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Abstract. We present a geometric relationship between the image mo- 
tion of pairs of points over multiple frames. This relationship is based on 
the parallax displacements of points with respect to an arbitrary planar 
surface, and does not involve epipolar geometry. A constraint is derived 
over two frames for any pair of points, relating their projective structure 
(with respect to the plane) based only on their image coordinates and 
their parallax displacements. Similarly, a 3D-rigidity constraint between 
pairs of points over multiple frames is derived. We show applications of 
these parallax-based constraints to solving three important problems in 
3D scene analysis: (i) the recovery of 3D scene structure, (ii) the detec- 
tion of moving objects in the presence of camera induced motion, and 
(iii) the synthesis of new camera views based on a given set of views. 
Moreover, we show that this approach can handle difficult situations for 
3D scene analysis, e.g., where there is only a small set of parallax vectors, 
and in the presence of independently moving objects. 

1 I n t r o d u c t i o n  

The analysis of three dimensional scenes from image sequences has a number  

of goals. These include (but are not limited to): (i) the recovery of 3D scene 

structure, (ii) the detection of moving objects in the presence of camera induced 

motion, and (iii) the synthesis of new camera views based on a given set of views. 

The tradit ional approach to these types of problems has been to first recover the 

epipolar geometry between pairs of frames and then apply tha t  information to 

achieve the abovementioned goals. However, this approach is plagued with the 

difficulties associated with recovering the epipolar geometry [24]. 

Recent approaches to 3D scene analysis have overcome some of the difficulties 

in recovering the epipolar geometry by decomposing the motion into a combi- 

nation of a planar homography and residual parallax [11, 15, 17]. However, they 

still require the explicit estimation of the epipole itself, which can be difficult in 

many  cases. 

More recently, progress has been made towards deriving constraints directly 

based on collections of points in multiple views. Examples are the trilinearity 

constraints [18, 16] which eliminate the scene structure in favor of the camera  

geometries; the dual-shape tensor [23] which eliminates the camera motion in 

favor of scene structure; the more general framework of multipoint multiview 

geometry [6, 3]; and the work on multiple view invariants without requiring the 

recovery of the epipolar geometry [24]. In its current form, this class of methods 
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does not address the problem of shape recovery in dynamic scenes, in particular 

when the amount of image motion due to independent moving object is not 
negligible. 

In this paper we develop geometric relationships between the residual (pla- 
nar) parallax displacements of pairs of points. These geometric relationships 

address the problem of 3D scene analysis even in di~cult conditions, i.e., when 

the epipole estimation is ill-conditioned, when there is a small number of parallax 

vectors, and in the presence of moving objects. We show how these relationships 
can be applied to each of the three problems outlined at the beginning of this 

section. Moreover, the use of the parallax constraints derived here provides a 
continuum between "2D algorithms" and the "3D algorithms" for each of the 

problems mentioned above. 

In Section 2 a parallax-based structure constraint is derived, which relates 

the projective structure of two points to their image positions and their parallax 

displacements alone. By eliminating the relative projective structure of a pair of 

points between three frames, we arrive at a constraint on the parallax displace- 

ments of two points moving as a rigid object over those frames. We refer to this 
as the parallax-based rigidity constraint. 

In Section 3 an alternative way of deriving the parallax-based rigidity con- 

straint is presented, this time geometrically rather than algebraically. This leads 

to a simple and intuitive geometric interpretation of the multiframe rigidity con- 
straint and to the derivation of a dual point to the epipole. 

In Section 4 the pairwise parallax-based constraints are applied to solving 

three important  problems in 3D scene analysis, even in the abovementioned 

difficult scenarios: (i) the recovery of 3D scene structure, (ii) the detection of 

moving objects in the presence of camera induced motion, and (iii) the synthesis 

of new camera views based on a given set of views. 

