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Abstract

Hooker et al. (2009) defined a paradoxical result as the attainment of a higher test score by changing
answers from correct to incorrect and demonstrated that such results are unavoidable for maximum
likelihood estimates in multidimensional item response theory. The potential for these results to occur
leads to the undesirable possibility of a subject’s best answer being detrimental to them. This paper
considers the existence of paradoxical results in tests composed of item bundles when compensatory
models are used. We demonstrate that paradoxical results can occur when bundle effects are modeled as
nuisance parameters for each subject. However, when these are modeled as random effects, or used in a
Bayesian analysis, it is possible to design tests comprised of many short bundles that avoid paradoxical
results and we provide an algorithm for doing so. We also examine alternative models for handling
dependence between item bundles and show that using fixed dependency effects is always guaranteed to
avoid paradoxical results.

1 Introduction

Finkelman et al. (2007) demonstrated an unexpected phenomenon: in multidimensional item response theory
it is possible to increase a subject’s estimated ability in one dimension by changing one of their answers from
“correct” to “incorrect”. They labeled this phenomenon a paradoxical result. Finkelman et al. (2007) and
Hooker et al. (2009) explored the situation where two subjects (A and B) discover that A failed and B passed
despite A giving correct answers to every question B answered correctly, as well as some that B answered
incorrectly. The existence of this situation can be justified statistically, but can raise concerns about the
perceived fairness of the scoring system. It may therefore be desirable to avoid such phenomena and a score
(or ability estimate) that always does so is described as regular. Hooker et al. (2009) investigated the phe-
nomenon mathematically and proved the surprising result that in compensatory models, paradoxical results
occur for any non-separable test and almost all answer sequences within that test when maximum likelihood
estimates are used to estimate abilities. Hooker et al. (2009) observed that the problem is ameliorated when
priors are placed on abilities, but that paradoxical results are still possible, especially for long tests. However,
that paper assumed a test in which items are independent conditional on the vector of abilities; the potential
for paradoxical results to occur without this assumption is an open question.

An anonymous referee for Hooker et al. (2009) suggested that one frequent instance where conditional
independence is violated is the use of tests that are comprised of a number of testlets or bundles that have
some features in common. A canonical example is a test that is made up of a number of reading passages
each of which has several comprehension questions. Bundles may also have particular contexts or assumed
knowledge in common and may be detected statistically (e.g. Douglas et al., 1996). In such situations, the
usual assumption that a subject’s answers are locally independent becomes problematic (Rosenbaum, 1988).
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One method of accounting for this dependence is to add a “nuisance ability” for each bundle that might
capture the extent to which a subject was familiar with the context of a reading passage, for example. This
device retains a form of local independence (conditional on the “bundle abilities”) at the cost of using a
multivariate ability vector and the potential for paradoxical results.

Because paradoxical results can lead to student claims of unfairness, it is important for practitioners to
know whether their tests are prone to producing them. At present, this is not possible if the test contains
item bundles and the test is scored using methods that model dependence within a bundle (e.g. Li et al.,
2006). The goal of this paper is to remedy the situation by examining whether paradoxical results can occur
when employing models for item bundles. As will be seen, paradoxical results are possible when constructing
tests haphazardly, but may be avoided when items are chosen judiciously. This paper examines the use of
nuisance abilities to control for bundle effects. We restrict attention to a single dimension of interest and use
compensatory models and, where appropriate, Gaussian priors for a subject’s abilities. Following Hooker
et al. (2009), maximum likelihood estimates always produce paradoxical results in this situation. However,
maximum likelihood estimation in these situations is rarely appropriate. Instead, “bundle abilities” can be
treated as random effects, or within a Bayesian analysis (Rijmen et al., 2003).

We show that while paradoxical results can occur in the models under consideration, it is also possible to
design tests made up of large numbers of short bundles for which Bayesian estimates of the ability of interest
are regular. Given the potential for paradoxical results, the practitioner may desire to use this to ensure the
perceived fairness of a test. We give conditions for checking when regularity can be guaranteed and develop
algorithms for test building that incorporate this restriction. Empirically, it does not appear that restricting
to such tests results in a large reduction in precision.

We assume a general linear structure in our models, rather than a restriction to the Rasch models in
Wang et al. (2002) and Wang and Wilson (2005). Under the restrictions in those papers, ability estimates are
always regular when the “bundle abilities” are independent, but may produce paradoxical results when they
are positively correlated. The use of nuisance abilities is not the only means of controlling for within-bundle
dependence. The dependence may also be modeled in a manner that is independent of the subject. This
occurs in models using fixed dependency effects (e.g. Hoskens and de Boeck, 1997). These models can be
shown to always produce regular tests.

The paper is structured as follows: we specify the model that we consider and the assumptions we
use in Section 2. Section 3 derives conditions under which paradoxical results occur, and under which
maximum likelihood with random effects, maximum a posteriori and expected a posteriori estimates are
regular and shows that paradoxical results are inescapable for maximum likelihood estimates. Section 4
considers Bayesian estimates and random effects models using independence priors and derives algorithms
to select tests for whether these are regular; Section 5 examines modifications when the bundle effects are
positively correlated. Section 6 considers the application of our algorithms to test parameters estimated
from real world data. Section 7 shows that estimates based on fixed dependency effects are always regular.
We note that our analysis is confined to tests with a single dimension of interest with further factors used to
control for bundle effects; non-separable tests in which there are two or more ability dimensions of interest
may still be expected to produce paradoxical results.

2 Framework and Assumptions

We assume that we are interested in estimating a single dimension of ability θ in the presence of a test com-
prised of item bundles. Further, we assume that the dependence is modeled by assuming further individual
“abilities” for each bundle. Our analysis may be applied to a number of estimates of θ and in this section
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we set out some notation and assumptions here that will be used throughout the paper. Firstly, we assume
that the parameters of the test are given and defined with respect to fixed dimensions. We use the following
assumptions and conventions:

A1 The test is comprised of N items. Responses to each item i are recorded as yi = 0 (incorrect) or yi = 1
(correct).

A2 We use θ for the subject’s ability along the dimension of interest. γ1, . . . , γd are defined as factors
corresponding to each of d item bundles. We write θ for the concatenation (θ, γ). It is known that
θ ∈ Ω ⊆ R(d+1).

A3 The probability of a correct response on item i given parameters θ is

P (yi = 1|θ) = gi(aT
i θ)

where log gi(t) and log(1 − gi(t)) are both concave. This form includes commonly used compensatory
models such as the multidimensional two-parameter logistic (Ackerman, 1996; Reckase, 1985) and normal
ogive (Bock et al., 1988) models.

