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ABSTRACT

Document layout analysis has a wide range of requirements across various domains, languages, and
business scenarios. However, most current state-of-the-art algorithms are language-dependent, with
architectures that rely on transformer encoders or language-specific text encoders, such as BERT, for
feature extraction. These approaches are limited in their ability to handle very long documents due to
input sequence length constraints and are closely tied to language-specific tokenizers. Additionally,
training a cross-language text encoder can be challenging due to the lack of labeled multilingual
document datasets that consider privacy. Furthermore, some layout tasks require a clean separation
between different layout components without overlap, which can be difficult for image segmentation-
based algorithms to achieve. In this paper, we present Paragraph2Graph, a language-independent
graph neural network (GNN)-based model that achieves competitive results on common document
layout datasets while being adaptable to business scenarios with strict separation. With only 19.95
million parameters, our model is suitable for industrial applications, particularly in multi-language
scenarios. We are releasing all of our code and pretrained models at this repo.

Keywords GNN · Language-independent · Document Layout · Layout Paragraph · Generalization

1 Introduction

Document layout analysis is an important task for very-rich document understanding. Given the availability to the
text bounding boxes, text info and document image, most current works either integrate all modalities together with
BERT-like encoders [1][2][3][4] or simply using visual information [5] [6] to model the task as an object detection
problem. While effective, industrial applications need to consider very-long multilingual paragraphs, which a BERT-like
encoder fails to hold due to the limitation of input sequence length and lack of multilingual document dataset. Moreover,
some scenarios expecting a clear separation between layout components make image segmentation-based algorithms
hard to adapt due to vague boundaries. Although post-processing can handle the problems, hand-craft rules make the
pipeline complicated and hard to be maintained. In contrast, graph neural networks (GNNs) can offer a promising
alternative approach that does not rely on language models.

With this work, we propose Paragraph2Graph, a language-independent GNN model to address these limitations. Fig.1
shows the overall architecture. We first encode image features with a pre-trained CNN backbone. Since each OCR
box can be regarded as a spatially-separated node of a graph, we therefore incorporate the 2d OCR text coordinates,
denoted as layout modality, and image features together as node features. Then, we build our neural network with
DGCNN [7] to dynamically refresh the graph based on updated node features and layout modality. As for edge features,
besides simply concatenating two node features, relationship proposals [8] is also used for better capturing the relative
spatial relationship. To improve the computation efficiency and balance between positive and negative training pairs,
we also propose a graph sampling method based on layout modality. A sparse graph can benefit forward and backward
computations compared to fully-connected graphs. Finally, two linear probes are trained to conduct node classification
and edge classification respectively.

Our method does not require the use of a tokenizer or language model to extract text features as part of node
embedding, making it language-independent and efficient in terms of parameters. In contrast to Transformer Encoder
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Figure 1: The overall Paragraph2Graph architecture. The whole pipeline consists of five parts: node definition,
edge definition, GNN, graph sampling and task-specific layers;dotted lines represent invalid edge connections

series or previous GNN works [9][10][11][12][13], we have shown that Paragraph2Graph can easily generalize to
multilingual documents without any modifications. We also conducted experiments showing that a model trained on
Chinese documents performs similarly or even better on an English evaluation dataset than a model trained on English
documents. This demonstrates the language-independence of our approach and indicates that the diversity of document
layouts is the primary factor affecting performance. Additionally, our GNN models exhibit better generalization than
object detection frameworks such as Faster-RCNN and Mask-RCNN.

Our contributions can be summarized as follows:

• We propose a language-independent GNN framework which we call the Paragraph2Graph. The framework
consists of node definition, edge definition, graph sampling, GNN and task-specific layers. Each part of it can
be easily edited.

• We offer an empirical selection for each part of the Paragraph2Graph that achieves competitive results on
several document layout analysis tasks.

• We conduct extensive experiments and give our ablation analysis to justify the effective design.

• The language-independent design allows us to make use of all public datasets to train a model regardless of
language.

2 Related Work

Fig.2 shows three common practices for document layout analysis.

