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Parallel 3-D pseudospectral simulation
of seismic wave propagation

Takashi Furumura∗, B. L. N. Kennett‡, and Hiroshi Takenaka∗∗

ABSTRACT

Three-dimensional pseudospectral modeling for a re-
alistic scale problem is still computationally very inten-
sive, even when using current powerful computers. To
overcome this, we have developed a parallel pseudospec-
tral code for calculating the 3-D wavefield by concurrent
use of a number of processors. The parallel algorithm is
based on a partition of the computational domain, where
the field quantities are distributed over a number of pro-
cessors and the calculation is concurrently done in each
subdomain with interprocessor communications. Exper-
imental performance tests using three different styles of
parallel computers achieved a fairly good speed up com-
pared with conventional computation on a single pro-
cessor: maximum speed-up rate of 26 using 32 proces-
sors of a Thinking Machine CM-5 parallel computer, 1.6
using a Digital Equipment DEC-Alpha two-CPU work-
station, and 4.6 using a cluster of eight Sun Microsystems
SPARC-Station 10 (SPARC-10) workstations connected
by an Ethernet. The result of this test agrees well with
the performance theoretically predicted for each system.
To demonstrate the feasibility of our parallel algorithm,
we show three examples: 3-D acoustic and elastic mod-
eling of fault-zone trapped waves and the calculation of
elastic wave propagation in a 3-D syncline model.

INTRODUCTION

The pseudospectral method (e.g., Kosloff and Baysal, 1982)
is an attractive alternative to other numerical modeling
schemes, such as the finite-difference or the finite-element
methods, which have been used typically for modeling of seis-
mic wave propagation in a heterogeneous medium. In the
pseudospectral method, the field quantities are expanded in
terms of Fourier interpolation polynomials, and the spatial dif-
ferentiation of the quantities is analytically performed in the
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wavenumber domain. This accurate spatial differentiation can
reduce computer memory and computation time by several
orders of magnitude as compared with other numerical meth-
ods, such as the finite-difference or the finite-element meth-
ods (e.g., Fornberg, 1987; Daudt et al., 1989). Thus the pseu-
dospectral method has been applied to high-resolution forward
modeling of exploration experiments using a 2-D elastic model
(e.g., Kang and McMechan, 1990) or a 2.5-D elastic model
(Furumura and Takenaka, 1996).

However, even when using the pseudospectral method, 3-D
elastic modeling has been very expensive, because it requires
huge amounts of computer memory and computation time;
therefore its application to realistic scale 3-D modeling has
been restricted to acoustic wave calculations (e.g., Chen and
McMechan, 1993; Reshef et al., 1988a; Huang et al., 1995). To
overcome this problem, Reshef et al. (1988b) first attempted a
parallel pseudospectral computation to calculate the 3-D elas-
tic wavefield in a reasonable geological scale model by use of
a CRAY X-MP supercomputer that has four processors and
a solid-state mass storage device. Recently, the efficiency of
parallel pseudospectral computing has typically been demon-
strated for fast modeling of 1-D waves (Renaut and Woo, 1992),
2-D scalar waves (Sato et al., 1994, 1995) and 2-D visco-acoustic
waves (Liao and McMechan, 1993).

The purpose of this paper is to propose an alternative ef-
fective parallel pseudospectral algorithm for 3-D wave calcu-
lation, which can be implemented on the various parallel plat-
forms, such as distributed-memory or shared-memory parallel
computers, multiprocessor computers, or a cluster of worksta-
tions connected by a computer network. The parallel code is
based on the partition of the computational domain, and the
field quantities are assigned to each of a number of processors.