We write
li(t, yi) = yi log gi(t) + (1− yi) log(1− gi(t))

and take l′i(t, yi) and l′′i (t, yi) to be respectively the first and second derivative with respect to t.

A4 We define
A = [a1, . . . ,aN−1]T

to be the “design matrix” of the first N − 1 items on the test, and we let b = aN for notational
convenience. Note that none of our estimates depends on the order of the items.

We use Aθ to designate the first column of A and Aγ the final d columns. Similarly, bγ represents the
“bundle loadings” for the final item and bθ represents the loading of the final item onto the ability of
interest.

A5 We assume that items are divided into d bundles with the mutually exclusive sets B1, . . . , Bd containing
the indexes of the items in each bundle. We further assume that each row of Aγ only has one non-zero
entry corresponding to its bundle. Without loss of generality, bγ is zero except for bγd

.

A6 The set of responses to the first N−1 items in the test is contained in the vector yN−1 = (y1, . . . , yN−1).
We let y0 = (yN−1, 0) and y1 = (yN−1, 1). We use the notational convention that y ∈ {0, 1}N .

A7 The estimate of θ is θ̂(y). This is one of a maximum likelihood estimate (MLE), a maximum likelihood
estimate with γ modeled as being random (MR), a maximum a posteriori (MAP) estimate or a monotone
functional of the marginal posterior distribution of θ such as the expected a posteriori estimate (EAP).

θ̂(y) is paradoxical if θ̂(y0) > θ̂(y1) for some yN−1 and some ordering of the items, otherwise it is regular.

A8 Any prior used for θ is Normal, centered on zero, with covariance Σ. In the theorems below, we use the
notation K = −Σ−1.
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A9 When the γ are modeled as random effects, these are modeled as being Normal, centered on zero with
covariance matrix Σγ and we define

K =
[

0 0
0 −Σ−1

γ

]
.

A10 When using maximum likelihood estimates, we assume that θ̂(yN−1), the estimate after the first N − 1
items, is uniquely defined and use K = 0 below.

A11 When MLE or MAP estimates are used, we take W (θ,y) to be the diagonal matrix with ith diagonal
entry l′′i (aT

i θ). Note in the common case that gi(t) is a logistic function,

wi(θ) = gi(aT
i θ)(1− gi(aT

i θ))

does not depend on yi.

A12 When EAP or MR estimates are being used, we take W (θ,y) to be the diagonal matrix with diagonal
entries

wi(θ, yi) = E
(
l′′i (aT

i θ, yi)|θ,bT θ,y
)−Var

(
l′i(a

T
i θ, yi)|θ,bT θ,y

)
< 0.

These are the conditional expectations with respect to the posterior distribution of θ, given θ and the
linear combination bT θ.

We also take

K(θ) = K − Cov
(
Kθ|θ,bT θ

)
.

In practice, these corrections will not be relevant for item-bundle models due to their structure when
the priors, or the random effects distribution, treat the bundle effects as independent. We understand
K(θ) = K throughout when MAP or MLE estimates are used.

A13 We define W ⊂ RN to be the Cartesian product of the regions
[

min
θ∈Ω,yi∈{0,1}

wi(θ, yi), max
θ∈Ω,yi∈{0,1}

wi(θ, yi)

]
.

We use the notation W ∈ W to mean that W is a diagonal matrix whose’s diagonal vector lies in W.

We note that commonly-studied Rasch models (Wang et al., 2002; Wang and Wilson, 2005) are more
restrictive than that given in A3. The models there are restricted, in our notation, to setting aiθ = aiγj for
all i in the jth bundle. This restriction means that a maximum-likelihood estimate regarding both θ and γ
as parameters of interest is not well-defined since A does not have full column rank. However, it is easy to
see in our calculations below that MAP, EAP, and MR estimates, will yield regular estimates θ̂(y) when Σ′

is diagonal. Interestingly, if the elements of γ have positive correlation, it is possible to produce paradoxical
results (see Section 5). Li et al. (2006) found in empirical studies that the more general model (aiθ 6= aiγj )
better represented a number of data sets and we assume such a model here.
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3 A Regularity Criterion

We begin by extending a theorem in Hooker et al. (2009) to include tests with item bundles:

Theorem 3.1. Under conditions A1-A13, a sufficient condition for θ̂1(y1) < θ̂1(y0) is

eT
θ

(
AT W (θ,yN−1)A + K(θ)

)−1
b > 0 (1)

for all θ ∈ Ω, y ∈ {y1,y0} and eθ = (1, 0, . . . , 0) the first Euclidean d-vector. A sufficient condition for
θ̂1(y1) > θ̂1(y0) is

eT
θ

(
AT W (θ,yN−1)A + K(θ)

)−1
b < 0 (2)

for all θ ∈ Ω, y ∈ {y1,y0}.
For MLE and MAP estimates, this is exactly Theorems 6.1 and 6.2 in Hooker et al. (2009), with the

additional observation that the proof for regularity follows by an analogous argument. The extension to
EAP estimates is given in Appendix A.

3.1 Maximum Likelihood Estimates

We begin by observing that Lemma 6.1 of Hooker et al. (2009) demonstrates that maximum likelihood
estimates always produce paradoxical results. However, it is instructive to extend this analysis to the case
of item bundles. We observe that

AT W (θ,yN−1)A =
[

AT
θ W (θ,yN−1)Aθ AT

γW (θ,yN−1)Aθ

AT
θ W (θ,yN−1)Aγ AT

γW (θ,yN−1)Aγ

]

and that the bottom right entry is diagonal. It now follows that

eT
θ (AT W (θ,yN−1)A)−1b =

1
k

[
bθ −AT

θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ

)−1

bγ

]

where

k = AT
θ W (θ,yN−1)Aθ −AT

θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ

)−1

AT
γW (θ,yN−1)Aθ

=
N−1∑

i=1

a2
iθwi(θ, yi)−

d∑

j=1

[∑
i∈Bj

aiθaiγj wi(θ, yi)
]2

∑
i∈Bj

a2
iγj

wi(θ, yi)

≤
N−1∑

i=1

a2
iθwi(θ, yi)−

d∑

j=1

[∑
i∈Bj

a2
iθwi(θ, yi)

] [∑
i∈Bj

a2
iγj

wi(θ, yi)
]

∑
i∈Bj

a2
iγj

wi(θ, yi)
(3)

≤ 0

from the Cauchy-Schwartz inequality. We observe that only bθ and bγd
are non-zero in b so that

eT
θ (AT W (θ,yN−1)A + K)−1b =

1
k

[
bθ −

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)

bγd

]
.
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It is now easy to show that choosing b to be the item within the dth bundle that gives least relative weight
to θ produces a paradoxical result.