2.1 Layout Tasks use Transformer Encoder

A very-rich document has different modalities available across text info, text position and image. To mimic how humans
read, LayoutLM [1], LayoutLMv2 [2], BROS [4] first integrate text features of each token with layout modality and
corresponding image features. Afterward, LayoutLMv3 [3] extends the visual backbone to visual transformers. These
frameworks define the document layout analysis as a relation extraction and follow the same design by constructing a
fully-connected graph to calculate the relation score between all nodes. Then, each relationship in the graph is inferred
based on evaluating whether the score is over a threshold or not. All tokens inferred to be relational are grouped as one
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Figure 2: Three common practices for document layout analysis.

region. However, these methods are highly language-dependent because of their language-specific tokenizers. Due to
the lack of labeled multilingual document datasets without privacy consideration, it is a challenging alternative plan to
train a cross-language tokenizer. Besides, with the limitation of input sequence length, Transformer Encoder-series
methods cannot deal with very-long documents, such as dense tables in financial reports. The high computational cost
introduced by self-attention and fully-connection graphs reduce the availability to the industry as well.

2.2 Layout Tasks use Object Detection

Document layout analysis is about detecting the layout location of unstructured digital documents by returning bounding
boxes and categories such as figures, tables, headers, footers, paragraphs, etc. Such a task is initially defined as an
object detection problem on which many algorithms [5][6] [14] related to object detection or segmentation have been
successfully applied. However, for all the object detection or segmentation models, the predicted bounding boxes
may overlap with each other due to the vague boundary between instances as shown in Fig.3. The slight offset of the
prediction boxes has little effect on the training loss, which in turn contributes limited to the model optimization to
reach a high IoU. It’s hard to assign a label to a text box that is either located at the edge of a predicted region or is
shared by multiple predicted regions, which makes the AP IoU≥0.9 less satisfying. It has to be mentioned that recent
works [3][15][16] replacing CNN backbone with vision transformer to achieve state-of-art results on public datasets,
but the uncompetitiveness of computation cost can’t be ignored.

2.3 Layout Task use GNN

Graph Neural Networks (GNNs) have their special advantages in modeling spatial layout patterns of documents. Each
text box of a document can be regarded as a spatially-separated node in a graph;text boxes grouped in the same layout
region can be seen as being connected by edges. Since the document layout analysis can be implemented as node and
edge classification from a sampled graph, there exist no vague text boxes hard to be assigned to a certain group. We
conclude a general pipeline covering all existing GNN-based layout analysis algorithms——node definition, graph
sampling, edge definition, GNNs and task-oriented processing. Existing works only explore part of the pipeline.

For node definition, [9] uses char embedding with BiLSTM to integrate text into node;[17] adds regional image
feature from FPN output;[10] encodes box coordinate xywh into node embedding. Afterward, Post-OCR [18] adds
cosα, sinα, xcosα, xsinα, ycosα, ysinα and the width of the first word, where α is the angle of text box;ROPE[11]
explores the importance of the reading orders of given word-level node representations in a graph;Doc2Graph [13]
uses a pre-trained U-Net to get text image feature;Doc-GCN [12] proposes a large collection for node definition, which
includes text embedding from BERT model, image feature from pre-trained Faster-RCNN model, the number of tokens,
the ratio of token number and box area, and syntactic feature.

For edge definition, [9] uses horizontal and vertical distance and the ratio of height between the two text boxes;ROPE[11]
constructs with spatial embeddings from horizontal and vertical normalized relative distances between centers, top left
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(a) ground truth layout regions (b) predicted regions by an object detection method

Figure 3: (a) ground truth layout region (b) tricky cases that an object detection method fails to handle with: region 1:
shows one text box can locate across two layout regions;region 2: the text box exactly located at the box boundary;region
3: The text box is not located in any regions. green, red, yellow, blue rectangle means detected regions for the Title,
Text, Table, and Page Foot.

corners, and bottom right corners and relative height and width aspect ratios;Doc2Graph[13] uses the output of the last
GNN layer, softmax of the output logits and polar coordinates for node embedding.

For the GNN module, based on the vanilla GNNs, many works have studied sophisticated designs to improve GNNs
performances. Graph Convolutional Networks [19] is a type of Graph Neural Network which applies convolution over
graph structures. This design is widely used in [12][20]. GAT[21] leverages the self-attention mechanism into GNNs to
decouple node update coefficients from the structure of the graph. It has been used in [17][10][18].

