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Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in
communications and transport. Nonetheless, Li-ion batteries su�er from temperature rises which sometimes lead to operational
damages ormay even cause 	re. An appropriate solution to control the temperature changes during the operation of Li-ion batteries
is to embed batteries inside a para
nmatrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility
of making para
n nanocomposites for better heat management of a Li-ion battery pack. To ful	ll this aim, heat generation during a
battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple
this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we
considered di�erent para
n nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by
assuming the same thermal conductivity for all 	llers. �is way, our results mainly correlate with the geometry of the 	llers. Our
results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of para
n nanocomposites. Our
results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.

1. Introduction

In recent years, communication technologies have been
rapidly progressed. �erefore, increasing the e
ciency is
inevitable in applications ranging from portable electronics
to renewable energies and power plant is inevitable. In
portable electronics, the battery plays a crucial role in their
e
ciency. On the other hand, there are some de	ciencies in
the application of the present batteries in which the thermal
management of battery packs is one of the most important
problems. In some cases, uncontrollable temperature inside
the batteries may result in 	re or even explosion. Recently,
Goli and coworkers [1] proposed the utilization of paraf-
	n phase change material (PCM) with graphene 	llers to
enhance the performance of lithium-ion (Li-ion) batteries
versus intense self-heating. �e above-mentioned method-
ology describes a heat storage-heat conduction approach
that has a
rmative e�ects on thermal management of any
types of batteries including Li-ion batteries. Kumaresan

et al. [2] assessed discharge e
ciency prediction of Lithium-
ion cell at various operating temperatures (15–45∘C) by
a thermal model. Numerical results were compared with
experimental data obtained from lithium-ion pouch cells. In
addition, Goyal and Balandin [3] investigated the thermal
properties of some materials with the hybrid graphene-
metal particle 	llers. In this research activity, the thermal
conductivity of composites was measured with the variation
of temperature. �e achieved results are applicable for the
thermal management of electronics and optoelectronics.
Zolot et al. [4] presented the hybrid vehicle test focusing
on battery thermal management. �e results of tests proved
that the performance of battery packs signi	cantly changes
due to thermal condition. Yeow et al. [5] developed 3D
	nite element (FE) models with consideration of geometry
variations in order to model the treatment of Lithium ion
cells of vehicle electri	cation applications. �e results show
that the 3D electrothermal model satisfactorily describes
the electrothermal behaviour of the Li-ion battery cells and
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the results are in acceptable agreement with battery tempera-
turemeasurements. To simulate various cell types for an elec-
tric drive system, Benger et al. [6] developed a parameterized
model for the electrochemical and thermal properties. �e
comparison betweenmodelling results and the measurement
indicates that the developed model can predict the current
voltage behaviour and the temperature development of the
various cells. Mohammadian et al. [7] made a comparison
between internal and external cooling procedures for thermal
management of LIBs. �ey performed 2D and 3D transient
thermal analysis of a prismatic Li-ion battery cell. �e results
showed that, with the same pumping power, external cooling
decreases the bulk temperature less than internal cooling
and, moreover, internal cooling considerably decreases the
standard deviation of the temperature inside the battery.

It is quite well-known that the phase changematerials can
store a large amount of heat according to their high capacity
of latent heat storage. �ey can absorb high amount of heat
while their temperature remains nearly constant. According
to their applications, there are various types of PCMs that
each of them is applicable for certain temperature ranges
[8]. However, the properties of PCMs yet can be varied by
changing their chemical composition or by adding additional
components. In this regard, one solution is to fabricate
nanocomposites structures through adding nanoscale 	llers
to PCMs. For the application in Li-ion batteries, the thermal
conductivity is themain parameter to improve. Carbon based
nanostructures such as graphene and carbon nanotubes o�er
the highest thermal conductivities available in the nature [9].
�erefore, they could be considered as the best candidates
to enhance heat conduction for PCMs. Shahil and Balandin
[10] showed that adding multilayer graphene to commercial
grease can enhance drastically the thermal conductivity of
the mixture even in low 	llers volume percent. �ere exist
numerous theoretical and experimental studies available in
the direction of composite materials with superior thermal
and mechanical properties [11–17].