This result identifies a larger set of items that produce paradoxical results than the single item implied by
Corollary 6.1 in Hooker et al. (2009). However, it also demonstrates that the criterion (2) can be separated
into criteria for each bundle. We make extensive use of this below.

4 Random Effects Models and Bayesian Estimates with Indepen-
dence Priors

In this section we consider using Bayesian estimates and random effects models in which the priors for the
parameters are modeled as being jointly independent Gaussian random variables. For random effects models,
only the bundle parameters are given priors. In this case we note that K is also diagonal and that

eT
θ (AT W (θ,yN−1)A + K(θ))−1b =

1
k′

[
bθ −AT

θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ + K(θ)γ,γ

)−1

bγ

]

(4)

=
1
k′


bθ −

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)− 1

σ2
γd

bγd


 (5)

for

k′ =
N−1∑

i=1

a2
iθwi(θ, yi) + K(θ)11

−AT
θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ + K(θ)γ,γ

)−1

AT
γW (θ,yN−1)Aθ

< 0

by the same arguments as in (3) with K(θ)γ,γ the submatrix of K(θ) corresponding to bγ . We note that
the correction to K(θ) in A12 only occurs in the factor 1/k′, but defer this calculation to Appendix B.
Similarly, the corrections to wi(θ, yi) in A12 are also irrelevant in this case: since l′i(θ, yi) only depends on
θ and γd for i ∈ Bd, it has zero conditional variance.

While it is clear from the form of (5) that it is always possible to find a vector b so that a paradoxical
result occurs, it is also possible to find tests such that no item will produce a paradoxical result. Hooker
et al. (2009) observed this but commented that using priors to ensure regularity would ”restrict to either
short tests, low discrimination parameters or strong priors.” In this case, we can think of item bundles as
being multiple short tests. We show in the next section that it is possible to make use of (5) to provide a
conservative criterion for testing whether a bundle can produce paradoxical results.

We note that when aiθ = aiγd
for all i ∈ Bd, and hence bθ = bγd

, (5) is always positive since the ratio
inside the brackets is always less than one. As noted earlier, this demonstrates that θ̂ is always regular under
the Rasch models considered in Wang et al. (2002) and Wang and Wilson (2005).
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4.1 A Selection Algorithm for Regular Bundles

The form of (5) demonstrates that when independence priors are used for parameters or random effects, (2)
can be re-expressed only in terms of the bundle corresponding to the current item. Moreover, (5) may be
bounded to provide a criterion by which to conclude ability estimates are regular. We make the following
observations applied, without loss of generality, to the dth bundle.

Observation 4.1. For all j ∈ Bd,

max
θ∈Ω,y∈{0,1}N

∑
i∈Bd,i 6=j aiθaiγd

wi(θ, yi)∑
i∈Bd,i6=j a2

iγd
wi(θ, yi)− 1

σ2
γd

≤ max
θ∈Ω,y∈{0,1}N

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)− 1

σ2
γd

and therefore
ajθ

ajγd

> max
θ∈Ω,y∈{0,1}N

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)− 1

σ2
γd

implies
ajθ

ajγd

>

∑
i∈Bd,i 6=j aiθaiγd

wi(θ, yi)∑
i∈Bd,i6=j a2

iγd
wi(θ, yi)− 1

σ2
γd

, ∀θ ∈ Ω,y ∈ {0, 1}N .

That is, while (5) is a condition on an item that is not part of the items already in the test, including the item
in the test only makes the condition more conservative. This conservative condition may reject items that
would not produce paradoxical results, but does allow us to create an overall check on a bundle’s regularity:

Observation 4.2. Let
i0 = argmin

i∈Bd

aiθ

aiγd

.

Then
ai0θ

ai0γd

> max
θ∈Ω,y∈{0,1}N

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)− 1

σ2
γd

(6)

implies

1
k


ajθ −

∑
i∈Bd,i 6=j aiθaiγd

wi(θ, yi)∑
i∈Bd,i6=j a2

iγd
wi(θ, yi)− 1

σ2
γd

ajγd


 > 0, ∀θ ∈ Ω, j ∈ Bd,y ∈ {0, 1}N .

Observation 4.2 provides a means by which to check whether an item bundle can produce paradoxical
results: find the item that places least relative weight on θ and check the condition (6). Checking this
condition requires maximizing

FBd
(θ,y) =

∑
i∈Bd

aiθaiγd
wi(θ, yi)∑

i∈Bd
a2

iγd
wi(θ, yi)− 1

σ2
γd

over both θ ∈ Ω and y ∈ {0, 1}N . This represents a mixed integer programming problem which can be
computationally expensive. Evaluating W (θ,y) may also be difficult for EAP and MR estimates. As an
alternative, we maximize over the weight value w, ignoring the dependence of w on θ and y:

max
θ∈Ω,y∈{0,1}N

F (θ,y) ≤ max
w∈W

FBd
(w) = max

w∈W

∑
i∈Bd

aiθaiγd
wi∑

i∈Bd
a2

iγd
wi − 1

σ2
γd

. (7)
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This is now a linear fractional programming problem for which computationally efficient methods exist (e.g.
Craven, 1988).

In the special case that gi(t) is a logistic function for each i and MAP estimates are used, we observe that
wi(θ) does not depend on yi. In this case we only need to maximize FBd

(θ,y) over θ. Moreover, we note
that for i ∈ Bd, wi(θ, yi) only depends on θ and γd so that the maximization need only be undertaken in a
two-dimensional space and may be accomplished efficiently by a number of iterative routines. Since using
the left hand side of (7) represents a tighter bound in (6), we recommend doing so where possible.

If an item bundle cannot be shown to produce regular results, we may desire to find subsets of the bundle
that can be. For small bundles, it is possible to enumerate all possible subsets and check (6). This will
quickly become infeasible as the size of the bundle increases. In order to reduce the number of subsets that
need to be considered we make the following observation:

Observation 4.3. For S ⊂ Bd, let i, j ∈ S. Then

ajθ

ajγd

< max
θ∈Ω,yi∈{0,1}

wi(θ, yi)aiθaiγd

wi(θ, yi)a2
iγd
− 1

σ2
γd

(8)

implies
ajθ

ajγd

< max
θ∈Ω,y∈{0,1}N

∑
i∈S aiθaiγd

wi(θ, yi)∑
i∈S a2

iγd
wi(θ, yi)− 1

σ2
γd

.