For graph sampling, given that a document usually has a large number of text boxes that can be regarded as nodes,
it is essential to construct a graph with both high connectivity and sparsity compared to a fully-connected graph to
allow necessary gradient propagation. [22] first proposes β-skeleton graph;GraphSage [23] uniformly samples a set
of nodes from the neighborhoods and only aggregates feature information from sampled neighbors. [18][11][20] all
follow β-skeleton to build their graph, but the miss to cover tabular structures where text box density is relatively high.
K-Nearest Neighbor is another good substitution, [10] set K = 10 and [24] set K = 3, but it is still too tricky to tune
satisfying parameters for different business scenarios.

2.4 Other Tasks use GNN: table recognition, text line grouping

All aforementioned algorithms can be generalized to table recognition tasks by simply modifying the task-oriented
layers to represent whether two adjacent cells are in the same row or col. For the table recognition task, [25] uses
KNN to construct a graph and represent text features by encoding character embedding with GRU;[26] constructs a
fully-connection graph and set weighted loss to balance between positive and negative samples.[27] [28] [29] [30] share
the identical GNN structure. Text line grouping task is more easily adaptable to GNN with minor changes. [24] predicts
edge classified probability to judge if the pivot and its neighbors are in the same line;[31] introduces the residual
connection mechanism for GNNs. In general, a powerful GNN model can be used in many downstream document
analysis tasks.

3 Method

We follow our conclusion to establish a unified pipeline covering all main steps to build a GNN-based model for layout
analysis: they include node definition, graph sampling, edge definition, GNNs, and task-oriented processing.
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Node definition Given a document image D ∈ RH×W×3 with N text boxes generated by any commercial
or open source Optical Character Recognition (OCR) engine. we denote all text boxes as: position_info =
{xnmin, y

n
min, x

n
max, y

n
max | n ∈ [0, N − 1]}. The input image D is first resized into D′ ∈ R400×400×3. D′ is sent to a

pre-trained ResNet visual backbone to get a series of output features from different scales. These features are integrated
with D′ into F ∈ R400×400×d with an FPN structure. For N text boxes, we pick out their corresponding image features
with ROIAlign and embed them as IN×k, aka image embedding. d, k is the intermediate dimensions. Given the normal-
ized bounding box, the layout information is represented as layoutn = (xnmin, y

n
min, x

n
max, y

n
max, x

n
ctr, y

n
ctr, wn, hn).

The layout information composes of bounding box coordinates, center point coordinates, bounding box width and height
to construct a token-level 2D positional embedding, denoted as layout embedding. We then fuse layout embedding and
image embedding:

node_embedding := MLP(Concate(image_embedding, layout_embedding)

GNN module After gathering all the node features, they are passed as input to the interaction model. We have tested
two graph neural networks to use as the interaction part which are the modified versions of [7] and [32] respectively.
These modified networks are referred to as DGCNN* and GravNet* hereafter. We update the node features by
aggregating weighted neighbor nodes with DGCNN/GravNet.

node_embedding = max(node_embedding, DGCNN or GravNet(node_embedding, position_info))

Graph sampling Text boxes classified into the same layout category can be regarded as having an edge between
them. We refer to this task as node grouping: to infer whether there exists an edge between a node pair. To construct
node pairs, we therefore connect all potential edges between the nodes with a location-based node search algorithm.
Instead of constructing a fully-connected graph, our method can both save computation costs and improve training
efficiency. Based on the common structure of a document, each text node can have potential edge connections both
vertically and horizontally. For each text box, we pick up its top 1-2 location-nearest text boxes in four directions (top,
bottom, left and right). Complex cases need additional processing as shown in Fig.4-b. Our method can effectively
sample a sparse graph without missing necessary node pairs. Comparison among KNN, β-skeleton, and our sampling
methods can be found in Appendix Fig.5.

(a) left (b) right

Figure 4: Left: illustration of our graph sampling strategy: for each node (shown in orange), we sample one edge
horizontally (shown as red region) and two edges vertically (shown as green region);Right: We vertically sample top-2
nearest edges instead top-1 to ensure the connectivity with this common right-alignment paragraph structures

Edge definition We concatenate the node feature of each valid node pair as Fpair. Inspired by ROPE [11], we encode
natural reading orders of words as Frope to help capture the better sequential presentation between nodes. A new
reading order code is first assigned to neighbors with respect to each text box. Then, a sinusoidal encoding matrix is
applied to encode the reading order index.

