
Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters

Christina Delimitrou and Christos Kozyrakis
Electrical Engineering Department, Stanford University

{cdel, kozyraki}@stanford.edu

ABSTRACT

Large-scale datacenters (DCs) host tens of thousands of diverse ap-

plications each day. However, interference between colocated work-

loads and the difficulty to match applications to one of the many

hardware platforms available can degrade performance, violating the

quality of service (QoS) guarantees that many cloud workloads re-

quire. While previous work has identified the impact of heterogene-

ity and interference, existing solutions are computationally intensive,

cannot be applied online and do not scale beyond few applications.

We present Paragon, an online and scalable DC scheduler that is

heterogeneity and interference-aware. Paragon is derived from ro-

bust analytical methods and instead of profiling each application in

detail, it leverages information the system already has about applica-

tions it has previously seen. It uses collaborative filtering techniques

to quickly and accurately classify an unknown, incoming workload

with respect to heterogeneity and interference in multiple shared re-

sources, by identifying similarities to previously scheduled applica-

tions. The classification allows Paragon to greedily schedule ap-

plications in a manner that minimizes interference and maximizes

server utilization. Paragon scales to tens of thousands of servers with

marginal scheduling overheads in terms of time or state.

We evaluate Paragon with a wide range of workload scenarios, on

both small and large-scale systems, including 1,000 servers on EC2.

For a 2,500-workload scenario, Paragon enforces performance guar-

antees for 91% of applications, while significantly improving utiliza-

tion. In comparison, heterogeneity-oblivious, interference-oblivious

and least-loaded schedulers only provide similar guarantees for 14%,

11% and 3% of workloads. The differences are more striking in over-

subscribed scenarios where resource efficiency is more critical.

Categories and Subject Descriptors: C.5.1 [Computer System Im-

plementation]: Super (very large) computers; C.1.3 [Processor Ar-

chitectures]: Heterogeneous (hybrid) systems, D.4.1 [Process Man-

agement]: Scheduling

General Terms: Design, Performance

Keywords: Datacenter, cloud computing, heterogeneity, interfer-

ence, scheduling, QoS

1. INTRODUCTION
An increasing amount of computing is performed in the cloud,

primarily due to cost benefits for both the end-users and the oper-

ators of datacenters (DC) that host cloud services [4]. Large-scale

providers such as Amazon EC2 [13], Microsoft Windows Azure [43],

Rackspace [33] and Google Compute Engine [17] host tens of thou-

sands of applications on a daily basis. Several companies also or-

ganize their IT infrastructure as private clouds, using management

systems such as VMware vSphere [41] or Citrix XenServer [47].

The operator of a cloud service must schedule the stream of in-

coming applications on available servers in a manner that achieves

both fast execution (user’s goal) and high resource efficiency (op-

erator’s goal), enabling better scaling at low cost. This scheduling

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Alone on Best Platform
No Heterogeneity

No Interference
Least Loaded

Figure 1: Performance degradation for 5,000 applications on

1,000 EC2 servers with heterogeneity-oblivious, interference-

oblivious and least-loaded schedulers compared to ideal schedul-

ing (application runs alone on best platform). Results are or-

dered from worst to best-performing workload.

problem is particularly difficult as cloud services must accommodate

a diverse set of workloads in terms of resource and performance re-

quirements [4]. Moreover, the operator often has no a priori knowl-

edge of workload characteristics. In this work, we focus on two basic

challenges that complicate scheduling in large-scale DCs: hardware

platform heterogeneity and workload interference.

Heterogeneity occurs because servers are gradually provisioned

and replaced over the typical 15-year lifetime of a DC [4, 19, 23,

27, 31]. At any point in time, a DC may host 3-5 server genera-

tions with a few hardware configurations per generation, in terms

of the specific speeds and capacities of the processor, memory, stor-

age and networking subsystems. Hence, it is common to have 10

to 40 configurations throughout the DC. Ignoring heterogeneity can

lead to significant inefficiencies, as some workloads are sensitive to

the hardware configuration. Figure 1 shows that a heterogeneity-

oblivious scheduler will slow applications down by 22% on average,

with some running nearly 2x slower (see Section 4 for the experimen-

tal methodology). This is not only suboptimal from the user’s per-

spective, but also for the DC operator as workloads occupy servers

for significantly longer.

Interference is the result of co-scheduling multiple workloads on a

single server to increase utilization and achieve better cost efficiency.

By co-locating applications a given number of servers can host a

larger set of workloads (better scalability). Alternatively, by packing

workloads in a small number of servers when the overall load is low,

the rest of the servers can be turned off to save energy. The latter is

needed because modern servers are not energy-proportional and con-

sume a large fraction of peak power even at low utilization [3, 4, 25,

29]. Co-scheduled applications may interfere negatively even if they

run on different processor cores because they share caches, mem-

ory channels, storage and networking devices [18, 28, 32]. Figure 1

shows that an interference-oblivious scheduler will slow workloads

down by 34% on average, with some running more than 2x slower.

1

Again, this is undesirable for both users and operators. Finally, a

scheduler that is both interference and heterogeneity-oblivious and

schedules applications to least-loaded servers is even worse (48% av-

erage slowdown), causing some workloads to crash due to resource

exhaustion on the server.

Previous work has showcased the potential of heterogeneity and

interference-aware scheduling [27, 28]. However, their techniques

rely on detailed application characterization and cannot scale to large

DCs that receive tens of thousands of potentially unknown workloads

every day [9]. Most cloud management systems have some notion of

contention or interference-awareness [20, 32, 39, 40, 46]. However,

they either use empirical rules for interference management or as-

sume long-running workloads (e.g., online services), whose repeated

behavior can be progressively modeled. In this work, we target both

heterogeneity and interference and assume no a priori analysis or

knowledge of the application. Instead, we leverage information the

system already has about the large number of applications it has pre-

viously seen.

We present Paragon, an online and scalable datacenter scheduler

that is heterogeneity and interference-aware. The key feature of Par-

agon is its ability to quickly and accurately classify an unknown ap-

plication with respect to heterogeneity (which server configurations

it will perform best on) and interference (how much interference it

will cause to co-scheduled applications and how much interference

it can tolerate itself in multiple shared resources). Paragon’s clas-

sification engine exploits existing data from previously scheduled

applications and offline training and requires only a minimal signal

about a new workload. Specifically, it is organized as a low-overhead

recommendation system similar to the one deployed for the Netflix

Challenge [6], but instead of discovering similarities in users’ movie

preferences, it finds similarities in applications’ preferences with re-

spect to heterogeneity and interference. It uses singular value de-

composition to perform collaborative filtering and identify similari-

ties between incoming and previously scheduled workloads.

Once an incoming application is classified, a greedy scheduler as-

signs it to the server that is the best possible match in terms of plat-

form and minimum negative interference between all co-scheduled

workloads. Even though the final step is greedy, the high accuracy of

classification leads to schedules that satisfy both user requirements

(fast execution time) and operator requirements (efficient resource

use). Moreover, since classification is based on robust analytical

methods and not merely empirical observation, we have strong guar-

antees on its accuracy and strict bounds on its overheads. Paragon

scales to systems with tens of thousands of servers and tens of config-

urations, running large numbers of previously unknown workloads.

We implemented Paragon and evaluated its efficiency using a wide

spectrum of workload scenarios (light, high, and oversubscribed).

We used Paragon to schedule applications on a private cluster with 40

servers of 10 different configurations and on 1000 exclusive servers

on Amazon EC2 with 14 configurations. We compare Paragon to

a heterogeneity-oblivious, an interference-oblivious and a state-of-

the-art least-loaded scheduler. For the 1000-server experiments and

a scenario with 2500 workloads, Paragon maintains QoS for 91%

of workloads (within 5% of their performance running alone on the

best server). The heterogeneity-oblivious, interference-oblivious and

least-loaded schedulers offer such QoS guarantees for only 14%,

11%, and 3% of applications respectively. The results are more strik-

ing in the case of an oversubscribed workload scenario, where effi-

cient resource use is even more critical. Paragon provides QoS guar-

antees for 52% of workloads and bounds the performance degrada-

tion to less than 10% for an additional 33% of workloads. In con-

trast, the least-loaded scheduler dramatically degrades performance

for 99.9% of applications. We also evaluate Paragon on a Windows

Azure and a Google Compute Engine cluster and show similar gains.

Finally, we validate that Paragon’s classification engine achieves the

accuracy and bounds predicted by the analytical methods and evalu-

ate various parameters of the system.

The rest of the paper is organized as follows. Section 2 describes

the analytical methods that drive Paragon. Section 3 presents the im-

plementation of the scheduler. Section 4 presents the experimental

methodology and Section 5 the evaluation of Paragon. Finally, Sec-

tion 6 discusses related work and Section 7 concludes the paper.

2. FAST & ACCURATE CLASSIFICATION
The key requirement for heterogeneity and interference-aware sche-

duling is to quickly and accurately classify incoming applications.