2 P a r a l l a x - B a s e d  C o n s t r a i n t s  o n  P a i r s  o f  P o i n t s  

In this section we derive a constraint on the parallax motion of pairs of points 

between two frames. We show how this constraint can be used to recover rela- 
tive 3D structure of two points from their parallax vectors alone, without any 

additional information, and in particular, without requiring the recovery of the 

camera epipoles. The parallax constraint is then extended to multiple frames and 

to multiple points to obtain rigidity constraints on image points based on their 

parallax displacements alone, without involving any scene or camera geometry. 

2.1 T h e  P l a n a r  P a r a l l a x  D e c o m p o s i t i o n  

To derive the parallax constraint, we first briefly describe the decomposition of 

the image motion into a homography (i.e., the image motion of an arbi t rary 

planar surface) and residual parallax displacements. This decomposition has 

been previously derived and used in [11, 15, 17]. For a more detailed derivation 
see also [7]. 

Fig. 1 provides a geometric interpretation of the planar parallax. Let P = 
(X, Y, Z) T and P '  = (X',  Y', Z') T denote the Cartesian coordinates of a scene 
point with respect to two different camera views, respectively. Let p = (x, y)T 
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and p~ = (x t, yt)T respectively denote the corresponding coordinates of the cor- 

responding image points in the two image frames. Let T = (Tx, Ty,Tz) denote 

~ u  P' 

rface H 

/ I/ \ id'n 

~  

Reference I " ~ T Z 

(a) o (b) 

. e. p 

Fig. 1. The plane+parallax decomposition. (a) The geometric interpretation. 
epipolar field of the residual parallax displacements. 

(b) The 

the camera translation between the two views. Let H denote an arbitrary (real 

or virtua~ planar surface in the scene, and let A t denote the homography that  

aligns the planar surface H between the second and first frame (i.e., for all points 

P E I I ,  P = AtP').  It can be shown (see [11, 9, 15, 17]) that  the 2D image dis- 

placement of the point P can be written as u -- (p~ - p) = u,~ + tt, where u~ 
denotes the planar part of the 2D image motion (the homography due to H) ,  

and tt denotes the residual planar parallax 2D motion. The homography due 

to H results in an image motion field that  can be modeled as a 2D projective 

transformation. When Tz ~ 0: 

T~ 
u~r = (p'  - Pw) ; tt ---- V-]y, (e - Pw) (1) 

a~ 

where Pw denotes the image point in the first frame which results from warping 

the corresponding point p~ in the second image by the 2D parametric trans- 
formation of the plane /-/. The 2D image coordinates of the epipole (or the 

focus-of-expansion, FOE) in the first frame are denoted by e, and d~ is the per- 

pendicular distance from the second camera center to the reference plane (see 

Fig. 1). 7 is a measure of the 3D shape of the point P.  In particular, V = H 

where H is the perpendicular distance from the P to the reference plane, and 
Z is the "range" (or "depth") of the point P with respect to the first camera. 

We refer to V as the projective 3D structure of the point P.  In the case when 

T: = 0, the parallax motion # has a slightly different form: # = 47t, where 

t = (Tx, Ty) T. 

2.2 T h e  Para l lax  B a s e d  S t r u c t u r e  C o n s t r a i n t  

Theorem 1: Given the planar-parallax displacement vectors tO and tt2 of two 
points that  belong to the static background scene, their relative 3D projective 
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structure :~ is given by: 
2r 

")2 _ P~2T(Apw)_I_ 

'~1 ~UlT(Apw)z ' (2) 

where, as shown in Fig. 2.a, P l  and p2 are the image locations (in the reference 

frame) of two points that  are part of the static scene, Apw = Pw2 - Pwl, the 
vector connecting the "warped" locations of the corresponding second frame 

points (as in Eq. (1)), and v•  signifies a vector perpendicular to v. 