This states that for a subset S containing item j, there is a checkable bound on which other items may be
included in S while ensuring that paradoxical results cannot occur. Note that

argmax
θ∈Ω,yi∈{0,1}

wi(θ, yi)aiθaiγd

wi(θ, yi)a2
iγd
− 1

σ2
γd

= argmin
θ∈Ω,yi∈{0,1}

wi(θ, yi)

where the minimum is due to the wi being negative. The corresponding wi(θ, yi) is usually a known value
w∗ that is constant across i, avoiding the need for further optimization. We emphasize that there is not
necessarily a maximal subset: the use of an item with low relative discrimination on θ precludes the use of
items with high relative discrimination and vice versa.

Observation 4.3 allows us to produce initial candidate subsets: for each j we set Sj to be all the items
with greater relative weight on θ than item j and that do not violate (8). We now need to check condition (6)
for this subset. If this fails, some item must be removed from the subset1. To decide which, we look for the
item whose removal most decreases the right hand side of (6). This may be done explicitly. Alternatively, a
fast approximation is to consider a Taylor expansion. Letting w be the maximizing weights, removing item
i from Sj is equivalent to setting wi = 0 and we label the resulting weight vector w0, then

FSj (w0) ≈ FSj (w) + wi

dFSj

dwi

and we note that the numerator of

wi

dFSj

dwi
=

∑
k∈Sj

wiwkaiγd
akγd

(aiθakγd
− akθaiγd

)− wiaiθaiγd

σ2
γd(∑

k∈Sj
a2

kγd
wk(θ, yk)− 1

σ2
γd

)2

1We do not check all possible subsets of the current subset for the same computational reasons that we do not check all
subsets in the first place.
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is particularly cheap to calculate. The minimizer of this quantity could then be employed as an alternative.
Either criterion may be usually expected to select one of the items with largest relative weight on θ unless
some other item has high discrimination on both abilities.

Following the reasoning above, we can create an algorithm that produces a sequence of test subsets Sj ,
j ∈ Bd for which estimates of θ are regular. These Sj will be referred to as the regular subsets of Bd.

Algorithm 4.1. Within-Bundle Selection

1. Set

ri =
aiθ

aiγd

, ci = max
θ∈Ω,yi∈{0,1}

wi(θ, yi)aiθaiγd

wi(θ, yi)a2
iγd
− 1

σ2
γd

, i ∈ Bd

2. Loop over j ∈ Bd:

(a) Initialize Sj = {i ∈ Bd : ri ≥ rj , ci < rj}.
(b) While

rj ≤ max
w∈W

∑
i∈Sj

aiθaiγd
wi∑

i∈Sj
a2

iγd
wi − 1

σ2
γd

(9)

i. Set {w∗i }i∈Sj to be the optimal weights from (9).
ii. Choose either

k∗ = argmax
k∈Sj ,k 6=j




∑
i∈Sj

aiθaiγd
w∗i∑

i∈Sj
a2

iγd
w∗i − 1

σ2
γd

− max
w∈W

∑
i∈Sj ,i6=k aiθaiγd

wi∑
i∈Sj ,i6=k a2

iγd
wi − 1

σ2
γd


 (10)

or
k∗ = argmin

k∈Sj ,k 6=j

∑

i∈Sj

w∗kw∗i akγd
aiγd

(akθaiγd
− aiθakγd

)− w∗kakθakγd

σ2
γd

. (11)

iii. Remove k∗ from Sj

3. Return Sj, j ∈ Bd.

Note that we have elected not to remove item j in Step 2(b)ii should it provide optimal decrease. This
retains the association of Sj with item j and prevents duplicate subsets being returned. Following the use
of Algorithm 4.1, we may obtain a large number of regular subsets; some of these may be redundant in the
sense that all their elements may be contained in some other subset. It is easy, as a post-processing step, to
remove subset Sj from the collection of regular subsets if Sj ⊆ Si for some i. We label the remaining subsets
the maximal regular subsets of the bundle.

In order to tighten the bounds implied by (6) when gi is a member of the logistic family and MAP estimates
are used, we replace the maximization over w in Steps 2b and 2(b)ii by setting wi(θ) = gi(aT

i θ)(1−gi(aT
i θ))

and maximizing over θ and γd.
We have noted that only a narrow range of relative loadings on θ can be used, although where that range

begins may vary. This does not necessarily compromise the discriminating ability of an overall test, however:
each bundle may contain different relative loadings without compromising the regularity of θ̂. We explore
modifications of selection algorithms that incorporate this algorithm in the next section.
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4.2 Selecting Regular Tests

The observations above provide a means of checking whether a given test and ability estimate is capable of
producing paradoxical results and we have developed algorithms to find subsets of items within bundles that
will not do so. We now wish to combine these with a standard item selection algorithm to develop tests that
produce regular ability estimates. We do not consider the problem selecting optimal tests here, but note
that test construction algorithms typically maximize some criteria such as the trace or determinant of the
expected Fisher information subject to practical constraints like content balance (see e.g. Veldkamp, 2002).
Such algorithms can (in theory) readily be modified to consider groups of items as discussed below.

We assume that there are d bundles in an item pool with N1, . . . , Nd items in each. We assume that the
candidate pool of items and bundles is much larger than the prescribed number to be selected for the final
test. A first method of applying any item selection criterion is to

1. Find all regular subsets of each bundle.

2. Consider all ways to create a sub-pool of items using one regular subset from each bundle. Perform
item selection on each sub-pool.

3. Choose the best-performing test from the set of sub-pools.

This method requires performing item selection on all
∏d

i=1 Ni ways of combining regular subsets of the
bundles. This is clearly computationally infeasible, although some speedup may be attained by removing
clearly sub-optimal subsets. As an alternative, we propose selecting regular subsets directly:

Algorithm 4.2. Test Selection by Regular Subsets

1. For each bundle, form its regular subsets Si1, . . . , SiNi .

2. If bundles in the selected test must contain no more than M items and some Sij has cardinality greater
than M , perform item selection within Sij.

3. Select regular subsets by whatever item selection criterion is being used. If a subset from bundle j is
selected, remove all other subsets from that bundle from the pool of regular subsets.

4. If the resulting test is too long, perform item selection on the items in the test.

This algorithm requires that an item selection method can be extended to a selection method for regular
subsets, but we do not expect this to present problems. We note that the similar modifications could be
made to computer-adaptive testing procedures that use item bundles.