First, we need to know how fast an application will run on each of

the tens of server configurations available. Second, we need to know

how much interference it can tolerate from other workloads in each

of several shared resources without significant performance loss and

how much interference it will generate itself. Our goal is to perform

online scheduling for large-scale DCs without any a priori knowledge

about incoming applications. Most previous schemes address this is-

sue with detailed but offline application characterization or long-term

monitoring and modeling approaches [28, 32, 39]. Instead, Paragon

takes a different perspective. Its core idea is that, instead of learning

each new workload in detail, the system leverages information it al-

ready has about applications it has seen to express the new workload

as a combination of known applications. For this purpose we use

collaborative filtering techniques that combine a minimal profiling

signal about the new application (e.g., a minute’s worth of profiling

data on two servers) with the large amount of data available from pre-

viously scheduled applications. The result is fast and highly accurate

classification of incoming applications with respect to both hetero-

geneity and interference. Within a minute of its arrival, an incoming

workload can be scheduled efficiently on a large-scale cluster.

2.1 Collaborative Filtering Background
Collaborative filtering techniques are frequently used in recom-

mendation systems. We will use one of their most publicized appli-

cations, the Netflix Challenge [6], to provide a quick overview of the

two analytical methods we rely upon, Singular Value Decomposition

(SVD) and PQ-reconstruction (PQ) [34]. In this case, the goal is

to provide valid movie recommendations for Netflix users given the

ratings they have provided for various other movies.

The input to the analytical framework is a sparse matrix A, the

utility matrix, with one row per user and one column per movie. The

elements of A are the ratings that users have assigned to movies.

Each user has rated only a small subset of movies; this is especially

true for new users which may only have a handful of ratings or even

none. While there are techniques that address the cold start problem,

i.e., providing recommendations to a completely fresh user with no

ratings, here we focus on users for which the system has some min-

imal input. If we can estimate the values of the missing ratings in

the sparse matrix A, we can make movie recommendations: suggest

that users watch the movies for which the recommendation system

estimates that they will give high ratings with high confidence.

The first step is to apply singular value decomposition (SVD), a

matrix factorization method used for dimensionality reduction and

similarity identification. Factoring A produces the decomposition to

matrices U , V and Σ.

Am,n =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

= U · Σ · V T

2

where

Um×r =

u11 · · · u1r

u21 · · · u2r

...
. . .

...

um1 · · · umr

, Vn×r =

v11 v12 · · · v1n
...

...
. . .

...

vr1 vr2 · · · vrn

Σr×r =

σ1 · · · 0
...

. . .
...

0 · · · σr

are the matrices of left and right singular vectors and the diagonal

matrix of singular values.

Dimension r is the rank of matrix A and it represents the number

of similarity concepts identified by SVD. For instance, one similar-

ity concept may be that certain movies belong to the drama category,

while another may be that most users that liked the movie ”Lord of

the Rings 1” also liked ”Lord of the Rings 2”. Similarity concepts are

represented by singular values (σi) in matrix Σ and the confidence in

a similarity concept by the magnitude of the corresponding singular

value. Singular values in Σ are ordered by decreasing magnitude.

Matrix U captures the strength of the correlation between a row of A
and a similarity concept. In other words, it expresses how users re-

late to similarity concepts such as the one about liking drama movies.

Matrix V captures the strength of the correlation of a column of A
to a similarity concept. In other words, to what extend does a movie

fall in the drama category. The complexity of performing SVD on a

m× n matrix is min(n2m,m2n). SVD is robust to missing entries

and imposes relaxed sparsity constraints to provide accuracy guar-

antees. Density less than 1% does not reduce the recommendation

accuracy [38].

Before we can make accurate score estimations using SVD, we

need the full utility matrix A. To recover the missing entries in A, we

use PQ-reconstruction. Building from the decomposition of the ini-

tial, sparse A matrix we have Qm×r = U and PT
r×n = Σ · V T

. The

product of Q and PT gives matrix R which is an approximation of A
with the missing entries. To improve R, we use Stochastic Gradient

Descent (SGD), a scalable and lightweight latent factor model [7, 24,

26, 44] that iteratively recreates A:

∀rui, where rui an element of the reconstructed matrix R
ǫui = rui − qi · pu

T

qi ← qi + η(ǫuipu − λqi)
pu ← pu + η(ǫuiqi − λpu)

until |ǫ|L2
=

√

∑

u,i
|ǫui|2 becomes marginal.

In the process above η is the learning rate and λ is the regulariza-

tion factor. The complexity of PQ is linear with the number of rui
and in practice takes up to a few ms for matrices with m,n ∼ 1, 000.

Once the dense utility matrix R is recovered we can make movie

recommendations. This involves applying SVD to R to identify

which of the reconstructed entries reflect strong similarities that en-

able making accurate recommendations with high confidence.

2.2 Classification for Heterogeneity

Overview: We use collaborative filtering to identify how well an

incoming application will run on the different hardware platforms

available. In this case, the rows in matrix A represent applications,

the columns server configurations (SC) and the ratings represent nor-

malized application performance on each server configuration.

As part of an offline step, we select a small number of applica-

tions, a few tens, and profile them on all different server configura-

tions. We normalize the performance results and fully populate the

corresponding rows of A. This only needs to happen once. If a new

Metric
Applications (%)

ST MT MP IO

Selected best SC 86% 86% 83% 89%

Selected SC within 5% of best 91% 90% 89% 92%

Correct SC ranking (best to worst) 67% 62% 59% 43%

90% correct SC ranking 78% 71% 63% 58%

50% correct SC ranking 93% 91% 89% 90%

Training & best SC match 28% 24% 18% 22%

Table 1: Validation metrics for heterogeneity classification.

configuration is added in the DC, we need to profile these applica-

tions on it and add a column in A. In the online mode, when a new

application arrives, we profile it for a period of 1 minute on any two

server configurations, insert it as a new row in matrix A and use the

process described in Sec. 2.1 to derive the missing ratings for the

other server configurations.

In this case, Σ represents similarity concepts such as the fact that

applications that benefit from SC1 will also benefit from SC3. U
captures how an application correlates to the different similarity con-

cepts and V how an SC correlates to them. Collaborative filtering

identifies similarities between new and known applications. Two ap-

plications can be similar in one characteristic (they both benefit from

high clock frequency) but different in others (only one benefits from

a large L3 cache). This is especially common when scaling to large

application spaces and several hardware configurations. SVD ad-

dresses this issue by uncovering hidden similarities and filtering out

the ones less likely to have an impact on the application’s behavior.

The size of the offline training set is important as a certain num-

ber of ratings is necessary to satisfy the sparsity constraints of SVD.

However, over that number the accuracy quickly levels off and scales

well with the number of applications thereafter (smaller fractions for

training sets of larger application spaces). For our experiments we

use 20 and 50 offline workloads for a 40 and 1,000-server cluster re-

spectively. Additionally, as more incoming applications are added in

A the density of the matrix increases and the recommendation accu-

racy further improves. Note that online training is performed only

on two SCs. This not only reduces the training overhead compared

to exhaustive search but since training requires dedicated servers, it

also reduces the number of servers necessary for it. In contrast, if we

attempted to classify applications through exhaustive profiling, the

number of profiling runs would equal the number of SCs (e.g., 40).

For a cloud service with high workload arrival rates, this would be

infeasible to support, underlining the importance of keeping training

overheads low, something that Paragon does.

Classification is very fast. On a production-class Xeon server, this

takes 10-30 msec for thousands of applications and tens of SCs. We

can perform classification for one application at a time or for small

groups of incoming applications (batching) if the arrival rate is high

without impacting accuracy or speed.

Performance scores: We populate A with normalized scores that

represent how well an application performs on a server configuration.

We use the following performance metrics based on application type:

(a) Single-threaded workloads: We use instructions committed

per second (IPS) as the initial performance metric. Using execution

time would require running applications to completion in the profil-

ing servers, increasing the training overheads. We have verified that

using IPS leads to similar classification accuracy as using full execu-

tion time. For multi-programmed workloads we use aggregate IPS.

(b) Multithreaded workloads: In the presence of spin-locks or

other synchronization schemes that introduce active waiting, aggre-

gate IPS can be deceiving [1, 42]. We address this by periodically

polling low-overhead performance counters, to detect changes in the

register file (read and writes that would denote regular operations

3

other than spinning) and weight-out of the IPS computation such exe-

cution segments. We have verified that scheduling with this ”useful”

IPS leads to similar classification accuracy as using full execution

time. When workloads are not known, or multiple workload types

are present ”useful” IPS is used to drive the scheduling decisions.

The choice of IPS as the base of performance metrics is influenced

our current evaluation which focuses on single-node CPU, memory

and I/O intensive programs. The same methodology holds for higher-

level metrics, such as queries per second (QPS), which cover com-

plex multi-tier workloads as well.