In this paper, we investigate the temperature rise in a
Lithium ion battery pack. In this regard, the simulations are
used to provide a general viewpoint to guide experiments
which are expensive and time consuming as well [18, 19]. We
used pure and nanocomposites para
nPCMs to dissipate the
heat produced during the charge/discharge cycles of a battery
pack containing 16 individual Li-ion batteries. Fullerene,
graphene, andCNTwere used as 	llerswith di�erent volumes
concentration to enhance the thermal conductivity of para
n
hybrid phase change material. �e e�ects of various volume
percent of 	llers on thermal behaviour of batteries were
investigated at di�erent charging/discharging rates (C-rates).
Our results show remarkable e�ect of using para
nPCMs on
the heat dissipation of a battery pack. �ermal conductivity
coe
cients of hybrid para
n PCMs were obtained through
	nite element modelling of representative volume elements.
Heat generation rates during the charging/discharging cycles
were simulated using Newman’s well established electro-
chemical pseudo-2Dmodel [20]. It is shown that as the 	ller’s
volume fraction inside the para
n increases, the amount of
heat dissipation to the ambient environment increases, which
is due to the increase in the thermal conductivity of PCMs.

2. Theory and Modeling

Numerical simulations of electrochemical response of Li-ion
battery at di�erent charging/discharging cycles were simu-
latedwithin the framework of the pseudo-2D electrochemical
model proposed by Newman and�omas-Alyea [20]. In this
model, the dynamic performance of a cell is characterized by
the solution of four partial di�erential equations describing
the time evolution of the lithium concentration pro	le in the
electrode and electrolyte phases, under charge conservation.
�en, based on the electrochemical response, heat generation
was calculated which was used in the heat transfer model
for the evaluation of temperature rises in a battery pack.
Accordingly, we 	rst present the electrochemical model
which is considered as a 1D problem. �en, we discuss the
heat sources and temperature evolution in the battery cell.
We note that the heat sources are calculated based on the
1D electrochemical problem, which is then coupled with 3D
heat transfer modelling. Figure 1 illustrates the 1D Li-ion cell
model which consists of three main regions: the mesocarbon
microbead (MCMB) negative composite electrode (graphite
type structure), an electron-blocking separator, and LiCoO2
positive composite electrode.

Lithium concentration in the electrolyte phase is obtained
by using Fick’s second law along the �-coordinate with a
source term coupled to the local reaction current density
which yields the following equation:

� (����)
�� = �

�� (
e�
�
���
�� ) + 1 − �0+

� 
Li, (1)

where �� is the volume fraction of electrolyte, �� is the
concentration of Li in electrolyte,
e� is the e�ective di�usion

coe
cient of Li in the electrolyte, �0+ is the transference
number of Li-ions with respect to the velocity of solvent, and

� is the Faraday constant. 
Li is the reaction current density.
�e Li-ions cannot di�use through the current collectors,

as set by the boundary conditions in (2), which is valid at the
two electrode/current collector interfaces

���
��

���������=0 =
���
��

���������=� = 0. (2)

At the interfaces between the positive electrode/separator and
separator/negative electrode, the concentration of the binary
electrolyte (��) and its �ux (���/��) are continuous.

For the modelling of di�usion of Li-ions inside the
solid particles, Newman’s model assumes the electrode can
be described by a lattice of spherical particles of identical
size representing the intercalation centre into which metallic
lithiumdi�uses.�e distribution of lithium in the solid phase
(��) is described by Fick’s second law of di�usion in polar
coordinates (�), as shown in the following relation:

���
�� = 
�

�2
�
�� (�

2 ���
�� ) , (3)

where 
� is the di�usion coe
cient in solid particles. �e
solution is constrained by a zero gradient boundary condition
at the centre of the particle from symmetry arguments,
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Figure 1: Schematic illustration of Newman’s electrochemical model based on 1D (�-direction) electrochemical cell model coupled with 1D
microscopic (�-direction) solid di�usion model.

while at the surface of the particle the lithium �ux must

correspond to the reaction current density 
Li, as imposed by
the following equation:

���
��

���������=0 = 0,

−
� �����
���������=�� =


Li
���,

(4)

where � is the particle radius of negative or positive elec-
trodes. Potential in the electrolyte phase �� is a function of

reaction current density 
Li and the local concentration of Li
(��) by the following relation:

