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Parallel 3D Reconstruction of Spherical Virus Particles from
Digitized Images of Entire Electron Micrographs Using Cartesian

Coordinates and Fourier Analysis'

Rohert E. Lynch and Dan C. Marinescu
Departments of Computer Sciences and Mathematics

1. Introduction. Cryo-electron microscopy and 3D image reconstruction are the methods of
choice for 3D atomic structme determination of many non-crystalline biological macromolecules.
The structure determination process is rather complex, it involves prepaJ:ation of samples, imaging
using a cryo-electron microscope, identification of individual virus particle projections or micro
graphs, determination of the orientation of each particle, and the 3D reconstruction using informa
tion from 2D projectiollB. The last two steps are iterated until the desired resolution is obtained.

The algorithm described in this paper and the program based on it use as input 2D projections
of particles identified by a method described by Martin et al in [5] and the relative orientation of
each projection with respect to a Cartesian coordinate system based upon the method proposed by
Bake' eC al [31.

The method we use for 2D remm.truction is one described in [9] (also see [10], [11], [12], [13], [14],
[15], [23], [18)). which uses Cartesian coordinate systems and Fourier transforms. The method de
scribed in [9] that uses cylindrical coordinate systems and transforms has successfully reconstructed
many structures, [6], [8J, etc.

We know of three general reconstruction methods (Dean, [16J, pp. 126-128, gives a finer partition
of methods). The one we discuss in this report makes use of a transform of 20 data, finds values
of the corresponding 3D transform on a grid by interpolation, and then inverts the 3D transform
to get the density of the object. Many 20 projections are used and, where possible, symmetry
of the object and the imposed symmetry of the projection is exploited to obtain multiple sets of
information from each 20 projection.

The second method, also described in (9], is called uback projection" (also see Dean [16], pp.
127-128 and 131-142). One considers the density of the object to be unknowns at points of a 3D
grid. For each pixel of a 2D projection, one finds a straight-line path perpendicular to the projection
and determines which of the unknows are near this path. One combines these unknowns in a linear
equation together with the experimentally determined pixel values. Doing this for all the pixels in

'This research has been partially supported by the National Science Foundation grants BIR-9301210 and MCB·
9527131, by the Scalable I/O Initiative, by a grant from the Intel Corporation
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a projection and for many projections, one obtains a large linear system for the unknown density
values at points of the 30 grid. Also see [27].

The third method is based on results of Radon which appeared in 1917 [30] (see [26] for an
English translation of Radon's paper, see [4] for an outline of the method and see [25] and [16] for
many details and applications of the method).

In rough terms: Radon proved that values of a (sufficiently smooth) function f on a bounded
region in n-dimensional space can be determined if one knows all projections of f onto (n - 1)
dimensional planes through the origin; moreover, Radon gave an explicit expression for values of f
in terms of an integral involving the projections. The transformation from n-dimensional space to
(n - 1)-dimensional space ha.<:; become known as the Radon transform, and the integral giving the
function is known as the inverse Radon transform; see [38], [28], [29], [22],

One obtains a numerical scheme for reconstruction by discretizing the integral representation
of the inverse Radon transform.

This has been done for many application and is the basis for some programs used in 'Computer
Aided Tomography' (CAT scans), see [34], [31]. For this, n = 2 and one is reconstructing 20 slices
with many 1D projections. Not only is the dimension n of this problem one less than the one we
deal with, but also in CAT analysis, the specific orientation of the projections is known.

The literature on the subject of reconstruction is immense. Dean's book, [16], a reissue of his
work which appeared a decade earlier, includes about 1000 references to the literature. Several
books and conference proceedings have appeared since Dean's original book; for example [39J, [32J,
[20].

2. Outline of Method. We describe a method which reconstructs the electron density of a
spherical virus from many 20 projections of the virus. The experimental data are obtained from
an electron micrograph containing hundreds of images of the particular virus under investigation.

Our program is designed to execute on a parallel computer, on a collection of workstations, or
on a beowoulf class system.

We rely on prior intensive computer processing of a micrograph [5] to select a set of pixel
'frames'. Each frame contains the projection of the image of a single particle. Each square frame
contains N-by-N pixel values; N might be several hundred. Another computer analysis [3] of the
set of frames generates for the j-th frame the coordinates of the projection of the center of the
particle, (ex, ey}j, and also the orientation of the 2D frame with respect to a standard 3D Cartesian
coordinate system; this is expressed in terms of three angles, (09, ¢, n}j.