Validation: We evaluate the accuracy of heterogeneity classifi-

cation on a 40-server cluster with 10 SCs. We use a large set of

single-threaded, multi-threaded, multi-programmed and I/O-bound

workloads. For details on workloads and server configurations, see

Section 4. The offline training set includes 20 applications selected

randomly from all workload types. The recommendation system

achieves 24% performance improvement for single-threaded, 20%

for multi-threaded, 38% for multi-programmed, and 40% for I/O

workloads on average, while some applications have a 2x perfor-

mance difference. Table 1 summarizes key statistics on the classifi-

cation quality. Our classifier correctly identifies the best SC for 84%

of workloads and an SC within 5% of optimal for 90%. The pre-

dicted ranking of SCs is exactly correct for 58% and almost correct

(single reordering) for 65% of workloads. In almost all cases 50% of

SCs are ranked correctly by the classification scheme. Finally, it is

important to note that the accuracy does not depend on the two SCs

selected for training. The training SC matched the top performing

configuration only for 20% of workloads.

We also validate the analytical methods. We compare performance

predicted by the recommendation system to performance obtained

through experimentation. The deviation is less than 3.8% on average.

2.3 Classification for Interference
Overview: There are two types of interference we are interested in:

interference that an application can tolerate from pre-existing load on

a server and interference the application will cause on that load. We

detect interference due to contention on shared resources and assign

a score to the sensitivity of an application to a type of interference. To

derive sensitivity scores we develop several microbenchmarks, each

stressing a specific shared resource with tunable intensity. We run an

application concurrently with a microbenchmark and progressively

tune up its intensity until the application violates its QoS, which is set

at 95% of the performance achieved in isolation. Applications with

high tolerance to interference (e.g., sensitivity score over 60%) are

easier to co-schedule than applications with low tolerance (low sen-

sitivity score). Similarly, we detect the sensitivity of a microbench-

mark to the interference the application causes by tuning up its in-

tensity and recording when the performance of the microbenchmark

degrades by 5% compared to its performance in isolation. In this

case, high sensitivity scores, e.g., over 60% correspond to applica-

tions that cause a lot of interference in the specific shared resource.

Identifying sources of interference (SoI): Co-scheduled applica-

tions may contend on a large number of shared resources. We iden-

tified ten such sources of interference (SoI) and designed a tunable

microbenchmark for each one. SoIs span resources such as memory

(bandwidth and capacity), cache hierarchy (L1/L2/L3 and TLBs) and

network and storage bandwidth. The same methodology can be ex-

panded to any shared resource.

Collaborative filtering for interference: We classify applications

for interference tolerated and caused, using twice the process de-

scribed in Sec. 2.1. The two utility matrices have applications as

rows and SoIs as columns. The elements of the matrices are the sen-

sitivity scores of an application to the corresponding microbench-

Metric Percentage (%)

Average sensitivity error across all SoIs 5.3%

Average error for sensitivities < 30% 7.1%

Average error for sensitivities < 60% 5.6%

Average error for sensitivities > 60% 3.4%

Apps with < 5% error ST: 65% MT: 58%

Apps with < 10% error ST: 81% MT: 63%

Apps with < 20% error ST: 90% MT: 89%

SoI with highest error

for ST: L1 i-cache 15.8%

for MT: LLC capacity 7.8%

Frequency L1 i-cache used as offline SoI 14.6%

Frequency LLC cap used as offline SoI 11.5%

SoI with lowest error

for ST: network bandwidth 1.8%

for MT: storage bandwidth 0.9%

Table 2: Validation metrics for interference classification.

mark (sensitivity to tolerated and caused interference respectively).

Similarly to classification for heterogeneity, we profile a few appli-

cations offline against all SoIs and insert them as dense rows in the

utility matrices. In the online mode, each new application is profiled

against two randomly chosen microbenchmarks for one minute and

its sensitivity scores are added in a new row in each of the matri-

ces. Then, we use SVD and PQ reconstruction to derive the missing

entries and the confidence in each similarity concept. This process

performs accurate and fast application classification and provides in-

formation to the scheduler on which applications should be assigned

to the same server (see Sec. 3.2).

Validation: We evaluated the accuracy of interference classifica-

tion using the single-threaded and multi-threaded workloads and the

same systems as for the heterogeneity classification. Table 2 summa-

rizes some key statistics on the classification quality. Our classifier,

achieves an average error of 5.3% in estimating both tolerated and

caused interference across all SoIs. For high values of sensitivity, i.e.,

applications that tolerate and cause a lot of interference, the error is

even lower (3.4%), while for most applications (both single-threaded

and multi-threaded) the errors are lower than 5%. The SoIs with the

highest errors are the L1 instruction cache for single-threaded work-

loads and the LLC capacity (L2 or L3) for multi-threaded workloads.

The high errors are not a weakness of the classification, since both

resources are profiled adequately, but rather of the difficulty to con-

sistently characterize contention in certain shared resources [28]. On

the other hand, network and storage bandwidth have the lowest er-

rors, primarily due to the fact that we used CPU and memory inten-

sive workloads for this evaluation.

2.4 Putting It All Together
Overall, Paragon requires two short runs (∼1 minute) on two SCs

to classify incoming applications for heterogeneity. Another two

short runs against two microbenchmarks on a high-end SC are needed

for interference classification. We use a high-end SC to decouple

server features from interference analysis. Running for 1 minute pro-

vides some signal on the new workload without introducing signifi-

cant profiling overheads. In Section 3.4 we discuss the issue of work-

load phases, i.e., transient effects that do not appear in the 1 minute

profiling period. Next, we use collaborative filtering to classify the

application in terms of heterogeneity and interference, tolerated and

caused. This cumulatively requires a few msec even when consider-

ing thousands of applications and several tens of SCs or SoIs. The

classification for heterogeneity and interference is performed in par-

allel. For the applications we considered, the overall profiling and

classification overheads are 1.2% and 0.09% on average.

4

37

Selection of Colocation Candidates

2x

State: M*16B

Per-server state

(~64B)

Per-app state

(~64B)

Step 2: Server Selection

App

arrival

Scheduling
1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’
1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

Classification for heterogeneity (SVD+PQ)

Classification for interference (SVD+PQ)

State: ((SCs+2)*N*4B)

State: (2*(SoIs+2)*N*4B)

Step 1: Application Classification

U ∑ V

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’
1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

U ∑ V

Heterogeneity

scores

Interference

scores

S

S

DC servers

S

S

S

S

S

S

S

Figure 2: The components of Paragon and the state maintained by each component. Overall, the state requirements are marginal and

scale linearly or logarithmically with the number of applications (N), servers (M) and configurations.

Using analytical methods for classification has two benefits; first,

we have strong analytical guarantees on the quality of the infor-

mation used for scheduling, instead of relying mainly on empirical

observations. The analytical framework provides low and tight er-

ror bounds on the accuracy of classification, statistical guarantees on

the quality of colocation candidates and detailed characterization of

system behavior. Moreover, the scheduler design is workload inde-

pendent, which means that the analytical or statistical properties the

scheme provides hold for any workload. Second, these methods are

computationally efficient, scale well with the number of applications

and SCs, do not introduce significant training and decision overheads

and enable exact complexity evaluation.

3. PARAGON

3.1 Overview
Once an incoming application is classified with respect to hetero-

geneity and interference, Paragon schedules it on one of the available

servers. The scheduler attempts to assign each workload to the server

of the best SC and colocate it with applications so that interference is

minimized for workloads running on the same server. The scheduler

is online and greedy so we cannot make holistic claims about opti-

mality. Nevertheless, the fact that we start with highly accurate clas-

sification helps achieve very efficient schedules. The interference in-

formation allows Paragon to pack applications on a subset of servers

without significant performance loss1. The heterogeneity informa-

tion allows Paragon to assign to each SC only applications that will

benefit from its characteristics. Both these properties lead to faster

execution, hence resources are freed as soon as possible, making it

easier to schedule future applications (more unloaded servers) and

perform power management (more idling servers that can be placed

in low-power modes).

Fig. 2 presents an overview of Paragon and its components. The

scheduler maintains per-application and per-server state. Per-applicati-

on state includes information for the heterogeneity and interference

classification of every submitted workload. For a DC with 10 SCs

and 10 SoIs, we store 64B per application. The per-server state

records the IDs of applications running on a server and the cumu-

lative sensitivity to interference (roughly 64B per server). The per-

server state needs to be updated as applications are scheduled and,

later on, complete. Paragon also needs some storage for the inter-

mediate and final utility matrices and temporary storage for ranking

possible candidate servers for an incoming application. Overall, state

overheads are marginal and scale logarithmically or linearly with the

number of applications (N) and servers (M). In our experiments with

1Packing applications with minimal interference should be a prop-
erty exhibited by any optimal schedule.

thousands of applications and servers, a single server could handle

all processing and storage requirements of scheduling2.

We present two methods for selecting candidate servers; a fast,

greedy algorithm that searches for the optimal candidate and a statis-

tical scheme of constant runtime that provides strong guarantees on

the quality of candidates as a function of examined servers.