Proof: From Eq. (1), we know that  ~1 = 71 dT---~, (e -- p ~ l )  and ~u2 = 72 dT---~, (e - 

Pw2)- Therefore, 
Tz 

~172 - / ~ 2 7 1  = 7172-d-F(P~2 - Pw,) (3) 

This last step eliminated the epipole e. Eq. (3) entails that  the vectors on both 

sides of the equation are parallel. Since 7172 dT--~ -, is a scalar, we get: 

72 ~u2T(Apw)• 
(~,172-l , ,71)  II Apw ::~ (/~172 -- ~271)T(Apw)•  = 0 =~ -- 

71 / ~ I T ( A p w ) •  ' 

(4) 
which is the pairwise parallax constraint. When T z  = 0, a constraint stronger 

than Eq. (4) can be derived: (/Zl 7~ - / z 2 )  = 0. However, Eq. (4), still holds. This 

is important,  as we do not have a-priori knowledge of T z  to distinguish between 

the two cases. | 

a) 

- - - -"2  ~, . 2  

epipole '~ 
�9 w &Pw _ (FOE) , 

�9 " ~  " p ~  
epipole * ' .  ~ " -  
(FOE) p 

A A 
~ ~ ~ ~ ~Pwl ~',, " ~ ~ ~Pwl 

Fig. 2. The relative structure constraint. (a) This figure geometrically illustrates the 

relative structure constraint (Eq. 2): /a _- ~'2T(zLPw)~ AB ~1 ~,lT(apw)• = X-~" (b) When the parallax 

vectors are nearly parallel, the epipole estimation is unreliable. However, the relative 
A B  structure ~-~ can be reliably computed even in this case. 

Fig. 2.a displays the constraint geometrically. The fact that  relative structure 
of one point with respect to another can be obtained using only the two parallax 

vectors is not surprising: In principle, one could use the two parallax vectors to 
recover the epipole (the intersection point of the two vectors), and then use the 

magnitudes and distances of the points from the computed epipole to estimate 
their relative projective structure. The benefit of the constraint (2) is that it 
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provides this information directly from the positions and parallax vectors of the 
two points, without the need to go through the computation of the epipole, using 
as much information as one point can give on another. Fig. 2.b graphically shows 
an example of a configuration in which estimating the epipole is very unreliable, 
whereas estimating the relative structure directly from Eq. (2) is reliable. 

2.3 The  Paral lax-Based Rigidity Constraint  

In this section we extend the parallax-based structure constraint to multiple 

frames and to multiple points, to obtain rigidity constraints that  are based only 
on parallax displacements of the image points, and involve neither structure 

parameters nor camera geometry. 

R i g i d i t y  Over  M u l t i p l e  Frames :  Let Pl  and P2 be two image points in the 
first (reference) frame. Let J J ~1, ~2 be the parallax displacement displacements 

of the two points between the reference frame and the j t h  frame, and #k, #k 
be the parallax displacements between the reference frame and the kth frame. 
Let (/~pw) j, (A]pw) k be the corresponding vectors connecting the warped points 
as in Eq. (2) and Fig. 2. Using the relative structure constraint (2), for any two 

frames j and k we get: ~ = ,ljT(Apw)~ -- ,lkT(Apw)~ - 

Multiplying by the denominators yields the rigidity constraint of the two 

points over three frames (reference frame, frame j ,  and frame k): 

(#lkT (Apw)k)(#2JW (Apw) j )  -- (/LlJT (Apw)~)(/~2kW (Apw) k) ---- 0. (5) 

Thus, the planar parallax motion trajectory of a single image point (e.g., Pl)  
over several frames constrains the planar parallax motion trajectory of any other 
point (e.g., P2) according to Eq. (5). The rigidity constraint (5) can therefore be 
applied to detect inconsistencies in the 3D motion of two image points (i.e., say 
whether the two image points are projections of 3D points belonging to a same 
or different 3D moving objects) based on their parallax motion among three 
(or more) frames alone, without the need to estimate either camera geometry 

or structure parameters. In contrast to previous approaches (e.g., the trilinear 
tensor [16]), when planar parallax motion is available, Eq. (5) provides certain 
advantages: (i) it is based on the parallax motion of a single image point, (ii) it 
does not require any numerical estimation (e.g., unlike [16], it does not require 
estimation of tensor parameters), (iii) it does not involve, explicitly or implicitly, 

any shape or camera geometry information other than that  already implicit in 

the planar parallax motion itself. 