The extent of the loss of efficiency due to a restriction to regular tests is not clear. It will only be severe
when the optimal unrestricted test uses items with a wide range of relative weight on θ within each bundle.
This may occur when there are relatively few potential items in each bundle pool and these have wide ranges
of relative loadings. If this is the case, a decision must be made between the loss of efficiency and the
production of a paradoxical result.

We also note that the item selection algorithms proposed in this section are conservative. They are
based on conditions (2) and (5), neither of which is tight. There are (theoretical) tests with regular θ̂ for
EAP, MAP or MR estimates that violate one or both conditions and this may include tests from the item
pool being considered. Assessing the regularity of a proposed test directly would require checking θ̂(y) for
all possible response values, which is clearly infeasible. However, a Monte Carlo simulation would at least
assess the probability of observing a paradoxical result; this may be considered if the tests produced by the
algorithms above produce tests that are significantly less discriminatory than optimal.
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5 Dependent Bundle Effects

Our discussion so far has been made solely in terms of population distributions for bundle effects in which
the effects are taken as being all uncorrelated. This may be unrealistic in the real world. Hooker et al. (2009)
observed that in two-dimensional models adding correlation between the dimensions means that (6) reduces
the set of item parameters that can cause paradoxical results. In general, the analysis of regularity when
bundle effects are allowed to be correlated becomes considerably more difficult analytically. We therefore
restrict our attention to MAP estimates throughout this section and disregard the correction terms in A12.

While positive correlation between abilities improves regularity in two dimensions, in higher dimensions
the situation is somewhat more complex, and can be counter-intuitive. In fact, adding small correlation
between nuisance abilities makes (6) more restrictive:

Observation 5.1. Under conditions A1 - A13, assume that

Σ =
[

σ2
11 0
0 Σγ

]

and let Σ̃ be diagonal with the same diagonal elements as Σ. If σγi,γj < ε for all i, j and ε > 0 sufficently
small, then

AT
θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ − Σ−1
γ

)−1

eγd
(12)

is bounded below by

AT
θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ − Σ̃′−1
)−1

eγd
.

Recall that we must have bθ/bγd
greater than the left hand side of (12) in order to conclude that an item

does not produce paradoxical results. This result is based on the derivative of (12) being negative and the
calculations are given in Appendix C.

There is an intuitive explanation for this phenomenon. We think of paradoxical results being caused by
a subject getting an item correct that loads heavily onto a nuisance ability. This increases the estimate of
the nuisance ability, forcing the estimate of the ability of interest to decrease in order to explain previously
wrong answers. The use of a prior regularizes the nuisance ability estimate, reducing how far it can increase.
This is how we are able to produce regular tests, even though maximum likelihood estimates always admit
paradoxical results. When a prior models the nuisance abilities as being positively correlated, it provides less
regulatory effect. Moreover, increasing the estimate of one nuisance ability will also increase the estimates
of the other nuisance abilities, further depressing the estimate of the ability of interest.

The fact that increasing the estimate of the γd can result in the estimates for other nuisance abilities
increasing complicates an attempt to provide a general method for selecting regular tests that does not
simply brute-force check the condition (6) at each step. For specific prior covariance structures, however,
bounds can be given that allow a modification of the algorithms in Sections 4.1 and 4.2. In particular, we
consider an exchangeable covariance structure for the bundle abilities:

σγiγj =
{

σ2 i = j
α otherwise.

In other words Σγ = (σ2 − α)I + αJ where J is a matrix of all ones. For this prior structure, the following
bound is derived in Appendix D:
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Theorem 5.1. Let Σ = (σ2 − α)I + αJ , and suppose that wi(θ, yi) > w+
i . Then

AT
θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ − Σ−1
γ

)−1

eγd

is bounded above by

∑
i∈Bd

aiθaiγd
wi(θ, yi)− α

(σ2−α)2

∑d
j=1 max

( ∑
i∈Bj

wiaiθaiγj∑
i∈Bj

a2
iγj

wi(θ,yi)− 1
σ2−α

)

∑
i∈Bd

a2
iγd

wi(θ, yi)− 1
σ2−α

. (13)

This bound now provides us with an ability to restrict attention to item bundles, but with a correction
to Step 9 in Algorithm 4.1:

rj ≤ max
w∈W

∑
i∈Bd

aiθaiγd
wi(θ, yi)− α

(σ2−α)2

∑d
j=1 max

( ∑
i∈Bj

wiaiθaiγj∑
i∈Bj

a2
iγj

wi(θ,yi)− 1
σ2−α

)

∑
i∈Bd

a2
iγd

wi(θ, yi)− 1
σ2−α

.. (14)

This correction will, of course, depend on the items selected in the previous bundles. This can be managed
with an iterative algorithm:

Algorithm 5.1. 1. Initialize a set Si1, . . . , SiNi of regular subsets for each bundle Bi.

2. Select a test using the bundles and candidate regular subsets as in Algorithm 4.2.

3. Do until the test does not change:

(a) Loop over i ∈ {1, . . . , d− 1}:
i. Re-calculate the regular subsets of Bi.
ii. Remove the current subset of Bi from the test and replace it with the optimal regular subset.
iii. If Bi did not contribute to the current test, test whether replacing a subset from another

bundle with the optimal subset from Bi improves the test. If so, do so.

Step 1 above is left undetermined. It could be initialized using Algorithm 4.1 as is, or modifying it by
(14) applied using all the items not in the current bundle. We suspect that the latter will often produce too
few, or too small, regular subsets, if any, to be useful. Further alternatives would include slowly increasing
f to stabilize the selection procedure.

As an interesting observation, in the case of the Rasch models in Wang and Wilson (2005), we have that
aiθ = aiγd

and the (θ, γd)th and (γd, γd)th entries of AT W (θ,y)A are both
∑

wi(θ, yi)a2
iθ. Since bθ = bγd

,
guarantees against paradoxical results require that (12) is less than 1 for all wi(θ, yi). For an exchangeable
covariance structure, substituting into (13) we observe that so long as α > 0 our bound will always be
violated if the number of bundles is sufficiently large.

6 Real-World Item Bundles

In order to examine the qualitative properties of the within-bundle selection algorithm above, we make use
of the test parameters estimated in Li et al. (2006), Table 5. These parameters were estimated from the
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analytical reasoning section of the LSAT administered in 1992. We are not concerned with the estimation
of item parameters here, so we treat the estimated parameters as fixed. Li et al. (2006) found that they
obtained the best fit for observed data with their Model 1: placing no restrictions on bundle discriminations
apart from positivity and setting Σ to be the identity matrix. They give estimated parameters for 24 items
grouped into 4 bundles, using a probit link.