We also consider that the relationship between nodes is an important feature that has been ignored by [8]. Following the
relationship proposal, suppose two nodes have a potential relationship, we denote one node as S, a subject, the other as
O, an object, and the relationship as R. ∆(S,O) = (tSO

x , tSO
y , tSO

w , tSO
h , tOS

x , tOS
y ), where

tSO
x = (xS − xO)/wS , tSO

y = (yS − yO)/hS (1)

tSO
w = log(wS/wO), tSO

h = log(hS/hO) (2)

tOS
x = (xO − xS)/wO, tOS

y = (yO − yS)/hO (3)
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xS , yS , wS , hS represent the center coordinates, width, and height of a subject box, similarly denotations apply for xO,
yO, wO, hO. The coordinates of R is the minimum bounding rectangle of S, O, which means

(xRmin, y
R
min, x

R
max, y

R
max) = min(xOmin, x

S
min),min(yOmin, y

S
min),max(xOmax, x

S
max),max(yOmax, y

S
max)

The relationship feature Frel is defined as an concatenation of ∆(S,O), ∆(S,R) and ∆(O,R). Finally, the edge
feature is formally represented as:

Fedge = Concate(Fpair, Frope, Frel)

Task-oriented processing For node classification, we apply a fully-connected layer to fuse features and a linear layer
Wh×c to classify each node. h is the hidden dimension and c is the number of categories. For node grouping, we follow
the same idea as node classification: a fully-connected layer to fuse features and a linear layer Wh×2 to infer whether
there exists an edge between a node pair or not. All connected nodes are regarded as layout instance. The minimum
bounding boxes of connected nodes are the final layout bounding boxes. The category mode of connected nodes is the
category of the layout instance.

4 Experiments

Previous works propose various definitions on edge and nodes, but they either get non-competitive results or introduce
expensive computation costs. We therefore study the combinations of these designs and compare them with object
detection and the Transformer Encoder model on several document layout analysis tasks. Our experiments demonstrate
the effectiveness and competitiveness of our method.

We train our model with 1 GeForce 3090 GPUs from scratch, We use an Adam optimizer with 0.937 momentum and
0.005 weight decay. The learning rate is set to 0.0001.

4.1 Results on Public Datasets

FUNSD The FUNSD [33] provides 199 annotated forms with 9, 707 entities and 31, 485 word-level annotations for
four entity types: header, question, answer, and other. It includes noisy scanned documents in English from various
fields, such as research, marketing, and advertising. This dataset is commonly used in GNN-related papers, and we used
it for our experiments for easy comparison. FUNSD contains two level labels: word and entity. For word-level labels,
we predict the category of each word and determine whether two words belong to the same entity. For entity-level
labels, we adds two classification heads: one for entity labeling and the other for entity linking, which predicts whether
two entities are matched.

We report our best hyperparameter configuration as shown in Tab.?? ours-Large in the ablation experiment of section
4.3. We train the models with a batch size of 2 for 60 epochs and a warm-up period of 10 epochs. The training and
validation set are split as provided, with 149 for training and 50 for evaluation.

To evaluate the performance of our method, we use multi-class F1-scores to for node classification and binary edge
classification F1-scores for grouping or linking, along with corresponding precision and recall values. Our method
significantly outperformed previous works. Despite not using a language model, our model had a significantly smaller
number of parameters as shown in Tab.1.

In the entity task,our model shown in Tab.2, achieved a F1 score of 0.80575 for entity-labeling and 0.77031 for
entity-linking, using 32.98 million parameters. We achieved state-of-the-art results in entity linking, outperforming
other GNN models and the Transformer Encoder series. On the entity labeling task, our F1 score was lower than some
Transformer Encoder modeles such as LayoutLMv2, LayoutLMv3, and BROS. This may be due to those methods
having more parameters and being pre-trained on several text-image alignment tasks, giving them strong semantic and
visual understanding abilities. Despite being trained from scratch with only 149 samples, our model still outperformed
BERT, Roberta, and LayoutLM, and achieves significant improvements over most previous GNN works. However,
doc2graph performed 1.6% better than our model on the entity labeling task, but it still suffers from the problems
associated with language-based GNNs due to its use of a language model. Compared to other state-of-the-art models,
our GNN model performed competitively.