To clarify the parallel pseudospectral algorithm, we first give
a brief explanation of a pseudospectral computing scheme for
elastic waves with some numerical techniques, such as the in-
corporation of boundary conditions and the spatial differenti-
ation using the fast Fourier transform (FFT). We then review
an alternative fast differentiation scheme using the FFT for
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real-valued data (real FFT), which is about twice as fast as the
conventional differentiation by the FFT for complex-valued
data (complex FFT). Next we present a parallel pseudospec-
tral scheme based on a partition of the computational domain,
which is the main part of this paper. The speed-up rate of the
parallel performance predicted from the theoretical experi-
ments is confirmed by the benchmark tests using three parallel
platforms: Thinking Machines CM-5 parallel computer, Digital
Equipment DEC-Alpha multi-CPU workstation, and a cluster
of Sun Microsystems SPARC-10 workstations connected by an
Ethernet network. Finally, we show some examples calculated
by the present parallel pseudospectral scheme to demonstrate
the feasibility of our parallel algorithm implemented on current
parallel computational environments for realistic 3-D elastic
modeling.

3-D PSEUDOSPECTRAL MODELING FOR ELASTIC WAVES

In this section, we review briefly a pseudospectral modeling
approach for calculating 3-D elastic waves. In a 3-D rectangular
system, with x and y as the horizontal coordinates and z as the
vertical coordinate, the equation of motion is represented as

ρÜp= ∂σxp

∂x
+ ∂σyp

∂y
+ ∂σzp

∂z
+ f p, (p= x, y, z), (1)

where σpq (p,q = x, y, z) are stress components, f p are body
forces, Üp are the second partial-time derivatives of the dis-
placement components (i.e., acceleration components), and ρ
is the density. In an isotropic elastic medium, the stress com-
ponents are given by

σpq = λ (exx+eyy+ezz)δpq+2µepq, (p,q = x, y, z),

(2)
where λ and µ are the Lamé constants, epq are the strain com-
ponents, and δpq denotes Kronecker’s delta. The strain compo-
nents are defined as

epq = 1
2

(
∂Up

∂q
+ ∂Uq

∂p

)
, (p,q = x, y, z), (3)

whereUp are the displacement components. In the pseudospec-
tral method, the spatial derivatives in equations (1) and (3)
are calculated analytically in the wavenumber domain. For the
time evaluation, an explicit scheme is used—the wavefield at
the next time step is calculated using the current and previ-
ous wavefields. For example, the following second-order finite-
difference time-integration scheme is often used:

U̇ n+1/2
p = U̇ n−1/2

p + Ü n
p1t, (4)

and

Un+1
p = Un−1

p + U̇ n+1/2
p 1t, (5)

where U̇ p and Up (p = x, y, z) denote the particle velocity and
displacement, respectively, and 1t is the time step.

Boundary conditions

Since Kosloff and Baysal (1982) first applied the pseudospec-
tral method to seismic wave modeling, a number of numerical
techniques have been developed to incorporate the boundary
condition and the radiation condition. For example, the free-
surface condition is simply incorporated into the calculation

by adding a number of zeros to the stress components above
the free surface or, equivalently, because of periodicity, be-
low the bottom of the model, prior to vertical differentiations
with respect to z. When a seismic point source is placed near
the free surface, an oscillating noise known as the Gibbs phe-
nomena often appears in the z-derivatives of the discontinuous
data. This noise can be suppressed fairly well by using an al-
ternative differentiation scheme developed by Furumura and
Takenaka (1992) (“symmetric differentiation”), in which the
data are folded at the free surface prior to the z-differentiation
to extinguish the discontinuity as

f̂ (n1x) =
{

f (n1x), 0 ≤ n ≤ N − 1

f [(2N − n− 1)1x], N ≤ n ≤ 2N − 1
(6)

and then the differentiation for the double-length (2N) data is
calculated. The extrapolated parts (i.e., n = N, . . . , 2N− 1) are
removed immediately after the differentiation and not used in
the subsequent calculations.

In the pseudospectral method, artificial reflections do not
occur, but wraparound appears from the outer boundaries of
the numerical mesh because of the spatial periodicity implicitly
involved in the FFT used for calculating the spatial derivatives.
To suppress this, the absorbing boundary condition in Cerjan
et al. (1985) or Kosloff and Kosloff (1986), based on gradual
reduction of the amplitude in a strip of nodes along the bound-
aries of the mesh, is often applied. Recently, an alternative
technique for the wraparound elimination based on a simple
modification of the wavefield to cancel the spatial periodicity
was developed by Furumura and Takenaka (1995).