3.2 Greedy Server Selection
In examining candidates, the scheduler considers two factors: first,

which assignments minimize negative interference between the new

application and existing load and second, which servers have the best

SC for this workload. Decisions are made in this order; first identi-

fying servers that do not violate QoS and then selecting the best SC

between them. This is based on the observation that interference typ-

ically leads to higher performance loss than suboptimal SCs.

The greedy scheduler strives to minimize interference, while also

increasing server utilization. The scheduler searches for servers whose

load can tolerate the interference caused by the new workload and

vice versa, the new workload can tolerate the interference caused

by the server load. Specifically it evaluates two metrics, D1 =
tserver − cnewapp and D2 = tnewapp − cserver , where t is the sen-

sitivity score for tolerated and c for caused interference for a specific

SoI. The cumulative sensitivity of a server to caused interference is

the sum of sensitivities of individual applications running on it, while

the sensitivity to tolerated interference is the minimum of these val-

ues. The optimal candidate is a server for which D1 and D2 are ex-

actly zero for all SoIs. This implies that there is no negative impact

from interference between new and existing applications and that the

server resources are perfectly utilized. In practice, a good selection is

one for which D1 and D2 are bounded by a positive and small ǫ for

all SoIs. Large, positive values for D1 and D2 indicate suboptimal

resource utilization. Negative D1 and/or D2 imply violation of QoS

and identify poor candidates that should be avoided.

We examine candidate servers for an application in the following

way. The process is explained for interference tolerated by the server

and caused by the new workload (D1) and is exactly the same for D2.

Given the classification of an application, we start from the resource

that is most difficult to satisfy (highest sensitivity score to caused

interference). We query the server state and select the server set for

which D1 is non-negative for this SoI. Next, we examine the second

SoI in order of decreasing sensitivity scores, filtering out any servers

for which D1 is negative. The process continues until all SoIs have

been examined. Then, we take the intersection of candidate server

sets for D1 and D2. We now consider heterogeneity. From the set

of candidates we select servers that correspond to the best SC for

the new workload and from their subset we select the server with

min(||D1 +D2||L1).

2Additional scheduling servers can be used for fault-tolerance.

5

As we filter out servers, it is possible that at some point the set of

candidate servers becomes empty. This implies that there is no single

server for which D1 and D2 are non-negative for some SoI. In prac-

tice this event is extremely unlikely, but is supported for complete-

ness. We handle this case with backtracking. When no candidates

exist the algorithm reverts to the previous SoI and relaxes the QoS

constraints until the candidate set becomes non empty, before it con-

tinues. If still no candidate is found backtracking is extended to more

levels. Given M servers, the worst-case complexity of the algorithm

is O(M · SoI2), since theoretically backtracking might extend all

the way to the first SoI. In practice, however, we observe that for

a 1000-server system, 89% of applications were scheduled without

any backtracking. For 8% of these, backtracking led to negative D1

or D2 for a single SoI and for 3% for multiple SoIs. Additionally, we

bound the runtime of the greedy search using a timeout mechanism,

after which the best server from the ones already examined is selected

in the way previously described (best SC and minimum interference

deviation). In our experiments timeouts occurred in less than 0.1%

of applications and resulted in a server within 10% of optimal.

3.3 Statistical Framework for Server Selection
The greedy algorithm selects the best server for an application -

or a near-optimal server. However, for very large DCs, e.g., 10-100k

servers, the overhead from examining the server state in the first step

of the search might become high. Additionally, the results depend on

the active workloads and do not allow strict guarantees on the server

quality under any scenario. We now present an alternative, statistical

framework for server selection in very large DCs based on sampling,

which has constant runtime and enables such guarantees.

Instead of examining the entire server state we sample a small

number of servers. We use cryptographic hash functions to introduce

randomness in the server selection. We hash the scores of tolerated

interference of each server using variations of SHA-1 [22] as differ-

ent hash functions (hj) for each SoI to increase entropy. The input to

a hj is a sensitivity score for an SoI and the output a hashed value of

that score. Outputs have the same precision as inputs (14bits). This

process is done once, unless the load of a server changes. When a

new application arrives, we obtain candidate servers by hashing its

sensitivity scores to caused interference for each SoI. For example,

the input to h1 for SoI 1 is a. The output will be a new number, b
which corresponds to server ID u. Re-hashing b obtains additional

IDs of candidate servers. This produces a random subset of the sys-

tem’s servers. After a number of re-hashes the algorithm ranks the

examined servers and selects the best one. Candidates are ranked by

colocation quality, which is a metric of how suitable a given server

is for a new workload. For candidate i, colocation quality is defined

as:

Qi = [sign(
SoIs
∑

(t− c)i)]|1− ||t− c||1| =

[sign(
SoIs
∑

k=1

(t(k)− c(k))i)]|1−
SoIs
∑

k=1

|t(k)− c(k)|i|

t is the original, unhashed sensitivity to tolerated interference for a

server and c the original sensitivity to caused interference for the

new workload. The sign in Qi reflects whether a server preserves

(positive) or violates QoS (negative). The L1 norm of (t− c) reflects

how closely the server follows the application’s requirements and

is normalized to its maximum value, 10, which happens when for

all ten SoIs t = 100% and c = 0. High and positive Qi values

reflect better candidates, as the deviation between t and c is small

for all SoIs. Poor candidates have small Qi or even negative when

they violate QoS in one or more SoIs. Quality is normalized to the

range [0, 1]. For example, for unnormalized qualities in the range

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Uniformity Assum. R=16
Experimental R=16

Uniformity Assum. R=64
Experimental R=64

Uniformity Assum. R=128
Experimental R=128

Q
=

0.
6,

 s
te

ps
=

43

Q
=

0.
7,

 s
te

ps
=

18

Q
=

0.
9,

 s
te

ps
=

87

Figure 3: Colocation quality distribution (F (x) = xR, where

R = 16, 64 and 128). Fig. 3b shows the comparison between the

greedy algorithm and the statistical scheme for three colocation

candidates of Q = 0.6, 0.7 and 0.9.

[−1.2, 0.8] and a candidate with Q = −1.0, the normalized quality

will be:
(−1.0+|min|)
|max|+|min|

= 0.2/2 = 0.1.

We now make an assumption on the distribution of quality values,

which we verify in practice. Because of the way candidate servers

are selected and the independence between initial workloads, Qi’s

approximate a uniform distribution, for problems with tens of thou-

sands of servers and applications. Figure 3a shows the CDF of mea-

sured quality for 16, 64 and 128 candidates and the corresponding

uniform distributions (F (x) = xR, where R the number of candi-

dates examined) in a system with 1,000 servers. In all cases, the

assumption of uniformity holds in practice with small deviations.

When we exceed 128 candidates (1/8 of the cluster) the distribution

starts deviating from uniform. We have observed that for even larger

systems, e.g., a 5,000-server Windows Azure cluster, uniform distri-

butions extend to larger numbers of candidates (up to 512) as well.

The probability of a candidate having quality a is Pr(a) = aR. For

example, for 128 candidates there is a 10−6 probability that no can-

didate will have quality over 0.9.

We now compare the statistical scheme with the greedy algorithm

(Figure 3b). While the latter finds a server with quality Q after a

random number of steps, the statistical scheme provides strong guar-

antees on the number of candidates required for the same quality. For

example, for a candidate with Q = 0.9, the greedy algorithm needs

87 steps, but cannot provide ad hoc guarantees on the quality of the

result, while the statistical scheme guarantees that for the same re-

quirements, with 64 candidates, there is a 10−3 chance that no server

has Q ≥ 0.9. The guarantees become stricter as the distribution gets

skewed towards 1 (more candidates). Therefore, although the statis-

tical scheme cannot guarantee optimality, it shows that examining a

small number of servers provides strict guarantees on the obtained

quality and makes scheduling efficiency workload independent.

In our 1,000-server experiments, the overhead of the greedy algo-

rithm is marginal (less than 0.1% in most cases), while the statistical

scheme induces 0.5-2% overheads due to the computation required

for hashing. Because at this scale the greedy algorithm is faster, all

results in this work are obtained using greedy search. However, for

problems of larger scale the statistical scheme can be more efficient.

3.4 Discussion
Workload phases: Application classification in Paragon is performed

once for each new workload, using the information from its 1 minute

profiling. It is possible that some applications will go through vari-

ous phases that are not captured during profiling. Hence, the sched-

ule will be suboptimal. We detect such workloads by monitoring

their performance scores (e.g., IPS) during execution. If the moni-

tored performance deviates significantly and for long periods of time

from the performance predicted by the classification engine, the ap-

plication may have changed behavior. Upon detection we do one

6

Server Type GHz/sockets/cores/ L1(KB)/LLC(MB)/mem(GB) #

Xeon L5609 1.87 2 8 32/32 12 24 DDR3 1

Xeon X5650 2.67 2 12 32/32 12 24 DDR3 2

Xeon X5670 2.93 2 12 32/32 12 48 DDR3 2

Xeon L5640 2.27 2 12 32/32 12 48 DDR3 1

Xeon MP 3.16 4 4 16/16 1 8 DDR2 5

Xeon E5345 2.33 1 4 32/32 8 32 FB-DIMM 8

Xeon E5335 2.00 1 4 32/32 8 16 FB-DIMM 8

Opteron 240 1.80 2 2 64/64 2 4 DDR2 7

Atom 330 1.60 1 2 32/24 1 4 DDR2 5

Atom D510 1.66 1 2 32/24 1 8 DDR2 1

Table 3: Main characteristics of the servers of the local cluster.