R i g i d i t y  Over  Mult iple  Points: Instead of considering pairs of points over 
multiple frames, we can consider multiple points over pairs of frames to obtain 

a different form of the rigidity constraint. 
Let p l ,  P2, and Pa be three image points in the first (reference) frame. Let 

tti denote the 2D planar parallax motion of Pl from the first frame to another 

frame (i = 1, 2, 3). 
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Using the shape invariance constraint (2): 

72 = / ' t2T(Apw2,1)A_ . 7.._33 = / t3T(Apws,2)_I_  . "73 = / ' t3T(ApwI,1)_I_ 

"71 ttlT(Apw2,1)• ' '72 tt2T(Apw3,2)• ' "71 ttlT(Apw3,1)• 

Equating ~ = ~ ~ and multiplying by the denominators, we get the rigidity "rl 72 "rl ' 
constraint for three points over a pair of frames: 

(D3T Apw3,2 A_)(D2T Apw2,12 )(D1TApw3,1 A_) = (/.t2TApw3,2 .l.)(gl T Apw2,1 .i )(D3T Apw3,1 .L)' 
(8) 

The fact that  three points in two frames form a rigidity constraint is not sur- 
prising: In principle, one could use two of the three parallax vectors to obtain 
the epipole (the intersection point of the two vectors). 3D rigidity will con- 
strain the parallax vector of the third point to lie on the epipolar line emerging 
from the computed epipole through the third point. The benefit of the rigid- 
ity constraint (6) is in the fact that  it provides this information directly from 
the positions and parallax vectors of the three points, without the need to go 
through the unstable computation of the epipole, using as much information as 
two point can give on the third. 

2.4 T h e  Gene ra l i z ed  Pa ra l l ax  C o n s t r a i n t  

The palrwise-parallax constraint (Eq. (2)) can be extended to handle full image 
motion (as opposed to parallax motion), even when the homography is unknown. 
Eq. (1) can be rewritten (in homogeneous coordinates) as [11, 15, 17]: 

1 T A'p' 1 T A'p' 
P -- pw + "7~7-(~ zpw - T) - a, Tp ' + "7~7-( Z . ,Tn ,  W), (7) 

~31- '  

' is where A' is an unknown homography from frame2 to the first frame, and a 3 
the third row of the 3 x 3 matrix A'.  It could relate to any planar surface in the 
scene, in particular a virtual plane. 

Given two points Pl  and p2, we can eliminate T in a manner similar to that  
done in Theorem 1. This yields the generalized parallax constraint in terms the 
relative projective structure :~: "rl 

("7~ (pl A 'P ' I  A'p'2 ~T{ A'P'I A'P'2 
. , r _ , ) - ( P 2  - - )  =0. (s) 

"71 ~ 3 P l  a 3 P 2  a 3 P l  a ' T p t 2  • 

The generalized parallax constraint suggests a new implicit representation of 
general 2D image motion: Rather than looking at the representation of 2D image 
motion in terms of: homography + epipole § projective structure [11, 15, 17] it 
suggests an implicit representation of 2D image motion in terms of: homography 

+ relative projective structure of pairs of points. Since this representation does 
not contain the epipole, it can be easily extended to multiple frames. In a similar 
manner, the rigidity constraints (5) and (6) can also be generalized to handle full 
image motion with unknown homography. For more details see [7]. 
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3 Parallax Geometry  and an Epipole  Dual  
In this section, we present a geometric view of the parallax-based rigidity con- 

straint.  This leads to derivation of a dual point  to the epipole. 