Fourier differentiation

A main advantage of the pseudospectral method over the
traditional finite-difference method is that the differentiation
of the field variables requires fewer grid points per wave-
length for a given accuracy (Fornberg, 1987; Daudt et al.,
1989). The exact differentiation in the wavenumber domain
is calculated efficiently by means of an FFT as follows.
First, a field quantity at the spatially discretized locations
f (n1x), (n = 0, 1, . . . , N − 1) is transformed to the wavenum-
ber domain by using a 1-D FFT:

F(`1k) = 1x
N−1∑
n= 0

f (n1x)e−i 2πn`/N, (7)

where F(`1k) (` = 0, 1, . . . , N − 1;1k = 2π/(N1x)) rep-
resents the Fourier transform of f (n1x). The result is then
multiplied by the discrete spatial wavenumbers `1k and the
imaginary unit i to obtain the derivative in the wavenumber
domain and then transformed back to the physical domain us-
ing an inverse 1-D FFT, that is,

d

dx
f (n1x) = 1

N1x

N−1∑
`=0

i (`1k) F(`1k) ei 2πn`/N . (8)

For the differentiation of 3-D variables, the calculations of
equations (7) and (8) are carried out sequentially along the x-,
y-, and z-directions. Thus an enormous number of FFT runs are
required for calculating the derivatives appearing in equations
(1) and (3) at each time step. For example, a 3-D model with
1283 grid points requiring the evaluation of the wavefield for
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1000 time steps needs 589 824 000 FFT runs in total. Therefore,
it is very important to use a fast FFT program when we perform
a 3-D pseudospectral modeling.

Differentiation by the real FFT

In the pseudospectral modeling, the FFT for the transform
of complex-valued data (i.e., complex FFT) is often used where
real-valued data to be differentiated are loaded into the real
components of a complex array, while the imaginary compo-
nents are filled up with zero values. The transform for the real-
valued data can also be calculated using both real and imagi-
nary components of one complex array, so two sets of data are
efficiently transformed simultaneously (e.g., Zhou, 1992). Such
a transformation for real-valued data is also efficiently calcu-
lated by simply using the transform for real-valued data such
as real FFT (e.g., Bergland, 1968; Sorensen et al., 1987) and the
Hartley transform (see e.g., Saatcilar and Ergintav, 1991).

Now we describe an efficient differentiation scheme for real-
valued data by using the real FFT. First, the sequence of data
f (`1x) to be differentiated is expanded in terms of the discrete
sine and cosine polynomials using the real FFT as

f (n1k) =
N/2∑
`=0

A(`1k) cos(2πn`/N)

+
N/2∑
`=1

B(`1k) sin(2πn`/N), (9)

where A and B are cosine and sine coefficients as

A(`1k) =



1
N

N−1∑
n= 0

f (n1x) cos(2πn`/N),

` = 0, N/2

2
N

N−1∑
n= 0

f (n1x) cos(2πn`/N),

` = 1, 2, · · · , N/2− 1

(10)

B(`1k) = 2
N

N−1∑
n= 1

f (n1x) sin(2πn`/N).

Next, the derivative in the transform domain is calculated by
multiplying the discrete spatial wavenumbers `1k and involv-
ing a phase advance of 90◦ in the equation (or equivalently,
exchanging the coefficients A and B by −B and A, respec-
tively), which is then transformed back to the physical domain
by means of the inverse real FFT as

d

dx
f (n1x) =

N/2−1∑
`=1

(`1k)B(`1k) cos(2πn`/N)

+
N/2∑
`=1

(−`1k)A(`1k) sin(2πn`/N). (11)

We confirmed that the differentiation using the real FFT pair is
twice as fast as the conventional calculation using the complex
FFT (Furumura et al., 1993).