With tills information as input, the program produces values of the density p(x, y, z) of the
particle at points of a cubic grid in a standard (x, Y, z)-Cartesian coordinate system. The density
is obtained by carrying out a discrete Fourier synthesis of a set of Fourier coefficients, F, at points
(h, k, £) of a cubic Cartesian grid; h, k, and eare integers:

A 2D discrete Fast Fourier analysis of the pixel values in a frame is carried out. The resulting
coefficients are modified to account for the location, (~, ey}j, of the projection of the center so that
the Fourier coefficients of each frame has the same origin. The resulting discrete Fourier coefficients
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of the j-th frame are denoted by Fj(U, V), where U and V are integers:

V;nill S; V ::; Vma;.;·

h, e fixed.j = 1, ... ,jma;.;,

Knowing the orientation, (9, ¢, Q}j, of the frame, we determine the mapping (which is a rotation)
from a point (U, V) on the domain of the pixel Fourier coefficients to a point (h, k, £) in the 3D
domain of density Fourier coefficients. We can select two of the three coordinates h, k, and eto be
integers.

Suppose we choose k and e to be specific integers. Then, in general, the corresponding UI, V',
and H', which are defined by the mapping, are not integers. The known values Fj(U, V), with
integral U and V, and bilinear interpolation are lIsed to obtain an estimate of Fj(U', V'); thls is
taken as the estimate of F(H I

, k, e). A set of estimates of F along the line with k and e fixed is
obtained. This leads to an algebraic system for the Fourier coefficients, F(h, h, e), at grid points
along the line:

h;=hmo.>: sin 7r(H~ - h)
I: n(H' ~ h) F(h, k, f) ~ Fj(Uj, Vj)

h;= hmin

One gets such a system for the pair of integers k, e for each pixel frame whose orientation results
in an insertion of the frame and the line interval (H, k, e), H min ::; I-I .s Hma;.;. We usc the singular
value decomposition to find the lea."it squares solution of the system.

Similarly, one gets systems for t,wo other combinations: a pair of specific intergers hand eand
a pair of specific intergers and hand k.

When all the systems are solved, one ha."i estimates of F(h, k, L) at the points of a 3D grid.
3. Fourier Transform of Pixel Values. An excellent discussion of discrete Fourier trans

forms, including their relation to Fourier series and Fourier transforms, is given by Briggs and
Henson [7].

The data-input includes a set of pixel frames. Each frame is a square M-by-M array of pixel
values, PI (11, v), u,v E {O, ... M -I}.

Here and below, we use Fortran arrays. In an array declared DIMENSION A(O:P,-2:Q), the
entries A(j ,k) are ordered by columns and then by rows; e.g.:

(0, -2), (1, -2), "', (p, -2), (0, -1), (1, -1), ... , (P, -1), ... , (p, Q).

The pixels in a frame on the data-input file are also ordered in this way.
On the data-input-file, the value stored at (u,v) = (0,0) has been set equal to the zero-plxel

level of the frame and, as values are read into memory, this value is subtracted from the values on
the file.

Preproccssing provides, for each frame, the location (Cu, ev) of the projection of the center of the
particle, as wcll as three angles, (0, ¢, Q), which ~pecify the orientation of the frame with respect
to a standard Cartesian coordinate system.

The standard FFT routines which we use take the origin of the data to be at (u,v) = (0,0) of
and array declared DIMENSION A(O:M-l,O:M-1). It is morc convenient to have the origin at the
projection of the center, (cu, ev). Let ([eu], [evD denote the point, having integer coordinates, which
is closest to (Cu, ev). We partition the frame into four blocks, as indicated in Figure 1a:
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A
E,
C,
D,

P,(U,v) with uE {[eu], ,M-l}
P,(u,v) with uE{ D, ,Ic,,]-I}
P, (u,v) with uE{ D, ,Ic,,]-I}
Pt(u1v)with uE{[eu], ,M-l}

v E {[eu], ,M - I}
v E {[eu], , M - I}
v E { 0, , leu] - I}
v E { 0, , Ie,,] - I}