The 3D geometric structure associated with the planar parallax of pairs of 

points between two frames is illustrated in Fig. 3.a. In this f i gu re , / / i s  the planar 

surface, and P and Q are the two scene points. As in the case of Fig. 1, Pw and 

Q ~  are the intersections of rays O ' P  and O ' Q  with the p l ane /7 .  The points 

pw and qw on the reference image are the projections of Pw and Q ~ ,  and 

are therefore the points to which the planar homography transforms pl and q~ 

respectively. Below, we refer to pw and qw as "warped points". 

,P 

a) o b) 

r 

" 4 

Fig .  3. The dual of the epipole. (a) The line connecting points p, q in the reference 

image intersects the line connecting the warped points pw,q.,, at r. The point r is the 

image of the point R which is the intersection of the line P Q  on the planar surface II .  

(b) The line connecting points p, q in the reference image and the lines connecting the 

fPw~ qw and from other frames all intersect at r, corresponding warped points 1 1 2 2 pw,  qw 

the dual of the epipole. 

Let R be the intersection of the line connecting P and Q with the plane H ,  

and r be its projection on the reference image plane. Since P,  Q, R are colinear 

and P w , Q w , R  are colinear, therefore p w , q w , r  and colinear and p , q ,  r are 

colinear. In  other words, the line connecting p w  and qw and the line connecting 

p and q in tersect  at r ,  the image of  the point  R. (See also [24] for the same 

observation.) 
Note tha t  the point r does not depend on the second camera view. Therefore, 

if multiple views are considered, then the lines connecting the warped points PJw 

and qJw (for any frame j ) ,  meet at r for all such views. 

The convergence of the lines is illustrated in Fig. 3.b. Referring to that  figure, 
since the lines qC,  p B  and r A  are parallel to each other and intersect the lines 
q p r  and C A B :  q~ - cA _ 2~_ Similarly, q~ = FD = Z~ Hence q~ - cA _ 

p r  - -  B ~  - -  ~ p "  p r  E---D ") 'p" p r  - -  B - A  - -  

FD This is the same as the rigidity constraint of a pair of points over multiple 
E D "  

frames derived in Section 2. Note, however, the rigidity constraint itself does not 
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require the estimation of the point of convergence r, just as it does not require 
the estimation of the epipole. 

The point r is the dual of the epipole: the epipole is the point of intersection of 
multiple parallax vectors between a pair of frames, i.e., the point of intersection 
of all lines connecting each image point with its warped point between a pair 
of frames. Whereas the dual point r is the point of intersection of all lines 
connecting a pair of points in the reference image and the corresponding pair of 
warped points from all other frames. 

4 A p p l i c a t i o n s  o f  P a i r w i s e  P a r a l l a x  G e o m e t r y  

In this section we show how parallax geometry in its various forms, which was 
introduced in the previous sections, provides an approach to handling some well- 
known problems in 3D scene analysis, in particular: (i) Moving object detection, 
(ii) Shape recovery, (ii) New view generation. 

An extensive literature exists on methods for solving the above mentioned 
problems. They can be roughly classified into two main categories: (i) 2D methods 

(e.g.,[8, 2, 13]): These methods assume that the image motion of the scene can be 
described using a 2D parametric transformation. They handle dynamic scenarios, 
but are limited to planar scenes or to very small camera translations. These fail 
in the presence of parallax motion. (ii) 319 methods (e.g., [11, 15, 17, 5, 14, 23, 
6, 3]): These methods handle general 3D scenes, but are (in their current form) 
limited to static scenarios or to scenarios where the parallax is both dense and 
of significant magnitude in order to overcome "noise" due to moving objects. 