PARALLEL PSEUDOSPECTRAL COMPUTING
BY DOMAIN PARTITION

In this section, we propose a parallel algorithm for the pseu-
dospectral computation based on a partition of the compu-
tational domain. In the parallel pseudospectral computation,
each operation is simultaneously done on all subdomains with
some interprocessor communications to exchange data be-
tween subdomains.

Let NX, NY, and NZ denote the number of grid points in
the x-, y-, and z- directions of a 3-D array DATA for a field
quantity, which is partitioned into NP equisized subdomain.
Figure 1a illustrates an example of the domain partition for
four processors (NP = 4) model where DATA is partitioned
horizontally into four pieces PDATAp (p = 1, 2, . . . ,NP) of
size N X× NY× (N Z/NP) as follows:

PDATAp

(
1 : N X; 1 : NY; 1 :

N Z

NP

)
= DATA

[
1 : N X; 1 : NY; N Z

NP
(p− 1)+ 1 :

N Z

NP
p

]
.

Each processor calculates the wavefield over each subdo-
main, concurrently, from equations (1) to (5) excluding the
z-differentiation.

For the calculation of the z-derivatives, the field quan-
tity is partitioned vertically into equisized subdomain
ZWORKp(p= 1, 2, . . . ,NP), and the subarray is also mapped
onto each processor as

ZWORKp

(
1 :

N X

NP
; 1 : NY; 1 : N Z

)
= DATA

[
N X

NP
(p− 1)+ 1 :

N X

NP
p; 1 : NY; 1 : N Z

]
.

Since each processor has only part of ZWORKp in its own
memory, PDATAp (e.g., the shaded part in Figure 1b), and
most of the parts are on the different subdomains, interpro-
cessor communications are required to fill out the ZWORKp.
For this purpose each processor sends the portion of data (size
(N X/NP)× NY× (N Z/NP)) to the other NP− 1 processors
and at the same time receives the same size of data from NP−1
processors. After all data are collected in the ZWORKp, the z
differentiation can be performed. The results are then redis-
tributed over the processors by reversing the sequence of the
operations. Because such a data swap with other subdomains
only appears in the z-differentiation, the cost of interproces-
sor communication is expected to be small relative to the total
computation time. The algorithm of the z-differentiation with
interprocessor communication can be summarized as

1) for I := 1 to NP do /* Send data to NP-1

processors */

BUFF := PDATA[NX/NP*(I-1)+1:NX/NP*I;

1:NY; 1:NZ]

if ( I = p ) then

ZWORK[1:NX/NP; 1:NY; NZ/NP*(I-1)+1:NZ/NP*I]

:= BUFF

else

send BUFF to processor I

end if

end do
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2) NR := 1 /* Receive data from NP-1

processors */

while ( NR < NP ) do

(a) receive data from processor I and store

into BUFF

(b) ZWORK[1:NX/NP; 1:NY; NZ/NP*(I-1)+1:NZ/NP*I]

:= BUFF

(c) NR := NR + 1

end do

3) perform z differentiation on ZWORK

4) for I := 1 to NP do /* Send results to NP-1

processors */

BUFF := ZWORK[1:NX/NP; 1:NY;

NZ/NP*(I-1)+1:NZ/NP*I]

if ( I = p ) then

PDATA[NX/NP*(I-1)+1:NX/NP*I; 1:NY; 1:NZ]

:= BUFF

else

send BUFF to processor I

end do

5) NR := 1 /* Receive results from NP-1

processors */

while ( NR < NP ) do

(a) receive data from processor I and store

into BUFF

(b) PDATA[NX/NP*(I-1)+1:NX/NP*I; 1:NY; 1:NZ]

:= BUFF

(c) NR := NR + 1

end do,

where “send” and “receive” are the message-passing sequences
for transmitting data to another processor and that for re-
ceiving from other processors, respectively. The code has
been written in Fortran, and the interprocessor communica-
tions is achieved using a P4 library (Butler and Lusk, 1994),
which is a parallel programming utility similar to the PVM

FIG. 1. Example of domain partition of the 3-D wavefield for a four-processors (NP= 4) model. (a) The volume is sliced horizontally
into four pieces PDATAp (p= 1, . . . , 4) of equal size and mapped onto four processors. The wavefield in each subdomain is calculated
by each processor individually except for the z-differentiations. (b) Configuration of array data ZWORKp assigned to each processor
for calculating the z-differentiation. Since each processor has only the part of data shaded in the figure in its subdomain, PDATAp,
and the other parts are on the different subdomains, communication is required to swap data with the other processors. After
calculating the z-differentiation, the results are exchanged again between the other subdomains.

