∞

dt

∞∫

−∞

dp1

∞∫

−∞

dp2f
S
i (p1)fD∗

k (p1)fS∗
i (p2)

× fD
k (p2)eip1(L−vgit)−ip2(L−vgkt).

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 8 2009



1380 AKHMEDOV, SMIRNOV

Performing first the integration over time and making
use of the standard integral representation of Dirac’s
δ-function, we obtain

Ĩik(L) =
2π
vgk

∞∫

−∞

dpfS
i (p)fD∗

i (p)fS∗
k (rp) (A.3)

× fD
k (rp))eip(1−r)L,

where

r ≡ vgi

vgk
� 1. (A.4)

In the limit when the group velocities of the wave
packets corresponding to different mass eigenstates
are exactly equal to each other, r = 1, Ĩik does not
depend on the distance L. Since the dominant contri-
bution to the integral in (A.3) comes from the region
|p| � σP ≡ min{σpS , σpD} of the integration interval,
Ĩik is practically independent of L, provided that |1 −
r|LσP � 1, or

L � lcoh = σX
vg

∆vg
, (A.5)

where ∆vg = |vgi − vgk| and σX = 1/σp. This is
merely the condition of the absence of the wave-
packet separation: the distance traveled by neutrinos
should be smaller than the distance over which the
wave packets corresponding to different mass eigen-
states separate due to the difference of their group
velocities and cease to overlap. If the condition oppo-
site to that in Eq. (A.5) is satisfied, the integral Ĩik is
strongly suppressed because of the fast oscillations of
the integrand. Ĩik is actually the overlap integral that
indicates how well the wave packets corresponding
to the ith and kth neutrino mass eigenstates overlap
with each other upon propagation the distance L from
the source.

Consider now the integral Iik that enters into ex-
pression (21) for the oscillation probability P (νa →
νb;L) and is given by Eq. (30). The calculation similar
to that of the integral Ĩik in Eq. (A.2) yields

Iik(L) =
2π
vgk

e−i∆Eik[(vgi−vgk)/2vgvgk ]L (A.6)

× exp
(
−i

∆m2
ik

2p
L

) ∞∫

−∞

dpfS
i (p)fD∗

i (p)

× fS∗
k (rp + ∆Eik/vgk)fD

k (rp + ∆Eik/vgk)eip(1−r)L.

The first exponential factor here must be replaced
by unity because the exponent contains the prod-
uct of the factors ∆Eik and (1/vgk − 1/vg) � [(vgi −

vgk)/2vgvgk], both of which are ∝∆m2
ik, and hence, is

of fourth order in neutrino mass. Thus, we finally get

Iik(L) = exp
(
−i

∆m2
ik

2p
L

)
2π
vgk

(A.7)

×
∞∫

−∞

dpfS
i (p)fD∗

i (p)fS∗
k (rp + ∆Eik/vgk)

× fD
k (rp + ∆Eik/vgk)eip(1−r)L.

Just as in the case of Ĩik, the integral on the right
hand side of Eq. (A.7) is practically independent of L
when the condition (A.5) is satisfied and is strongly
suppressed in the opposite case. In addition, it is
quenched if the split of the arguments of fS,D

i and

fS,D
k in the integrand exceeds σP ; thus, a necessary

condition for unsuppressed Iik is

∆EikσX/vg � 1. (A.8)

This is often called the localization condition for the
following reason. Since ∆Eik/vg ∼ ∆m2

ik/2p ∼ l−1
osc

and σX , being the inverse of min{σpS , σpD}, is the
largest of the sizes of the two spatial localization re-
gions, of the emitter and detector, the condition (A.8)
is actually equivalent to the obvious requirement that
the neutrino source and detector be localized within
spatial regions that are small compared to the oscil-
lation length losc. If this condition is violated, inte-
gration over the coordinates of the neutrino emission
and detection points within the source and detector
results in neutrino oscillations being averaged out.

From the above consideration it follows that the
factor Iik in the expression for the oscillation prob-
ability yields the standard oscillation phase factor

exp
(
−i

∆m2
ik

2p
L

)
multiplied by the integral which

accounts for possible suppression of the oscillating
terms due to decoherence caused by wave-packet
separation and/or lack of localization of the neu-
trino source and detector. Note that both decoher-
ence mechanisms lead to exponential suppression
of the interference terms in the oscillation probabil-
ities since they come from the infinite-limits inte-
grals of fast oscillating functions. The exact form of
these suppression factors depends on the shape of
the wave packets, i.e., is model dependent; in par-
ticular, for Gaussian and Lorentzian wave packets,
these factors are ∼ exp[−(L/lcoh)2] exp[−(σX/losc)2]
and exp(−L/lcoh) exp(−σX/losc), respectively.
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