The use of the parallax constraints derived here provides a continuum be- 
tween "2D algorithms" and the "3D algorithms". The need for bridging this gap 
exists in realistic image sequences, because it is not possible to predict in ad- 
vance which situation would occur. Moreover, both types of scenarios can occur 
within the same sequence, with gradual transitions between them. 

Es t ima t ing  P lanar  Parallax Mot ion:  The estimation of the planar par- 
allax motion used for performing the experiments presented in this section was 
done using two successive computational steps: (i) 2D image alignment to com- 
pensate for a detected planar motion (i.e., the homography) in the form of a 2D 
parametric transformation, and, (ii) estimation of residual image displacements 
between the aligned images (i.e, the parallax). 

We use previously developed methods [1, 8] in order to compute the 2D para- 

metric image motion of a single 3D planar surface in the scene. These techniques 
lock onto a "dominant" planar motion in an image pair, even in the presence of 
other differently moving objects in the field of view. The estimated parametric 
motion is used to warp the second image frame to the first. The residual image 
displacements (e.g., parallax vectors) are then estimated using the optical flow 
estimation technique described in [1]. 

4.1 Moving Object  Detec t ion  

A number of techniques exist to handle multiple motions analysis in the sim- 
pler 2D case, where motions of independent moving objects are modeled by 2D 
parametric transformation [8, 2, 13]. These methods, however, would also detect 
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points with planar parallax motion as moving objects, as they have a different 
2D image motion than the planar part of the background scene. 

In the general 3D case, the moving object detection problem is much more 
complex, since it requires detecting 3D motion inconsistencies. Typically, this is 
done by recovering the epipolar geometry. Trying to estimate epipolar geometry 
(i.e., camera motion) in the presence of multiple moving objects, with no prior 
segmentation, is extremely difficult. This problem becomes even more acute when 
there exists only sparse parallax information. A careful treatment of the issues 
and problems associated with moving object detection in 3D scenes is given in 
[19]. Methods have been proposed for recovering camera geometry in the presence 
of moving objects [12, 21] in cases when the available parallax was dense enough 
and the independent motion was sparse enough to be treated as noise. 

Fig. 4.a graphically displays an example of a configuration in which estimat- 
ing the epipole in presence of multiple moving objects can be very erroneous, 
even when using clustering techniques in the epipole domain as suggested by 
[12, 20]. Relying on the epipole computation to detect inconsistencies in 3D 
motion fails in detecting moving objects in such cases. 
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Fig .  4. Reliable detection of 3D motion inconsistency with sparse parallax informa- 
tion. (a) Camera is translating to the right. The only static object with pure paral- 

lax motion is that of the tree. Ball is falling independently. The incorrectly estimated 

epipole e is consistent with both motions. (b) The rigidity constraint applied to this 

scenario detects 3D inconsistency over three frames, since ~ ~ T2CB In this 
T 1 A  T - - T 2 C  T �9 

case, even the signs do not match. 

The parallax rigidity constraint(Eq. (5)) can be applied to detect inconsis- 
tencies in the 3D motion of one image point relative to another directly from 
their "parallax" vectors over multiple (three or more) frames, without the need 
to estimate either camera geometry  or shape parameters. This provides a useful 
mechanism for clustering (or segmenting) the "parallax" vectors (i.e., the resid- 
ual motion after planar registration) into consistent groups belonging to consis- 
tently 3D moving objects, even in cases such as in Fig. 4.a, where the parallax 
information is minimal, and the independent motion is not negligible. Fig. 4.b 
graphically explains how the rigidity constraint (5) detects the 3D inconsistency 

of Fig. 4.a over three frames. 
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Fig. 5 shows an example of using the rigidity constraint (5) to detect 3D 
inconsistencies. 