Our analysis was carried out in the R statistical programming language. The maximization (6) was
undertaken using a Nelder-Meade simplex algorithm implemented in the optim routine when optimization
was undertaken over θ. The optimization (7) was solved using the linear programming library lpSolve,
converting (7) to the equivalent linear program (Craven, 1988):

(v, t) = argmax
∑

i∈Bd

aiθaiγd
vi subject to

∑

i∈Bd

σ2
γd

a2
iγd

vi + t = 1, t ≥ 0, 0 ≤ v ≤ −tw+

and converting w = −v/t to find the optimizing weights. Code implementing Algorithm 4.1 and the analysis
below is available from the first author.

In carrying out this analysis, we wanted to investigate both the real-world properties of the selection
procedure and the relative performance of the various approximations used. As a first note, we found that
the optimization (10) was never so computationally expensive that (11) proved appreciably faster, although
that may prove to be the case for very large bundles. Our analysis below therefore solely makes use of
(10). In general, we take the view that larger regular subsets are better and have therefore only considered
maximal regular subsets, removing Si if it is contained in some Sj . This is also the objective we use for
comparing our various methods.

6.1 Small-Bundle Analysis

We applied our methods using (7) and the bounds wi ∈ [−1, 0], which are appropriate for the probit link
function. When an independence prior was assumed, our algorithms suggested minor changes to the reported
test. Both bundles 2 and 3 were left unchanged, while two subsets consisting of 5 out of 6 items were found
for bundle 1, and subsets of size 5 and 6 out of 7 items were found for bundle 4. Testing all subsets within
a bundle produced further regular subsets; however, these were not, in general, larger than those found by
Algorithm 4.1. The items selected by both methods are detailed in Table 1.

In order to examine the effect of adding positively correlated items, we considered the same test but
incorporated a correlation of 0.2 between each pair of bundle abilities and used the correction (13). This
resulted in a correction factor f = 0.31. The maximal subsets found by Algorithm 4.1 were smaller and
more numerous in all bundles than those found with zero correlation, although they were still among the
largest of those found by testing all possible subsets. These are also reported in Table 1. As the correlation
was increased, the size of the regular subsets reduced: at correlation 0.25, only singleton sets were given for
bundle 4; by 0.5 no subsets were regular for bundle 1.

6.2 Larger Bundles

None of the bundles considered above had more than 7 items. In order to investigate within-bundle selection
on a large bundle set we made use of the estimated parameters from Li et al. (2006), Table 9. These
parameters had been estimated from data taken from reading comprehension subtests on a college-level
EPT administered in 2000. In particular, we made use of the “Literal Meaning” bundle which contained 16
items, and undertook the same estimation procedure as above. From these 16 items, Algorithm 4.1 found
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All Subsets Algorithm 4.1 Algorithm 4.1
Bundle No Correlation No Correlation Correlation 0.05

1 2 3 4 5 6 2 3 4 5 6 1 2 5
1 2 4 5 6 1 2 4 5 6 3
1 2 3 4 6 4
1 3 4 5 6

2 7 8 9 10 11 7 8 9 10 11 7 8 9 11
7 8 10 11

3 12 13 14 15 16 17 12 13 14 15 16 17 12 13 16 17
13 14 16 17
13 15 16 17

4 18 19 21 22 23 24 18 19 21 22 23 24 18 19
18 19 20 22 23 18 19 20 22 23 18 20

18 20 21 22 23 24 23
19 20 21 22 23 24 24

18 19 20 21 23
18 19 20 21 22

Table 1: Maximal regular subsets of bundles in the analytical reasoning section of the LSAT administered
in 1992, using parameters estimated in Li et al. (2006). First column: subsets chosen by exhaustive search.
Second column: subsets chosen by Algorithm 4.1. Third column: subsets chosen by Algorithm 4.1 with
correction (13) when an exchangeable covariance is assumed between bundle factors with correlation 0.05.

four maximal regular subsets of size 11, 13, 9 and 13 which are represented graphically in the left panel of
Figure 1. An exhaustive search over all 216 possible subsets in this instance found exactly the same collection
of maximal regular subsets but required substantially more processing time (246.42 seconds as opposed to
0.75 seconds).

6.3 Checks of Conservativism

In order to investigate the effect of maximizing over w as opposed to θ in Step 2b of Algorithm 4.1, we
employed a logit model with the EPT subset above, making the usual correction of multiplying all item
parameters by 1.7. Under a logit model using MAP estimates, we observe that

wi(θ, yi) = Pi(aT
i θ)(1− Pi(aT

i θ)) ∈ [−1/4, 0]

where Pi(t) = logit(t− di) and di is the difficulty parameter for the item. Difficulty parameters for this test
were not provided in Li et al. (2006), and we instead created hypothetical parameters by making use of the
first 16 difficulty parameters from the LSAT test above.

We begin by noting that the maximal curvature of the logit model (-0.25) is substantially smaller than
that of the probit (-1), and this difference is not entirely compensated for by the 1.7 correction factor.
Because of this, the use of a logit model in the LSAT test found all four bundles to be regular without using
subsets. The larger EPT test bundle, however, could not all be included. In this case both maximization
over θ and w returned the same subsets (sizes 12, 14 and 11).
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Figure 1: Left: A graphical representation of the maximal regular subsets found by Algorithm 4.1. Items
are plotted on the (θ, γd) plane and labeled with the regular subset in which they appear. The bundles are
approximately spread radially. Right: Sizes of maximal regular subsets of test of length 50 with difficulty
parameters generated randomly on the unit square. Dark: selection maximizing over w, light: maximizing
over θ.

The difference between maximizing over θ and over w will be largest when the difficulty parameters within
the bundle are relatively spread out so that W (θ,yN−1) is not able to mimic the maximizing values found
by (7). In order to test this difference further, we simulated a 50-item bundle by taking the discrimination
parameters to be uniform on the unit square and the difficulty parameters to have a standard normal
distribution. Qualitatively, we found that while the maximal regular subsets found by optimizing over θ did
tend to be larger than those found by optimizing over w, the difference was typically only a few items. This
is presented graphically in the right panel of Figure 1. We are therefore confident that the maximization
over w does not represent an overly conservative approximation from a practical point of view.

7 One-Factor Models with Dependence

An alternative means of accounting for dependence within item bundles involves modeling it explicitly in
a manner that is constant across subjects. This can be done by fixed dependency effects (Kelderman,
1984; Hoskens and de Boeck, 1997). Alternatively, a quasi-likelihood approach using generalized estimating
equations (e.g. McCullagh and Nelder, 1989, ch. 9) could be used. In either case, only θ is estimated, and
it is easy to find and verify conditions under which θ̂ is regular.