The blocks are rearranged and put into a larger, N-by-N array with zero-fill. We take N to be
even. The new arrangement, P2(U, v), U, v E {a, ... ,N - I}, is indicated in Figure lb, where

A,
E,
C,
D,

P,(u,v) with u E { 0, ... , M - leu]}
P,(u,v)with uE{N-leu], ,N-l}
P,(u,v)with uE{N-leuJ, ,N-l}
P,(u,v) with u E { D, ... ,M - leu]}

v E { 0, , M - Ie,,}
vE{ D, ,M-[eu]}
vE{N-[e"J, ,N-l}
v E {N -1e,,], ,N -I}

We use the FFT routine VRFFTF from VFFTPK [36J to find the Fourier coefficients of a row of (real)
pixel values, v E {D, ... , N - I}; this is done for for each row u E {O, ... , N - I}. Fu(V} denotes
these Fourier coefficients. Because the pixel values are real, F is conjugate symmetric: PuC-V) is
equal to the complex conjugate of Fu(V); thus only Fu(V) for V = 0, ... ,N/2 are computed and
stored. Specifically:

1 N-I

R{F,,(D)) - Jfii ~ PAu,v), \J'{F,,(D)) ~ 0,

1 N-l

R{F,,(V)) vN ~ P,(u,v) cos(Z"vV/N), V ~ I,Z, ... ,N/2 -1,

N-I

\J'{F" (V)) - ~ L: P,(u,v) sin(Z"vV/N), V = 1,2, .. . ,N/2 -1,
N 1)0;=;0

N-I

R{F,,(N/Z)) ~ L: (-1)" P,(u,v), \J'{F,,(N/Z)) ~ D.
N 11=0

The inverse can be obtained by routine VRFFTB from VFFTPK [36J:

(3.1)

+
1 N/2-1

vN ,t:o IR{F,,(V)) co,(2"vV/N) - \J'{F,,(V)) sin(Z"vV/N) I

For each V E {O, 1, ... ,N/2}, we use the FFT routine CFFTF from [35] to find the complex-valued
Fourier coefficients F(U, V) of each column, u E {a, ... ,N - I}, of the complex values Fu(V):

N-l

F(U, V) = L Fu(V) e-21riuU/N.

u=o

4



(3.2)

The inverse can be obtained with routine CFFTB from FFTPACK [35]:

1 N-l

Fu(V) ~ N L: F(U, V) e",,,u/N
u=o

The discrete FFTs impose the periodicity F(U + N, V) = F(U, V). Thus, instead of working
with Fourier coefficients F(U, V), having U E 0, ... ,N - 1, we can use the coefficients with U E
0, ... ,N/2 and then complete the set of Fourier coefficients those having negative values of U:

F(U, V) = F(N + U, V), U ~ -1, -2, ... , -N/2 + 1.

It is convenient to have the coefficients F(O, V) near the row N/2 in the array containing the
coefficients and the computed coefficients are rearranged and put into the array declared

(3.3) COMPLEX F( -N/2 + 1 ,N/2, 0, N/2 )

Because of the rearrangement indicated in Figure 1, the coefficient F(O, 0) is the Fourier coeffi
cient of the array of pixel values having the origin at the integer point ([Cu], lev]). The translation
of the origin of the tram:;form of the pixel values from this point to (Cu, ev) now requires translation
to

This results in a change of phase of the Fourier coefficient$. It is accomplished by multiplying rows
and colUIllns of entries in the array F by constants.

For example, because of (3.2) and the rearrangement, we have

If we had not rearranged the coefficients and made use of the array in (3.3), so that the value$
of U were still between 0 and N - 1, then the value of F(N - 1, V) would be multiplied by
exp(21l"i,u (N -l)/N) which is not equal to exp(21Ti'YlI. (-l)/N) if,.. is not an integer.

The same kind of change is made to translate the v-origin. This follow$ in a similar way from
(3.1) and Fu(-V) ~ F,;(V).

To carry out the translation, the entries in the array F(U, V) arc replaced:

F(U, V) -(- F(U, V) e 27r i-y" U/N e2:rri"(" V/N, U = -N/2 + 1, ... , N/2, V = 0, ... , N/2.