PublayNet PublayNet[37] contains research paper images annotated with bounding boxes and polygonal segmentation
across five document layout categories: Text, Title, List, Figure, and Table. The official splits contain 335, 703 training
images, 11, 245 validation images, and 11, 405 test images. We train our model on the training split and evaluate our
model on the validation split following standard practice. We train our models with the batch size of 4 for 5 epochs
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F1 word-labeling word-grouping Params
GNN with Language model FUNSD[33] - 0.41 340M
GNN with Language model Named[10] - 0.65 201M
GNN with Language model ROPE[11] 0.5722 0.8933 -

GNN ours-Large 0.68933 0.91483 32.98M

Table 1: Performance for word level on FUNSD.

F1 entity-labeling entity-linking Params
GNN with Language model FUNSD[33] 0.57 0.04 340M
GNN with Language model Named[10] 0.64 0.39 201M

GNN FUDGE[34] 0.6652 0.5662 17M
GNN Word-FUDGE[34] 0.7221 0.6258 17M

GNN with Language model Doc2Graph[13] 0.8225 0.5336 6.2M+
Transformer Encoder BERT-base[35] 0.6026 0.2765 110M
Transformer Encoder BERT-L[35] 0.6563 0.2911 340M
Transformer Encoder RoBERTa-base[36] 0.6648 125M
Transformer Encoder RoBERTa-L[36] 0.7072 355M
Transformer Encoder LayoutLM[1] 0.7927 0.4586 113M
Transformer Encoder LayoutLM-L[1] 0.7789 0.4283 343M
Transformer Encoder LayoutLMv2[2] 0.8276 0.4291 200M
Transformer Encoder LayoutLMv2-L[2] 0.8420 0.7057 426M
Transformer Encoder BROS[4] 0.8305 0.7146 138M
Transformer Encoder BROS-L[4] 0.8452 0.7701 340M
Transformer Encoder LayoutLMv3[3] 0.9029 133M
Transformer Encoder LayoutLMv3-L[3] 0.9208 368M

GNN ours-Large 0.80575 0.77031 32.98M

Table 2: Performance for entity level on FUNSD. Doc2Graph params counts a spaCy model and a pre-trained U-Net on
FUNSD besides its own weights.

and warm-up 1 epoch. Because of training resource limitations, we only report our suboptimal configuration shown in
Tab.?? ours-Small.

We measure the performance using the mean average precision (mAP) @ intersection over union (IOU) [0.50:0.95]
of bounding boxes and report results in Tab.3 with only two categories : Text and Title. Tab.11 shows all categories.
Our proposed GNN-based model outperforms several state-of-the-art object detection models. Specifically, our model
achieves a mAP of 0.954 and 0.913 for Text and Title detection, with a model size of 77M. Our model shows better
performance than Faster-RCNN,Cascade-RCNN and Mask-RCNN regardless of whether they have been pretrained ,
which sizes ranging from 168M to 538M. Compared to Faster-RCNN-Q and Post-OCR models with mAPs of 0.914
and 0.892 respectively, our GNN-based model achieves higher accuracy in Text category. Fig.6 shows some cases of
our algorithm on this dataset.

mAP Text Title Size
OD Faster-RCNN[37] 0.910 0.826 -
OD Mask-RCNN[37] 0.916 0.84 168M

OD-pretrained Faster-RCNN[UDoc][16] 0.939 0.885 -
OD-pretrained Mask-RCNN[DiT-base][15] 0.934 0.871 432M
OD-pretrained Cascade-RCNN[DiT-base][15] 0.944 0.889 538M
OD-pretrained Cascade-RCNN[layoutlm-v3][3] 0.945 0.906 538M

OD Faster-RCNN-Q[18] 0.914 -
GNN Post-OCR[18] 0.892 -
GNN ours-Large 0.954 0.913 77M

Table 3: Performance on Publaynet on paragraph categories.OD-pretrained means object model use pretrained CNN.
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Doclaynet Doclaynet[38] is a recently released document layout dataset annotated in COCO format. It contains
80863 manually annotated pages from diverse data sources to represent a wide variability in layouts with 11 distinct
classes: Caption, Footnote, Formula, List-item, Page-footer, Page-header, Picture, Section-header, Table, Text, and Title.
Compared with publaynet, this dataset covers more complex and diverse document types, including Financial Reports,
Manuals, Scientific Articles, Laws & Regulations, Patents and Government Tenders.