(Sunderam et al., 1994) and MPI (e.g., Gropp et al., 1995)
environments. Since P4 can be implemented on various plat-
forms for parallel computing, such as distributed-memory or
shared-memory multi-CPU workstations and a cluster of work-
stations connected by a computer network, the parallel pro-
gram can be implemented easily onto many styles of parallel
computers.

Theoretical parallel performance

To predict the speed-up rate of our parallel program using
a large number of processors, we formulate a simple perfor-
mance prediction model defined by the ratio of total commu-
nication time to the other computation time.

We assume that the whole domain is a regular array of N3

grid points partitioned among NP processors. The number of
grid points per processor is then N3/NP. We assume further
that the computation is performed entirely in single-precision
arithmetic (4 bytes per data) and that the derivatives of 18
field quantities (six for z-differentiation and 12 for horizontal
differentiation) in the equation are processed with a rate of vd

bytes/s. Then, for each processor, the total computation time
Tt (NP) taken per iteration is

Tt (NP) = 1
α
×

4× N3

N P
× 18

vd
, (12)

where α denotes the ratio of the time required for differenti-
ation operation to the total computation time, which depends
on the performance of the FFT program. We measured α ' 0.3
for the real FFT.

We also assume that the parallel computer has an idealized
architecture where the communication with every processor
has the same communication speed, vc bytes/s, regardless of the
location of processor pairs, and the network has enough band-
width to pass all the data without dropping the speed. Then,
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for each processor, the total computation time per iteration,
including the time for the communications with NP − 1 pro-
cessors before and after calculating six z derivatives, is

T̄t (NP) = 1
α
·

4× N3

NP
× 18

vd
+

4× N3

NP2 × 2× (N P− 1)× 6

vc
.

(13)
Then, the efficiency of speed-up rate by NP processors, defined
as Ep(NP) = Tt (1)/T̄t (NP), is given by

Ep(NP) = NP

1+ 2α
3
× NP− 1

NP
× vd

vc

. (14)

This equation demonstrates that the parallel theoretical effi-
ciency using NP processors, as only a function of α and the
ratio of vd/vc, is independent of the size of the problem.

Figure 2 shows the theoretical speed-up rate for NP pro-
cessor execution on the idealized systems that have different
values of vd/vc. This figure demonstrates that the machine with
relatively fast communications vc (small vd/vc) can achieve a
higher speed-up rate than that for slow vc (large vd/vc).

PARALLEL PSEUDOSPECTRAL COMPUTATION—
BENCHMARK TEST

In this section, we present benchmark results for the par-
titioned algorithm implemented on three different parallel
platforms: Thinking Machine Corporation CM-5 parallel
computer, a cluster of workstations of Sun Microsystems
SPARC-10, and Digital Equipment DEC-Alpha 7200/620
multi-CPU workstation (DEC-Alpha). The parallel perfor-
mance of each platform was tested with model sizes of 643

and 1282 × 64 grid points with a total computer memory re-
quirement of 54 and 204 Mbytes.

The CM-5 computer employed here is a 32-node machine;
each processor has a peak computing rate of 4.2 Mflops with

FIG. 2. Theoretical parallel efficiency of speed-up rate Ep by a
number of processors (NP). The efficiency curves of different
parallel computing architectural environments: vd/vc = 0.2,
1.0, and 5.0 are displayed.

a local memory of 64 Mbytes (1 Gbyte in total) connected
by an interprocessor communication line with a bandwidth of
5 Mbytes/s, which represents one of the current standard par-
allel computing architectural environments.