The total core count is 178 for 40 servers of 10 different SCs.

of the following. First, we can avoid scheduling a large number of

other workloads on the same server as the interference information

for this workload is likely incorrect. Second, if there is a migration

mechanism available (process or VM migration), we can clone the

workload, repeat the classification from its current execution point

and evaluate whether re-scheduling to another server is beneficial.

Note that migration can involve significant overheads if the applica-

tion operates on significant amounts of state. Section 5 includes an

experiment where workload behavior experiences different phases.

We assume that there exists an underlying mechanism, such as vSh-

pere [41], that performs the live migration.

Suboptimal scheduling: A second concern apart from application

phases is suboptimal scheduling, either due to the greedy selection

algorithm which assigns applications to servers in a per-workload

fashion, or due to pathological behavior in application arrival pat-

terns. Suboptimal scheduling can be detected exactly as the problem

of workload phases and can potentially be resolved by re-scheduling

several active applications. Although re-scheduling was not needed

for the examined applications, Paragon provides a general method-

ology to detect such deviations and leverage mechanisms like VM

migration to re-schedule the sub-optimally scheduled workloads.

Latency-critical applications and workload dependencies: Finally,

Paragon does not explicitly consider latency-critical applications or

dependencies between application components, e.g., a multi-tier ser-

vice, such as search or webmail, where tiers communicate and share

data. One differentiation in this case comes from the metrics the

scheduler must consider. It is possible that the interference classi-

fication should use microbenchmarks that aim to degrade the per-

query latency as opposed to the workload’s throughput. Another dif-

ferentiation comes from the possible workload scenarios. One sce-

nario can involve a latency-critical application running as the pri-

mary process, e.g., memcached, and the remaining server capac-

ity being allocated to best-effort applications, such as analytics or

background processes using Paragon. A different scenario is one

where a throughput-bound distributed workload, e.g., MapReduce

runs with high priority and the remaining server capacity is used by

instances of a latency-critical application. Paragon does not currently

enforce fine-grain priorities between application components or user

requests, or optimize for shared data placement, which might be ben-

eficial for these scenarios. There is related work on this topic [20]

and we will consider how it interacts with Paragon in future work.

4. METHODOLOGY
Server systems: We evaluated Paragon on a small local cluster

and three major cloud computing services. Our local cluster includes

servers of ten different configurations shown in Table 3. We also

show how many servers of each type we use. Note that these con-

figurations range from high-end Xeon systems to low-power Atom-

based boards. There is a wide range of core counts, clock frequencies

and memory capacities and speeds present in the cluster.

For the cloud-based clusters we used exclusive (reserved) server

instances, i.e., no other users had access to these servers. We verified

that no external scheduling decisions or actions such as auto-scaling

or workload migration are performed during the course of the ex-

periments. We used 1,000 servers on Amazon EC2 [13] with 14

different SCs, ranging from small, low-power, dual-core machines to

high-end, quad-socket, multi-core servers with hundreds of GBs of

memory. All 1,000 machines are private, i.e., there is no interference

in the experiments from external workloads. We also conducted ex-

periments with 500 servers on Windows Azure [43] with 8 different

SCs and 100 servers on Google Compute Engine [17] with 4 SCs.

Schedulers: We compared Paragon to three alternative schedulers.

First, a baseline scheduler that preserves an application’s core and

memory requirements but ignores both its heterogeneity and inter-

ference profiles. In this case, applications are assigned to the least-

loaded (LL) machine. Second, a heterogeneity-oblivious (NH) scheme

that uses the interference classification in Paragon to assign applica-

tions to servers without visibility in their SCs. Finally, an interference-

oblivious (NI) scheme that uses the heterogeneity classification in

Paragon but has no insight on workload interference. The overheads

for the heterogeneity and interference-oblivious schemes are the cor-

responding classification and server selection overheads.

Workloads: We used 29 single-threaded (ST), 22 multi-threaded

(MT) and 350 multi-programmed (MP) workloads and 25 I/O-bound

workloads. We use the full SPEC CPU2006 suite and workloads

from PARSEC [8] (blackscholes, bodytrack, facesim, ferret, fluidani-

mate, raytrace, swaptions, canneal), SPLASH-2 [45] (barnes, fft, lu,

ocean, radix, water), BioParallel [21] (genenet, svm), Minebench [30]

(semphy, plsa, kmeans) and SPECjbb (2, 4 and 8-warehouse instances).

For multiprogrammed workloads, we use 350 mixes of 4 applica-

tions, based on the methodology in [36]. The I/O-bound workloads

are data mining applications, such as clustering and recommender

systems [34], in Hadoop and Matlab running on a single-node. Work-

load durations range from minutes to hours. For workload scenarios

with more than 426 applications we replicated these workloads with

equal likelihood (1/4 ST, 1/4 MT, 1/4 MP, 1/4 I/O) and randomized

their interleaving.

Workload scenarios: To explore a wide range of behaviors, we

used the applications listed above to create multiple workload sce-

narios. Scenarios vary in the number, type and inter-arrival times of

submitted applications. The load is classified based on its relation

to available resources; low: the required core count is significantly

lower than the available processor resources; high: the required core

count approaches the load the system can support but does not sur-

pass it; and oversubscribed: the required core count often exceeds

the system’s capabilities, i.e., certain machines are oversubscribed.

For the small-scale experiments on the local cluster we examine

four workload scenarios. First, a low load scenario with 178 applica-

tions, selected randomly from the pool of workloads, which are sub-

mitted with 10 sec inter-arrival times. Second, a medium load sce-

nario with 178 applications, randomly selected as before and submit-

ted with inter-arrival times that follow a Gaussian distribution with

µ = 10 sec and σ2 = 1.0. Third, a high load scenario with 178

workloads, each corresponding to a sequence of three applications

with varying memory loads. Each application goes through three

phases; first medium, then high and again medium memory load.

Workloads are submitted with 10 sec intervals. Finally, we exam-

ine a scenario, where 178 randomly-chosen applications arrive with

1 sec intervals. Note that the last scenario is an over-subscribed one.

After a few seconds, there are not enough resources in the system

7

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Alone on Best Platform
No Heterogeneity (NH)
No Interference (NI)

LeastLoaded(LL)
Paragon (P)

-- QoS

Figure 4: Performance impact from scheduling with Paragon

for medium load, compared to heterogeneity and/or interference-

oblivious schedulers. Application arrival times follow a Gaussian

distribution. Applications are ordered from worst to best.

LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation
< 10% degradation

< 20% degradation
> 20% degradation

LL NH NI P
0

20

40

60

80

100

Figure 5: Breakdown of decision quality for heterogeneity (left)

and interference (right) for the medium load on the local clus-

ter. Applications are divided based on performance degradation

induced by the decisions made by each of the schedulers.

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Least Loaded (LL) Paragon (P)

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf. Low load

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Oversubscribed

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf. Workloads with Phases

0 50 100 150 200
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

Sp
ee

du
p

ov
er

 O
pt

im
al

Phase 2 Phase 3

Figure 6: Performance comparison between the four schedulers for three workload scenarios: low, oversubscribed and workloads with

phases (Fig. 6(a, b, c)) and performance over time for the scenario where workloads experience phases (Fig. 6d).

to execute all applications concurrently, and subsequent submitted

applications are queued.

For the large-scale experiments on EC2 we examine three work-

load scenarios; a low load scenario with 2,500 randomly-chosen ap-

plications submitted with 1 sec intervals, a high load scenario with

5,000 applications submitted with 1 sec intervals and an oversub-

scribed scenario where 7,500 workloads are submitted with 1 sec in-

tervals and an additional 1,000 applications arrive in burst (less than

0.1 sec intervals) after the first 3,750 workloads.