We use the same training parameters as in PubLayNet and evaluate the quality of their predictions using mean average
precision (mAP) with 10 overlaps that range from 0.5 to 0.95 in steps of 0.05 (mAP@0.5-0.95). These scores are
computed by leveraging the evaluation code provided by the COCO API. Similarly,we only compare categories
belonging to the Paragraph type without Table and Picture.The results shown in Tab.4 draw a similar conclusion as we
do in Publaynet: ours achieves better results with only 1/7 parameters with respect to object detection models in total
with a mAP of 0.771. Specifically, our model performs exceptionally well in Page-Header, Caption, Section-Header,
Title, and Text detection with mAPs of 0.796, 0.809, 0.824, 0.643, and 0.827, respectively. Comparatively, YOLO-v5x6
achieves best result in Footnote, Title and Text.Tab.12 shows all categories.

mAP Mask-RCNN-res50[38] Mask-RCNN-resnext101[38] Faster-RCNN-resnext101[38] YOLO-v5x6[38] ours-Small
Page-Header 0.719 0.7 0.720 0.679 0.796

Caption 0.684 0.715 0.701 0.777 0.809
Formula 0.601 0.634 0.635 0.662 0.726

Page-Footer 0.616 0.593 0.589 0.611 0.920
Section-Header 0.676 0.693 0.684 0.746 0.824

Footnote 0.709 0.718 0.737 0.772 0.625
Title 0.767 0.804 0.799 0.827 0.643
Text 0.846 0.858 0.854 0.881 0.827

Total-paragraph 0.702 0.7143 0.7148 0.744 0.771
Params - - 60M 140.7M 19.95M

Table 4: performance on Doclaynet on paragraph categories.

4.2 Discussion on Generalization of Language

To demonstrate the language-independence of our model, we first train our model on datasets in English and evaluate
them on a dataset in Chinese. Among them, Publaynet is a pure English dataset, Doclaynet is mostly in English,
and DGDoc is a pure Chinese dataset containing 12, 000 images from real business scenarios. We use the same F1
indicator as the experiment on FUNSD. As shown in Tab.5, our models trained on Doclaynet data and models trained
on Chinese-data behave similarly on Publaynet, and even the latter one gets a higher F1 on two tasks. The model
trained on Publaynet data and the model trained on Chinese-data perform similarly on Doclaynet. This experiment
proves that our model has the language-independent ability, which allows us to focus more on training data with
diversity and complex layout structures instead of languages. The most important advantage of this conclusion is that
for non-English application scenarios, we do not need to collect and annotate a large number of documents, which is
very time-consuming and expensive. Instead, we can directly collect a variety of public datasets regardless of languages
to train the model.

F1 val-doclaynet val-publaynet val-chineseData
node edge node edge node edge

train-doclaynet 0.94670 0.97267 0.95774 0.97171 0.85892 0.94851
train-publaynet 0.72742 0.86069 0.98729 0.99302 0.76158 0.8839

train-chineseData 0.88256 0.92285 0.96289 0.96847 0.97295 0.98872

Table 5: Comparison results for discussion on generalization of language.

4.3 Discussion on Generalization of Data Complexity

In order to compare the generalization of the model, we use two datasets:Doclaynet is a more diverse dataset than
Publaynet in layout. As shown in Tab.6, if we trained on Publaynet and predicted on Doclaynet, both models Mask-
RCNN or our GNN-based model drop badly in mAP. But if we use the model trained on Doclaynet to predict on
Publaynet, our model only slightly decreases, while Mask-RCNN drops significantly. It shows that as long as our model
has been trained on complex and diverse layouts, it can also migrate to simple layouts well.
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mAP val-publaynet val-doclaynet
maskrcnn-res50 ours-Small maskrcnn-res50 ours-Small

train-publaynet Section-Header 0.87 0.913 0.32 0.484
Text 0.96 0.954 0.42 0.338

train-doclaynet Section-Header 0.53 0.811 0.68 0.796
Text 0.77 0.769 0.84 0.827

Table 6: Comparison results for discussion on generalization of data complexity.