We also implemented the parallel code on the cluster of eight
SPARC-10 workstations connected by an Ethernet network.
The machine has a 25 Mflops computational rate with various
memory sizes between 32 and 128 Mbytes and a network band-
width of 1.25 Mbytes/s. Such parallel computing by a worksta-
tion cluster has recently attracted considerable attention as an
economical approach for high-performance computing. The ar-
chitectural limitation of the workstation cluster for fast parallel
computing is that the bandwidth of the computer network is
much slower than that of the interprocessor communication
line for the purpose-built parallel computers.

We experimented further with our parallel algorithm by im-
plementing it on the DEC-Alpha workstation that has two pro-
cessors of 200 Mflops computational rate and a shared memory
of 2 Gbytes. Usually for the shared-memory machine, the par-
allel code generated automatically by the Fortran 90 compiler
is often used, but we also experimented with the feasibility of
our parallel code on this style of parallel environment.

Communication and differentiation speed

Table 1 shows the differentiation speed vd of the processors
of each platform, which was evaluated by measuring the time
taken for calculating various sizes of derivatives by use of the
real FFT on a single processor. The results of the experiments
are consistent with the theoretical computational rates of the
platforms.

Table 2 shows the interprocessor communication speed vc

of each parallel platform, which is measured by using a sim-
ple program to swap data packets between two processors of
various data length. The result is almost consistent with the
previous knowledge of the network speed of each system. The

Table 1. Differentiation speed vd in Kbytes/s of each com-
puter. The speed is measured using the real FFT with a different
data length (bytes).

Data size, bytes CM-5 DEC-Alpha SPARC-10

256 420 4110 1470

512 400 4240 1520

1024 360 4000 1430

2048 330 3610 1290

4096 300 3200 1140

Table 2. Communication speed vc in Kbytes/s of each com-
puter, taken by swapping data between two processors using a
different data packet size (bytes).

Data size, bytes CM-5 DEC-Alpha SPARC-10

256 840 2990 160

512 1200 5140 260

1024 2200 9700 320

2048 2800 14030 410

4096 3100 14600 420
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communication between processors using the P4 system is de-
fined by the linear function of two components—latency time
as a fixed startup time and transmission time proportional to
data length. Usually, the former is much longer than the latter
(see Butler and Lusk, 1994), and therefore, vc is relatively slow
when using small data packets. It should be noted also that the
actual communication speeds v̄c(= γ · vc) in practical parallel
computing using a large number of processors may decrease
from the values shown in Table 2, because of the collision of
data packets transmitting between many processors. We found
that in an ideal parallel platform, such as the CM-5, having a
very fast network line shows γ ∼ 1 irrespective of the num-
ber of processors, while the workstation cluster connected by
an Ethernet network usually shows γ ∼ 0.5 when the load of
the computer network is heavy. The deterioration of the paral-
lel speed-up rate because of the collision of data transmission
happens gradually as the number of processors increases and
the performance of data transmission between processors de-
creases. To bring the parallel performance close to the theoret-
ical speed-up rate, it is necessary to reconstruct the configura-
tion of processors, especially when employing workstations on
a busy computer network.

Benchmark results

We performed the benchmark test of the parallel pseu-
dospectral calculations for small (643 grid points; Figure 3a)
and medium (1282 × 64 grid points; Figure 3b) sized models.
Since the models are too large to fit into the processor memory
of the CM-5, the test was performed using more than four and
eight processors for the small and large models, respectively.

Figure 3 illustrates the results of the benchmark test (lapsed
time per iteration). The results demonstrate fairly good speed-
up rates for both models as the number of processors increases.
For example, the CM-5 achieves a maximum speed-up rate of
26 using 32 processors, and the SPARC-10 cluster shows 4.6
using eight workstations. Some measure of parallel gain is also
found in the DEC-Alpha two-CPU machine that shows the
maximum speed-up rate of 1.6 for the small model. Figure 3 also
displays the theoretical speed-up curves calculated by equation
(14) for the values of vc and vd of each system corresponding
to the data size used in the modeling, which agrees well with
the elapsed time of the experiments.