Fig. 5. Moving object detection relying on a single parallax vector. 
(a,b,c) Three image frames from a sequence obtained by a camera translating from 

left to right, inducing parallax motion of different magnitudes on the house, road, and 

road-sign. The car moves independently from left to right. The middle frame (Fig. 5.b) 

was chosen as the frame of reference. (d) Differences taken after 2D image registra- 

tion. The detected 2D planar motion was that of the house, and is canceled by the 

2D registration. All other scene parts that have different 2D motions (i.e., parallax 
motion or independent motion) are misregistered. (e) The selected point of reference 

(on the road-sign) highlighted by a white circle. (f) The measure of 3D-inconsistency 

of all points in the image with respect to the road-sign point. Bright regions indicate 

violations in 3D rigidity detected over three frames. These regions correspond to the 

car. Regions close to the image boundary were ignored. All other regions of the image 

appear to move 3D-consistently with the road-sign point. 

In [16] a rigidity constraint between three frames in the form of the trilin- 
ear tensor has been presented using regular image displacements. However, it 
requires having a collection of a set of image points which is known a priori  to 
belong to the single 3D moving object. Selecting an inconsistent set of points will 
lead to an erroneous tensor. In [22] the trilinear constraint was used to segment 
and group multiple moving objects using robust techniques. 

4.2 Shape Recovery 

Numerous methods for recovering 3D depth from multiple views of calibrated 
cameras have been suggested. More recently, methods have been developed for re- 
covering projective structure or affine structure from uncalibrated cameras [5, 14]. 
Under this category, methods for recovering structure using planar parallax mo- 
tion have been proposed [10, 11, 15, 17]. Those methods rely on prior estimation 
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of partial or full camera geometry. In particular, they rely on estimating the 

camera epipole. Some methods for recovering camera or scene geometry in the 

presence of very sparse independent motion have been suggested [12, 20]. 

Recently, a complete theory has been presented [23, 3] for estimating the 
shape directly from image displacements over multiple frames, without the need 

to recover the epipolar geometry. These assume, however, that  the scene is static. 

The problem of shape recovery in dynamic scenes, where the amount of image 

motion due to independent moving object is not negligible, is not addressed in 

these works. 

The parallax-based structure constraint (Eq. (2)) can be used to recover a 

the 3D relative structure between pairs of points directly from their parallax 

vectors. This implies that  the structure of the entire scene can be recovered 
relative to a single reference image point (with non-zero parallax). Singularities 

occur when the denominator of constraint (Eq. (2)) tends to zero, i.e., for points 

that  lie on the line passing through the reference point in the direction of its 

parallax displacement vector. 

Fig. 6 shows an example of recovering structure of an entire scene relative 

to a single reference point. Fig. 6.f shows the recovered relative structure of 

the entire scene from two frames (Figs. 6.b and 6.c). The obtained results were 
quite accurate except along the singular line in the direction of the parallax of 

the reference point. The singular line is evident in Fig. 6.f. 

The singularities can be removed and the quality of the computed structure 

can be improved either by using multiple frames (when their epipoles are non- 

colinear) or by using multiple reference points (An additional reference point 
should be chosen so that  it does not lie on the singular line of the first reference 

point, and should be first verified to move consistently with the first reference 

point through the rigidity constraint (5) over a few frames). Of course, combina- 
tions of multiple reference points over multiple frames can also be used. Fig. 6.g 

shows an example of recovering structure of an entire scene from three frames 
relative to the same single reference point as in Fig. 6.f. The singular line in 

Fig. 6.f has disappeared. 

The ability of obtain relatively good structure information even with respect 

to a single point has several important virtues: (i) Like [23, 3], it does not require 

the estimation of the epipole, and therefore does not require dense parallax 
information. (ii) Unlike previous methods for recovering structure, (including 

[23, 3]), it provides the capability to handle dynamic scenes, as it does not 

require having a collection of image points which is known a priori to belong 
to the single 3D moving object. (iii) Since it relies on a single parallax vector, 

it provides a natural continuous way to bridge the gap between 2D cases, that  
assume only planar motion exists, and 3D cases that  rely on having parallax 

data. 