�
�� (�e� ����� ) + �

�� (�e�	 �
�� ln��) + 
Li = 0, (5)

where �e� is the e�ective ionic conductivity of electrolyte

and �e�	 is the e�ective di�usional conductivity of a specie.
�e solution of (5) is subject to a zero gradient boundary
condition at the two current collector/electrode interfaces

���
��

���������=0 =
���
��

���������=� = 0. (6)

Finally, the potential in the solid phase �� is introduced as

a function of the conductivity of the electrode �e� and the

reaction current density 
Li, as described by the following
relation:

�
�� (�e� ����� ) = 
Li. (7)

�e boundary conditions are then introduced as follows: at
the electrode/separator interface, there is no �ux of charge,
and thus a zero gradient boundary condition is applied.
Moreover, at the electrode/current collector interface, the
charge �ux corresponds to the current in the outside circuit

−�e�− ���
��

���������=0 = �e�+ ���
��

���������=� =
�
�,

���
��

���������=
− =
���
��

���������=�−
+ = 0.
(8)

Last, but not the least, 
Li which is a parameter that simulate
charge transfer rate in all previous four PDEs is determined
by the Bulter-Volmer equation as follows:


Li = ���0 {exp [0.5��� �] − exp [−0.5��� �]} , (9)

where �� is the active surface area per electrode unit volume
(m2/m−3), � is the Faraday constant, � is temperature, � is
the universal gas constant, and 	nally �0 is exchange current
density which is introduced as follows:

�0 = �� (��)0.5 (��,max − ��,surf)0.5 (��,surf)0.5 , (10)

where �� is the reaction rate coe
cient, ��,max is the max-
imum Li concentration in the solid phase particles, ��,surf
is the concentration of Li at the surface of solid phase
particles, and�� is the Li-ion concentration in electrolyte.�e
overpotential � in (9) is given by

� = �� − �� − �, (11)
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Table 1: Parameters for 1D lithium ion battery cell [2].

Parameter Description Negative electrode Separator Positive electrode

�0 Transference number of electrolytes 0.435 0.435 0.435

 Length of electrode (!m) 73.5 25 70

� Solid particle radius (!m) 12.5 — 8.5

�� Solid phase volume fraction 0.5052 — 0.55

�� Electrolyte phase volume fraction 0.4382 0.45 0.30

�� Binder volume fraction 0.0566 — 0.15


� Solid phase di�usion coe
cient (m2/s) 1.4523 × 10−13 — 1.0 × 10−11

" Active material density (kg/m3) 2292 — 5031.67

��,max Maximum concentration in solid phase (mol/m3) 31 858 — 49 943

SOC State of charge in charge/discharge (%) 5/95 — 95/50

�
,0 Initial electrolyte concentration (mol/m3) 1000 1000 1000

brug Bruggeman coe
cient for tortuosity 4.1 2.3 1.5

�� Reaction rate coe
cient at 25∘C 1.764 × 10−11 — 6.6667 × 10−11

�� �ermal conductivity (W/(m⋅K)) 1.7 0.16 2.1

$�, $� Charge transfer coe
cients 0.5, 0.5 0.5, 0.5

� Solid phase conductivity (S/m) 100 — 10

where � is the equilibrium potential which is the function
of intercalated Li and is on the basis of empirical functions.
�e parameters used in the presented equations are listed in
Table 1 which are on the basis of the work by Kumaresan
et al. [2]. In addition, the equilibrium potentials for solid
electrodes and electrolyte ionic conductivity as a function
of Li concentration were all adopted from [2]. To calculate
the e�ective ionic conductivity (�e� ) and lithium di�usion
coe
cients (
e� ) in the electrolyte in the di�erent parts of
the cell, we used the Bruggeman approximation as follows:

�e� = ���brug� ,

e� = 
��brug� ,

(12)

where index � refers to di�erent cell regions (anode, separator,
or cathode) and the exponent (brug) is the Bruggeman expo-
nents (the values are listed in Table 1). �e total generated
heat is taken as the sum of reaction and joule (ohmic) heats.
Typically, heat generation in lithium-ion batteries can be
attributed to three main sources: heat from the reaction
current and overpotentials (%�), ionic ohmic heat from the
motion of lithium/lithium-ions through the solid (%�), and
reversible heat (%rev). In this study, these sources of heat are
expressed as follows:

%� = �∫�
0

Li (�� − �� − �) '�, (13)

%� = �∫�
0
�e� (����� )

2
'�, (14)

%rev = 
Li����� . (15)

Equation (15) presents the reversible heat generation which
can be either positive or negative.�is is related to the entropy
changes in solid electrode materials which are referred to
as �U/�T. As discussed in [2], the reversible heat plays
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Figure 2: 3D heat transfer model coupled with electrochemi-
cal model to evaluate the temperature rises during the battery
charging/discharging cycles. �e Li-ion batteries and para
n based
structures are illustrated by blue and yellow colors, respectively. �e
battery radius, ��, was chosen to be 9.2mm.�e outer surface of the
model is exposed to air.

an important role in the LiCoO2 electrode. In the present
work, �U/�T curves, as a function of Li concentration in
solid particles, were adopted from [2]. We note that the
coupled electrochemical heat transfer models have also been
developed in numerous previous works [21–27].

�e calculated heat generation rates based on Newman’s
model were then used to simulate the temperature rises in
a battery pack containing 16 individual batteries. �e heat
transfer model is shown in Figure 2. �is model includes
two materials: Li-ion batteries and para
n based structures.
�e material parameters used in the simulation are given
in Table 2. �e heat capacity of para
n nanocomposites
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Figure 3: Di�erent structures of nano	llers used in this study. We studied the thermal conductivity of para
n nanocomposites 	lled with
fullerene, graphene, and carbon nanotubes (CNT). Under each 	ller, the constructed 	nite element model in Abaqus is shown with 5%
volume concentrations for 	ller. Under each 	nite element model, the temperature distribution obtained from the application of the heat �ux
is plotted.

Table 2: Material properties.

Material Density (kg/m3) Heat capacity
(J/(kg⋅K))

�ermal
conductivity
(W/(m⋅K))

Battery cell 2680 1280 1

Para
n 900 2500 0.25

Fullerene 2200 717 3000

CNT 2200 717 3000

Graphene 2200 717 3000

was also calculated using the rule of mixtures. �e outer
surfaces of 3D heat transfer model were exposed to air
with convective heat transfer coe
cient of 2.5W/m2⋅K.

�e coupled electrochemical and heat transfer models were
built in COMSOL/Multiphysics package using Li-ion battery
and heat transfer modules.

In this work, we also studied the e�ective thermal con-
ductivity of para
n nanocomposites. Here, we include three
di�erent 	llers of graphene, carbon nanotubes, and fullerene
to study the thermal conductivities using the 	nite element
approach. Computational limits of 	nite element method
impose restrictions on the maximum number of elements
used in amodel.�us, the simulations of compositematerials
are limited to the modeling of a representative volume
element (RVE) of the system. In an attempt to construct the
RVEs in a status closer to those in experimentally fabricated
random composites, the 3D 	llers were randomly distributed
and oriented in the RVE. �e atomic structures of three
studied 	llers along with the FE models constructed in
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Figure 4: Calculated e�ective thermal conductivity of para
n
nanocomposites as a function of di�erent 	llers volume concentra-
tion.

ABAQUS so�ware are illustrated in Figure 3. �e RVEs were
modeled in such a way that they satisfy the periodicity
criterion. �is means that if a 	ller is cut by a boundary face
of RVE, the remaining part of that particle should continue
from the opposite face. �e random RVEs were constructed
in ABAQUS by developing Python scripts as input 	les.
We developed advanced C++ codes for creating randomly
distributed/oriented 	llers with high volume concentrations
and without intersection [28, 29]. In our FE modeling,
we assumed perfect heat transfer condition (no interfacial
resistance) between the 	llers and the para
n matrix. For
the evaluation of thermal conductivity, we merged two thin
auxiliary parts to the RVE as discussed in our previous work
[29]. We then applied a constant heat �ux along the sample
and based on the established temperature pro	le the e�ective
thermal conductivity was evaluated which is discussed in
detail in [29]. We note that length to diameter ratio for
CNT (with cylindrical geometry) and diameter to thickness
ratio for graphene (de	ned with disc geometry) were both
assumed to be 50. �e thermal conductivity of all 	llers was
assumed to be 3000W/m⋅K [30]. It is worth noting that
this thermal conductivity may not be realistic for fullerene.
Nevertheless, based on previous theoretical investigation [11],
for spherical particles the thermal conductivity of composite
does not correlate strongly with the 	llers to matrix, contrast
in properties.