We begin by expressing the estimate for θ as a solution to a nonlinear equation:

θ̂(y) = {θ : S(θ,y) = 0} (15)

where S(θ,y) is a score function that defines a number of estimates:

maximum likelihood: S(θ,y) = dl(θ,y)/dθ where l(θ,y) is the log likelihood of θ given the observed
response.
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maximum a posteriori: S(θ,y) = df(θ,y)/dθ where f(θ,y) is the log posterior of θ.

quasi-likelihood: does not require a probabilistic specification, but sets

S(θ,y) =
dµ(θ)

dθ

T

V (θ)−1(Y − µ(θ))

where µ(θ) is a model for the mean of the response vector Y given θ and V (θ) is a model for its
covariance matrix.

Since these are all one-dimensional equations, we can now provide conditions under which these estimates
are regular. We begin by defining a partial order for vectors of length N :

y0 ¹ y1 if y0
i ≤ y1

i , i = 1, . . . , N,

with y0 ≺ y1 implying at least one of the point-wise inequalities is strict.

Theorem 7.1. Let θ̂(y) be defined by (15) and assume that

1. S(θ,y) is decreasing in θ for all y.

2. y0 ¹ y1 implies S(θ,y0) ≤ S(θ,y1) for all θ.

Then y0 ¹ y1 implies θ̂(y0) ≤ θ̂(y1). That is θ̂(y) is regular.

Proof. We have
S(θ̂(y1),y0) ≤ S(θ̂(y1),y1) = 0.

Since S(θ̂,y0) is decreasing in θ̂ the result follows.

This result can also be extended to marginal inference. Using the terminology in Hooker et al. (2009), the
next result follows directly from Lemma 3.5 in the same paper.

Theorem 7.2. Let T [f ] be a monotone functional of the log posterior distribution. Under the conditions of
Theorem 7.1, T [f ] is regular.

One means of incorporating dependence among bundles is via including dependence terms that are
independent of θ. Fixed dependency effects model this in terms of expanding a logistic model:

p(y|θ) =
e
∑N

i=1 yiai(θ+bi)+
∑N−1

i=1
∑N

j=i+1 yiyjβiγj

∑
z∈{0,1}N e

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj

.

Here the βiγj are used to account for dependence between answers. They are zero if items i and j do not
belong to the same bundle, and positive otherwise. We assume all the ai are positive. In this case we can
examine the likelihood score:

S(θ,y) =
N∑

i=1

yiai −
∑

z∈{0,1}N ziaie
∑N

i=1 ziaiθ+
∑N−1

i=1
∑N

j=i+1 zizjβiγj

∑
z∈{0,1}N e

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj

(16)
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from which it is easy to see that Condition 2 of Theorem 7.1 holds. To show Condition 1 we observe that

d

dθ
S(θ,y) = −

∑
z∈{0,1}N zia

2
i e

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj

∑
z∈{0,1}N e

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj

+




∑
z∈{0,1}N ziaie

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj

∑
z∈{0,1}N e

∑N
i=1 ziaiθ+

∑N−1
i=1

∑N
j=i+1 zizjβiγj




2

≤ 0

from the same arguments as (3). To apply Theorem 7.1 for Bayesian methods we simply note that if we add
a log-concave prior π(θ) to the log-likelihood (16), both conditions clearly continue to hold.

Quasi-likelihood methods suffer from the same complications as random-effects methods with correlated
factors. It is easy to show that the estimate of θ is regular when V (θ) is diagonal. However, modeling
positive correlations among the responses may yield paradoxical results.

8 Conclusions

Statistical estimates for multidimensional item response theory are prone to paradoxical results. These can
have adverse real-world consequences. Prior information can be used to control this phenomenon but only
in so far as the prior is not overwhelmed by the data. In real-world applications, practitioners may attempt
to reduce these effects by the use of separable tests in which only one ability is measured by each item.
Where item bundles are used to control for dependence between responses, separability is no longer possible.
However, in this case we can think of tests comprised of item bundles as being collections of multiple short
tests, each of which is individually regulated by the prior. In that sense it is possible to find such tests that
do not produce paradoxical results.

We have investigated the extent to which this intuition can be applied to create methods to select regular
tests. When a prior is used that represents all bundle effects as independent, it is possible to produce an
algorithm that efficiently selects subsets from each bundle that can then be combined to form a test that
cannot create paradoxical results. This algorithm can then be used within a test-selection algorithm. When
the bundle effects are not independent, it is harder to produce such an analysis without placing particular
structure on the prior covariance.

Our experience with item parameters estimated from real data demonstrates that our proposed routine
for finding maximal regular subsets is computationally efficient and easy to implement and that the approx-
imations we propose are not overly conservative. It also suggests that real-world tests based on item bundles
require minor, but not drastic, alteration to be guaranteed to yield regular results when the bundle factors
are modeled as being independent in the subject population. However, even mild dependence between bundle
factors can substantially reduce the size of regular subsets when the bounds derived above are used.

It is important to note the special case of Rasch models in which discrimination parameters for the bundle
ability and the ability of interest are the same. When these factors are modeled as independent, estimates
of the ability of interest can be shown to be regular. However, when positive correlation between the bundle
factors is allowed, paradoxical results remain possible.

The use of bundle abilities is not the only means of allowing for dependence between items. Fixed
dependency effects are an alternative means of doing so that do not require individual bundle abilities to be
modeled explicitly. These models are generally more computationally intensive to compute, but can be shown
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to always produce regular estimates of an ability of interest. There are yet further models, such as treating
each bundle as a single unit with a polytomous response (Wilson and Adams, 1995), where conditions for
regularity have not yet been ascertained.

References

Ackerman, T. (1996). Graphical representation of multidimensional item response theory analyses. Applied
Psychological Measurement 20 (4), 311–329.

Bock, R., R. Gibbons, and E. Muraki (1988). Full-information item factor analysis. Applied Psychological
Measurement 12, 261–280.

Craven, B. D. (1988). Fractional Programming. Berlin: Heldermann Verlag.

Douglas, J. A., L. A. Roussos, and W. Stout (1996). Item-bundle dif hypothesis testing: Identifying suspect
bundles and assessing their differential functioning. Jounral of Educational Measurement 33, 465–484.

Finkelman, M., G. Hooker, and J. Wang (2007). Unidentifiability and lack of monotonicity in the multidi-
mensional three-parameter logistic model. under review.

Hooker, G., M. Finkelman, and A. Schwartzman (2009). Paradoxical results in multidimensional item
response theory. Psychometrika to appear.