Because the ,'s are between -1/2 and 1/2, the changes in the phases arc between -1T/4 and 7[/4.
4. Rotation of Pixel Frames. The pixel values are the result of projection through a particle

in the direction normal to the (u, v)-planc; i.e., in the direction of w in a (u, v, w) orthogonal
Cartesian coordinatc system; see Figure 2a.

The input angles, (8, r.P, .0), give the orientation of the pixel frame with rcspect to a standard
(x, y, z) orthogonal Cartesian coordinate system. They specify a rotation, R, that takes a point

5



u = (u,v,w)T (where T dcnotes transpose) to a point x = (x,y,z)T i R is a 3-by-3 matrix and
Ru=x.

(j is the angle of a right-hand rotation about the original v-axis - e.g., (j = 90° maps the original
wand u axes onto the original1l and negative waxes, respectively - see Figure 2b. This rotation
can be represented by the matrix

(

CO, eOsin e )
Ro~ 0 1 0

- sin (J 0 cos (j

¢ is the angle of a right-hand rotation about the original w-axis; see Figure 2c. This rotation
can be represented by the matrix

(

cos</> -,in</> 0)
R,p = sin ¢ cos 4J 0

001

The rotation through () followed by the rotation through ¢ is representcd by the product R,p Ro.
n is the angle of a right-handed rotation about the image of the original w-axis after it has

been transformed by Rq, ROi see Figure 2d.
Denote the j-th column of R.p Ro by (R,p Rok Since the original unit w-axis is (0,0, l)T, after

the rotations by () and ¢, it is the unit vector R,p Ro(O, 0, l)T; i.e., this new axis of rotation is
(R,p Ro):J, the third column of R¢ Ro. The columns of the matrix are unit orthogonal vectors, and
thus after the rotation by n the other two axes are linear combinations of the first two columns of
R.p Ro. Consequently, the original u-axis is mapped to

cos [l (R", R,h + sin [l (R. Ro),

and the original v-axis is mapped to

-sin n (Rp Roll + cos n (Rq, Roh

The image of a vector u = (u, v, w)'1' after the rotations of f), ¢ and n is

u [cos [l (R",Roh + sin [l (R. Ro),] + v [- sin n (R. Roh + cos [l (R",R,),] + w(R. Ro),

The matrix representation of this transformation is R, whcre

(

cosn -sinn
Rn= sinn cosn

o 0

and the the image U of a vector u is U = Ru.
5. Rotation of the Transform Domain. The Fourier transform of the density, p, is given

by

Fp(X) ~ f f f p(x) e-2.iXTxdx
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where
x T = (X, Y, Z), X

T = (x, y, z), and X T x = XIXI + Y1YI + ZlZl.

The mapping R specified by (e, ¢, r!) is orthogonal: R- I = R1'; equivalently, the product RRT

is the identity matrix I. Consequently, the change of vdIiables x = Ru leads to

where
and (R-1x) ~ u ~ (n, v, w)T

Because R is an orthogonal transformation, det(RTR) = 1. Hence the mapping x -----l- u defined by
x = Ru preserves lengths so that dx = duo Thus we have

By setting W = 0, we obtain the Fourier transform of the projection of p on the (U, V,O) plane.
This is the 'projection theorem' (see [17] and [9]).

Consequently, the discrete Fourier transform of the pixel values (see Section 3) gives values
of F(U, V,O) [rom experimentally observed values of the projection of the density p. The point
(U, V, 0) corresponds to (X, Y, Z) in the standard transform space according to

(5.1)

6. Relationship between Two and Three Dimensional Transforms. We want to esti
mate values Fp(X, Y, Z) of the transform of p at points of a cubic grid:

x ~ hb.X, Y ~ kb.X, Z ~ MX, h,k E {O,±l,±2, ... ,±Hj2}, eE {O,1,2, ... ,Hj2}

in a standard orthogonal Cartesian system. We use the values of the transform F(U, V) of a pixel
frame at points of a square grid:

U~pb.U, pE{-Nj2+1, ... ,-1,O,1, ... ,N/2} v ~ qb.U, q E {a, 1, ... , Nj2}.