4.3 N e w  V i e w  G e n e r a t i o n  

The parallax rigidity constraint (5) can be used for generating novel views using 

a set of "model" views, without requiring any epipolar geometry or shape esti- 
mation. This work is still in early stages, and therefore no experimental results 

are provided. 
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Fig .  6. Shape recovery relying on a single parallax vector. 
(a,b,e) Three image frames from a sequence obtained by a hand-held camera of a rug 

covered with toy cars and boxes. The middle frame (Fig. 6.b) was chosen as the frame 

of reference. (d) Differences taken after 2D image registration. The detected 2D planar 

motion was that of the rug, and is canceled by the 2D registration. All other scene parts 

(i.e., toys and boxes) are misregistered. (e) The selected point of reference (a point on 

one of the boxes in the bottom right) highlighted by a white circle. (f ) The recovered 

relative structure of the entire scene from two frames (Figs. 6.b and 6.c) relative to 

the selected point of reference. Regions close to the image boundary were ignored. The 

interpreted relative heights were quite accurate except along the singular line in the 

direction of the parallax displacement of the reference point. (g) The recovered relative 

structure of the entire scene using all three frames with respect to the selected point 

of reference. Regions close to the image boundary were ignored. The singular line has 

disappeared, providing more accurate shape. 
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Methods for generating new views based on recovering epipolar geometry 
(e.g., [4]) are likely to be more noise sensitive than methods that generate the new 
view based on 2D information alone [16], i.e., without going from 2D through 
a 3D medium in order to reproject the information once again onto a new 2D 
image plane (the virtual view). 

Given two "model" frames, planar parallax motion can be computed for 
all image points between the first (reference) frame and the second frame. An 
image point with non-zero parallax is selected, and a "virtual" parallax vector 
is defined for that point from the reference frame to the "virtual" frame to be 
generated. The rigidity constraint (Eq. 5) then specifies a single constraint on the 
virtual parallax motion of all other points from the reference frame to the virtual 
frame. Since each 2D parallax vector has two components (i.e., two unknowns), 
at least two "virtual" parallax vectors are needed to be specified in order to 
solve for all other virtual parallax vectors. Once the virtual parallax vectors are 
computed, the new virtual view can be created by warping the reference image 
twice: First, warping each image point by its computed virtual parallax. Then, 
globally warping the entire frame with a 2D virtual planar motion for the virtual 

homography. 
Note that two virtual parallax vectors may not provide sufficient constraints 

for some image points. This is due to unfavorable location of those points in the 
image plane with respect to the two selected reference points and their parallax 
vectors. However, other image points, for whom the constraint was robust and 
sufficient to produce reliable virtual parallax, can be used (once their virtual 
parallax has been computed) as additional points to reliably constrain the virtual 
parallax of the singular points. 

5 C o n c l u s i o n  

This paper presented geometric relationships between the image motion of pairs 
of points over multiple frames. This relationship is based on the parallax dis- 
placements of points with respect to an arbitrary planar surface, and does not 
involve epipolar geometry. We derived constraint over two frames relating the 
projective structure (with respect to the plane) of any pair of points, based 
only on their image coordinates and their parallax motion. We also derived a 
3D-rigidity constraint between pairs of points over multiple frames. 

We showed applications of these parallax-based constraints to the recovery of 
3D scene structure, to the detection of moving objects in the presence of camera 
induced motion, and to "new view generation". Our approach can handle difficult 
situations for 3D scene analysis, e.g., where there is only a small set of parallax 
vectors, and in the presence of independently moving objects. The use of the 
parallax constraints derived here provides a continuum between "2D algorithms" 
and the "3D algorithms" for each of the problems mentioned above. 

Finally, we outlined the generalization of our parallax based constraints to 
full image motion (as opposed to parallax motion), even when the homography 
is unknown. This is useful for handling scenes that do not contain a physical 
planar surface. 
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