5. EVALUATION

5.1 Comparison of Schedulers: Small Scale
QoS guarantees: Figure 4 summarizes the performance results across

the 178 workloads on the 40-server cluster for the medium load sce-

nario where application arrivals follow a Gaussian distribution. Ap-

plications are ordered in the x-axis from worst to best-performing

workload. The y-axis shows the performance (execution time) nor-

malized to the performance of an application when it is running in

the best platform in isolation (without interference). Each line corre-

sponds to the performance achieved with a different scheduler. Over-

all, Paragon (P) outperforms the other schedulers, in terms of pre-

serving QoS (95% of optimal performance), and bounding perfor-

mance degradation when QoS requirements cannot be met. 78% of

workloads maintain their QoS with Paragon, while the heterogeneity-

oblivious (NH), interference-oblivious (NI) and least-loaded (LL)

schedulers provide similar guarantees only for 23%, 19% and 7% of

applications respectively. Even more, for the case of the least-loaded

scheduler some applications failed to complete due to memory ex-

haustion on the server. Similarly, while the performance degrada-

tion with Paragon is smooth (94% of workloads have less than 10%

degradation), the other three schedulers dramatically degrade perfor-

mance for most applications, in almost linear fashion with the num-

ber of workloads. For this scenario, the heterogeneity and interference-

oblivious schedulers perform almost identically, although ignoring

interference degrades performance slightly more. This is due to work-

loads that arrive at the peak of the Gaussian distribution, when the

cluster’s resources are heavily utilized. For the same workloads,

Paragon limits performance degradation to less than 10% in most

cases. This figure also shows that few workloads experience speedups

compared to their execution in isolation. This is a result of cache ef-

fects or instruction prefetching between similar co-scheduled work-

loads. We expect positive interference to be less prevalent for a more

diverse application space.

Scheduling decision quality: Figure 5 explains why Paragon achieves

better performance. Each bar represents a percentage of applications

based on the performance degradation they experience due to the

quality of decisions of each of the four schedulers in terms of plat-

form selection (left) and impact from interference. Blue bars reflect

good and red bars poor scheduling decisions. In terms of platform de-

cisions, the least-loaded scheduler (LL) maps applications to servers

with no heterogeneity considerations, thus it significantly degrades

performance for most applications. The heterogeneity-oblivious (NH)

scheduler assigns many workloads to suboptimal SCs, although fewer

than LL, as it often steers workloads to high-end SCs that tend to tol-

erate more interference. However, as these servers become saturated,

applications that would benefit from them are scheduled subopti-

mally and NH ends up making poor quality assignments afterwards.

On the other hand, the schedulers that account for heterogeneity ex-

plicitly (interference-oblivious (NI) and Paragon (P)) have much bet-

ter decision quality. NI induces no degradation to 47% of workloads

and less than 10% for an additional 38%. The reason why NI does

8

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000

(a) Paragon

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000

(b) No Interference

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000

(c) Least-Loaded

Figure 7: Comparison of activity and utilization between Paragon, the interference-oblivious and the least-loaded scheduler. Plots show

the required and allocated core count at each moment. We also show heat maps of server utilization over time for Paragon and the

interference-oblivious scheme.

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P
 0.0

0.5

1.0

1.5

2.0

ExecTime
Training
Classification
Greedy

Ex
ec

Ti
m

e
+

 O
ve

rh
ea

ds

//
//
//

perlbench gcc mcf leslie-3d gobmk soplex povray calculix blkscholes bodytrack fldanimate canneal genenet svm specjbb-8

Figure 8: Execution time breakdown for selected single-threaded and multithreaded applications in the medium load scenario.

not behave better in terms of platform selection is that it has no in-

put on interference, therefore it assigns most workloads to the best

SCs. As these machines become saturated, destructive interference

increases and performance degrades, although, unlike NH, which se-

lects a random SC next, NI selects the SC that is ranked second for

a workload. Finally, Paragon outperforms the other schedulers and

assigns 84% of applications to their optimal SC.

The right part in Figure 5 shows decision quality with respect to

interference. LL behaves the worst for similar reasons, while NI is

slightly better than LL since it assigns more applications to high-end

SCs, that are more likely to tolerate interference. NH outperforms

NI as expected, since NI ignores interference altogether. Paragon as-

signs 83% of applications to servers that induce no negative interfer-

ence. Considering both graphs establishes why Paragon significantly

outperforms the other schedulers, as it has better decision quality

both in terms of heterogeneity and interference.

Other workload scenarios: Figure 6 compares Paragon to the three

schedulers for the other three scenarios; low load, oversubscribed,

and workloads with phases. For low load, performance degradation

is small for all schedulers, although LL degrades performance by

46% on average. Since the cluster can easily accommodate the load

of most workloads, classifying incoming applications has a smaller

performance impact. Nevertheless, Paragon outperforms the other

three schedulers and achieves 99% of optimal performance on aver-

age. It also improves resource efficiency during low load by com-

pleting the schedule faster. For the oversubscribed scenario, Paragon

guarantees QoS for the largest workload fraction, 75% and bounds

degradation to less than 10% for 99% of workloads. In this case, ac-

counting for interference is much more critical than accounting for

heterogeneity as the system’s resources are fully utilized.

Finally, for the case where workloads experience phases, we want

to validate two expectations. First, Paragon should outperform the

other schedulers, since it accounts for heterogeneity and interference

(66% of workloads preserve their QoS). Second, Paragon should

adapt to the changes in workload behavior, by detecting deviations

from the expected IPS, re-classifying the offending workloads and

re-scheduling them if a more suitable server is available. To verify

this, in Fig. 6d we show the average performance for each sched-

uler over time. The points where workloads start changing phases

are denoted with vertical lines. First, at phase change, Paragon in-

duces much less degradation than the other schedulers, because ap-

plications are assigned to appropriate servers to begin with. Second,

Paragon recovers much faster and better from the phase change. Per-

formance rebounces to values close to 1 as the deviating workloads

are re-scheduled to appropriate servers, while the other schedulers

achieve progressively worse average performance.

Resource allocation: Ideally, the scheduler should closely follow

application resource requirements (cores, cache capacity, memory

bandwidth, etc.) and provide them with the minimum number of

servers. This improves performance (applications execute as fast as

possible without interference) and reduces overprovisioning (number

of servers used, periods for which they are active). The latter par-

ticularly extends to the DC operator, as it reduces both capital and

operational expenses. A smaller number of servers needs to be pur-

chased to support a certain load (capital savings). During low load,

many servers can be turned off to save energy (operational savings).

Figure 7a shows how Paragon follows the resource requirements

for the medium load scenario shown in Figure 4. The green line

shows the required core count of active applications based on arrival

rate and ideal execution time and the blue line the allocated core

count by Paragon. Because the scheduler tracks application behavior

in terms of heterogeneity and interference it is able to follow their

requirements with minimal deviation (less than 3.5%), excluding pe-

riods when the system is oversubscribed and the required cores ex-

ceed the total number of cores in the system. In comparison, NI (Fig-

ure 7b) and similarly for NH, either overprovisions or oversubscribes

servers, resulting in increased execution time; per-application and for

the overall scenario. Finally, Figure 7c shows the resource allocation

for the least-loaded scheduler. There is significant deviation, since

the scheduler ignores both heterogeneity and interference. All cores

are used but in a suboptimal manner. Hence, execution times are in-

creased for individual workloads and the overall scenario. Total exe-

cution time increases by 28%, but more importantly per-application

time degrades, which is harmful both for users and DC operators.

Server utilization: In Figure 7 we also plot heat maps of the server

utilization over time for Paragon and the interference-oblivious sched-

uler. Server utilization is defined as average CPU utilization across

the cores of a server. For Paragon, utilization is high in the mid-

9

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Least Loaded (LL) Paragon (P)

0 500 1000 1500 2000 2500
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Low load

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

High load

0 1000 2000 3000 4000 5000 6000 7000 8000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Oversubscribed

Figure 9: Performance comparison between the four schedulers, for three workload scenarios on 1,000 EC2 servers.

LL NH NI P LL NH NI P LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation < 10% degradation < 20% > 20%

LL NH NI P

LL NH NI P LL NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

Low load High load Oversubscribed Low load High load Oversubscribed

Figure 10: Breakdown of decision quality in terms of hetero-

geneity (left) and interference for the three EC2 scenarios.

dle of the scenario when many applications are active (47% higher

than without colocation), and returns to zero when the scenario fin-

ishes. In this case, resource usage improves without performance

degradation due to interference. On the other hand, NI keeps server

utilization high in some servers and underutilizes others, while vi-

olating per-application QoS and extending the scenario’s execution

time. This is undesirable both for the user who gets lower perfor-

mance and for the DC operator, since the high utilization in certain

servers does not translate to faster execution time, adhering scalabil-

ity to servicing more workloads.

Scheduling overheads: Finally, we evaluate the total scheduling

overheads for the various schemes. These include the overheads of

offline training, classification and server selection using the greedy

algorithm. Figure 8 shows the execution time breakdown for selected

single-threaded and multi-threaded applications. These applications

are representative of workloads submitted throughout the execution

of the medium load scenario. All bars are normalized to the exe-

cution time of the application in isolation in the best SC. Training

and classification for heterogeneity and interference are performed

in parallel so there is a single bar for each, for every workload.

There is no bar for the least-loaded scheduler for mcf, since it was

one of the benchmarks that did not terminate successfully. Paragon

achieves lower execution times for the majority of applications and

close to optimal. The overheads of the recommendation system are

low; 1.2% for training and 0.09% for classification. The overheads

of the greedy algorithm are less than 0.1% in most cases with the ex-

ceptions of soplex and genenet that required extensive backtracking

which was handled with a timeout. Overall, Paragon performs ac-

curate classification and efficient scheduling within 1 minute of the

application’s arrival, which is marginal for most workloads.