3. Results and Discussions

Figure 4 depicts the 	nite element results for e�ective thermal
conductivity of para
n nanocomposites as a function of
di�erent 	ller’s volume concentration. It is worthy to note
that in our 	nite element modeling, for each RVE, we
calculated the e�ective conductivities along three Cartesian
directions. For each volume concentration, three or four
RVEs were constructed with di�erent 	ller distributions. To
obtain converged e�ective thermal conductivity, the results
for di�erent RVEs as well as di�erent directions were all
averaged. Our results shown in Figure 4 reveal that the
thermal conductivity of para
n can be drastically improved

by the addition of CNT. In addition, it is shown that the
addition of fullerene leads to insigni	cant enhancement of
e�ective thermal conductivity. In composite materials, the
heat �ux is transferred between matrix and 	ller through
their contacting surfaces. �erefore, the 	ller’s surface to
volume ratio plays an important role in the 	nal reinforce-
ment. �is can justify the least reinforcement in thermal
conductivity by the addition of spherical shaped fullerene.
�e calculated e�ective parameters were then used in our 3D
heat transfer model to introduce the thermal conductivity of
para
n structures.

Simulated maximum temperature rises for the battery
pack for di�erent charging/discharging C-rates are depicted
in Figure 5. As the 	rst 	nding, we could observe remarkable
decline in temperature rises by the use of PCM materials for
all applying C-rates. However, in all studied cases, fabrication
of para
n nanocomposites does not show huge e�ect on the
temperature damping in comparison with pure para
n. It
is worthy to note that in the electrochemical simulations in
this study, we considered stop conditions of 4.8 V and 3.0V
for charging and discharging cycles, respectively.�is way, by
increasing the C-rate, the simulations were stopped in much
earlier times because of reaching the stopping criteria. So, the
temperature rises decrease by increasing the C-rate because
the heat generation was achieved in a much shorter time.
From the theoretical point of view, by increasing the battery
current, the reaction and ohmic heats ((13) and (14)) increase
by the power of two while reversible heats increase linearly.
On the other hand, the simulation results in Figure 5 also
show that during discharging process the temperature rises
are approximately twice the ones during the charging process.
�is is due to the fact that during the charging process
reversible heat generated in the positive LiCoO2 electrode is
negative which results in the cooling of the battery. However,
during the discharging process the reversible heating in the
positive electrode is mainly positive leading to the heating
of the batteries. It should be emphasized that based on the
��/�� curves reported in [2], the reversible heating ismainly
dominated by the positive LiCoO2 electrode compared with
MCMB negative electrode.

Simulation results for the maximum temperature rises
for the battery pack with the use of para
n nanocomposites
with di�erent concentrations of nano	llers during a 1C
current for a single charging (a) and discharging (b) cycle
are illustrated in Figure 6. As expected, by increasing the
nano	ller’s concentration inside the para
n, the maximum
temperature rises in the battery decrease continuously. In the
discharging cycles, the maximum temperature rise decreases
by around 3K through the addition of 5% volume ratio
of CNT 	llers inside the para
n which is a remarkable
enhancement. �is temperature decrease might be crucial
in applications in which the performance of the building
blocks is sensitive to the temperature changes such as in
nanoelectronics. Our modeling results suggest that fabri-
cation of para
n nanocomposites as a PCM for the heat
management of batteries could be considered as a solution
if the battery is supposed to work under fast and continuous
discharging cycles.Nonetheless, our simulation results clearly
con	rm the importance of the use of para
n based PCMs for
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Figure 5: Simulated temperature rises for the battery pack for di�erent charging (a) and discharging (b) C-rates.
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Figure 6: Modeling result for the maximum temperature rises for the battery pack with the use of para
n nanocomposites with di�erent
concentrations of nano	llers during a 1C current for a single charging (a) and discharging (b) cycle.

the thermalmanagement of Li-ion batteries for both charging
and discharging cycles.