4.4 Ablation Experiments

4.4.1 Node-definition

When considering the node definition, we tested whether the box information is 4 values or 8, the backbone tried
res-18 and res-50, GNN tried DGCNN and GravNet, whether the GNN input and output are residual connect.The
impact of each factor was compared on four tasks for more comprehensive assessment in Tab.7.The addition of residual
connections (using res-18 or res-50) generally leads to better performance than non-residual networks.The use of more
big backbone (res-50 vs res-18) can improve the results for all tasks.When comparing different GNN models, DGCNN
tend to perform better than Gravnet.However the importance of box information is vague.

box-infor backbone GNN GNN-res WL WG EL EG
4 res-18 D - 0.65189 0.86821 0.76458 0.67797
8 res-18 D - 0.63914↓ 0.86248↓ 0.77573 0.69695
8 res-18 D + 0.65579 0.86399↓ 0.77144 0.70509
8 res-50 D - 0.66774 0.87487 0.77873 0.71613
8 res-18 G - 0.58861↓ 0.84461↓ 0.71397↓ 0.60032↓

Table 7: Ablation experiments of node definition on FUNSD: WL, WG, EL, EG means word-labeling, word-grouping,
entity-labeling, entity-linking;D and G means DGCNN and Gravnet;box-info 4 means xmin, ymin, w, h, 8 means
xmin, ymin, xmax, ymax, xcenter, ycenter, w, h.

4.4.2 Edge-definition

As for edge definition , we tested four factors:whether to use relationship,ROPE, polar and node class result as shown in
Tab.8. Four tasks is also WL (word-labeling), WG (word-grouping), EL (entity-labeling), and EG (entity-linking). The
results indicate that adding relation and node-class edges improves the performance of all metrics except EG. Adding
the ROPE edge improves WL and WG but not EL and EG. Adding the polar edge does not significantly affect the
results.

relation[8] ROPE[11] polar[13] node-class[13] WL WG EL EG
0.63478 0.86348 0.77873 0.70071

+ 0.63914 0.86248↓ 0.77573↓ 0.69695↓
+ + 0.63972 0.90039 0.77916 0.74759
+ + + + 0.63374↓ 0.89869↓ 0.77358↓ 0.74925

Table 8: Ablation experiments of edge definition on FUNSD: WL, WG, EL, EG means word-labeling, word-grouping,
entity-labeling, entity-linking.

4.4.3 Input Process & Loss

Tab.9 shows the results of various ablation experiments conducted on the FUNSD dataset, using different input processes
and loss functions. The first row represents the baseline model, which uses a 400*400 image size and cross-entropy
(CE) loss. The effect of image padding is investigated by adding a padding of unknown size to the input images. The
results indicate that this modification does not significantly affect the word-labeling metric but has a negative impact
on word-grouping, entity-labeling, and entity-linking. Increasing the image size to 800*608 pixels leads to some
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improvement in the word-grouping and entity-labeling metrics, but the word-labeling and entity-linking scores remain
relatively low.Adding a contrastive loss term in addition to the cross-entropy loss leads to some improvement in all
four tasks.Overall, Padding may not be helpful, larger image sizes may not lead to significant improvements, and the
addition of a contrastive loss may be beneficial.

image-size image-pad loss WL WG EL EG
400*400 CE 0.61066 0.86352 0.78216 0.72722
400*400 + CE 0.63914 0.86248↓ 0.77573↓ 0.69695↓
800*608 + CE 0.68795 0.87782 0.81947 0.70487↓
400*400 + CE+Con 0.64178 0.87105 0.77658↓ 0.71704↓

Table 9: Ablation experiments of input process and loss on FUNSD: WL, WG, EL, EG means word-labeling, word-
grouping, entity-labeling, entity-linking;CE and Con means CE loss and Contrastive loss.

4.4.4 Final Best Model

Name backbone image-size WL WG EL EG
ours-Small res-18 400*400 0.66579 0.90148 0.78216 0.75522
ours-Large res-50 800*608 0.68933 0.91483 0.82504 0.77031

Table 10: Best model.

We study the combinations of a variety of designs for each component in the GNN model and justify their effectiveness
on our document layout analysis tasks.

As seen in Tab.10, scale-up image size, relationship proposal, and larger CNN backbone are useful to improve accuracy,
while contrast loss, and Gravnet are not. The importance of other factors is ambiguous to tell. DGCNN is a better
choice than Gravnet. Based on the detailed ablation experiment, we get the best design combination is ours-Large.
Since we enlarge the input image size, more memory is cost. Therefore, on the large datasets DoclayNet and PublayNet,
we finally report the suboptimal configuration ours-Small instead.