Only nonnegative values of V arc required because F is the transform of a real-valued function, so
F has conjugate symmetry:

F(-U,-V) = F"(U, V),

where· denotes complex conjugation.
An arbitrary point (U, V) in the plane has coordinates (X, Y, Z) in space as given by (5.1). This

can be written in terms of the first two columns, R 1 and R 2, of the 3-by-3 matrix R:
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We obtain three relations among points on grid lines in the 3·dimensional (X, Y, Z)-spacc and
points in the (U, V)-plane.

Given X = h6.X, Y = k6.X: find Z' J U I
, and V'. First we take specific integers, h, k, and the

corresponding grid points X = hf:::..X and Y = kb..X. Substitution into (6.1) and rearrangement
yields the equation

(6.2)

In general, the components UI
, V', and Z', of the solution are not integers; primes denote compo

nents of the solution - components without primes indicate integers. Except for very few ca.<;es,
in which the set of three vectors on the left side of the equation (6.2) is linearly dependent, this
equation has a unique solution which gives the coordinates of a point (UI

, V') in the plane and the
third coordinate of the point (h6.X, kb..X, Z') in space. The point (X, Y, Z') will be a point on the
grid line parallel to the Z-axis containing the grid point (h.6.X, k..6.X, 0).

It is easy to solve (6.2). Because the columns R 1 and R 2 are orthogonal unit vectors, multipli
cation by R 1T yields

(6.3a)

where Rj,k denotes the entry in the j-th row and k~th column of R. Multiplication by R 2
T yields

(6.3b)

The third equation of (6.2) is

(6.3c)

Elimination of U' and V' from (6.3c) yields

If the magnitude of the coefficient of Z in (6.4) is less than a preassigned cut-off value, then this
point is discarded; otherwise, ZI is obtained from (6.4) and used in (6.3a) and (G.3b) to obtain
values for U f and V'.

In most cases, (U', V') is not a grid point, (jf:::..U, kf:::..U) , in the plane. Let UN, Us denote the two
grid points on the 'vertical' axis nearest to U and let Vw I VB denote grid points on the 'horizontal'
axis nearest to V. For the value of F(U', V'), we take the value of the bilinear interpolant to F at
the four nearest-neighbor grid points (see Figure 3):

F(U', V') = [{F(Us, VEl [U - UN] - F(UN, VEl [U - Usl} IV - Vwl

+ {F(UN, Vw)(U - Usl- F(Us, Vw)(U - UN]} IV - VEl] / f',.U'
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The values of F(U, V) are not stored for negative V. Whenever the value of F(U, V) with
negative V is required, we make use of the symmetry relation F(U, - V) = F·( -U, V).

Given X = hb.X, Z = et:::..x: find yl, UI, and V'. Second, we take specific integers, h, e,
and the corresponding grid points X = hb.X and Z = eb.x. As abDve, substitution into (6.1),
rearrangement, and sDlutiDn yields an equatiDn for y':

(6.4')

Provided the magnitude of the coefficient of Y' is not too small, this equation is solved for yl and
the result is used in the follDwing equations tD Dbtain corresponding values of UI and VI:

(6.3a')

(6.3b')

Given Y = kb.X, Z = eb.x: find X', U', and V'. Third, we take specific integers, k, e,
and the cDrresponding grid points Y = kb.X and Z = P.b.X. As above, substitution into (6.1),
rearrangement, and solutiDn yields an equation fDr X:

(6.4")

Provided the magnitude Df the coefficient Df X' is nDt too small, this equatiDn is sDlved for X' and
the result is used in the following equations to obtain cDrresponding values Df U and V:

(6.3a")

(6.3b")

7. Linear Systems for Transform Values. Interpolated values of the Fourier transform are
used to obtain a llnear system whose sDlution gives values Df the FDurier transfDrm Df the projected
density. To explain, we review SDme definitiDns and relatiDnships.

The Fourier transform, F, of a function, f, defined on the x~axis and its inverse are given by

F(w) = i: f(x) e-27Tiwx dx,

(7.1)

When f has support in -Aj2 ::; x ::; Aj2 (Le., f is zero outside this interval), then

j
A/2 .

F(w) = J(x) e-27r~wxdx.
-A/2

The Fourier coefficients, C,l' h =, 0, ±1, ±2, ... , Df the periodic extensiDn of f, period A, are

(7.2)
1 j A/2 . 1

Ch = - f(x) e-27Tlhx/A dx = -F(hjA)
A -A/2 A

9



and

(7.3)
00

f(x) = L ch e21rihx/A.