The speed-up rate for the CM-5, which is faster relative to
the other machines, arises mainly because the vd of the CM-5
is much slower than the vc, and consequently, the ratio of vd/vc

is much smaller (0.16∼ 0.33) than the other machines. We find
also that the SPARC-10 cluster that has a large vd/vc value
(4.5 ∼ 5.8) shows a relatively gentle speed-up rate, especially
when using just a few workstations. For the DEC-Alpha, we
performed the parallel computing with only two processors.
Nevertheless, our parallel algorithm also demonstrates good
performance on the shared-memory multi-CPU computer.

EXAMPLE

To show the feasibility of the parallel pseudospectral code
for the fast computation using current parallel computing en-
vironments, we undertake 3-D modeling of seismic wave prop-
agation for cases similar to those demonstrated in the previous
studies using supercomputers.

Fault-zone trapped waves: Acoustic case

We consider an acoustic wave propagation trapped within
a vertical low-velocity fault zone, which was also simulated by
Huang et al. (1995). The model consists of 1282×64 grid points
with grid intervals of 0.02 km, in which a typical fault zone with
width of 0.4 km and a velocity of 2.0 km/s is sandwiched be-
tween two quarter spaces with a velocity of 2.6 km/s. In the
center of the fault zone, a point pressure source is placed at a

a)

b)

FIG. 3. Theoretical and experimental efficiency of the parallel
computing measured by use of three different parallel environ-
ments with a number of processors: (a) for small (643) grid size
model test, and (b) for medium (1282 × 64) grid size model.
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depth of 0.21 km below the free surface, which has a source
time function of a pseudodelta function with a maximum fre-
quency of around 30 Hz. The density is assumed to be constant
(ρ = 2.0 g/cm3) for the entire model so that we can use the
wave equation rather than the equation of motion to reduce the
computation time and memory [see Huang et al., 1995; equa-
tion (2)]. The computation for this model requires a memory of
28 Mbytes and a computation time of 52 minutes to evaluate the
wavefield of 460 steps using a cluster of eight SPARC-10 work-
stations. The computer performance of the SPARC-10 cluster
is about 0.17 of that of the CRAY Y-MP supercomputer used
by Huang et al. (1995).

Figure 4 displays the snapshots of the wavefield at different
time steps, and Figure 5 shows the synthetic seismograms on a
linear array (a—a’ in Figure 4) at depth of 0.01 km (half of the
grid size below the free surface). Each trace is normalized by
its maximum amplitude to increase the visibility of the phases.
In the snapshots, we see the wave forming a circular wave-
front (T = 0.2 s frame) at the source, which is then propagating
within the fault zone as multiple reflections (see T = 0.4 s and
0.6 s frame), with some portion of energy leaking out of the
fault zone. Such a trapped wave can also be discerned as a re-
markable later phase in the synthetic seismograms (Figure 5).

Fault-zone trapped waves: Elastic case

We now consider extending the modeling of a trapped wave
in a fault zone to the realistic case using the partitioned pseu-
dospectral calculation. The configuration of the model em-
ployed here is the same as that in the previous acoustic case.
An explosion source is placed inside the fault zone with a
P-wave velocity of 3.6 km/s, S-wave velocity of 2.0 km/s, and

FIG. 4. Snapshots of the acoustic wavefield at different time steps for a fault-zone model. A pressure source is
placed inside the fault zone with a depth of 0.2 km. The dashed line marked by a—a’ denotes a linear array of
the receivers.

a density of 2.0 g/cm3 that is embedded in an otherwise homo-
geneous medium with a P-wave velocity of 4.6 km/s, S-wave
velocity of 2.6 km/s, and a density of 2.2 g/cm3. This model-
ing requires a total memory of 204 Mbytes and a computation
time of 7.5 hours using a 32-processor CM-5 to evaluate the
wavefield for 1200 time steps.

FIG. 5. Synthetic seismograms of pressure time section of the
linear-array stations (labeled a—a’ in Figure 4). Each trace is
normalized by its maximum amplitude.