5.2 Comparison of Schedulers: Large scale
Performance impact: Figure 9 shows the performance for the three

workload scenarios on the 1,000-server EC2 cluster. Similar to the

results on the local cluster, the low load scenario, in general, does

not create significant performance challenges. Nevertheless, Paragon

outperforms the other three schemes, it maintains QoS for 91% of

workloads and achieves on average 0.96 of the performance of a

workload running in isolation in the best SC. When moving to the

case of high load, the difference between schedulers becomes more

obvious. While the heterogeneity and interference-oblivious sche-

mes degrade performance by an average of 22% and 34% and violate

QoS for 96% and 97% of workload respectively, Paragon degrades

performance only by 4% and guarantees QoS for 61% of workloads.

The least-loaded scheduler degrades performance by 48% on aver-

age, while some applications do not terminate (crash). The differ-

ences in performance are larger for workloads submitted when the

system is heavily loaded and becomes oversubscribed. Although,

we simply queue applications in FIFO order until resources become

available, Paragon bounds performance degradation (only 0.6% of

workloads degrade more than 20%), since it co-schedules workloads

that minimize destructive interference. We plan to incorporate a bet-

ter admission control protocol in the scheduler in future work.

Finally, for the oversubscribed case, NH, NI and LL dramatically

degrade performance for most workloads, while the number of appli-

cations that do not terminate successfully increases to 10.4%. Parag-

on, on the other hand, provides strict QoS guarantees for 52% of

workloads, while the other schedulers provide similar guarantees

only for 5%, 1% and 0.09% of workloads respectively. Additionally,

Paragon limits degradation to less than 10% for an additional 33% of

applications and maintains performance degradation moderate (no

cliffs in performance such as for NH in applications [1-1000]).

Decision quality: Figure 10 shows a breakdown of the decision

quality of the different schedulers for heterogeneity (left) and inter-

ference (right) across the three experiments. LL induces more than

20% performance degradation to most applications, both in terms of

heterogeneity and interference. NH has low decision quality in terms

of platform selection, while NI causes performance degradation by

colocating unsuitable applications. The errors increase as we move

to scenarios of higher load. Paragon decides optimally for 65% of

applications for heterogeneity and 75% for interference on average,

significantly higher than the other schedulers. It also constrains de-

cisions that lead to larger than 20% degradation due to interference

to less than 8% of workloads. The results are consistent with the

findings for the small-scale experiments.

Resource allocation: Figure 11 shows why this deviation exists.

10

Required NH NI LL Paragon

0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

High load

Time (s)
 6000 12000 18000 24000 30000 0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

Oversubscribed load

Time (s)
 10000 20000 30000 40000 50000

Figure 11: Comparison of required and performed core allo-

cation between Paragon and the other three schedulers for the

three workload scenarios on EC2. The total number of cores in

the system is 4960.

We omit the graph for low load where deviations are small and show

the high and oversubscribed scenarios. The yellow line represents the

required core count based on the applications running at a snapshot of

the system, while the other four lines show the allocated core count

by each of the schedulers. Since Paragon optimizes for increased

utilization within QoS constraints, it follows the application require-

ments closely. It only deviates when the required core count exceeds

the resources available in the system. NH has mediocre accuracy,

while NI and LL either significantly overprovision the number of al-

located cores, or oversubscribe certain servers. There are two impor-

tant points in these graphs: first, as the load increases the difference

in execution time exceeds the optimal one, which Paragon approxi-

mates with minimal deviation. Second, for higher loads, the errors in

core allocation increase dramatically for the other three schedulers,

while for Paragon the average deviation remains constant, excluding

the part where the system is oversubscribed.

Windows Azure & Google Compute Engine: We validate our re-

sults on a 500-server Azure and a 100-server Compute Engine (GCE)

cluster. We run a scenario with 2,500 and 500 workloads respec-

tively. Due to space reasons we omit the performance figures for

these experiments, however, in both cases the results are consistent

with what was noted for EC2. In Azure, Paragon achieves 94.3% of

the performance in isolation and maintains QoS for 61% of work-

loads, while the other three schedulers provide the same guarantees

for 1%, 2% and 0.7% of workloads. Additionally, this was the only

time where NI outperformed NH, most likely due to the wide varia-

tion between SCs which increases the importance of accounting for

heterogeneity. In the GCE cluster, which has only 4 SCs, workloads

exhibit mediocre benefits from heterogeneity-aware scheduling (7%

over random), while the majority of gains comes from accounting

for interference. Overall, Paragon achieves 96.8% of optimal perfor-

mance and NH 90%. The consistency between experiments, despite

the different cluster configurations and underlying hardware, shows

the robustness of the analytical methods that drive Paragon.

6. RELATED WORK
We discuss work relevant to Paragon in the areas of DC schedul-

ing, VM management and workload rightsizing. We also present

related work from scheduling for heterogeneous multi-core chips.

Datacenter scheduling: Recent work on DC scheduling has high-

lighted the importance of platform heterogeneity and workload inter-

ference. Mars et al. [27, 28] showed that the performance of Google

workloads can vary by up to 40% due to heterogeneity even when

considering only two SCs and up to 2x due to interference even

when considering only two co-located applications. In [27], they

present an offline scheme that used combinatorial optimization to se-

lect the proper SC for each workload. In [28], they present an offline,

two-step method to characterize the sensitivity of workloads to mem-

ory pressure and the stress each application exercises to the memory

subsystem. Govindan et al. [18] also present a scheme to quantify

the effects of cache interference between consolidated workloads,

although they require access to physical memory addresses. Finally,

Nathuji et al. [32] present a control-based resource allocation scheme

that mitigates the effects of cache, memory and hardware prefetch-

ing interference of co-scheduled workloads. In Paragon, we extend

the concepts of heterogeneity and interference-aware DC scheduling

in several ways. We provide an online, highly-accurate and low-

overhead methodology that classifies applications for both hetero-

geneity and interference across multiple resources. We also show

that our classification engine allows for efficient, online scheduling

without using computationally intensive techniques which require

exhaustive search between colocation candidates.

VM management: VM management systems such as vSphere [41],

XenServer [47] or the VM platforms on EC2 [13] and Windows

Azure [43] can schedule diverse workloads submitted by a large num-

ber of users on the available servers. In general, these platforms ac-

count for application resource requirements which they learn over

time by monitoring workload execution. Paragon can complement

such systems by making efficient scheduling decisions based on het-

erogeneity and interference and detecting when an application should

be considered for migration (re-scheduling).

Resource management and rightsizing: There has been signifi-

cant work on resource allocation in virtualized and non-virtualized

large-scale DCs, including Mesos [20], Rightscale [35], resource

containers [2], Dejavu [39] and the work by Chase et al. [10]. Mesos

performs resource allocation between distributed computing frame-

works like Hadoop or Spark [20]. Rightscale automatically scales

out 3-tier applications to react to changes in the load in Amazon’s

cloud service [35]. Dejavu serves a similar goal by identifying a

few workload classes and based on them, reuses previous resource

allocations to minimize reallocation overheads [39]. Zhu et al. [48]

present a resource management scheme for virtualized DCs that pre-

serves SLAs and Gmach et al. [16] a resource allocation scheme for

DC applications that relies on the ability to predict their behavior a

priori. In general, Paragon is complementary to resource allocation

and rightsizing systems. Once such a system determines the amount

of resources needed by an application (e.g., number of servers, mem-

ory capacity, etc.), Paragon can classify and schedule it on the proper

hardware platform in a way that minimizes interference. Currently,

Paragon focuses on online scheduling of previously unknown work-

loads. We will consider how to integrate Paragon with a rightsizing

system for scheduling long running, 3-tier services in future work.

Scheduling for heterogeneous multi-core chips: Finally, schedul-

ing in heterogeneous CMPs shares some concepts and challenges

with scheduling in heterogeneous DCs, therefore some of the ideas

in Paragon can be applied in heterogeneous CMP scheduling as well.

Fedorova et al. [14] discuss OS level scheduling for heterogeneous

multi-cores as having the following three objectives: optimal perfor-

mance, core assignment balance and response time fairness. Shele-

pov et al. [37] present a scheduler that exhibits some of these fea-

tures and is simple and scalable, while Craeynest et al. [11] use per-

formance statistics to estimate which workload-to-core mapping is

likely to provide the best performance. DC scheduling also has sim-

ilar requirements as applications should observe their QoS, resource

allocation should follow application requirements closely and fair-

ness between co-scheduled workloads should be preserved. Given

the increasing number of cores per chip and co-scheduled tasks, tech-

niques such as those used for the classification engine of Paragon can

be applicable when deciding how to schedule applications to hetero-

geneous cores as well.