5 Conclusion and Future Work

In this paper, we propose a language-independent GNN framework for document layout analysis tasks. Our proposed
model, Paragraph2Graph, uses a pre-trained CNN to encode image features and incorporates 2d OCR text coordinates
and image features as node features in a graph. We use a dynamic graph convolutional neural network (DGCNN) to
update the graph based on these features and include edge features based on relationships. To improve efficiency, we
also propose a graph sampling method based on layout modality. Our method does not require a tokenizer or language
model and can easily generalize to multilingual documents without modifications. We show that our method can
achieve competitive results on three public datasets with fewer parameters. There are several potential improvements
and attempts we leave for future work: (1) We have only experimented with only a few common GNNs, while torch-
geometric [39] officially offers nearly 60 related algorithms. Some of them can be a better substitution for DGCNN.
(2) The backbone of image features can be pre-trained on document data making it better at capturing document
image features. (3) Similar to the layoutLM which has a reasonable pre-training task to improve the merge of different
modalities, our model can be pre-trained with image reconstruction tasks as well, such as MAE. (4) Our model doesn’t
behave well on grouping tables and figures. Future research is needed to expand its generality on these important
document layout components.
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6 Appendix

6.1 Graph Sampling Comparison

As shown in Fig 5, green lines represent valid pairs connected by algorithms, red represents missing pairs that should
be connected.The sampled results of KNN and β-skeleton are very sensitive to different parameters. For (a): when
β=1, sampled graph miss many pairs, β=0.8 return enough pairs, but more negative pairs are introduced. Our sampling
strategy can reach a balance between sparsity and connectivity.
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(a) β-skeleton;left: β=1.0;middle: β=0.9;right: β=0.8. Decreasing β can trade sparsity with connectivity, but a dense
graph will make information propagation less effective.

(b) KNN;left: knn=5;middle: knn=10;right: knn=20;Increasing knn can mitigate connectivity missing, but make
sampled graph much denser.

(c) ours

Figure 5: graph sampling results of KNN, β-skeleton and our strategy
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(a) finaly layout analysis output

(b) connect all paired edges

(c) connect all unpaired edges

Figure 6: Result on Publaynet: a) rectangle color red, green, yellow, black means Text, Title, Table, and List;black line
means edge between two nodes;b) edge predicted to be connected;c) edge predicted to be unconnected.
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mAP Text Title List Table Figure Total Size
Faster-RCNN[37] 0.910 0.826 0.883 0.954 0.937 0.902 -
Mask-RCNN[37] 0.916 0.84 0.886 0.96 0.949 0.91 168M

Faster-RCNN[UDoc][16] 0.939 0.885 0.937 0.973 0.964 0.939 -
Mask-RCNN[DiT-base][15] 0.934 0.871 0.929 0.973 0.967 0.935 432M

Cascade-RCNN[DiT-base][15] 0.944 0.889 0.948 0.976 0.969 0.945 538M
Cascade-RCNN[layoutlm-v3][3] 0.945 0.906 0.955 0.979 0.970 0.951 538M

Faster-RCNN-Q[18] 0.914 -
Post-OCR[18] 0.892 -

ours-Small 0.954 0.913 0.805 0.932 0.777 0.876 77M

Table 11: performance on Publaynet on all categories.

mAP Mask-RCNN-res50[38] Mask-RCNN-resnext101[38] Faster-RCNN-resnext101[38] YOLO-v5x6[38] ours-Small
Page-Header 0.719 0.7 0.720 0.679 0.796

Caption 0.684 0.715 0.701 0.777 0.809
Formula 0.601 0.634 0.635 0.662 0.726

Page-Footer 0.616 0.593 0.589 0.611 0.920
Section-Header 0.676 0.693 0.684 0.746 0.824

Footnote 0.709 0.718 0.737 0.772 0.625
Title 0.767 0.804 0.799 0.827 0.643
Text 0.846 0.858 0.854 0.881 0.827

List-Item 0.812 0.808 0.810 0.862 0.805
Picture 0.717 0.727 0.720 0.771 0.581
Table 0.822 0.829 0.822 0.863 0.559

Total-paragraph 0.702 0.7143 0.7148 0.744 0.771
Total 0.724 0.735 0.734 0.768 0.738

Params - - 60M 140.7M 19.95M

Table 12: performance on Doclaynet on all categories.
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