1.=-00

It follows from (7.1)-(7.3) that for arbitrary w = hilA

:F(h'/A) e-2rrih'x/Adx

(7.4)
<XI 1 A/2I: -:F(h/A) j e'x'{h-h')x/Adx

,,= -00 A -Aj2

00

I:
h=-oo

:F(h/A) sin orr(h - Ii).
orr(h h')

This result is 'Shannon's Sampling Theorem' (33]: If a function f has support in a finite interval,
- AJ2 ::; x :0:::::: Aj2, then its Fourier transform:F is completely determined by its values at a discrete
set of points, hlB, h = 0, ±1, ±2, ... , for any B 2': A. (Alternatively: if the transform of f has
bounded support, then the values of f arc completely determined by its values on a discrete set.)

Set :F(w) ~ :F(h/A) ~ F(h); then (7.4) become,

00

F(h') ~ I: Bh',hF(h),
"=-00

sin n(h' - h)
B"',h = n(h' _ h)

The limit of sin x/x a.<; x --+ 0 is unity.
Similarly, for f a function on 3-dimensional space which is zero outside the cube

-Aj2:o:::::: x,y,z:o:::::: A/2,

we have
00 00 00

F(h', k', 1') = I: I: I: Bh',hBk',kBt'" F(h, k, I).
h=-= k=-oo £=-00

If the values of the Fourier transform are negligible outside the cube

-H/2+ 1:;; h,k,l:;; H/2,

then the 00 in the lower and upper limits on the sums can be replaced with -Hj2 + 1 and Hj2,
respectively.

The interpolants of the transform of a pixel frame give estimates of F(h', k, £) for a set of integer
points (k, E). Let Rk,l denote the nnmber of values of h, that have been obtained after processing all
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the the frames, Thus, we have a set of Thus, for fixed (k, E) we have values h' = h r , T = 1, ... ,Rk,£.
This leads to a syst,em of Rk,e equations in H unknowns:

(7.5)
1f!2

:L flh"h F(h, k, e) ~ F(h" k, e),
h r =-H/2+1

T = 1, ... ,Rk,e, (k, e) fixed.

With other choices of interpolants (see §6), we get other sets of equations similar to (7.5);

(7.6)

and

(7.7)

1I/2

:L Bk"kF(h,k,e) ~ F(h,k"e),
k.=-II/2+1

II/2

:L B""F(h,k,e) ~ F(h,k,e,),
ll=-H/2+1

s=l, ... ,SIL,l,

t = 1, ... ,T,L,I.:,

(h, e) fixed.

(h, k) fixed.

Thus, we have thrce sets of linear systems which give values of the transform, F(h, k, i), in terms
of values obtained from experimental observations. Because the values, F(hj , k, E), F(h, ks , e), and
F(h, k, Et ), on the right side are obtained from experimental observations which contain noise and
interoplation error, we want to have more equations than unknowns.

We obtain the least squares solutions of these systems by using the LAPACK routine SGELS (p.
141 of [1]) which makes use of the singular value decomposition of the coefficient matrix.

8. Singular Value Decomposition. Let n rL denote the set of column n-vectors with real
components and let nmxn denote the set of matrices having m rows, n columns, and real entries.
The Euclidean norm IIxl12 of x E n" is the square root of the sum of the squares of the components
ofx.

The singular value decomposition (SVD) of A E nmxn is a factorization A = U:E VT where

U E nm,xm is orthogonal, E E nmxn is diagonal, V E n rLxn is orthogonal.

A matrix U is 'orthogonal' when its columns are unit vectors of an orthogonal coordinate system,
I.e., UTU = I so that U is invertible and U-1 = UT. The diagonal entries, :Ej,j = aj, of E are the
'singular values' of A. They are nonnegative and ordered a1 ~ a2 ~ ... ~ amin{m,n}.

The rank or A is also given by the SVD. The rank, T, of A is the dimension of its rangej
that is, T is the dimension of the subspace of nm , formed by the set of linear combinations of
the columns of A: all vectors Ax with x E nn. The rank of A is equal to the number of its
positive singular values. That is, if CJmin {m,n} > 0, then T = min {m, n}; otherwise if CJk > 0 and
0= CJk+1 = ... = CJrnin {m,n}, then T = k.