In Figure 7, two samples of calculated voltage curves
and simulated 3D temperature pro	les of the battery pack
surrounded by a para
n matrix mixed with 5% carbon
nanotubes at di�erent times during a 1C charging and
discharging cycles are plotted. Interestingly, for the charging
cycle at the time of 10 secondswe noticed that the battery pack
temperature is lower than that of ambient. �is means that
reversible cooling due to the entropy changes that occurred
in the positive electrode was large enough to surpass ohmic
and reaction heat generations. �e simulated temperature
pro	les reveal that regardless of the initial times of charging
cycle, for the rest of times, the maximum temperature
rises take place inside the batteries somewhere close to
the center of the battery pack. �erefore, one solution to
improve the temperature management of the battery pack
is to include higher concentration of the 	llers within the
para
n materials in the sections that are closer to the center
of the pack in order to enhance the heat conduction to the
surroundings. Consequently, our modeling suggests that the
heat management of a battery pack can be improved by an

appropriate use of para
n nanocomposites in the positions
where the maximum temperature rises occur.

4. Conclusion

We developed an electrochemical model based on Newman’s
pseudo-2D model coupled with a 3D heat transfer model to
investigate the heat management of a battery pack. �e con-
sidered battery is made of LiCoO2 positive composite elec-
trode and mesocarbon microbead negative electrode. Based
on the electrochemical theory, the heat generation during
charging/discharging cycles was calculatedwhichwas used in
the 3D heat transfer model for the evaluation of temperature
rises in a battery pack under various loading conditions. Our
modelling results revealed remarkable decrease in tempera-
ture rises by embedding the batteries inside a para
n wax.
�is e�ect was found to bemore considerable for discharging
cycles. �en, we studied the e�ects of fabrication of para
n
nanocomposites on temperature rises of a battery pack. We
included di�erent carbon based nano	llers such as graphene,
carbon nanotubes, and fullerene for the improvement of
thermal conduction of para
n. �e thermal conductivity
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Figure 7: Calculated voltage curves and simulated 3D temperature pro	les at various times during a 1C charging (a) and discharging (b)
cycle. �e ambient temperature was set to the room temperature (298.15 K).

for all 	llershas been considered to be the same so that
our emphasis in the present study is related to the e�ect of
	llers geometry.�e e�ective thermal conductivity of para
n
nanocomposites was evaluated using advanced 3D 	nite
element models. It is shown that the fabrication of para
n
nanocomposites can increase the enhancement of the heat
management of batteries. In this case, a favorable case was
found to be the para
nwax that was enhanced by the carbon
nanotubes. We note that we did not include the e�ect of
temperature on the thermal properties of para
n structures;
however, a separate investigation can be yet conducted in
this direction. It was shown that during the charging process,

the reversible heat generated in the positive LiCoO2 resulted
in the cooling of the battery so that there is a remarkably
lower temperature rises compared to discharging cycles.
Our modeling results suggest that fabrication of para
n
nanocomposites for the heat management of batteries can be
considered as a promising solution if the battery is to be work
under fast and continuous discharging cycles. In summary,
the proposed modeling methodology can be considered as
an e
cient method for the design of Li-ion batteries packs
with enhanced heat management. In the future, we intend to
extend our framework to a multiscale approach accounting
also for the 	ne scale features [31–35] of the batteries which
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is of utmost importance for the design of new battery materi-
als.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgment

�e authors greatly acknowledge the 	nancial support by
European Union through ERC grant for COMBAT project.

References

[1] P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A.
Balandin, “Graphene-enhanced hybrid phase change materials
for thermal management of Li-ion batteries,” Journal of Power
Sources, vol. 248, pp. 37–43, 2014.

[2] K. Kumaresan, G. Sikha, and R. E. White, “�ermal model for
a Li-ion cell,” Journal of the Electrochemical Society, vol. 155, no.
2, pp. A164–A171, 2008.

[3] V. Goyal and A. A. Balandin, “�ermal properties of the
hybrid graphene-metal nano-micro-composites: applications
in thermal interface materials,” Applied Physics Letters, vol. 100,
Article ID 073113, 2012.