Hoskens, M. and P. de Boeck (1997). A parametric model for local dependence among test items. Psycho-
logical Methods 2, 261–277.

Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika 49, 223–245.

Li, Y., D. M. Bolt, and J. Fu (2006). A comparison of alternative models for testlets. Applied Psychological
Measurement 20 (1), 3–21.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall/CRC.

Reckase, M. (1985). The difficulty of test items that measure more than one ability. Applied Psychological
Measurement 9, 401–412.

Rijmen, F., F. Tuerlinckx, P. de Boeck, and P. Kuppens (2003). A nonlinear mixed model framework for
item response theory. Psychological Methods 8 (2), 185–205.

Rosenbaum, P. R. (1988). Item bundles. Psychometrika 53, 349–359.

Veldkamp, B. P. (2002). Multidimensional constrained test assembly. Applied Psychological Measure-
ment 26 (2), 133–146.

Wang, W. and M. Wilson (2005). The Rasch testlet model. Applied Psychological Measurement 29 (2),
126–149.

Wang, X., E. T. Bradlow, and H. Wainer (2002). A general Bayesian model for testlets: Theory and
applications. Applied Psychological Measurement 26 (1), 109–128.

Wilson, M. and R. J. Adams (1995). Rasch models for item bundles. Psychometrika 60, 181–198.

18



A Proof of Theorem 3.1

In order to extend the proof of Theoremns 6.1 and 6.2 in Hooker et al. (2009) to the case of EAP estimates
and estimates with bγ as a random effect, we follow a similar argument. Throughout, we refer to the
posterior distribution for θ. Where a random-effects model is used, no prior is used for θ and we intend the
log posterior to be read as being the distribution of bγ given θ and the observed responses. Any (log) prior
µ(θ) will also be taken to be constant over θ in the random-effects case.

Let

l(θ,y) =
N−1∑

i=1

li(aT
i θ, yi) + µ(θ)

be the log posterior distribution (up to an additive constant) for θ given the first N − 1 responses where
µ(θ) is the log prior. Without loss of generality, we assume bT b = 1. We begin by defining

D∗ =
[

D
b

]
,

where D is a d-by-(d + 1) orthonormal matrix with rows orthogonal to b. We re-parameterize our ability
space ψ = D∗θ so that

li(θT ai, yi) = li(ψT D∗ai, yi).

We note, importantly, that lN (ψT D∗b, yn) = lN (ψd, yN ), so the final item now only depends on ψd. We define
a further transformation φ = Cψ to be an orthogonal projection into the d-dimensional space orthogonal to
ψd such that

φ1 = θ1 − bθψd

and we will write lφ(φ1, φ(1), ψd,y) to express the log posterior in terms of φ and ψd where φ(1) =
(φ2, . . . , φd−1). The log posterior for the marginal distribution of θ and ψd is now given by

l̃(θ, ψd,y) = log
∫

elφ(θ−bθψd,φ(1),ψd,y)dφ(1)

and its cross derivatives with respect to θ and ψd are given by

d

dθdψd
l̃(θ, ψd,y) = cT

1 DT (AT W (θ,yN−1)A + K(θ))b− bθcT
1 DT (AT W (θ,yN−1)A + K(θ))Dc1

where W (θ,yN−1) and K(θ) are given as in A12. If this quantity is negative for all θ, the existence of
a paradoxical result can be deduced from Theorem 5.2 in Hooker et al. (2009) for expected a posteriori
estimates and by additionally applying Lemma 3.2 in the same paper for MR estimates. The regularity
of the estimate if the quantity is positive follows from analogous arguments. This regularity condition is
equivalent to (2). The calculations for this result are given in the proof of Theorem 6.1 in Hooker et al.
(2009) and are not reproduced here.

B Item Bundles and A12

The particular structure of item bundles means that when EAP or MR estimates are used the correction
A12 only occurs in the 1/k′ term of (4). To see this, we need only examine

AT
θ W (θ,yN−1)Aγ

(
AT

γW (θ,yN−1)Aγ + K(θ)γ,γ

)−1

bγ .
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Since b only has bθ and bγd
as nonzero entries, the conditional expectations used in A12 can be replaced

with expectations conditional on θ and γd. We observe that

Cov (Kθ|θ, γd) = KCov (θ|θ, γd)KT

has zero rows and columns corresponding to θ and γd since K is diagonal. Since AT
γW (θ,yN−1)Aγ is also

diagonal, the γdth row and columns in the matrix inverse are not changed by the correction factor. Since
bγ ’s only nonzero entry corresponds to the γdth entry, the correction A12 does not enter into (5).

C Proof of Observation 5.1

We demonstrate that for off-diagonal elements σγiγd
of Σ, the derivative of (12) at Σ̃ is positive. The

observation then follows directly.
For the sake of notational simplicity, we let

ã = AT
θ W (θ,y)Aγ , Ã = AT

γW (θ,y)Aγ

since these will not change through the proof. Note that all the entries in ã are negative and that Ã is
diagonal with non-positive entries. Letting Eγiγj be the matrix of zeros with 1 in the (γi, γj)th position,

d

dσγiγd

ãT
(
Ã− Σ−1

)−1

eγd
= −ãT

(
Ã− Σ̃−1

)−1

Σ̃−1 (Eγiγd
+ Eγdγi) Σ̃−1

(
Ã− Σ̃−1

)−1

eγd

=
−ãγi

σγiγiσγdγd

(
Ãγiγi − 1

σγiγi

)(
Ãγdγd

− 1
σγdγd

)

> 0.

D Proof of Theorem 5.1

We make the same notational conventions as in Appendix C and observe that

Σ−1 = gI − eJ, g =
1

σ2 − α
, e =

αg

(σ2 + (d− 1)α)
.

Making the further substitutions:
C = Ã− gI, c = diag(C−1)

we observe that by the Woodbury formula

(Ã− Σ−1)−1 = C−1 − ec
(
I + e1T C−11

)
cT
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so that

ãT (Ã− Σ−1)−1eγd
=

ãγd

Cγdγd

−
e

Cγdγd
ãT c

1 + e
∑

C−1
γdγd

=
ãγd

Ãγdγd
− g

−
e

Ãγdγd
−g

∑d
i=1

ãγi

Ãγiγi
−g

1 +
∑d

i=1
e

(Ãγiγi
−g)

≤
ãγd

− eg
g−de

∑d
i=1

ãγi

Ãγiγi
−g

Ãγdγd
− g

. (17)

The result now follows by substituting for e, g, ã and Ã and maximizing over
∑d

i=2 ãγi/(Ãγdγd
− g).

21