The SVD has many uses in computation (see [19], [37], or any other book on applied numerical
linear algebra). In particular, it can be used to solve the least squares problem:

given A E nnlxn and b E 1?.m, find x E nn which minimizes II b - Ax 112.
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The LAPACK routine SGELS solves this least squares problem by making use of the SVD of A.
It does not need to find the complete SVD and uses, therefore, fewer arithmetic operations than is
required for a complete factorization (see [19] pp. 254 and 263 for operation counts).

When the rank r is less than n, then there is an (n - r)-dimensional hyperplane of solutions
of the least squares problem. In this situation SGELS returns that solution which has the shortest
length: IIxl12 is also minimized. Thus SGELS returns a solution of a least squares problems that has
fewer equations than unknowns or one that has a 'rank deficient' matrix (the rank of A is less than
n).

The user can specify when a computed singular value should be considered 7.ero by specifying
the value of an input parameter, RCOND. Then singular values computed by SGELS that are less than
RCONDxal are set equal to zero.

The N01mal Equations. It is well-known that the solution of the least squares problem by means
of the 'normal equations'

ATAx=ATb,

is unstable and during the calculation, the effect of roundoff error can grow rapidly (see [19], §§5.3.2
and 5.3.8; see [37], Lectures 11, 18, and, for a numerical example sec Lecture 19; or see any other
book on applied numerical linear algebra).

Despite this, it seems popular among some researchers to set up and solve the normal equations.
Moreover, it also seems to be popular to solve the normal equations by computing the inverse
(ATAx)-l, and then multiplying ATb by the inverse. The amount of arithmetic operations in this
process is about 4 times the number of operations necessary to solve the normal equations directly
by Gauss elimination and about 8 times the number when they are solved by the Cholesky method
which takes advantage of the symmetry of the matrix ATA.

In more detail: The numerical accuracy of a problem solved by a particular method can often be
measured by the 'condition number'. For the least squares problem solved with SVD, the condition
number is the ratio aI/aT. Suppose one is using REAL*4 floating point arithmetic. Then the floating
point values have about 8 significant digits of accuracy. Thus, when the condition number is about
al/ar ~ 108, then the computed solution is, typically, totally contaminated by the accumulation
of roundoff error.

The condition number of the least squares problem solved by use of the normal equations
is (odor)2 which is the square of the condition number when the problem in solved with SVD.

Thus, when the normal equations are used, total contamination of accuracy by roundoff error
accumulation usually occurs when odOr ~ 104 • In contrast, if this same problem were solved with
SVD, one would expect the solution to have about 4 significant digits of accuracy.

Detailed discussions of condition number and roundoff error accumulation are given in [19], [37],
and most books on numerical linear algebra.

For our specific application, the right side of the linear system (7.5) contains entries F(h r , k, f).
These values are subject to errors: experimental, noise, interpolation, etc. We give the relationship
between condition number and such errors:

Suppose one is solving Ax = b in which the right side contains the error Llb, Then the computed
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solution has error .6.x and

Consequently, squaring the condition number squares the amplification factor multiplying the rel
ative error of the right side and thus the upper bound on the relative error of the solution.

Although the number of arithmetic operations to solve the least squares problem by SVD is about
twice the number for solving the normal equations by Cholesky factorization (or about a quarter
of the number when they are solved by inverting ATAx) we believe that the greater numerical
stability is well worth the extra cost.

9. Parallel Processing. As many processors as available are used to carry out the calculation.
Each processor carries out an FFT analysis of a speclfic set of pixel frames and determines the
Fourier coefficients on a 3D grid by interpolation. When this is completed, different pieces of
information necessary to form the lineal' systems (7.5) have been stored on different processors.
Information has to be exchanged among processors so that a particular processor acquires all the
information needed to construct that set of equations 8.'lsigned to it. We outline how this takes
place for the system (7.5); the processing of the other two systems, (7.6) and (7.7), is handled in
the same way and at the same time.