[4] M. D. Zolot, K. Kelly, M. Keyser, M. Mihalic, and A. Pesaran,
“�ermal evaluation of the Honda insight battery pack,” in Pro-
ceedings of the 36th Intersociety Energy Conversion Engineering
Conference, Savannah, Ga, USA, June 2001.

[5] K. Yeow, H. Teng, M.�elliez, and E. Tan, “3D thermal analysis
of Li-ion battery cells with various geometries and cooling
conditions using abaqus,” in Proceedings of the SIMULIA Com-
munity Conference, Providence, RI, USA, May 2012.

[6] R. Benger, H. Wenzl, H.-P. Beck, M. Jiang, D. Ohms, and G.
Schaedlich, “Electrochemical and thermalmodeling of lithium-
ion cells for use in HEV or EV application,” World Electric
Vehicle Journal, vol. 3, no. 1, pp. 342–351, 2009.

[7] S. K. Mohammadian, Y. He, and Y. Zhang, “Internal cooling
of a lithium-ion battery using electrolyte as coolant through
microchannels embedded inside the electrodes,” Journal of
Power Sources, vol. 293, pp. 458–466, 2015.

[8] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review
on thermal energy storage with phase change materials and
applications,” Renewable and Sustainable Energy Reviews, vol.
13, no. 2, pp. 318–345, 2009.

[9] S. Ghosh, W. Bao, D. L. Nika et al., “Dimensional crossover of
thermal transport in few-layer graphene,”NatureMaterials, vol.
9, no. 7, pp. 555–558, 2010.

[10] K. M. F. Shahil and A. A. Balandin, “Graphene-multilayer
graphene nanocomposites as highly e
cient thermal interface
materials,” Nano Letters, vol. 12, no. 2, pp. 861–867, 2012.

[11] B. Mortazavi, J. Bardon, and S. Ahzi, “Interphase e�ect on
the elastic and thermal conductivity response of polymer
nanocomposite materials: 3D 	nite element study,” Computa-
tional Materials Science, vol. 69, pp. 100–106, 2013.

[12] N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes,
and R. E. Cohen, “Multiscale micromechanical modeling of
polymer/clay nanocomposites and the e�ective clay particle,”
Polymer, vol. 45, no. 2, pp. 487–506, 2004.

[13] Q. H. Zeng, A. B. Yu, and G. Q. Lu, “Multiscale modeling and
simulation of polymer nanocomposites,” Progress in Polymer
Science, vol. 33, no. 2, pp. 191–269, 2008.

[14] D. Luo, W.-X. Wang, and Y. Takao, “E�ects of the distribution
and geometry of carbon nanotubes on themacroscopic sti�ness
and microscopic stresses of nanocomposites,” Composites Sci-
ence and Technology, vol. 67, no. 14, pp. 2947–2958, 2007.

[15] J. D. Renteria, D. L. Nika, and A. A. Balandin, “Graphene
thermal properties: applications in thermal management and
energy storage,”Applied Sciences, vol. 4, no. 4, pp. 525–547, 2014.

[16] J. Renteria, S. Legedza, R. Salgado et al., “Magnetically-
functionalized self-aligning graphene 	llers for high-e
ciency
thermal management applications,”Materials & Design, vol. 88,
pp. 214–221, 2015.

[17] J. D. Renteria, S. Ramirez, H. Malekpour et al., “Strongly
anisotropic thermal conductivity of free-standing reduced
graphene oxide 	lms annealed at high temperature,” Advanced
Functional Materials, vol. 25, no. 29, pp. 4664–4672, 2015.

[18] A. A. Khatibi and B. Mortazavi, “A study on the nanoinden-
tation behaviour of single crystal silicon using hybrid MD-FE
method,” Advanced Materials Research, vol. 32, pp. 259–262,
2008.

[19] B. Mortazavi, A. A. Khatibi, and C. Politis, “Molecular dynam-
ics investigation of loading rate e�ects on mechanical-failure
behaviour of FCC metals,” Journal of Computational and �e-
oretical Nanoscience, vol. 6, no. 3, pp. 644–652, 2009.

[20] J. Newman and K. E. �omas-Alyea, Electrochemical Systems,
John Wiley & Sons, Prentice-Hall, Eaglewood Cli�s, NJ, USA,
3rd edition, 2004.