Downloaded 22 Feb 2010 to 150.203.10.78. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



        

286 Furumura et al.

Figure 6 displays the snapshots of the wavefield separated
into P- and S-wave contributions by calculating the diver-
gence and rotation of the wavefield, respectively. Figure 7
shows the synthetic three-component seismograms of the dis-
placement along the linear array a—a’ (see Figure 6). Each
trace in the seismograms is normalized by its maximum am-
plitude to increase the visibility of phases. In Figure 7 we
find the P-wave trapped within the fault zone, which clearly
can be seen in the seismograms of vertical and x-components.
Also, we can see P to S conversion caused at the free sur-
face and the edge of the fault and propagating outside the
fault zone, which is discerned clearly in the seismograms of

FIG. 6. Snapshots of elastic wavefield at different times for a fault-zone model; the wavefield is separated into
P-wave (black) and S-wave (white) components.

FIG. 7. Synthetic seismograms (three-components) at the stations for the fault-zone model. Each trace is normalized by its maximum
amplitude.

both horizontal components. This modeling demonstrates that
it may be possible to estimate the properties of the fault zone
from the P to S conversions in the horizontal components seis-
mograms.

Seismic reflection profiling of syncline model

Next, we perform an alternative modeling for the 3-D elastic
wavefield, similar to that of Reshef et al.(1988b) (Figure 8). This
model consists of a truncated dipping interface overlaying a
syncline, where an explosion source with a 35-Hz-band-limited
Ricker wavelet is placed 0.33 km below the free surface. The
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model is discretized by spatial grid points of 256 × 128 × 256
with a regular grid spacing of 0.02 km.

Figure 8 displays some snapshots of the wavefield at differ-
ent time steps separated into P- and S-wave contributions, and
Figure 9 shows the synthetic three-component seismograms of
the stations (a—a’ in Figure 8) placed along the y-direction
crossing the source position. In the first two frames, we see
the P-wavefront produced at the explosion source propagat-
ing in the first layer. In the T = 0.6 s frame, we find the P to S
conversion generated at the dipping interface. The main fea-
ture in the last few frames is the pattern of multiple reflections.
Such S-wave reflections are recognized easily in the synthetic
seismograms (Figure 9).

The modeling has been performed on the DEC-Alpha
workstation with two processors, which took a memory of
736 Mbytes and a total computation time of 87 hours for evalu-
ating the wavefield of 1500 time steps. The performance of par-
allel pseudospectral computing by the two-CPU DEC-Alpha
workstation is about 0.052 of the CRAY X-MP/48 four-CPU
supercomputer system used in Reshef et al (1988b). This exper-
iment may indicate the arrival of the 3-D elastic modeling age

FIG. 8. Snapshots of the seismic wavefield for a syncline model with a dipping interface. The wavefield is separated
into P-wave (black) and S-wave (white) contributions. The dashed line along the y-direction passing through the
source position denotes the receiver locations.

using parallel pseudospectral computing by using a multi-CPU
workstation.

DISCUSSION AND CONCLUSION

3-D elastic modeling has long been an expensive application
to realistic problems. The trend of steadily increasing computer
power is bringing us closer to the use of 3-D elastic modeling
for practical applications. For example, using a 2-Gbyte mem-
ory (a typical maximum memory size of a conventional UNIX
operation system), the pseudospectral modeling can treat the
elastic wavefield within a 128-wavelength cube. We have ad-
dressed a new parallel pseudospectral computing technique
for the 3-D wavefield that can be implemented on many styles
of current parallel platforms. The results of the benchmark
test with various processors indicate that fairly good speed up
can be achieved by using both high-performance parallel com-
puters and an economical parallel platform of a workstation-
cluster connecting network, that agree well with the theoretical
performance prediction using the knowledge of computation-
to-communication speed ratio of each system.
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FIG. 9. Synthetic three-component seismograms at the receivers. Automatic gain control has been applied to enhance the amplitude
of reflections.
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