At the beginning, and whenever a processor has finished analyzing information from a pixel
frame, it reads pixel data from the next frame in the set allocated to it. The processor carries
out the Fourier analysis of the pixel values and determines the intersection (hr, k, £) of the plane
of transformed values and the spatial grid line through (0, k, £), as explained in Sections 6 and 7.
Whenever a processor has computed the three items

h,., !J1{FCh" k, ell,

which we call a 'triple', it stores them in an array declared

(Actually, an array is used which includes another index, 1:3, so that triples for the systems (7.6)
and (7.7) can also be stored.) The total number of triples stored for each point (k, £) is also stored
in an array NUM,..EQNS. An outline of the calculation which follows the Fourier analysis of a pixel
frame is indicated below:

DO 2010 L = L_MIN, L_MAX
DO 2000 K = K_MIN, K_MAX

c
+

IF( the interval (h,K,L), H_MIN <= h <= H_MAX, intersects
the plane of transformed pixel values ) THEN

Find the value of the Fourier transform by interpolation

NUM_EQNS(L,K) • NUM_EQNS(L,KJ + 1
INTERP( " NUM_H_EQNS(L,K), K, L) • H_R
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INTERP( 2, NUM_H_EQNS(L,K), K, L) = REAL_FT
INTERP( 3, NUM_H_EQNS(L,K), K, L) = AIMAG_FT

END IF
2000 CONTINUE

2010 CONTINUE

After all the processors have analyr.cd their allotted pixel frames, data have to be exchanged.
For example, processor 1 might have stored 15 triples for, say, (k,l) = (9,5). Processor 2, which
analyzes a different set of pixel frames, might have stored 25 triples with the same k and £, and so
on. All such information is necessary to form the linear system (7.5) for this particular (h, k). An
exchange of data takes place so that all the triples associated with a specific point (k, e) are put
onto the same processor; the set points (k, f) is distributed among the set or processors.

The processor having all of the triples for the point (k, £) computes the set of coefficients

B _ sin -rr(hr - h)
hr,h - n(h

r
It) , r=l, ... ,Rk ,l' h=-H/2+1, ... H/2

Df the linear system (7.5).
The matrices A E R.RI:,lxII bE n.RI:,IX2 with entries, ,

are passed to the LAPACK routine SGELS which cDmputes the least square sDlution Df the linear
system to Dbtain estimates Df

(9.1) !R{F(h, k, I)} and B'{F(h, k, £)}, h ~ -H/2 + 1, ... , H/2, (k, f) fixed.

An FFT synthesis, using routine CFFTB frDm FFTPACK [35], with respect tD h is applied tD the
complex values

F(h, k,f)

tD obtain the complex values

R(x, k, f),

h~-H/2+1, ... ,H/2, (k,f) fixed.

x=-X/2+1, ... ,X/2, (k,f) fixed.

These are estimates of values of the Fourier transfDrm with respect tD y and Z Df the density
p(x, y, z).

After all the processors complete these FFT syntheses, data again have to be exchanged among
processors. This is dDne in order tD put the the values R(x, k, e) for all the points (k, e) with:c fixed
onto a single proceSSDr. For example, after the exchange is completed, processor P would have the
values

R(x,k,e), k=-K/2+1, ... ,K/2, f~O, ... ,L/2,

14
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where XI,P, X 2,P, denote the limits on x for the planes to be synthesized by processor P. We do
not need values corresponding to negative £ because of the conjugate symmetry of the transform
values.

The next step in the calculation is the FFT synthesis with respect to kj the routine eFFTB from
FFTPACK [35] is used. The result is a set of complex values

S(x, y, i), £ = 0, ... , L/2, y = Ymin ···, YmIDl:l X = XI,p ... , X 2,p.

Here, S is the transform of a real valued function.
Finally, a synthesis with respect to £ is carried out by using routine VRFFTB from VFFTPK [36];

this results in the estimates

p(x,y,z), x~-X/2+1,... ,X/2, y~-Y/2+1,... ,Y/2, z~-Z/2+1,... ,Z/2.

The other sets of information, associated with the linear systems (7.6) and (7.7), are processed
in a way similar to that described above for the the system (7.5). Currently we average the three
resulting values for p(x, y, z) and write the average onto the data-output file.

The final results are on different processors. The arrangement allows them to be written to the
data-output-file in an efficient way.

It is important to distribute the major segments of the computation among the processors
in such a way to that these segments end at nearly the same time for each processor. This 'load
balancing' then allows each processor to be active most of the time. The distribution of the seqments
depends on the particular types of processors executing the program. We discuss features of load
balancing in another report.
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