[21] M. Guo and R. E. White, “A distributed thermal model for a Li-
ion electrode plate pair,” Journal of Power Sources, vol. 221, pp.
334–344, 2013.

[22] K. Smith and C.-Y. Wang, “Power and thermal characterization
of a lithium-ion battery pack for hybrid-electric vehicles,”
Journal of Power Sources, vol. 160, no. 1, pp. 662–673, 2006.

[23] L. Cai and R. E. White, “Mathematical modeling of a lithium
ion battery with thermal e�ects in COMSOL Inc. Multiphysics
(MP) so�ware,” Journal of Power Sources, vol. 196, no. 14, pp.
5985–5989, 2011.

[24] B. Wu, V. Yu	t, M. Marinescu, G. J. O�er, R. F. Martinez-
Botas, and N. P. Brandon, “Coupled thermal-electrochemical
modelling of uneven heat generation in lithium-ion battery
packs,” Journal of Power Sources, vol. 243, pp. 544–554, 2013.

[25] M. Sievers, U. Sievers, and S. S.Mao, “�ermalmodelling of new
Li-ion cell design modi	cations,” Forschung im Ingenieurwesen,
vol. 74, no. 4, pp. 215–231, 2010.

[26] H. Maleki, S. Al Hallaj, J. R. Selman, R. B. Dinwiddie, and
H. Wang, “�ermal properties of lithium-ion battery and
components,” Journal of the Electrochemical Society, vol. 146, no.
3, pp. 947–954, 1999.

[27] A. H. N. Shirazi, M. R. Azadi Kakavand, and T. Rabczuk,
“Numerical study of composite electrode’s particle size e�ect
on the electrochemical and heat generation of a Li-ion battery,”
Journal ofNanotechnology in Engineering andMedicine, In press.

[28] B. Mortazavi, F. Hassouna, A. Laachachi et al., “Experimental
and multiscale modeling of thermal conductivity and elastic
properties of PLA/expanded graphite polymer nanocompos-
ites,”�ermochimica Acta, vol. 552, pp. 106–113, 2013.

[29] B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, and S.
Ahzi, “Combined molecular dynamics-	nite element multi-
scale modeling of thermal conduction in graphene epoxy
nanocomposites,” Carbon, vol. 60, pp. 356–365, 2013.



10 Journal of Nanomaterials

[30] A. A. Balandin, “�ermal properties of graphene and nanos-
tructured carbon materials,”Nature Materials, vol. 10, no. 8, pp.
569–581, 2011.

[31] P. R. Budarapu, R. Gracie, S. P. A. Bordas, and T. Rabczuk,
“An adaptive multiscale method for quasi-static crack growth,”
Computational Mechanics, vol. 53, no. 6, pp. 1129–1148, 2014.

[32] P. R. Budarapu, R. Gracie, S.-W. Yang, X. Zhuang, and T.
Rabczuk, “E
cient coarse graining in multiscale modeling of
fracture,” �eoretical and Applied Fracture Mechanics, vol. 69,
pp. 126–143, 2014.

[33] H. Talebi, M. Silani, S. P. A. Bordas, P. Kerfriden, and T.
Rabczuk, “Molecular dynamics/xfem coupling by a three-
dimensional extended bridging domain with applications to
dynamic brittle fracture,” International Journal for Multiscale
Computational Engineering, vol. 11, no. 6, pp. 527–541, 2013.

[34] H. Talebi, M. Silani, S. Bordas, P. Kerfriden, and T. Rabczuk,
“A computational library for multiscale modeling of material
failure,” Computational Mechanics, vol. 53, no. 5, pp. 1047–1071,
2014.

[35] H. Talebi, M. Silani, and T. Rabczuk, “Concurrent multiscale
modeling of three dimensional crack and dislocation propaga-
tion,”Advances in Engineering So�ware, vol. 80, pp. 82–92, 2015.



Submit your manuscripts at

http://www.hindawi.com

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Corrosion
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Polymer Science
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ceramics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Composites
Journal of

Nanoparticles
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nanoscience
Journal of

Textiles
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Journal of

Nanotechnology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Crystallography
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Coatings
Journal of

Advances in 

Materials Science and Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Smart Materials 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Metallurgy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Materials
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

N
a

no
m

a
te

ri
a

ls

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal ofNanomaterials