11

7. CONCLUSIONS
We have presented Paragon, a scalable scheduler for DCs that

is both heterogeneity and interference-aware. Paragon is derived

from validated analytical methods, such as collaborative filtering to

quickly and accurately classify incoming applications with respect

to platform heterogeneity and workload interference. Classification

uses minimal information about the new application and relies mostly

on information from previously scheduled workloads. The output of

classification is used by a greedy scheduler to assign workloads to

servers in a manner that maximizes application performance and op-

timizes resource usage. We have evaluated Paragon with both small

and large-scale systems. Even for very demanding scenarios, where

heterogeneity and interference-agnostic schedulers degrade perfor-

mance for up to 99.9% of workloads, Paragon maintains QoS guaran-

tees for 52% of the applications and bounds degradation to less than

10% for an additional 33% out of 8500 applications on a 1,000-server

cluster. Paragon preserves QoS guarantees while improving server

utilization, hence it benefits both the DC operator, who achieves per-

fect resource use and the user, who gets the best performance. In

future work we will consider how to couple Paragon with VM man-

agement and rightsizing systems for large-scale datacenters.

ACKNOWLEDGEMENTS
We sincerely thank our shepherd, Byung-Gon Chun for his useful

comments and feedback. We also thank John Ousterhout, Mendel

Rosenblum, Daniel Sanchez, David Lo, and the anonymous review-

ers for their feedback on earlier versions of this manuscript. This

work was partially supported by a Google directed research grant on

energy proportional computing. Christina Delimitrou was supported

by a Stanford Graduate Fellowship.

8. REFERENCES
[1] A. Alameldeen, D. Wood. “IPC Considered Harmful for

Multiprocessor Workloads”. In IEEE Micro, July/Aug. 2006.

[2] G. Banga, P. Druschel, J. Mogul. “Resource containers: a new facility

for resource management in server systems”. In Proc. of OSDI, 1999.

[3] L. Barroso. "Warehouse-Scale Computing: Entering the Teenage

Decade". ISCA Keynote, SJ, June 2011.

[4] L. A. Barroso, U. Holzle.“The Datacenter as a Computer". Synthesis

Series on Computer Architecture, May 2009.

[5] L. A. Barroso and U. Holzle.“The Case for Energy- Proportional

Computing". Computer, 40(12):33–37, 2007.

[6] R. M. Bell. Y. Koren, C. Volinsky.“The BellKor 2008 Solution to the

Netflix Prize". Technical report, AT&T Labs, Oct 2007.

[7] L. Bottou. “Large-Scale Machine Learning with Stochastic Gradient

Descent”. In Proc. of COMPSTAT 2010.

[8] C. Bienia, et al. “The PARSEC benchmark suite: Characterization and

architectural implications”. In Proc. of PACT, 2008.

[9] B. Calder, et al. “Windows Azure Storage: A Highly Available Cloud

Storage Service with Strong Consistency”. In Proc. of SOSP, 2011.

[10] J. Chase, D. Anderson, et al. “Managing Energy and Server Resources

in Hosting Centers". In SIGOPS, 35(5):103–116, 2001.

[11] K. Craeynest, et al. “Scheduling Heterogeneous Multi-Cores through

Performance Impact Estimation (PIE)”. In Proc. of ISCA, 2012.

[12] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters”. In Proc. of OSDI, SF, 2004.

[13] Amazon Elastic Compute

Cloud.http://aws.amazon.com/ec2/

[14] A. Fedorova, D. Vengerov, D. Doucette. “Operating System on

Heterogeneous Core Systems”. In Proc. of OSHMA, 2007.

[15] S. Ghemawat, H. Gobioff, S.-T Leung . “The Google File System”. In

Proc. of SOSP, NY, 2003.

[16] D. Gmach, J. Rolia, et al. “Workload Analysis and Demand Prediction

of Enterprise Data Center Applications”. In Proc. of IISWC, 2007.

[17] Google Compute Engine. cloud.google.com/compute

[18] S. Govindan, et al. “Cuanta: Quantifying effects of shared on-chip

resource interference for consolidated virtual machines. In Proc. of

SOCC, 2011.

[19] J.R. Hamilton. “Cost of Power in Large-Scale Data Centers”.

http://perspectives.mvdirona.com

[20] B. Hindman, et al. “Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center”. In Proc. of NSDI, 2011.

[21] A. Jaleel, M. Mattina, B. Jacob. “Last Level Cache (LLC) Performance

of Data Mining Workloads On a CMP - A Case Study of Parallel

Bioinformatics Workloads”. In Proc. of 12th HPCA, TX, 2006.

[22] J. Katz and Y. Lindell. “Introduction to Modern Cryptography”.

Chapman & Hall/CRC Press, 2007.

[23] C. Kozyrakis, A. Kansal, et al. “Server Engineering Insights for

Large-Scale Online Services”. In IEEE Micro, vol.30, no.4, July 2010.

[24] K. Kiwiel. “Convergence and efficiency of subgradient methods for

quasiconvex minimization”. Math. Programming, Springer, 2001.

[25] J. Leverich, C. Kozyrakis. “On the Energy (In)Efficiency of Hadoop

Clusters”. In Proc. of HotPower, October 2009.

[26] J. Lin, A. Kolcz. “Large-Scale Machine Learning at Twitter”. In Proc.

of SIGMOD, Scottsdale, 2012.

[27] J. Mars, L. Tang, R. Hundt. “Heterogeneity in ”Homogeneous”

Warehouse-Scale Computers: A Performance Opportunity”. In IEEE

CAL, July-December 2011.

[28] J. Mars, L. Tang, et al. “Bubble-Up: Increasing Utilization in Modern

Warehouse Scale Computers via Sensible Co-locations”. In Proc. of

MICRO-44, Brazil, December 2011

[29] D. Meisner, C. Sadler, L. A. Barroso, et al. “Power Management of

On-line Data-Intensive Services”. In Proc. of ISCA, SJ, June 2011.

[30] R. Narayanan, B. Ozisikyilmaz, et al. “MineBench: A Bench- mark

Suite for DataMining Workloads”. In Proc. of IISWC, 2006.

[31] R. Nathuji, C. Isci, E. Gorbatov. “Exploiting platform heterogeneity

for power efficient data centers”. In Proc. of ICAC, 2007.

[32] R. Nathuji, et al. “Q-Clouds: Managing Performance Interference

Effects for QoS-Aware Clouds”. In Proc. of EuroSys, 2010.

[33] Rackspace. http://www.rackspace.com/

[34] A. Rajaraman and J. Ullman. “Textbook on Mining of Massive

Datasets”, 2011.

[35] Amazon EC2: Rightscale. https://aws.amazon.com/

solution-providers/isv/rightscale

[36] D. Sanchez, C. Kozyrakis. “Vantage: Scalable and Efficient

Fine-Grain Cache Partitioning”. In Proc. of ISCA, SJ, 2011.

[37] D. Shelepov, J. Saez, et al. “HASS: A Scheduler for Heterogeneous

Multicore Systems”. In OSP, vol. 43, 2009.

[38] J. Sun, Y. Xie, H. Zhang, C. Faloutsos. “Less is More: Compact Matrix

Decomposition for Large Sparse Graphs”. In Proc. of SDM, 2007.

[39] N. Vasic, et al. “DejaVu: Accelerating Resource Allocation in

Virtualized Environments”. In Proc. of ASPLOS, London, 2012.

[40] vMotion
TM

. http://www.vmware.com/products/vmotion

[41] VMWare vSphere.

http://www.vmware.com/products/vsphere/

[42] T. Wenisch, et al. “SimFlex: Statistical Sampling of Computer System

Simulation”. In IEEE MICRO, vol. 26, no. 4, Jul-Aug 2006.

[43] Windows Azure. http://www.windowsazure.com/

[44] I. Witten, E. Frank et al. “Data Mining: Practical Machine Learning

Tools and Techniques”. M. Kaufmann, 3rd Edition.

[45] S. Woo, M. Ohara, et al. “The SPLASH-2 Programs: Characterization

and Methodological Considerations”. In Proc. of the 22nd ISCA, 1995.

[46] Xen Hypervisor 4.0. http://www.xen.org/

[47] XenServer. http://www.citrix.com/products/

xenserver/overview.html

[48] X. Zhu, et al. “1000 Islands: An Integrated Approach to Resource

Management for Vurtualized Datacenters”. In Cluster Computing

Journal, 2009.

12

http://aws.amazon.com/ec2/
cloud.google.com/compute
http://perspectives.mvdirona.com
http://www.rackspace.com/
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale
http://www.vmware.com/products/vmotion
http://www.vmware.com/products/vsphere/
http://www.windowsazure.com/
http://www.xen.org/
http://www.citrix.com/products/xenserver/overview.html
http://www.citrix.com/products/xenserver/overview.html

	Introduction
	Fast & Accurate Classification
	Collaborative Filtering Background
	Classification for Heterogeneity
	Classification for Interference
	Putting It All Together

	Paragon
	Overview
	Greedy Server Selection
	Statistical Framework for Server Selection
	Discussion

	Methodology
	Evaluation
	Comparison of Schedulers: Small Scale
	Comparison of Schedulers: Large scale

	Related Work
	Conclusions
	References

